Report by Li Yucheng
Proof of invariance of $U \cap V, U \cup V, U / V$ and closure of U
Report by LI YUCHENG

If U.V are invariant, then URV, UUV, UVV and U are invariant.
Proof:
From the definition of invariant, we can know the $r(x) \subset U$ (V), $\forall x \in U(V)$.
$U \cap V:$ Suppose $x \in U \cap V_{0} \therefore r(x) \subset V$ and $r(x) \subset V$.

$$
\therefore \gamma(x) \subset U \cap V
$$

UUViSnppose $x \in U U V$. Then x is either in Uar $V($ or both).

$$
\begin{aligned}
& \because \gamma(x) \subset U \text { or } V \text { (or both) } \\
& \therefore \gamma(x) \subset U \cup V
\end{aligned}
$$

U\: We can make a contradiction. Suppose $x \in U / V$ and part of $\gamma(x)$ is in V. Suppose y is on that pare.

Thus $\gamma(x)=\gamma(y)$
$\because y \in V \therefore \gamma(y) \in V, \gamma(x)=\gamma(y) \in V$
This contradicts to the fact that $x \in U / V$
I U is also invariant, $\gamma(x)$ can not go outside of U
$\therefore U / V$ is invariant.
\bar{U} : Since $\phi(t, x)$ is continuous on x,
$\forall \varepsilon>0, \exists \delta>0$ s.t $|x-y|<\delta,|\phi(t, x)-\phi(t, y)|<\varepsilon$.
Thus we have
Thus we have $\lim _{y \rightarrow x} \phi(t, y)=\phi\left(t, \lim _{y \rightarrow x} y\right)=\phi(t, x)$.
Suppose x is a point on the boundary of U. and ${ }^{x_{n}}$ is sequence which converges to x. Then
$\phi\left(t, x_{n}\right) \in \bigcup$ for every n.

$$
\because \phi(t, x)=\phi\left(t, \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \phi\left(t, x_{n}\right)\right.
$$

$\therefore \phi(t, x) \in \bar{U}$ (otherwise it would contradict to the continuity)
$\therefore \bar{U}$ is mvariant.

