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On Compactness

Exercise 3.2.4

On R show that any closed interval is a compact set, while any open interval is not
compact. More generally, show that any closed and bounded set in Rn is compact.

Statement 1. Any closed interval in R is a compact set.

Proof. We set I := [a, b] to be any closed interval in R and let U be an arbitrary open cover of
I (I ⊂ U). Clearly, for any x ∈ I, U is also an open cover of [a, x]. Let, for some x ∈ [a, b], [a, x]
take up a finite subcover. Then we set I ′ = {x ∈ I | U includes finite coverings of [a, x]}. Notice
that we only have to prove that b ∈ I ′. Clearly, I ′ ̸= ϕ because a ∈ I ′. Also, we know that b is
the upperbound of I ′. Now we set c := max I ′, c ≤ b.
Since, c ∈ I ′ ∃ U ∈ U such that c ∈ U or for an ϵ small enough and ϵ > 0

[c− ϵ, c+ ϵ] ⊂ U (because U is an open subcover.)

Let’s prove c = b. Assume that c < b then by choosing ϵ small enough,

c+ ϵ < b

=⇒ c+ ϵ ∈ I

and since, U and U cover c+ ϵ,

=⇒ c+ ϵ ∈ I ′

However, this contradicts the fact that c = max I ′. Hence, our assumption was wrong and c = b.

=⇒ b ∈ I ′ =⇒ [a, b] is compact.

An alternate proof of Statement 1.

Proof. Assume I = [a, b] is not compact. We can also write I =
[
a, a+b

2

]⋃ [
a+b
2
, b
]
. Then, at

least either of them is not compact. So we set I1 = [a1, b1] to be the one which is not compact.
But now, I1 can be written as I1 =

[
a1,

a1+b1
2

]⋃ [
a1+b1

2
, b1

]
. Since, I1 is not compact, either

one of
[
a1,

a1+b1
2

]
,
[
a1+b1

2
, b1

]
must not be compact. So we set I2 to be the one which is not

compact. Following the same procedure for I2, I3 . . . In−1 we can choose a non compact interval
In = [an, bn]. Notice that the sequence {Ik}nk=1 satisfies these conditions:

1. I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ . . .

2. limn→∞(bn − an) = 0

Therefore, we conclude that limn→∞ In = {α}, with α ∈ [a, b] by Nested intervals theorem.

Since In is not compact =⇒ {α} is not compact. Which is not true, since a singleton set is
always compact. Hence, our assumption was wrong and [a, b] is compact.
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Statement 2. Any closed and bounded set in Rn is compact.

To prove this statement, we start by proving the following lemma.

Lemma 1. If S1, S2, S3 . . . Sn are compact sets of R, then S = S1×S2× . . . Sn is also a compact
set in Rn

Proof. We start with an inductive approach. Let’s start by proving this lemma for two compact
sets A and B. Let {Oλ}λ∈Λ be an open cover of A × B. For each (a, b) ∈ A × B, ∃λ(a, b) ∈ Λ
such that (a, b) ∈ Oλ(a,b) Since, Oλ(a,b) is open, the point (a, b) is included in some open box say
X = U(a,b)×V(a,b)

⊂ Oλ(a,b) where, U(a,b) ⊂ A and V(a,b) ⊂ B.
Suppose we fix an a and vary b, then for every point (a, b) we find that the point is contained
in an open box in A × B. Proceeding in this manner, we observe that the collection of sets
{V(a,b)}b∈B is an open cover of B. Since B is compact, we can find a finite subcover V(a,bj(a)) of
B containing the points {(a, bj(a))}.
Now let Ua =

⋂
j U(a,bj(a)). Since Ua is an intersection of finitely many open sets, it is itself open.

Additionally, since A is compact, there are finitely many ai such that Uai forms and open cover
of A. Then it follows that the collection of sets

{
O(ai,bi(a)

}
(for all combinations of i, j) is a finite

cover of A×B, which implies A×B is compact. Hence by induction,

S1 × S2 × . . . Sn is compact.

Notice that Lemma 1 allows us to generate a n dimensional cube in Rn.

Proof. Let X be an arbitrary, closed and bounded subset of Rn. Let U be an arbitrary open
cover of X. Let’s assume that U has no finite subcover of X. Since X is bounded, we can say
that it is contained within a n-dimensional cube of sufficient size, let’s call this cube. C.

=⇒ X ⊂ C

Notice that since X is closed, (Rn −X) is an open set in Rn, by definition. Also, U ∪ (Rn −X)
forms an open cover of C. According to our assumption that U does not have a finite subcover
of X,

=⇒ U ∪ (Rn −X) has no finite subcover of C.

But by Lemma 1 we know that C is compact and therefore every open cover of C must have a
finite subcover. Hence, our assumption was wrong and U contains a finite subcover of X

∴ X is compact
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