The Restricted Lorentz Group
 and Notions of Orthochronous Proper Lorentz Transformations

Cole Vincent

We recall the Lorentz group \mathcal{L} consists of the set of all $\mathbb{R}^{4} \times \mathbb{R}^{4}$ matrices $\Lambda \in M_{4}(\mathbb{R})$ such that

$$
(\Lambda x) \cdot(\Lambda y)=x \cdot y \quad \text { for any } x, y \in \mathbb{M} \text { (the Minkowski Space) }
$$

with a matrix form

$$
\Lambda^{T} g \Lambda=\mathrm{g}
$$

as shown in Section 1.5 of the lecture notes.
As introduced in Section 5.5 of the lecture notes, the Lorentz Group \mathcal{L} is a six-dimensional subgroup of the Poincare Group, and can be divided into four non-simply connected components:

$$
\begin{gathered}
\mathcal{L}_{+}^{\uparrow}:=\left\{\Lambda \in \mathcal{L} \mid \operatorname{Det}(\Lambda)=1 \text { and } \Lambda_{0}^{0} \geq 1\right\} \\
\mathcal{L}:=\left\{\Lambda \in \mathcal{L} \mid \operatorname{Det}(\Lambda)=-1 \text { and } \Lambda_{0}^{0} \geq 1\right\} \\
\mathcal{L}_{+}^{\downarrow}:=\left\{\Lambda \in \mathcal{L} \mid \operatorname{Det}(\Lambda)=1 \text { and } \Lambda_{0}^{0} \leq-1\right\} \\
\mathcal{L}_{-}^{\perp}:=\left\{\Lambda \in \mathcal{L} \mid \operatorname{Det}(\Lambda)=-1 \text { and } \Lambda_{0}^{0} \leq-1\right\}
\end{gathered}
$$

$\mathcal{L}_{+}^{\uparrow}$ is the called the Restricted Lorentz Group as it is continuously connected to the identity component e of the Lorentz Group \mathcal{L}.

Furthermore, the elements of the union \mathcal{L}^{\uparrow} of $\mathcal{L}_{+}^{\uparrow}$ and $\mathcal{L}_{-}^{\uparrow}$ are considered Orthochronous, as they preserve the direction of time within the Minkowski Space (represented by the first entry of a vector). We can see this when we apply an Orthochronous transformation of \mathcal{L}^{\uparrow} to an element of the Minkowski space (an element of \mathbb{R}^{4}). Since the first entry of Λ for the elements of \mathcal{L}^{\uparrow} is greater than or equal to one, the first entry's direction of $\Lambda \mathrm{x}$ is preserved. It follows that since the first entry of Λ in \mathcal{L}^{\downarrow} is less than or equal to negative one, the direction of time would be altered.

Remarks: Orthochronous Lorentz transforms are also called Proper Lorentz Transforms, while the remaining union of \mathcal{L}^{\downarrow} components is referred to as Improper Lorentz Transforms.

See here (Wikipedia) for additional information.

