The Restricted Lorentz Group

and Notions of Orthochronous Proper Lorentz Transformations

(1.5.4)

Cole Vincent

We recall the Lorentz group \mathcal{L} consists of the set of all $\mathbb{R}^4 \times \mathbb{R}^4$ matrices $\Lambda \in M_4(\mathbb{R})$ such that

 $(\Lambda x) \cdot (\Lambda y) = x \cdot y$ for any $x, y \in \mathbb{M}$ (the Minkowski Space)

with a matrix form

 $\Lambda^T g \Lambda = \mathbf{g}$

as shown in Section 1.5 of the lecture notes.

As introduced in Section 5.5 of the lecture notes, the Lorentz Group \mathcal{L} is a six-dimensional subgroup of the Poincare Group, and can be divided into four non-simply connected components:

$$\begin{split} \mathcal{L}_{+}^{\uparrow} &:= \{\Lambda \in \mathcal{L} \mid Det(\Lambda) = 1 \text{ and } \Lambda_{0}^{0} \geq 1 \} \\ \mathcal{L} &:= \{\Lambda \in \mathcal{L} \mid Det(\Lambda) = -1 \text{ and } \Lambda_{0}^{0} \geq 1 \} \\ \mathcal{L}_{+}^{\downarrow} &:= \{\Lambda \in \mathcal{L} \mid Det(\Lambda) = 1 \text{ and } \Lambda_{0}^{0} \leq -1 \} \\ \mathcal{L}_{-}^{\downarrow} &:= \{\Lambda \in \mathcal{L} \mid Det(\Lambda) = -1 \text{ and } \Lambda_{0}^{0} \leq -1 \} \end{split}$$

 $\mathcal{L}_{+}^{\uparrow}$ is the called the Restricted Lorentz Group as it is continuously connected to the identity component e of the Lorentz Group \mathcal{L} .

Furthermore, the elements of the union \mathcal{L}^{\uparrow} of $\mathcal{L}^{\uparrow}_{+}$ and $\mathcal{L}^{\uparrow}_{-}$ are considered Orthochronous, as they preserve the direction of time within the Minkowski Space (represented by the first entry of a vector). We can see this when we apply an Orthochronous transformation of \mathcal{L}^{\uparrow} to an element of the Minkowski space (an element of \mathbb{R}^4). Since the first entry of Λ for the elements of \mathcal{L}^{\uparrow} is greater than or equal to one, the first entry's direction of Λx is preserved. It follows that since the first entry of Λ in \mathcal{L}^{\downarrow} is less than or equal to negative one, the direction of time would be altered.

Remarks: Orthochronous Lorentz transforms are also called Proper Lorentz Transforms, while the remaining union of \mathcal{L}^{\downarrow} components is referred to as Improper Lorentz Transforms.

See here (Wikipedia) for additional information.