The definition of differential of $e^{t d}$:
Usually we define the differential of a function as $\lim _{\varepsilon \rightarrow \infty} \frac{f(t+\varepsilon)-f(t)}{\varepsilon}$ Using this method we can define the differential of $e^{t A_{1}}$ in a similar way:

$$
\left(e^{t A}\right)^{\prime}=\lim _{t \rightarrow 0} e^{(t+\varepsilon) A}-e^{t A}, \quad e^{(t+\varepsilon) A}=e^{t A} e^{\varepsilon A}
$$

We can easily see that:

$$
\begin{aligned}
& e^{\Sigma A}-1-\Sigma A=\sum_{k=0}^{\infty} \frac{1}{k!} \varepsilon^{k} A^{k}-1-\varepsilon A \\
& =\sum_{k=2}^{\infty} \frac{1}{k!} \varepsilon^{k} A^{k} \\
& =\varepsilon^{2} A^{2} \sum_{l=0}^{\infty} \frac{\varepsilon^{l} A^{l}}{(l+2)!} \\
& \left\|\sum_{l=0}^{\infty} \frac{\varepsilon^{2} A^{l}}{(l+2)!}\right\|<\left\|\sum_{l=0}^{\infty} \frac{\varepsilon^{2} A^{l}}{l!}\right\|=e^{\|\varepsilon\|\|A\|} \xrightarrow{\varepsilon \rightarrow 0} 1 \\
& \therefore \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(e^{\varepsilon \theta}-1-\varepsilon A\right)=\lim _{\varepsilon \rightarrow 0} \varepsilon A^{2} \sum_{l=0}^{\infty} \frac{\varepsilon^{l} A^{l}}{(l+2)!}=0 \\
& \left\|\frac{e^{(t+\varepsilon) A}-e^{t A}}{\varepsilon}-e^{t A} \cdot A\right\|=\left\|e^{t A}\right\|\left\|\frac{e^{\varepsilon A}-1}{\varepsilon}-A\right\| \\
& \begin{array}{l}
=\left\|e^{t A}\right\| \frac{1}{\|घ\|}\left\|e^{\varepsilon A}-\mid-\varepsilon A\right\| \\
=\left\|e^{t A}\right\|\left\|\varepsilon A^{2} \sum_{l=0}^{\infty} \frac{\varepsilon^{2} A^{2}}{(1+2)!}\right\| \xrightarrow{\varepsilon \rightarrow 0}\left\|e^{t A}\right\| \cdot 0=0
\end{array} \\
& \therefore\left(e^{t^{A}}\right)^{\prime}=e^{t_{A}} \cdot A
\end{aligned}
$$

