Report by Li Yucheng
$x(t)=e^{0^{t} A(s) d s} x_{0}$ is a solution to $\{\dot{x}(t)=A(t) x(t), v t \in I$ only if $A(t) A(s)=A(s) A(t)$.
We need to prove: $x(t)=e^{\int_{0}^{t} t(s) d s} x_{0}$ is a solution $\longrightarrow A(t) A(s)=A(s) A(t)$
The differential of $f_{t+x} x(t)=e^{\left.\int_{A(t)}^{t}(t)\right) d s}$ is:

We can see the repeat it is necessary to make $(1)=(2)$

$$
\begin{aligned}
\left(\bigcup_{0}^{t} A(s) d_{s}\right)^{k} & \left.=\prod_{0}^{t} A(s) d_{s}\right) \cdots\left(\int_{0}^{t} A(s) d_{s}\right) \\
& =\int_{0}^{t} A\left(s_{1}\right) d_{s 1} \int_{0}^{t} A\left(s_{2}\right) d_{s 2} \cdots \int_{0}^{t} A\left(s_{k}\right) d s_{k}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\varepsilon}\left(0_{0}^{t+\varepsilon} A(s) d s-1_{0}^{t} A(s) d s\right) & =\frac{1}{\frac{1}{1}} \int_{t}^{t+\varepsilon} A(s) d s \\
& =\frac{s}{\varepsilon} \cdot \varepsilon A(t+\theta \varepsilon)=A(t+\theta \varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& \frac{1}{\varepsilon}\left[\left(/_{0}^{t k} A(s) d s^{k}\right)^{k}-\left(\int_{0}^{t} A(s) d s^{k}\right)^{k}\right] \\
&= \frac{1}{\varepsilon}\left(1_{0}^{t+k} A\left(s_{1}\right) d s_{1} \cdots \int_{0}^{t+\varepsilon} A\left(s_{k}\right) d s_{k}-\int_{0}^{t} A\left(s_{1}\right) d s_{1} \cdots /_{0}^{t} A\left(s_{k}\right) d s_{k}\right)
\end{aligned}
$$

$\int_{0}^{t} A\left(s_{k-1}\right) d\left(s_{k-1} / 1_{0}^{t+k} A\left(s_{k}\right) d s_{k}-10_{0}^{t} A\left(s_{1}\right) d s_{1} \cdots \int_{0}^{t} A\left(s_{k}\right) d s_{k}\right)^{+0} \ldots(3)$

$$
\begin{aligned}
& \dot{x}(t)=\lim _{\varepsilon \rightarrow 0} \frac{e^{f_{0}+2} x(t) l_{s}-e^{\int^{2} A(t) d s}}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \sum_{k=0}^{\infty} \frac{1}{k!}\left[\left(1_{0}^{t+\varepsilon} A(s) d s\right)^{k}-\left(1_{0}^{t} A(s) d s\right)^{k}\right] \\
& \text { if } \dot{x}(t)=A(t) \times(t) \text { then } \\
& \dot{x}(t)=A(t) e^{\frac{6}{v /(s)} d s^{\prime}} \\
& =A(t) \sum_{j=0}^{\infty} \frac{1}{j!}\left(l_{0}^{t} A(s) d s\right)^{j} \text { suppose } j+1=k \\
& =A(t) \sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(\int_{0}^{t} A(s) d s\right)^{k-1} \\
& =\sum_{k=1}^{\infty} \frac{1}{k!} k A(t)\left(V_{0}^{t} A(s) d s\right)^{k-1} \ldots(2)
\end{aligned}
$$

Denote $\int_{0}^{t+\varepsilon} A(s j) d s j-\int_{0}^{t} A\left(s_{j}\right) d s j$

$$
=\int_{t}^{t+\varepsilon} A(s j) d s j=R(t, \varepsilon)
$$

Due to the definition of integral, we can consider $A\left(s_{j}\right)$ to be constant on $[t, t+\varepsilon]$ when $\varepsilon \rightarrow 0$, which is obviously $A(t)$. So

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0}^{\frac{1}{\varepsilon}} R(t, \varepsilon)= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \cdot \varepsilon A(t)=A(t) \\
& \therefore(3)= \frac{1}{\varepsilon}\left[R(t, \varepsilon) \int_{0}^{t+\varepsilon} A\left(s_{2}\right) d s_{s^{2}}-\int_{0}^{t+\varepsilon} A\left(s_{k}\right) d s_{k}+\cdots\right. \\
&\left.+\int_{0}^{t} A\left(s_{1}\right) d s_{1} \cdots \int_{0}^{t} A\left(s_{k-1}\right) d s_{k-1} R(t, \varepsilon)\right] \\
& \cdots(4) \\
& \lim _{\varepsilon \rightarrow 0}(4)= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left[\varepsilon A(t) \int_{0}^{t+\varepsilon} A\left(s_{2}\right) d s_{2} \cdots \int_{0}^{t+\varepsilon} A\left(s_{k}\right) d s_{k}+\cdots\right. \\
&\left.+\left.\varepsilon\right|_{0} ^{t} A\left(s_{1}\right) d s_{1} \cdots \int_{0}^{t} A\left(s_{k-1}\right) d s_{k-1} A(t)\right] \\
&= A(t) \int_{0}^{t} A\left(s_{2}\right) d s_{s_{2}} \ldots \int_{0}^{t} A\left(s_{k}\right) d s_{k}+\cdots \\
&+\int_{0}^{t} A\left(s_{1}\right) d s_{1} \cdots \int_{0}^{t} A\left(s_{k-1}\right) d s_{k-1} A(t) \\
&= A(t)\left(\int_{0}^{t} A(s) d s\right)^{k-1}+\int_{0}^{t} A(s) d s A(t)\left(\int_{0}^{t} A(s) d s\right)^{k-2} \\
&+\cdots+\left(\int_{0}^{t} A(s) d s\right)^{k-1} A(t) \tag{5}
\end{align*}
$$

Take (5) into (1), we can have

$$
\dot{x}(t)=\sum_{k=0} \frac{1}{k!} \cdot(5)
$$

We can easily see that this equals to (2) only if $A(s)$ and $A(t)$ commute so that we can move $A(t)$ to the left side of every term.
Thus, $\dot{x}(t)=A(t) e^{i^{t} A(s) d s}=A(t) x(t)$ only if $A(t) A(s)=$
$A(s) A(t)$. $A(s)^{\prime} A(t)$.

