Nagoya University, G30 program

Calculus I

Final examination

Life is beautiful, math is part of it. Good luck !

Exercise 1 Compute the derivatives of the following functions:

(i)
$$x \mapsto \frac{x-1}{x^2+1}$$
 (ii) $x \mapsto x\sin(1/x)$ (iii) $x \mapsto \sqrt{x+\sqrt{x}}$.

Exercise 2 Compute the following integrals:

(i)
$$\int_{3}^{4} \frac{1}{(x-2)(x-1)} dx$$
 (ii) $\int x 2^{x} dx$ (iii) $\int_{0}^{\sinh(1)} \sqrt{1+x^{2}} dx$.

Exercise 3 Consider $(a_j)_{j=1}^{\infty}$ a sequence of real numbers.

- (i) What does it mean that sequence is convergent ? (give the definition)
- (ii) What does it mean that the corresponding series converges ? (give the definition)
- (iii) What does it mean that the corresponding series converges absolutely? (give the definition)
- (iv) If $a_j = \frac{(-1)^j}{5^j}$, is the sequence convergent, is the corresponding series convergent, is the corresponding series absolutely convergent? Justify briefly your answers.

Exercise 4 Consider the function $f: (0,\infty) \setminus \{1\} \ni x \mapsto \frac{1}{x(\ln(x))^2} \in (0,\infty)$. The following 4 questions are essentially independent.

- (i) Determine the critical point(s) of f, and its local minima and local maxima,
- (ii) Sketch the function f,
- (iii) Find an indefinite integral for f and compute $\int_0^{1/2} f(x) dx$,
- (iv) A Laurent series for the function f at 1 is an expansion of the form $f(1+y) = \sum_{j \in \mathbb{Z}} c_j y^j$ with $c_j \in \mathbb{R}$ and |y| small enough but $y \neq 0$. Determine the coefficient c_{-2} for the Laurent series of f at 1. The starting point is to set x = 1 + y for |y| small enough but $y \neq 0$.

$$\frac{F_{inal} exam}{F_{inal} (x + am)} = \frac{T_{olal} (x + am)}{T_{olal} (x + am)} = \frac{T_{olal} (x + am)}{T_{olal} (x + am)} = \frac{T_{olal} (x + am)}{T_{olam} (x + am)} = \frac{T_{olam} (x + am)}{T_{olam} (x$$

$$= \frac{1}{\frac{1}{\ln(2)}} \propto e^{\frac{\pi}{2}\ln(2)} - \frac{1}{\frac{1}{\ln(2)^{2}}} e^{\frac{\pi}{2}\ln(2)} \cdot 3$$
with(1)

iii) $\int_{0}^{1} \sqrt{1 + x^{2}} dx \qquad x = \sinh(y) dy$

$$= \int_{0}^{1} \cosh(y)^{2} dy$$

$$= \int_{0}^{1} \left(e^{4} + e^{-5}\right)^{2} dy$$

$$= \frac{1}{4} \int_{0}^{1} \left(e^{27} + e^{-23} + 2\right) dy$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{23} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2 - 0\right)$$

$$= \frac{1}{4} \left(\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + \frac{1}$$

il The series converges if the sequence of partial sum converges, namely if Sn := > aj defines à convergent sequence. 1 iii) The series converges absolutely if Sn := ∑ la; defines a convergent seguence. 1 iv) The sequence convergen to 0, and thus is convergent, since tero, $\frac{1}{53} < \varepsilon$ for jlarge enough. The series converges because it is an atternating series. The series is absolutely convergent since $\frac{|a_{j+1}|}{|a_{j}|} = \frac{50}{5^{j+1}} = \frac{1}{5} < 1$ $\forall j$. By the ratio ariterion, the series converges I which corresponds to the absolute convergence). 3

Exercise 4 9 pt
i)
$$\int'(x) = \left(\propto \ln(x)^2 \right)^{-1} = \frac{-\left[\ln(x)^2 + 2x \ln(x) \pm 1 \right]}{\left(\propto \ln(x)^2 \right)^2}$$

 $= -\frac{\ln(x) + 2}{\pi^2}$
 $= -\frac{\ln(x) + 2}{\pi^2}$
The critical point is given by $\ln(x) + 2 = 0$
(=> $\ln(x) = -2$ (=> $x = e^{-2} = \frac{1}{e^2}$. 2
Since $\lim_{x \to 0} \left\{ (\infty) = +\infty \right\}$ and $\lim_{x \neq 1} \left\{ (\infty) = +\infty \right\}$
 $3c = e^{-2}$ is a local minimum of $\int \cdot 1$
ii) Since $\lim_{x \to -\infty} \left\{ (\infty) = 0 \right\}$, one bases $\int e^{-2} = \frac{1}{e^2}$
 $\int e^{-2} = 1$
 $\int e^{-2} = 1$

$$\begin{array}{ll} \overbrace{ii}^{ii} & 0 \text{ bo ense that} & (\ln(\infty))^{-1} = -(\ln(\infty))^{-2} \frac{1}{2x} \\ = -(\infty \ln(\infty)^{2})^{-1} = -f(\infty) & \text{Thm}, \\ \int_{0}^{1/2} f(\infty) d\infty = -(\ln(\infty))^{-1} \int_{0}^{1/2} = \\ = -(\ln(1/2))^{-1} + \lim_{0 \to \infty} (\ln(2))^{-1} \\ = -(\ln(1/2))^{-1} + 0 = \frac{1}{2} \int_{0}^{1/2} (\ln(1+2))^{2} \\ = -(-\ln(2))^{-1} + 0 = \frac{1}{2} \int_{0}^{1/2} (\ln(1+2))^{2} \\ = -(-\ln(2))^{-1} + 0 = \frac{1}{2} \int_{0}^{1/2} (\ln(1+2))^{2} \\ = -(1+2) \left(\frac{1}{2} - \frac{1}{2} \frac{1}{2}^{2} + \operatorname{Rs}(\frac{1}{2}, 0) \right)^{-1} \\ = -(1+2) \left(\frac{1}{2} - \frac{1}{2} \frac{1}{2}^{2} + \operatorname{Rs}(\frac{1}{2}, 0) \right)^{-1} \\ = \left(\frac{1}{2} + \frac{1}{2} \int_{0}^{1/2} (\frac{1}{2} + \frac{1}{2} \frac{1}{2} \int_{0}^{1/2} (1+2) \int_{0}^{1/2} ($$