Exercise 1 Compute the derivatives of the following functions:
(i) $x \mapsto \frac{x-1}{x^{2}+1}$
(ii) $x \mapsto x \sin (1 / x)$
(iii) $x \mapsto \sqrt{x+\sqrt{x}}$.

Exercise 2 Compute the following integrals:
(i) $\int_{3}^{4} \frac{1}{(x-2)(x-1)} \mathrm{d} x$
(ii) $\int x 2^{x} \mathrm{~d} x$
(iii) $\int_{0}^{\sinh (1)} \sqrt{1+x^{2}} \mathrm{~d} x$.

Exercise 3 Consider $\left(a_{j}\right)_{j=1}^{\infty}$ a sequence of real numbers.
(i) What does it mean that sequence is convergent? (give the definition)
(ii) What does it mean that the corresponding series converges? (give the definition)
(iii) What does it mean that the corresponding series converges absolutely? (give the definition)
(iv) If $a_{j}=\frac{(-1)^{j}}{5^{j}}$, is the sequence convergent, is the corresponding series convergent, is the corresponding series absolutely convergent? Justify briefly your answers.

Exercise 4 Consider the function $f:(0, \infty) \backslash\{1\} \ni x \mapsto \frac{1}{x(\ln (x))^{2}} \in(0, \infty)$. The following 4 questions are essentially independent.
(i) Determine the critical point(s) of f, and its local minima and local maxima,
(ii) Sketch the function f,
(iii) Find an indefinite integral for f and compute $\int_{0}^{1 / 2} f(x) \mathrm{d} x$,
(iv) A Laurent series for the function f at 1 is an expansion of the form $f(1+y)=\sum_{j \in \mathbb{Z}} c_{j} y^{j}$ with $c_{j} \in \mathbb{R}$ and $|y|$ small enough but $y \neq 0$. Determine the coefficient c_{-2} for the Laurent series of f at 1. The starting point is to set $x=1+y$ for $|y|$ small enough but $y \neq 0$.

Final exam Total 31 pt
Exercise $1 \quad 6 p 5$
i) $\left(\frac{x-1}{x^{2}+1}\right)^{\prime}=\frac{1\left(x^{2}+1\right)-2 x(x-1)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+2 x+1}{\left(x^{2}+1\right)^{2}} \cdot 2$
ii)

$$
\begin{aligned}
(x \sin (1 / x))^{\prime} & =\sin (1 / x)-x \cos (1 / x) \frac{1}{x^{2}} \\
& =\sin (1 / x)-\frac{1}{x} \cos (1 / x) \cdot 2
\end{aligned}
$$

iii) $\left(\left(x+x^{1 / 2}\right)^{1 / 2}\right)^{\prime}=\frac{1}{2}\left(x+x^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1}{2} x^{-1 / 2}\right)$. 2

Exercise $2 \quad 9 p 5$
i)

$$
\begin{aligned}
& \int_{3}^{4} \frac{1}{(x-2)(x-1)} d x=\int_{3}^{4}\left(\frac{1}{x-2}-\frac{1}{x-1}\right) d x \\
= & \left.\ln (x-2)\right|_{3} ^{4}-\left.\ln (x-1)\right|_{3} ^{4} \\
= & \ln (2)-\ln (1)-\ln (3)+\ln (2) \\
= & \ln (4 / 3) \cdot 3
\end{aligned}
$$

ii) $\int x 2^{x} d x=\int x e^{x \ln (2)} d x=$

$$
=\frac{1}{\ln (2)} x e^{x \ln (2)}-\frac{1}{\ln (2)} \int e^{x \ln (2)} d x=\ldots
$$

$$
=\frac{1}{\ln (2)} x e^{x \ln (2)}-\frac{1}{\ln (2)^{2}} e^{x \ln (2)} \cdot 3
$$

…) $\int_{0}^{\operatorname{süh}(1)}$
iii)

$$
\begin{aligned}
& \int_{0}^{\sinh (1)} \sqrt{1+x^{2}} d x \quad \text { set } x=\sinh (y) \\
= & \int_{0}^{1} \cosh (y)^{2} d y \\
= & \int_{0}^{1} \frac{\left(e^{y}+e^{-y}\right)^{2}}{4} d y=\cosh (y) d y \\
= & \frac{1}{4} \int_{0}^{1}\left(e^{2 y}+e^{-2 y}+2\right) d y \\
= & \left.\frac{1}{4}\left(\frac{1}{2} e^{2 y}-\frac{1}{2} e^{-2 y}+2 y\right)\right|_{0} ^{1} \\
= & \frac{1}{4}\left(\frac{1}{2} e^{2}-\frac{1}{2} e^{-2}+2-0\right) \\
= & \frac{1}{4}(2+\sinh (2)) \quad \text { or } \frac{1}{4}\left(2+\frac{1}{2} e^{2}-\frac{1}{2} e^{-2}\right) .
\end{aligned}
$$

Exercise $3 \quad 7$ pt
i) The sequence is convergent if $\exists a_{\infty} \in \mathbb{R}$ such that for ang $\varepsilon>0, \exists N$ with $\left|a_{j}-a_{\infty}\right| \leqslant \varepsilon$ $\forall j \geqslant N . \quad 2$
ii) The series converges if the sequence of partial sum converges, namely if $s_{n}:=\sum_{j=1}^{n} a_{j}$ defines a convergent sequence. 1
iii) The series converges absolutely if $S_{n}:=\sum_{j=1}^{n}\left|a_{j}\right|$ defines a convergent sequence. 1
iv) The sequence converges to 0 , and thur is convergent, since $\forall \varepsilon>0, \frac{1}{5 j}<\varepsilon$ for large enough. The series converges became it is an alternating series. The series is absolutely convergent since $\frac{\left|a_{j+1}\right|}{\left|a_{j}\right|}=\frac{5 j}{5 j+1}=\frac{1}{5}<1 \quad \forall j$. B_{j} the ratio criterion, the series converges (which corresponds to the abronte convergence). 3

Exercise 4 apt
i) $f^{\prime}(x)=\left(x \ln (x)^{2}\right)^{-1^{\prime}}=\frac{-\left[\ln (x)^{2}+2 x \ln (x) \frac{1}{x}\right]}{\left(x \ln (x)^{2}\right)^{2}}$

$$
=-\frac{\ln (x)+2}{x^{2} \ln (x)^{3}} .
$$

The vitical point is given by $\ln (x)+2=0$

$$
\Leftrightarrow \ln (x)=-2 \Leftrightarrow x=e^{-2}=\frac{1}{e^{2}} \cdot 2
$$

Since $\lim _{x \rightarrow 0} f(x)=+\infty$ and $\lim _{x \rightarrow 1} f(x)=+\infty$, $x=e^{-2}$ is a local minimum of $f \cdot 1$
ii) Since $\lim _{x \rightarrow \infty} f(x)=0$, one thar

\uparrow not do fined

$$
f\left(e^{-2}\right)=\left(e^{-2}(-2)^{2}\right)^{-1}=\frac{1}{4} e^{2} .
$$

iii) Olonerve that $(\ln (x))^{-11}=-(\ln (x))^{-2} \frac{1}{x}$

$$
\begin{aligned}
& =-\left(x \ln (x)^{2}\right)^{-1}=-f(x) \cdot \quad \text { Thu } \\
& \int_{0}^{1 / 2}\left(f(x) d x=-\left.(\ln (x))^{-1}\right|_{0} ^{1 / 2}=\right. \\
& =-(\ln (1 / 2))^{-1}+\lim _{\varepsilon \unlhd 0}(\ln (\varepsilon))^{-1} \\
& =-(-\ln (2))^{-1}+0 \quad=1 / \ln (2) \quad . \quad 2
\end{aligned}
$$

iv) $f(1+g)=\left((1+y)(\ln (1+y))^{2}\right)^{-1}$

$$
\begin{aligned}
\begin{aligned}
\text { Taylor } \\
\text { exramion }
\end{aligned} & =\left((1+y)\left(y-\frac{1}{2} y^{2}+R_{3}(y, 0)\right)^{2}\right)^{-1} \\
\text { of }_{2}(1+y) & =\left((1+y)\left(y^{2}+\widetilde{R}_{3}(y, 0)\right)\right)^{-1} \\
& =\left(y^{2}+\widetilde{R}_{3}(y, 0)\right)^{-1} \\
& =y^{-2}\left(1+y^{-2} \widetilde{R_{3}}(y, 0)\right)^{-1} \\
& =y^{-2}\left(1+\hat{R}_{1}(y, 0)\right) \\
& =y^{-2}+\hat{R}_{-1}(y, 0)
\end{aligned}
$$

$$
\Rightarrow \quad c_{-2}=1 .
$$

It provider an information about the type of singularity.

