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Preliminary Proofs

Before studying the restricted Lorentz Group, let us prove that any element Λ of the Lorentz group

verifies Det(Λ) = ±1, and also |Λ0
0| ≥ 1, with Λ0

0 is defined as the first entry of the matrix Λ.

Afterwards, the proof of the Lorentz group can be divided into four disjoint groups will be provided.

Any element Λ ∈ L satisfies the following relation ΛT gΛ = g with g = diag(1,−1,−1,−1) and

g2 = 1 ⇐⇒ g−1 = g. Thus, by using the relation ΛT gΛ = g, one has

Det(ΛT gΛ) = Det(ΛT )Det(g)Det(Λ) = Det(g).

But we know that Det(ΛT ) = Det(Λ). Therefore,

(Det(Λ))2 = 1 =⇒ Det(Λ) = ±1.

Let us rewrite the relation ΛT gΛ = g into tensor-index notation, namely

gµνΛ
µ
αΛ

ν
β = gαβ.

Consider the (α, β) = (0, 0) component

gµνΛ
µ
0Λ

ν
0 = g00 = 1 ⇐⇒ Λν0Λ

ν
0 = Λ0 · Λ0 = (Λ0

0)
2 − (Λi

0)
2 = 1 ⇐⇒ (Λ0

0)
2
= 1 + (Λi

0)
2 ≥ 1

where the summation over repeated indices is understood (Einstein summation convention) and we

have used gµνΛ
µ
α = Λνα and the Minkowski inner product in tensor-index notation, namely A ·B :=

AνB
ν = AµgµνB

ν = A0B0 − AiBi. Hence, we have |Λ0
0| ≥ 1. Moreover, we know that Λ has an

inverse Λ−1 since det(Λ) ̸= 0 and in fact, the inverse also preserves the bilinear map, namely

g = (ΛT )−1ΛT gΛΛ−1 = (ΛT )−1gΛ−1 = (Λ−1)T gΛ−1.

Therefore, Λ−1 ∈ L and if we take the inverse of the relation ΛT gΛ = g, one has

Λ−1g(Λ−1)T = g ⇐⇒ ΛgΛT = g

where the property g−1 = g has been used in the expression. Consequently, if one expresses the

inverse relation in tensor-index notation and one takes the (0, 0) component, one has

Λ0νΛ
0
ν = Λ0 · Λ0 = (Λ0

0)
2 − (Λ0

i)
2 = 1 ⇐⇒ (Λ0

0)
2
= 1 + (Λ0

i)
2 ≥ 1.
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Consider Λ,Λ′ ∈ L. The matrix multiplication yields

(ΛΛ′)00 = Λ0
0Λ

′0
0 + Λ0

kΛ
′k
0 =

(
1 + (Λ0

i)
2
)1/2 (

1 + (Λ′j
0)

2
)1/2

+ Λ0
kΛ

′k
0.

Using the Cauchy-Schwarz inequality, one infers that∣∣∣∣∣
3∑

k=1

Λ0
kΛ

′k
0

∣∣∣∣∣ ≤
(

3∑
i=1

(Λ0
i)
2

)1/2
 3∑

j=1

(Λ′j
0)

2

1/2

.

Let us now fix x, y such that (Λ0
i)
2
= sinh2(x) and (Λ′j

0)
2
= sinh2(y) where the summation over

repeated indices is understood. If Λ0
0 and Λ′0

0 have the same sign, then one has

(ΛΛ′)00 ≥

(
1 +

3∑
i=1

(Λ0
i)
2

)1/2
1 +

3∑
j=1

(Λ′j
0)

2

1/2

−

(
3∑

i=1

(Λ0
i)
2

)1/2
 3∑

j=1

(Λ′j
0)

2

1/2

= cosh(x) cosh(y)− sinh(x) sinh(y)

= cosh(x− y)

≥ 1.

If Λ0
0 and Λ′0

0 have the opposite sign, then by using the same trick as before, one has

(ΛΛ′)00 ≤ −

(
1 +

3∑
i=1

(Λ0
i)
2

)1/2
1 +

3∑
j=1

(Λ′j
0)

2

1/2

+

(
3∑

i=1

(Λ0
i)
2

)1/2
 3∑

j=1

(Λ′j
0)

2

1/2

= − cosh(x) cosh(y) + sinh(x) sinh(y)

= − cosh(x− y)

≤ −1.

From the results above, one infers that |(ΛΛ′)00| ≥ 1 for any ΛΛ′ ∈ L and the components determined

by Λ0
0 are disjoint. Then, let us define the restricted Lorentz group as follows

Definition 1

The restricted Lorentz group L↑
+ is defined as the Lorentz group L that is proper and or-

thochronous, namely one has ([2])

L↑
+ := {Λ ∈ L | Det(Λ) = 1 and Λ0

0 ≥ 1}.

Furthermore, the restricted Lorentz group can be denoted by SO+(1, 3) where (1, 3) is the

signature of the quadrature form and the ”+” denotes the orthochronous property of L↑
+.
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Proper and orthochronous Lorentz transformations

For Λ ∈ L↑
+, the restricted Lorentz transformation (proper and orthochronous) is denoted by ([4])

x′µ = Λµ
νx

ν .

Moreover, one needs to keep the 4-vector inner product invariant. Suppose Aµ and Bµ are transformed

by the same matrix Λ. Namely,

A′µ = Λµ
αA

α, B′ν = Λν
βB

β.

Then, let us consider the 4-vector inner product

A′ ·B′ = A′
νB

′ν = gµνA
′µB′ν = (gµνΛ

µ
αΛ

ν
β)A

αBβ.

A ·B = AβB
β = gαβA

αBβ.

Therefore, the condition such that the 4-vector inner product invariant, namely the equality A′ ·B′ =

A ·B holds, is given by

gµνΛ
µ
αΛ

ν
β = gαβ

Observe that the relationship above is equivalent to the relation which has been written in the first

section, namely ΛT gΛ = g (The Lorentz group preserves the bilinear map).

Proper Rotations

A restricted Lorentz transformation Λ ∈ L↑
+ is said to be proper rotation if it leaves the time un-

changed, namely Λ0
0 = 1. Then, the pure rotation has the following form ([1])

Λ =

(
1 0

0 R

)

with R denotes the three-dimensional rotation part of Λ with R ∈ SO(3). For a rotation about

some vector n⃗ in 3-space, the rotation leaves n⃗ unchanged and acts in the plane orthogonal to n⃗.

For example, consider the rotation about the third axis n⃗ = e⃗3 and if we express R altogether with

Λ00 = 1, then the pure rotation has the following form

Λ(e⃗3, θ) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 .

One can interpret the rotation as rotating the coordinate system or rotating the space in a fixed

coordinate system depending on the sign of θ. The former is called a passive transformation and the
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latter is called an active transformation. Let us check if Λ preserves the bilinear map

ΛT gΛ =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



=


1 0 0 0

0 − cos θ − sin θ 0

0 sin θ − cos θ 0

0 0 0 −1



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


= g.

Hence, Λ preserves the bilinear map. Moreover, one also has det(Λ) = 1 and Λ0
0 = 1 such that proper

rotation transformation is restricted Lorentz transformation.

Pure Lorentz Boosts

A restricted Lorentz transformation Λ ∈ L↑
+ is said to be a pure boost in the direction of a certain 3-

space vector n⃗ if it leaves unchanged any vectors in 3-space in the plane orthogonal to n⃗. Then, there

exists another parameter η which determines the magnitude of the boost. By choosing the 3-space

vector as ±n⃗, then we have η ≥ 0. For example, the pure Lorentz boost along the first coordinate

axis can be represented by the following matrix

Λ(e⃗1, η) =


cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1


One can observe that det(Λ) = 1 and Λ00 = cosh η ≥ 1 which agrees with our definition of proper and

orthochronous Lorentz transformation. Then, let us check if the 4-vector inner product is invariant,
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namely we check the following condition ΛT gΛ = g

ΛT gΛ =


cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1



=


cosh η − sinh η 0 0

sinh η − cosh η 0 0

0 0 −1 0

0 0 0 −1



cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1



=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


= g

Hence, the pure boost transformation is proper and orthochronous Lorentz transformation (Λ ∈ L↑
+).

Lorentz Invariance

Let us consider a scalar field ϕ under the Lorentz transformation x → Λx, namely

ϕ(x) → ϕ′(x) = ϕ(Λ−1x)

The inverse Λ−1 appears in the argument because we consider an active transformation in which

the field is truly shifted. The definition of a Lorentz invariant theory is that if ϕ solves the equa-

tions of motion then ϕ(Λ−1·) also solves the equations of motion. Meaning that the laws of physics

are the same for different observers even though the frame of reference is rotated through some an-

gle or traveling at a constant speed relative to the observer at rest. We can ensure that this property

holds by requiring that the action is Lorentz invariant ([3]). Let us consider a famous example in

relativistic quantum mechanics,

The Klein-Gordon Equation

Consider the Lagrangian for a real scalar field ϕ(x⃗, t) ([3]),

L(ϕ) = 1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2

This real scalar field has been transformed under Lorentz transformation, ϕ(x) → ϕ′(x) = ϕ(Λ−1x).

The derivative of the scalar field transforms as a vector, namely

(∂µϕ)(x) → (Λ−1)
ν
µ(∂νϕ)(y)

5



with y = Λ−1x. Here, the potential terms transform in the following way ϕ2(x) → ϕ2(y) meaning

that the potential terms are invariant under the transformation. Consider the derivative terms of the

Lagrangian

Lderiv(x) = ∂µϕ(x)∂νϕ(x)g
µν → (Λ−1)

α
µ(∂αϕ)(y)(Λ

−1)
β
ν(∂βϕ)(y)g

µν

= (∂αϕ)(y)(∂βϕ)(y)g
αβ

= Lderiv(y)

Therefore, the action is given by

S =

∫
d4xL(x) →

∫
d4xL(y) =

∫
d4yL(y) = S

From this result, one infers that the action is invariant under proper Lorentz transformations (since

we have det(Λ) = 1, then we don’t need to take into account the Jacobian factor).
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