Z(G) is an Abelian and Normal subgroup of G

FIRDAUS Rafi Rizqy / 062101889

Special Mathematics Lecture: Groups and their representations (Fall 2022)

Exercise 1.2.12

As defined in **Definition 1.2.11**, the center of the group G is defined by $Z(G) : \{a \in G \mid ab = ba \forall b \in G\}$. We want to prove that Z(G) is a subgroup of G by checking the following properties of a subgroup.

- 1) The operation of Z(G) is associative as the operation of Z(G) is the same as the operation of the group G and G itself is a group which satisfies the associativity property $(\forall a, b, c \in G : (ab)c = a(bc))$.
- 2) The identity element e is also in the center of group $G (e \in Z(G))$ as ea = ae = a for any $a \in G$.
- 3) We want to check if Z(G) is closed under the operation of G. Let $a, b \in Z(G)$, then $\forall c \in G$ one has

$$(ab)c = a(bc)$$
$$= a(cb)$$
$$= (ac)b$$
$$= (ca)b$$
$$= c(ab).$$

Thus, $ab \in Z(G)$ and therefore Z(G) is closed under the operation of G.

4) We want to check if the inverse is in Z(G). Let $a \in Z(G)$, then $\forall b \in G$ one has

$$a^{-1}b = a^{-1}b(aa^{-1})$$

= $a^{-1}(ba)a^{-1}$
= $a^{-1}(ab)a^{-1}$
= ba^{-1} .

Thus, $a^{-1} \in Z(G)$ and the inverse exists for every element in Z(G).

Z(G) is, therefore, a subgroup of G and by its definition, we also know that Z(G) is an Abelian subgroup of G. Then, we want to show that Z(G) is a normal subgroup. Let $a \in Z(G)$, then $\forall b \in G$ one can write

$$a = a(bb^{-1})$$
$$= (ab)b^{-1}$$
$$= bab^{-1}.$$

Hence, we have $bZ(G)b^{-1} = Z(G)$, $\forall b \in G$ which implies that Z(G) is also a normal subgroup. Z(G) is, therefore, an abelian and normal subgroup of G.