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Preliminary Proofs

Before studying the restricted Lorentz Group, let us prove that any element A of the Lorentz group
verifies Det(A) = £1, and also |AQ| > 1, with A% is defined as the first entry of the matrix A.
Afterwards, the proof of the Lorentz group can be divided into four disjoint groups will be provided.

Any element A € L satisfies the following relation ATgA = g with ¢ = diag(1,—1,—1,—1) and

1 = g. Thus, by using the relation AT gA = g, one has

P =1 g
Det(ATgA) = Det(AT)Det(g)Det(A) = Det(g).
But we know that Det(AT) = Det(A). Therefore,
(Det(A))> =1 = Det(A) = +1.
Let us rewrite the relation ATgA = g into tensor-index notation, namely
9N = gap-

Consider the (o, 8) = (0,0) component

GuEAY = goo = 1 <= Aol = Ag- Ao = (AY)” — (A)2 =1 <= (A%’ =1+ (A} >1

where the summation over repeated indices is understood (Einstein summation convention) and we
have used gm,A“a = A,q and the Minkowski inner product in tensor-index notation, namely A - B :=
A,BY = Atg,, B = A'BY — A'B'. Hence, we have \A00| > 1. Moreover, we know that A has an

inverse A~! since det(A) # 0 and in fact, the inverse also preserves the bilinear map, namely
g=(AT)TTATgAA = (AT)TTgA™! = (ATH)TgA™
Therefore, A~! € £ and if we take the inverse of the relation AT gA = g, one has

AlgA Y =g <= AgAT =y

1

where the property g—+ = g has been used in the expression. Consequently, if one expresses the

inverse relation in tensor-index notation and one takes the (0,0) component, one has

Aoy A%, = A A0 = (A9)* — (A%)2 =1 <= (A% =1+ (A%)2 > 1.



Consider A, A’ € £. The matrix multiplication yields
1/2 o\ 1/2
(AN = AGAT + A% = (14 (A%7) 7 (1+ (%)) 7 + A%,

Using the Cauchy-Schwarz inequality, one infers that

1/2

3 /2 / 3 o
< ( <A%>2> ST (A%)
i=1 j=1

7

3
Z AOkA/kO
k=1

P2
Let us now fix x,y such that (Aoi)2 = sinh?(z) and (A%)” = sinh?(y) where the summation over

repeated indices is understood. If A% and A’J have the same sign, then one has

3 1/2 3 1/2 N 1/2 /[ 4 1/2
(AN)} = (1 +Z<A%>2> 1Y) - (Z (A%>2> (A%)”
i=1 j=1 i=1 j=1

= cosh(z) cosh(y) — sinh(z) sinh(y)

= cosh(xz — y)

> 1.

If A% and A"} have the opposite sign, then by using the same trick as before, one has
1/2 1/2

3 1/2 3 - 3 12 (3 -,
(M) <~ (1 +3 <A%>2> L+ (%) )+ ( <A%>2> D (A%)
i=1 j=1 i=1 j=1
= — cosh(x) cosh(y) + sinh(z) sinh(y)
= —cosh(z — y)

< -1

From the results above, one infers that [(AA")%| > 1 for any AA’ € £ and the components determined

by A% are disjoint. Then, let us define the restricted Lorentz group as follows

Definition 1

The restricted Lorentz group L1 is defined as the Lorentz group L that is proper and or-
+

thochronous, namely one has ([2])
£l = {A € £ |Det(A) =1 and A} > 1}.

Furthermore, the restricted Lorentz group can be denoted by SO*(1,3) where (1,3) is the

signature of the quadrature form and the ”+” denotes the orthochronous property of L'i.




Proper and orthochronous Lorentz transformations

For A € 51, the restricted Lorentz transformation (proper and orthochronous) is denoted by ([4])
't = A" av.

Moreover, one needs to keep the 4-vector inner product invariant. Suppose A* and B* are transformed
by the same matrix A. Namely,
At = A" A% B" = N4B’.

Then, let us consider the 4-vector inner product

A~ B = AB" = g,, A" B" = (g,u A", \";) A“BP.
A-B=AsB’ = g,3A°B".

Therefore, the condition such that the 4-vector inner product invariant, namely the equality A"- B’ =
A - B holds, is given by

gijﬂaAVB = Gap
Observe that the relationship above is equivalent to the relation which has been written in the first

section, namely A”gA = g (The Lorentz group preserves the bilinear map).

Proper Rotations

A restricted Lorentz transformation A € El is said to be proper rotation if it leaves the time un-

changed, namely A% = 1. Then, the pure rotation has the following form ([I])

(o %)

with R denotes the three-dimensional rotation part of A with R € SO(3). For a rotation about
some vector 77 in 3-space, the rotation leaves 77 unchanged and acts in the plane orthogonal to 7.
For example, consider the rotation about the third axis 7 = é3 and if we express R altogether with

Ago = 1, then the pure rotation has the following form

0 0

A, 6) cosf) —sinf
é3,0) =
3 sinf cos6

0 0

o O O =
= o O O

One can interpret the rotation as rotating the coordinate system or rotating the space in a fixed

coordinate system depending on the sign of §. The former is called a passive transformation and the



latter is called an active transformation. Let us check if A preserves the bilinear map

1 0 0 0 1 0 0 0 1 0 0 0
ATgA: 0 cosf@ sinf O 0 -1 O 0 0 cosf —sinf O
0 —sin@ cosf 0 0O 0 -1 0 0 sinf cosf O
0 0 0 1 0 0 0o -1 0 0 0 1
1 0 0 0 1 0 0 0
10 —cosf) —sinf O 0 cosf —sinf O
o sind —cos® 0 0 sinf cosf O
0 0 0 -1 0 0 0 1
1 0 0 0
I U 0
1o 0o -1 0
0 0 0o -1

Hence, A preserves the bilinear map. Moreover, one also has det(A) = 1 and A% = 1 such that proper

rotation transformation is restricted Lorentz transformation.

Pure Lorentz Boosts

A restricted Lorentz transformation A € 51 is said to be a pure boost in the direction of a certain 3-
space vector 71 if it leaves unchanged any vectors in 3-space in the plane orthogonal to 77. Then, there
exists another parameter 1 which determines the magnitude of the boost. By choosing the 3-space
vector as +7i, then we have n > 0. For example, the pure Lorentz boost along the first coordinate

axis can be represented by the following matrix

coshn sinhnp 0 0O

o sinhn coshn 0 0
Man = |7 T
0 0 0 1

One can observe that det(A) = 1 and Agg = coshn > 1 which agrees with our definition of proper and

orthochronous Lorentz transformation. Then, let us check if the 4-vector inner product is invariant,



namely we check the following condition ATgA = g

coshn sinhn 0 0O 1 0 0 O coshn sinhn 0 0
ATgA — sinhn coshn 0 0 0 0 O sinhn coshn 0 0
0 0 10 0 0 -1 0 0 0 10
0 0 0 1 0 0 -1 0 0 0 1
coshn —sinhnp 0 0O coshn sinhn 0 0
| sinhnp —coshn 0 0O sinh 77 cosh 77 00
] o 0 -1 0 10
0 0 0 -1 01
1 0 0 O
10 -1 0 ©
o -1 0
0o 0 0 -1

=g

Hence, the pure boost transformation is proper and orthochronous Lorentz transformation (A € L’l)

Lorentz Invariance

Let us consider a scalar field ¢ under the Lorentz transformation x — Ax, namely

d(z) = ¢'(x) = (A" x)

The inverse A~! appears in the argument because we consider an active transformation in which
the field is truly shifted. The definition of a Lorentz invariant theory is that if ¢ solves the equa-
tions of motion then ¢(A~!-) also solves the equations of motion. Meaning that the laws of physics
are the same for different observers even though the frame of reference is rotated through some an-
gle or traveling at a constant speed relative to the observer at rest. We can ensure that this property
holds by requiring that the action is Lorentz invariant ([3]). Let us consider a famous example in

relativistic quantum mechanics,

The Klein-Gordon Equation
Consider the Lagrangian for a real scalar field ¢(Z,t) ([3]),

1 1
L(6) = 59" 0O — 3m*d’

This real scalar field has been transformed under Lorentz transformation, ¢(z) — ¢/'(z) = ¢(A~1x).

The derivative of the scalar field transforms as a vector, namely

(0ud)(x) = (A1) (8,9) (y)



with y = A~'z. Here, the potential terms transform in the following way ¢?(x) — ¢*(y) meaning
that the potential terms are invariant under the transformation. Consider the derivative terms of the

Lagrangian

Laierin(2) = 0,6(2)0yd(@)g" — (A7) (ad) (W) (A1) (956) ()9
— (020) (1)(950) (1)
- Ederiv (y)

Therefore, the action is given by

S = /d4$£(w) — /d4:c£(y) = /d4y£(y) =S
From this result, one infers that the action is invariant under proper Lorentz transformations (since
we have det(A) = 1, then we don’t need to take into account the Jacobian factor).
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