Restricted Lorentz Group and Lorentz Invariance in Physics

FIRDAUS Rafi Rizqy / 062101889

Special Mathematics Lecture: Groups and their representations (Fall 2022)

Preliminary Proofs

Before studying the restricted Lorentz Group, let us prove that any element Λ of the Lorentz group verifies $\operatorname{Det}(\Lambda)= \pm 1$, and also $\left|\Lambda_{0}^{0}\right| \geq 1$, with Λ_{0}^{0} is defined as the first entry of the matrix Λ. Afterwards, the proof of the Lorentz group can be divided into four disjoint groups will be provided. Any element $\Lambda \in \mathcal{L}$ satisfies the following relation $\Lambda^{T} g \Lambda=g$ with $g=\operatorname{diag}(1,-1,-1,-1)$ and $g^{2}=\mathbb{1} \Longleftrightarrow g^{-1}=g$. Thus, by using the relation $\Lambda^{T} g \Lambda=g$, one has

$$
\operatorname{Det}\left(\Lambda^{T} g \Lambda\right)=\operatorname{Det}\left(\Lambda^{T}\right) \operatorname{Det}(g) \operatorname{Det}(\Lambda)=\operatorname{Det}(g) .
$$

But we know that $\operatorname{Det}\left(\Lambda^{T}\right)=\operatorname{Det}(\Lambda)$. Therefore,

$$
(\operatorname{Det}(\Lambda))^{2}=1 \Longrightarrow \operatorname{Det}(\Lambda)= \pm 1
$$

Let us rewrite the relation $\Lambda^{T} g \Lambda=g$ into tensor-index notation, namely

$$
g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu}=g_{\alpha \beta} .
$$

Consider the $(\alpha, \beta)=(0,0)$ component

$$
g_{\mu \nu} \Lambda_{0}^{\mu} \Lambda_{0}^{\nu}=g_{00}=1 \Longleftrightarrow \Lambda_{\nu 0} \Lambda_{0}^{\nu}=\Lambda_{0} \cdot \Lambda_{0}=\left(\Lambda_{0}^{0}\right)^{2}-\left(\Lambda_{0}^{i}\right)^{2}=1 \Longleftrightarrow\left(\Lambda_{0}^{0}\right)^{2}=1+\left(\Lambda_{0}^{i}\right)^{2} \geq 1
$$

where the summation over repeated indices is understood (Einstein summation convention) and we have used $g_{\mu \nu} \Lambda_{\alpha}^{\mu}=\Lambda_{\nu \alpha}$ and the Minkowski inner product in tensor-index notation, namely $A \cdot B:=$ $A_{\nu} B^{\nu}=A^{\mu} g_{\mu \nu} B^{\nu}=A^{0} B^{0}-A^{i} B^{i}$. Hence, we have $\left|\Lambda_{0}^{0}\right| \geq 1$. Moreover, we know that Λ has an inverse Λ^{-1} since $\operatorname{det}(\Lambda) \neq 0$ and in fact, the inverse also preserves the bilinear map, namely

$$
g=\left(\Lambda^{T}\right)^{-1} \Lambda^{T} g \Lambda \Lambda^{-1}=\left(\Lambda^{T}\right)^{-1} g \Lambda^{-1}=\left(\Lambda^{-1}\right)^{T} g \Lambda^{-1} .
$$

Therefore, $\Lambda^{-1} \in \mathcal{L}$ and if we take the inverse of the relation $\Lambda^{T} g \Lambda=g$, one has

$$
\Lambda^{-1} g\left(\Lambda^{-1}\right)^{T}=g \Longleftrightarrow \Lambda g \Lambda^{T}=g
$$

where the property $g^{-1}=g$ has been used in the expression. Consequently, if one expresses the inverse relation in tensor-index notation and one takes the (0,0) component, one has

$$
\Lambda_{0 \nu} \Lambda_{\nu}^{0}=\Lambda^{0} \cdot \Lambda^{0}=\left(\Lambda_{0}^{0}\right)^{2}-\left(\Lambda_{i}^{0}\right)^{2}=1 \Longleftrightarrow\left(\Lambda_{0}^{0}\right)^{2}=1+\left(\Lambda_{i}^{0}\right)^{2} \geq 1
$$

Consider $\Lambda, \Lambda^{\prime} \in \mathcal{L}$. The matrix multiplication yields

$$
\left(\Lambda \Lambda^{\prime}\right)_{0}^{0}=\Lambda_{0}^{0} \Lambda_{0}^{\prime 0}+\Lambda_{k}^{0} \Lambda_{0}^{\prime k}=\left(1+\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(1+\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2}+\Lambda_{k}^{0} \Lambda_{0}^{\prime k}
$$

Using the Cauchy-Schwarz inequality, one infers that

$$
\left|\sum_{k=1}^{3} \Lambda_{k}^{0} \Lambda_{0}^{\prime k}\right| \leq\left(\sum_{i=1}^{3}\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(\sum_{j=1}^{3}\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2}
$$

Let us now fix x, y such that $\left(\Lambda_{i}^{0}\right)^{2}=\sinh ^{2}(x)$ and $\left(\Lambda_{0}^{\prime j}\right)^{2}=\sinh ^{2}(y)$ where the summation over repeated indices is understood. If Λ_{0}^{0} and $\Lambda_{0}^{\prime 0}$ have the same sign, then one has

$$
\begin{aligned}
\left(\Lambda \Lambda^{\prime}\right)_{0}^{0} & \geq\left(1+\sum_{i=1}^{3}\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(1+\sum_{j=1}^{3}\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2}-\left(\sum_{i=1}^{3}\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(\sum_{j=1}^{3}\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2} \\
& =\cosh (x) \cosh (y)-\sinh (x) \sinh (y) \\
& =\cosh (x-y) \\
& \geq 1
\end{aligned}
$$

If Λ_{0}^{0} and $\Lambda^{\prime 0}{ }_{0}$ have the opposite sign, then by using the same trick as before, one has

$$
\begin{aligned}
\left(\Lambda \Lambda^{\prime}\right)_{0}^{0} & \leq-\left(1+\sum_{i=1}^{3}\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(1+\sum_{j=1}^{3}\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{3}\left(\Lambda_{i}^{0}\right)^{2}\right)^{1 / 2}\left(\sum_{j=1}^{3}\left(\Lambda_{0}^{\prime j}\right)^{2}\right)^{1 / 2} \\
& =-\cosh (x) \cosh (y)+\sinh (x) \sinh (y) \\
& =-\cosh (x-y) \\
& \leq-1
\end{aligned}
$$

From the results above, one infers that $\left|\left(\Lambda \Lambda^{\prime}\right)_{0}^{0}\right| \geq 1$ for any $\Lambda \Lambda^{\prime} \in \mathcal{L}$ and the components determined by Λ_{0}^{0} are disjoint. Then, let us define the restricted Lorentz group as follows

Definition 1

The restricted Lorentz group $\mathcal{L}_{+}^{\uparrow}$ is defined as the Lorentz group \mathcal{L} that is proper and orthochronous, namely one has ([2])

$$
\mathcal{L}_{+}^{\uparrow}:=\left\{\Lambda \in \mathcal{L} \mid \operatorname{Det}(\Lambda)=1 \text { and } \Lambda_{0}^{0} \geq 1\right\}
$$

Furthermore, the restricted Lorentz group can be denoted by $\mathrm{SO}^{+}(1,3)$ where $(1,3)$ is the signature of the quadrature form and the " + " denotes the orthochronous property of $\mathcal{L}_{+}^{\uparrow}$.

Proper and orthochronous Lorentz transformations

For $\Lambda \in \mathcal{L}_{+}^{\uparrow}$, the restricted Lorentz transformation (proper and orthochronous) is denoted by ([4])

$$
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} .
$$

Moreover, one needs to keep the 4 -vector inner product invariant. Suppose A^{μ} and B^{μ} are transformed by the same matrix Λ. Namely,

$$
A^{\prime \mu}=\Lambda_{\alpha}^{\mu} A^{\alpha}, B^{\prime \nu}=\Lambda_{\beta}^{\nu} B^{\beta} .
$$

Then, let us consider the 4 -vector inner product

$$
\begin{aligned}
A^{\prime} \cdot B^{\prime} & =A_{\nu}^{\prime} B^{\prime \nu} \\
A \cdot B & =g_{\mu \nu} A^{\prime \mu} B^{\prime \nu}=\left(g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu}\right) A^{\alpha} B^{\beta} \\
& =g_{\alpha \beta} A^{\alpha} B^{\beta} .
\end{aligned}
$$

Therefore, the condition such that the 4 -vector inner product invariant, namely the equality $A^{\prime} \cdot B^{\prime}=$ $A \cdot B$ holds, is given by

$$
g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu}=g_{\alpha \beta}
$$

Observe that the relationship above is equivalent to the relation which has been written in the first section, namely $\Lambda^{T} g \Lambda=g$ (The Lorentz group preserves the bilinear map).

Proper Rotations

A restricted Lorentz transformation $\Lambda \in \mathcal{L}_{+}^{\uparrow}$ is said to be proper rotation if it leaves the time unchanged, namely $\Lambda_{0}^{0}=1$. Then, the pure rotation has the following form ($\mathbb{1}$)

$$
\Lambda=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathcal{R}
\end{array}\right)
$$

with \mathcal{R} denotes the three-dimensional rotation part of Λ with $\mathcal{R} \in S O(3)$. For a rotation about some vector \vec{n} in 3 -space, the rotation leaves \vec{n} unchanged and acts in the plane orthogonal to \vec{n}. For example, consider the rotation about the third axis $\vec{n}=\vec{e}_{3}$ and if we express \mathcal{R} altogether with $\Lambda_{00}=1$, then the pure rotation has the following form

$$
\Lambda\left(\vec{e}_{3}, \theta\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

One can interpret the rotation as rotating the coordinate system or rotating the space in a fixed coordinate system depending on the sign of θ. The former is called a passive transformation and the
latter is called an active transformation. Let us check if Λ preserves the bilinear map

$$
\begin{aligned}
\Lambda^{T} g \Lambda & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & \cos \theta & -\sin \theta \\
0 \\
0 & \sin \theta & \cos \theta \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -\cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & -\cos \theta & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 \\
0 & \sin \theta & \cos \theta \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& =g .
\end{aligned}
$$

Hence, Λ preserves the bilinear map. Moreover, one also has $\operatorname{det}(\Lambda)=1$ and $\Lambda_{0}^{0}=1$ such that proper rotation transformation is restricted Lorentz transformation.

Pure Lorentz Boosts

A restricted Lorentz transformation $\Lambda \in \mathcal{L}_{+}^{\uparrow}$ is said to be a pure boost in the direction of a certain 3space vector \vec{n} if it leaves unchanged any vectors in 3 -space in the plane orthogonal to \vec{n}. Then, there exists another parameter η which determines the magnitude of the boost. By choosing the 3 -space vector as $\pm \vec{n}$, then we have $\eta \geq 0$. For example, the pure Lorentz boost along the first coordinate axis can be represented by the following matrix

$$
\Lambda\left(\vec{e}_{1}, \eta\right)=\left(\begin{array}{cccc}
\cosh \eta & \sinh \eta & 0 & 0 \\
\sinh \eta & \cosh \eta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

One can observe that $\operatorname{det}(\Lambda)=1$ and $\Lambda_{00}=\cosh \eta \geq 1$ which agrees with our definition of proper and orthochronous Lorentz transformation. Then, let us check if the 4 -vector inner product is invariant,
namely we check the following condition $\Lambda^{T} g \Lambda=g$

$$
\begin{aligned}
\Lambda^{T} g \Lambda & =\left(\begin{array}{cccc}
\cosh \eta & \sinh \eta & 0 & 0 \\
\sinh \eta & \cosh \eta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\cosh \eta & \sinh \eta & 0 \\
\sinh \eta & \cosh \eta & 0 \\
0 \\
0 & 0 & 1 \\
0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\cosh \eta & -\sinh \eta & 0 & 0 \\
\sinh \eta & -\cosh \eta & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\cosh \eta & \sinh \eta & 0 \\
\sinh \eta & \cosh \eta & 0 \\
0 \\
0 & 0 & 1 \\
0 \\
0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& =g
\end{aligned}
$$

Hence, the pure boost transformation is proper and orthochronous Lorentz transformation $\left(\Lambda \in \mathcal{L}_{+}^{\uparrow}\right)$.

Lorentz Invariance

Let us consider a scalar field ϕ under the Lorentz transformation $x \rightarrow \Lambda x$, namely

$$
\phi(x) \rightarrow \phi^{\prime}(x)=\phi\left(\Lambda^{-1} x\right)
$$

The inverse Λ^{-1} appears in the argument because we consider an active transformation in which the field is truly shifted. The definition of a Lorentz invariant theory is that if ϕ solves the equations of motion then $\phi\left(\Lambda^{-1}.\right)$ also solves the equations of motion. Meaning that the laws of physics are the same for different observers even though the frame of reference is rotated through some angle or traveling at a constant speed relative to the observer at rest. We can ensure that this property holds by requiring that the action is Lorentz invariant ([3]). Let us consider a famous example in relativistic quantum mechanics,

The Klein-Gordon Equation

Consider the Lagrangian for a real scalar field $\phi(\vec{x}, t)([3])$,

$$
\mathcal{L}(\phi)=\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

This real scalar field has been transformed under Lorentz transformation, $\phi(x) \rightarrow \phi^{\prime}(x)=\phi\left(\Lambda^{-1} x\right)$. The derivative of the scalar field transforms as a vector, namely

$$
\left(\partial_{\mu} \phi\right)(x) \rightarrow\left(\Lambda^{-1}\right)_{\mu}^{\nu}\left(\partial_{\nu} \phi\right)(y)
$$

with $y=\Lambda^{-1} x$. Here, the potential terms transform in the following way $\phi^{2}(x) \rightarrow \phi^{2}(y)$ meaning that the potential terms are invariant under the transformation. Consider the derivative terms of the Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {deriv }}(x)=\partial_{\mu} \phi(x) \partial_{\nu} \phi(x) g^{\mu \nu} & \rightarrow\left(\Lambda^{-1}\right)_{\mu}^{\alpha}\left(\partial_{\alpha} \phi\right)(y)\left(\Lambda^{-1}\right)^{\beta}{ }_{\nu}\left(\partial_{\beta} \phi\right)(y) g^{\mu \nu} \\
& =\left(\partial_{\alpha} \phi\right)(y)\left(\partial_{\beta} \phi\right)(y) g^{\alpha \beta} \\
& =\mathcal{L}_{\text {deriv }}(y)
\end{aligned}
$$

Therefore, the action is given by

$$
S=\int d^{4} x \mathcal{L}(x) \rightarrow \int d^{4} x \mathcal{L}(y)=\int d^{4} y \mathcal{L}(y)=S
$$

From this result, one infers that the action is invariant under proper Lorentz transformations (since we have $\operatorname{det}(\Lambda)=1$, then we don't need to take into account the Jacobian factor).

References

[1] Arthur Jaffe. Lorentz Transformations, Rotations, and Boosts. 2015.
[2] Serge Richard. Special Mathematics Lecture: Groups and their representations. 2022.
[3] David Tong. Lectures on Quantum Field Theory. 2006.
[4] Hitoshi Yamamoto. Quantum Field Theory for Non-Specialists (Lecture Notes).

