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1 Introduction

In a topological space (M, τ) all elements of τ are defined to be open sets, and their
complement V =M\ V are defined to be closed sets (∀V ∈ τ). A natural question
can be whether there exists a set that is both open and closed. An example to these
kind of sets can be seen in Figure 1. The aim of this report is to investigate these
kind of sets.

2 Observations

Firstly, for the sake of brevity, let us call sets that are both open and closed clopen
sets. In other words, a set V ⊂ M is clopen, if V, V ∈ τ (V ∈ τ ⇒ V is open,
V ∈ τ ⇒ V is closed). Observe that {p1} and {p2, p3} are clopen sets in Figure
1. Only by considering the definitions and some simple cases, one can make the
following observations.

Observation 1 For a topological space (M, τ)

1. ∅ and M are always clopen. This follows from the fact that by definition ∅
and M are open sets and that they are the complement of each other (so they
are closed sets too, which is the definition of clopen set).

2. All subset of M is clopen if and only if τ contains all subsets of M.

Proof: if all subset of M is contained by τ , then all subset of M is open (by
definition). Also, since the complement of any subset of M is another subset
of M, the complement of any subset of M is open, thus any subset of M is
closed. Therefore, if all subset of M is contained by τ , then all subset of M
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Figure 1: Open and closed sets. In this figure {p1} is an open set (since it is
in τ), and its complement {p2, p3} is a closed set. Observe that since {p2, p3} is
also contained by τ , {p2, p3} is also open and {p1} is thus also closed, so {p1} and
{p2, p3} are both open and closed.

is clopen.
Now suppose that all subset of M is clopen, but not all subset of M is con-
tained by τ . This means that there exists V ⊂ M that is not in τ . But that
would mean that V is not an open set, thus V cannot be clopen. Hence, if
M only contains clopen sets, then all subset of M is contained by τ (proof by
contradiction). �

3. If V is clopen, then C = {V, V } is an open cover of M. This follows from the
fact that any element of M can be found either in V or in its complement (by
definition), and that both V and V are open sets (this is exactly what “V is
clopen” means).

3 Hausdorff property

Next let us investigate the relationship between clopen sets and the Hausdorff prop-
erty. Recall that a topological space (M, τ) is Hausdorff if for any p1, p2 ∈M with
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p1 6= p2 there exists V1, V2 ∈ τ such that p1 ∈ V1, p2 ∈ V2, and V1 ∩ V2 = ∅.

contains clopen sets does not contain clopen sets
(other than ∅ and M) (other than ∅ and M)

Hausdorff M = {p1, p2} ?
τ = {M, ∅, {p1}, {p2}}

not Hausdorff M = {p1, p2, p3} M = {p1, p2, p3}
τ = {M, ∅, {p1}, {p2, p3}} τ = {M, ∅, {p1}, {p2}, {p1, p2}}

Table 1: Clopen sets and Hausdorff property.

Figure 2: A Hausdorff topological space containing clopen sets (other than
∅ and M). Observe that it is possible to separate p1 and p2 using open sets (so it
is Hausdorff). Also, observe that {p1} and {p2} are clopen.

Table 1 provides one-one example for a Hausdorff topological space containing clopen
sets (other than ∅ andM), a non-Hausdorff topological space containing clopen sets
(other than ∅ andM), and a non-Hausdorff topological space not containing clopen
sets (other than ∅ and M)1. An explanation for each case can be seen in Figure
2, 3, and 4. However, one can notice that for the entry of a Hausdorff topological

1Note: This table provides two solutions for Exercise 3.1.4. (in the bottom row).

3



Figure 3: A not Hausdorff topological space containing clopen sets (other
than ∅ and M). Observe that p2 and p3 cannot be separated using open sets (so
it is not Hausdorff). Also, observe that {p1} and {p2, p3} are clopen.

space not containing clopen sets (other than ∅ and M) it is not straightforward to
provide an (easy) example. In fact, it turns out that if |M| <∞, then no such set
exists, which will follow from a following, stronger proposition. But, to prove that
proposition, we need to prove the following lemma first.

Lemma 1 Let (M, τ) be a Hausdorff topological space. For any element p ∈ M,
if the subset containing only this element is not an open set, then any finite subset
of M containing p is not an open set either (i.e. for ∀p ∈ M, if {p} 6∈ τ and
p ∈ V ⊂M with |V | <∞, then V 6∈ τ).
Proof: I am going to use proof by mathematical induction. Let us assume that (M, τ)
is Hausdorff, and that for a p ∈M, {p} 6∈ τ .
Next, let us check the subsets of M containing p. Let us start with the ones con-
taining the least number of elements (the most basic cases)

• When the subset has one element: there is only one subset of M that has one
element and contains p, namely {p}, which is not an open set by our basic
assumption ⇒ no subset of M containing one element is open if it contains
p.
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Figure 4: A not Hausdorff topological space not containing clopen sets
(other than ∅ and M). Observe that p1 and p3 cannot be separated using open
sets (so it is not Hausdorff). Also, observe that there are no clopen sets in this
topological space (except for ∅ and M): neither of the other open sets ({p1}, {p2},
{p1, p2}) are closed, since their complements ({p2, p3}, {p1, p3}, {p3}) are not open
sets, thus they are not clopen.

• When the subset has two elements: this is a set containing p and another
random element of M, that is a set {p, p′} with p′ ∈ M and p 6= p′. Now
let us assume that this can be an open set, that is ∃p′ 6= p in M for which
{p, p′} ∈ τ . However, the topological space is Hausdorff ⇒ ∃V, V ′ ∈ τ with
p ∈ V , p′ ∈ V ′, and V ∩V ′ = ∅. Then p′ 6∈ V ⇒ {p, p′}∩V = {p} ⇒ {p} ∈ τ ,
which is a contradiction, thus {p, p′} 6∈ τ for any p′ ∈ M. ⇒ no subset of M
containing two elements is open if it contains p.

We have seen that the statement we want to prove works for subsets containing one
or two elements. Next let us assume that it also holds for subsets containing no
more than k elements, and see if it holds for any set containing k + 1 elements.
For this let us assume that the set {p, p1, p2, ..., pk} is open and contains distinct
elements (in other words, this is a set containing k + 1 distinct elements that also
contains p), but any proper subset of it containing p is not open. Since the topological
space is Hausdorff, for 1 ≤ i ≤ k, ∃V, Vi ∈ τ with p ∈ V , pi ∈ Vi (pi 6= p), and
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V ∩ Vi = ∅ ⇒ pi 6∈ V ⇒ {p, p1, p2, ..., pk} ∩ V ⊂ {p, p1, p2, ..., pi−1, pi+1, ..., pk} ⇒ a
subset of {p, p1, p2, ..., pi−1, pi+1, ..., pk} is an open set, which is a contradiction, since
any subset of {p, p1, p2, ..., pi−1, pi+1, ..., pk} is a proper subset of {p, p1, p2, ..., pk}
containing p (and no proper subset of {p, p1, p2, ..., pk} containing p is supposed to
be open).
From these, by mathematical induction, one gets that if {p} 6∈ τ , then any finite
subset of M containing p is not open. However, since p is an arbitrary element of
M, this proof can be applied to any element ofM, thus we have proven the statement
we wanted to prove (i.e. for ∀p ∈ M, if {p} 6∈ τ and p ∈ V ⊂ M with |V | < ∞,
then V 6∈ τ).�

Remark 1 The reason why we need the V subset of M to be finite in Lemma 1
is that the recursion (by which we prove that V is not an open set) can only be
performed a finite number of times, which means that V can have an arbitrarily big
number of elements, but not an infinite number of elements so that the proof still
works.

Now we can move on to the proposition.

Proposition 1 If a topological space (M, τ) is Hausdorff and |M| < ∞, then τ
contains any subset of M.
Proof: I will use proof by contradiction. Let M = {p1, ..., pn} be Hausdorff, and let
us assume that there exists pj ∈ M such that {pj} 6∈ τ . By Lemma 1 we have that
if {pj} 6∈ τ , then any subset of M containing {pj} is not in τ too for any pj ∈ M
(since M is finite, any subset of it is finite too). However, since M is a subset of
itself, if such a pj exists, then M cannot be in τ , which is a contradiction (M ∈ τ
by definition of the topological space). Thus, ∀pj ∈ M, {pj} ∈ τ . But, from this
we get that since ∀V = {pi1 , pi2 , ..., pik} ⊂ M can be written as V = ∪kj=1{pij}, any
subset of M is open, i.e. ∀V ∈ τ because elements of τ are stable under union. �

By Proposition 1 and the second statement of Observation 1, one can see that if
(M, τ) is Hausdorff and |M| < ∞, then it contains only clopen sets. This also
means that we cannot find any topological space with finite number of elements
that can fit into the cell of Table 1 that is marked with “?”, like we did in the other
three cases.

However, the following (infinite) topological space is Hausdorff but does not contain
clopen sets (other than ∅ and M). Consider M = R and the basis B = {I = (x −
r, x+ r)|x, r ∈ R with r > 0}. This is Hausdorff, since for any x1, x2, we can choose

two intervals I1 =
(
x1 − |x1−x2|

4
, x1 + |x1−x2|

4

)
and I2 =

(
x2 − |x1−x2|

4
, x2 + |x1−x2|

4

)
,

which contain x1 and x2, respectively, and which are open, but disjoint. However, the

6



topological space does not contain clopen sets (apart from R and ∅) for the following
reason: if we have V = (x0, x1)∪ (x2, x3)∪ (x4, x5)∪ ... ∈ τ with x0 ≤ x1 ≤ x2 ≤ ...,
then R\V = (−∞, x0]∪ [x1, x2]∪ [x3, x4]∪ ..., thus the complement of V is the union
of at least one closed or half-open interval. However, neither a closed, nor a half-
opened interval can be produced as a union or finite intersection of open intervals,
thus V 6∈ τ for any V ∈ τ (V 6= ∅, V 6= R). Therefore, this topological space is
Hausdorff but does not contain clopen sets (other than ∅ andM). This also means
that this topological space can be put into the cell of Table 1 marked with “?”.

Remark 2 Observe that in the topological space in the previous example, sets only
containing one distinct point are not open sets (e.g. {3} 6∈ τ , since {3} = [3, 3],
which is a closed interval, and we have seen that closed intervals cannot be open sets
in that topological space), but infinite subsets of M containing these points can be
open (e.g. {3} ⊂ (2, 4) ⊂ R, where (2, 4) and R are both open). This provides an
example supporting the claim of Remark 1.

4 Conclusion, further questions

In this report some basic properties of clopen sets (i.e. sets that are both open
and closed) were analyzed, as well as their relationship with Hausdorff property.
It turned out that if a Hausdorff topological space (M, τ) has a finite number of
elements, then not only it has at least one clopen set (other than the trivial cases),
but all of the sets in it are clopen. However, if this Hausdorff topological space has
an infinite number of elements, then it can have zero clopen sets (other than the
empty set and itself), for which an example was provided in the report.

Finally, I would like to provide a few additional/follow-up questions, that are related
to this topic, but were not discussed in this report (but I think are questions that
could also be interesting)

1. What about sets that are neither open nor closed?

2. Can the topological space (N, τ) be Hausdorff while containing only the two
trivial clopen sets? (This question can be interesting, since for a finite set the
answer is ’no’, but for an uncountably infinite set, such as R, the answer is
’yes’, so we could ask what is the answer in the case of a countably infinite
set, which is kind of between the two previous cases.)
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