Fall 2022 (January 25, 2023) Instructor: Serge Richard

On Compactness

Exercise 3.2.4

On \mathbb{R} show that any closed interval is a compact set, while any open interval is not compact. More generally, show that any closed and bounded set in \mathbb{R}^n is compact.

Statement 1. Any closed interval in \mathbb{R} is a compact set.

Proof. We set I := [a, b] to be any closed interval in \mathbb{R} and let \mathcal{U} be an arbitrary open cover of I ($I \subset \mathcal{U}$). Clearly, for any $x \in I$, \mathcal{U} is also an open cover of [a, x]. Let, for some $x \in [a, b]$, [a, x] take up a finite subcover. Then we set $I' = \{x \in I \mid \mathcal{U} \text{ includes finite coverings of } [a, x]\}$. Notice that we only have to prove that $b \in I'$. Clearly, $I' \neq \phi$ because $a \in I'$. Also, we know that b is the upperbound of I'. Now we set $c := \max I'$, $c \leq b$.

Since, $c \in I' \exists U \in \mathcal{U}$ such that $c \in U$ or for an ϵ small enough and $\epsilon > 0$

$$[c - \epsilon, c + \epsilon] \subset U$$
 (because *U* is an open subcover.)

Let's prove c = b. Assume that c < b then by choosing ϵ small enough,

$$c + \epsilon < b$$

$$\implies c + \epsilon \in I$$

and since, U and U cover $c + \epsilon$,

$$\implies c + \epsilon \in I'$$

However, this contradicts the fact that $c = \max I'$. Hence, our assumption was wrong and c = b.

$$\implies b \in I' \implies [a,b] \text{ is compact}.$$

An alternate proof of Statement 1.

Proof. Assume I = [a, b] is not compact. We can also write $I = \left[a, \frac{a+b}{2}\right] \cup \left[\frac{a+b}{2}, b\right]$. Then, at least either of them is not compact. So we set $I_1 = [a_1, b_1]$ to be the one which is not compact. But now, I_1 can be written as $I_1 = \left[a_1, \frac{a_1+b_1}{2}\right] \cup \left[\frac{a_1+b_1}{2}, b_1\right]$. Since, I_1 is not compact, either one of $\left[a_1, \frac{a_1+b_1}{2}\right]$, $\left[\frac{a_1+b_1}{2}, b_1\right]$ must not be compact. So we set I_2 to be the one which is not compact. Following the same procedure for $I_2, I_3 \dots I_{n-1}$ we can choose a non compact interval $I_n = [a_n, b_n]$. Notice that the sequence $\{I_k\}_{k=1}^n$ satisfies these conditions:

- 1. $I_1 \supset I_2 \supset \cdots \supset I_n \supset \ldots$
- $2. \lim_{n\to\infty} (b_n a_n) = 0$

Therefore, we conclude that $\lim_{n\to\infty} I_n = \{\alpha\}$, with $\alpha \in [a,b]$ by Nested intervals theorem.

Since I_n is not compact $\Longrightarrow \{\alpha\}$ is not compact. Which is not true, since a singleton set is always compact. Hence, our assumption was wrong and [a, b] is compact. \Box

Statement 2. Any closed and bounded set in \mathbb{R}^n is compact.

To prove this statement, we start by proving the following lemma.

Lemma 1. If $S_1, S_2, S_3 \dots S_n$ are compact sets of \mathbb{R} , then $\mathbf{S} = S_1 \times S_2 \times \dots S_n$ is also a compact set in \mathbb{R}^n

Proof. We start with an inductive approach. Let's start by proving this lemma for two compact sets A and B. Let $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of $A\times B$. For each $(a,b)\in A\times B$, $\exists \lambda(a,b)\in\Lambda$ such that $(a,b)\in O_{\lambda(a,b)}$ Since, $O_{\lambda(a,b)}$ is open, the point (a,b) is included in some open box say $X=U_{(a,b)\times V_{(a,b)}}\subset O_{\lambda(a,b)}$ where, $U_{(a,b)}\subset A$ and $V_{(a,b)}\subset B$.

Suppose we fix an a and vary b, then for every point (a, b) we find that the point is contained in an open box in $A \times B$. Proceeding in this manner, we observe that the collection of sets $\{V_{(a,b)}\}_{b\in B}$ is an open cover of B. Since B is compact, we can find a finite subcover $V_{(a,b_j(a))}$ of B containing the points $\{(a,b_j(a))\}$.

Now let $U_a = \bigcap_j U_{(a,b_j(a))}$. Since U_a is an intersection of finitely many open sets, it is itself open. Additionally, since A is compact, there are finitely many a_i such that U_{a_i} forms and open cover of A. Then it follows that the collection of sets $\{O_{(a_i,b_i(a))}\}$ (for all combinations of i,j) is a finite cover of $A \times B$, which implies $A \times B$ is compact. Hence by induction,

$$S_1 \times S_2 \times \dots S_n$$
 is compact.

Notice that **Lemma 1** allows us to generate a *n* dimensional cube in \mathbb{R}^n .

Proof. Let X be an arbitrary, closed and bounded subset of \mathbb{R}^n . Let \mathcal{U} be an arbitrary open cover of X. Let's assume that \mathcal{U} has no finite subcover of X. Since X is bounded, we can say that it is contained within a n-dimensional cube of sufficient size, let's call this cube. \mathcal{C} .

$$\implies X \subset \mathcal{C}$$

Notice that since X is closed, $(\mathbb{R}^n - X)$ is an open set in \mathbb{R}^n , by definition. Also, $\mathcal{U} \cup (\mathbb{R}^n - X)$ forms an open cover of \mathcal{C} . According to our assumption that \mathcal{U} does not have a finite subcover of X,

$$\implies \mathcal{U} \cup (\mathbb{R}^n - X)$$
 has no finite subcover of \mathcal{C} .

But by **Lemma 1** we know that \mathcal{C} is compact and therefore every open cover of \mathcal{C} must have a finite subcover. Hence, our assumption was wrong and \mathcal{U} contains a finite subcover of X

$$\therefore X$$
 is compact