Spectral and scattering theory of one-dimensional coupled photonic crystals

Rafael Tiedra de Aldecoa
Pontifical Catholic University of Chile

Nagoya, December 2019

Joint work with G. De Nittis (Santiago), M. Moscolari (Aalborg) and S. Richard (Nagoya)

Table of Contents

(1) Motivation
(2) Model
(3) Results

- Spectral results
- Scattering results

4 References

Motivation

Consider an electromagnetic field (\vec{E}, \vec{H}) in a 1D waveguide:

- the waveguide is parallel to the x-axis,
- the electric field satisfies $\vec{E}(x, y, z, t)=\varphi_{E}(x, t) \widehat{y}$,
- the magnetic field satisfies $\vec{H}(x, y, z, t)=\varphi_{H}(x, t) \widehat{z}$.

The equations describing the propagation of (\vec{E}, \vec{H}), with possible bi-anisotropic effects, are:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} \varphi_{E}+\chi \partial_{t} \varphi_{H}=-\partial_{x} \varphi_{H} \\
\mu \partial_{t} \varphi_{H}+\chi^{*} \partial_{t} \varphi_{E}=-\partial_{x} \varphi_{E}
\end{array}\right.
$$

The functions $\varepsilon, \mu: \mathbb{R} \rightarrow(0, \infty)$ are the electric permittivity and magnetic permeability, and $\chi: \mathbb{R} \rightarrow \mathbb{C}$ is the bi-anisotropic coupling function.

The mathematical study of light propagation in a periodic waveguide has already been performed.

Our waveguide more general, composed of two periodic waveguides (1D photonic crystals) connected by a junction.

With the notations

$$
\underbrace{w:=\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}}_{\text {Maxwell weight }} \text { and } \quad D:=\left(\begin{array}{cc}
0 & -i \partial_{x} \\
-i \partial_{x} & 0
\end{array}\right)
$$

the equations take the form

$$
i \partial_{t}\binom{\varphi_{E}}{\varphi_{H}}=w D\binom{\varphi_{E}}{\varphi_{H}} .
$$

Schrödinger equation for the state $\left(\varphi_{E}, \varphi_{H}\right)^{\top}$ in the Hilbert space $L^{2}\left(\mathbb{R}, \mathbb{C}^{2}\right)$

Model

The Maxwell-like operator $M:=w D$ is self-adjoint on $\mathcal{H}^{1}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ in the Hilbert space

$$
\mathcal{H}_{w}:=\left\{\varphi \in \mathrm{L}^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right) \mid\langle\cdot, \cdot\rangle_{\mathcal{H}_{w}}:=\left\langle\cdot, w^{-1} \cdot\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)}\right\} .
$$

The weight w converges at $\pm \infty$ to periodic functions:

Assumption (Maxwell weight)

There are $\varepsilon>0$ and matrix-valued functions $w_{\ell}, w_{r} \in L^{\infty}\left(\mathbb{R}, \mathscr{B}\left(\mathbb{C}^{2}\right)\right)$ of periods $p_{\ell}, p_{\mathrm{r}}>0$ such that

$$
\begin{array}{ll}
\left\|w(x)-w_{\ell}(x)\right\|_{\mathscr{B}\left(\mathbb{C}^{2}\right)} \leq \text { Const. }\langle x\rangle^{-1-\varepsilon}, & \text { a.e. } x<0 \\
\left\|w(x)-w_{r}(x)\right\|_{\mathscr{B}\left(\mathbb{C}^{2}\right)} \leq \text { Const. }\langle x\rangle^{-1-\varepsilon}, & \text { a.e. } x>0
\end{array}
$$

The free Hamiltonian M_{0} is the direct sum

$$
M_{0}:=M_{\ell} \oplus M_{\mathrm{r}} \quad \text { in } \quad \mathcal{H}_{0}:=\mathcal{H}_{w_{\ell}} \oplus \mathcal{H}_{w_{\mathrm{r}}},
$$

with M_{ℓ} and M_{r} the asymptotic Hamiltonians on the left and on the right:

$$
M_{\ell}:=w_{\ell} D \quad \text { and } \quad M_{r}:=w_{r} D .
$$

We need an identification operator between the spaces \mathcal{H}_{0} and \mathcal{H}_{w} :

Definition (Junction operator)

Let $j \ell, j_{r} \in C^{\infty}(\mathbb{R},[0,1])$,

$$
j_{\ell}(x):=\left\{\begin{array}{ll}
1 & \text { if } x \leq-1 \\
0 & \text { if } x \geq-1 / 2
\end{array} \quad \text { and } \quad j_{r}(x):= \begin{cases}0 & \text { if } x \leq 1 / 2 \\
1 & \text { if } x \geq 1\end{cases}\right.
$$

Then, $J: \mathcal{H}_{0} \rightarrow \mathcal{H}_{w}$ is defined by $J\left(\varphi_{\ell}, \varphi_{\mathrm{r}}\right):=j_{\ell} \varphi_{\ell}+j_{\mathrm{r}} \varphi_{\mathrm{r}}$.

Spectral results

Using a Bloch-Floquet transform

$$
\mathscr{U}_{\star}: \mathcal{H}_{w_{\star}} \rightarrow \mathcal{H}_{\tau, \star} \quad\left(\star=\ell, r, \mathcal{H}_{\tau, \star} \text { auxiliary Hilbert space }\right),
$$

we can "diagonalise" the asymptotic Hamiltonians:

$$
\widehat{M}_{\star}:=\mathscr{U}_{\star} M_{\star} \mathscr{U}_{\star}^{-1}=\left\{\widehat{M}_{\star}(k)\right\}_{k \in \mathbb{R}},
$$

where $\widehat{M}_{\star}(k)$ is $\frac{2 \pi}{p_{\star}}$-pseudo-periodic in the variable k, and

$$
\begin{cases}\widehat{M_{\star}}(k) u(k)=w_{\star} \widehat{D}(k) u(k), & u \in \mathscr{U}_{\star} \mathcal{D}\left(M_{\star}\right), k \in\left[-\frac{\pi}{p_{\star}}, \frac{\pi}{p_{\star}}\right] \\
\widehat{D}(k)=\left(\begin{array}{cc}
0 & -i \partial_{\theta}+k \\
-i \partial_{\theta}+k & 0
\end{array}\right), & \theta \in\left[-p_{\star} / 2, p_{\star} / 2\right]\end{cases}
$$

The family $\left\{\widehat{M}_{\star}(k)\right\}_{k \in \mathbb{R}}$ extends to an analytically fibered family $\left\{\widehat{M}_{\star}(\omega)\right\}_{\omega \in \mathbb{C}}$ in the sense of [Gérard-Nier 98].

So, by Rellich theorem (for analytic families), there exist analytic eigenvalue functions $\lambda_{\star, n}$ and analytic orthonormal eigenvector functions $u_{\star, n}$ for $\widehat{M}_{\star}(\cdot)$:

$$
\begin{gathered}
\lambda_{\star, n}:\left[-\frac{\pi}{p_{\star}}, \frac{\pi}{p_{\star}}\right] \rightarrow \mathbb{R}, \quad u_{\star, n}:\left[-\frac{\pi}{p_{\star}}, \frac{\pi}{p_{\star}}\right] \rightarrow \mathfrak{h}_{\star}, \\
\left(n \in \mathbb{N}, \mathfrak{h}_{\star} \text { auxiliary Hilbert space }\right) .
\end{gathered}
$$

The graph $\left\{\left(k, \lambda_{\star, n}(k)\right) \left\lvert\, k \in\left[-\frac{\pi}{p_{\star}}, \frac{\pi}{p_{\star}}\right]\right.\right\}$ is called the band of $\lambda_{\star, n}$.

The set of thresholds of M_{\star} is

$$
\mathcal{T}_{\star}:=\bigcup_{n \in \mathbb{N}}\left\{\lambda \in \mathbb{R} \left\lvert\, \exists k \in\left[-\frac{\pi}{p_{\star}}, \frac{\pi}{p_{\star}}\right]\right. \text { s.t. } \lambda=\lambda_{\star, n}(k) \text { and } \lambda_{\star, n}^{\prime}(k)=0\right\}
$$

and

$$
\mathcal{T}_{M}:=\mathcal{T}_{\ell} \cup \mathcal{T}_{\mathrm{r}}
$$

Analyticity results imply that the set \mathcal{T}_{\star} is discrete, with only possible accumulation point at infinity.

Theorem (Spectrum of the free Hamiltonian)

The spectrum of M_{0} is purely absolutely continuous. In particular,

$$
\sigma\left(M_{0}\right)=\sigma_{\mathrm{ac}}\left(M_{0}\right)=\sigma_{\mathrm{ess}}\left(M_{0}\right)=\sigma_{\mathrm{ess}}\left(M_{\ell}\right) \cup \sigma_{\mathrm{ess}}\left(M_{\mathrm{r}}\right),
$$

with $\sigma_{\mathrm{ac}}\left(M_{0}\right)$ the absolutely continuous spectrum of $M_{0}, \sigma_{\text {ess }}\left(M_{0}\right)$ the essential spectrum of M_{0}, and $\sigma_{\text {ess }}\left(M_{\star}\right)$ the essential spectrum of M_{\star}.

Idea of the proof.

One shows that M_{ℓ} and M_{r} have purely absolutely continuous spectrum by proving that M_{ℓ} and M_{r} have no flat bands (bands with $\lambda_{\star, n}^{\prime} \equiv 0$).
(similar to Thomas's proof [Thomas 73] for periodic Schrödinger operators)

For the full Hamiltonian M, we start with:

Theorem (Essential spectrum of the full Hamiltonian)
 One has $\sigma_{\text {ess }}(M)=\sigma_{\text {ess }}\left(M_{0}\right)=\sigma\left(M_{\ell}\right) \cup \sigma\left(M_{r}\right)$.

Idea of the proof.

Using the operators M_{ℓ} and M_{r}, we construct Zhislin sequences (Weyl-type sequences) to approximate the generalised eigenvectors of M for each value $\lambda \in \sigma_{\text {ess }}(M)$.

Theorem (Spectrum of the full Hamiltonian)

In any compact interval $I \subset \mathbb{R} \backslash \mathcal{T}_{M}$, the operator M has at most finitely many eigenvalues, each one of finite multiplicity, and no singular continuous spectrum.

Idea of the proof.

Follows from Mourre theory:
(1) Using the fibration of M_{ℓ} and M_{r}, one constructs band by band a conjugate operator $A_{0, I}=A_{\ell, I} \oplus A_{r, I}$ for M_{0} in \mathcal{H}_{0}.
(2) One lifts the operator $A_{0, I}$ to the space \mathcal{H}_{w} using the formula

$$
A_{I}=J A_{0, I} J^{*}
$$

(3) One uses Mourre theory in two Hilbert spaces [Richard-T. 13] to show that A_{l} is a conjugate operator for M in \mathcal{H}_{w}.

Scattering results

Using the limiting absorption principles for M_{0} and M (resolvent estimates) provided by Mourre theory and abstract results on scattering theory in two Hilbert spaces [Richard-Suzuki-T. 19], one gets:

Theorem

Let $I_{\max }:=\sigma\left(M_{0}\right) \backslash\left\{\mathcal{T}_{M} \cup \sigma_{\mathrm{p}}(M)\right\}$. Then, the wave operators

$$
W_{ \pm}\left(M, M_{0}, J, I_{\max }\right):=\underset{t \rightarrow \pm \infty}{\left.\mathrm{s}-\lim \mathrm{e}^{i t M} J \mathrm{e}^{-i t M_{0}} E^{M_{0}}\left(I_{\max }\right), ~\right)}
$$

exist and satisfy $\overline{\operatorname{Ran}\left(W_{ \pm}\left(M, M_{0}, J, I_{\max }\right)\right)}=E_{\mathrm{ac}}^{M} \mathcal{H}_{w}$.

Using the the asymptotic velocity operator V_{\star} for M_{\star} in $\mathcal{H}_{w_{\star}}$ given by

$$
\left(V_{\star}-z\right)^{-1}:=\operatorname{s-lim}_{t \rightarrow \pm \infty}\left(\frac{\mathrm{e}^{i t M_{\star}} Q_{\star} \mathrm{e}^{-i t M_{\star}}}{t}-z\right)^{-1} \quad(z \in \mathbb{C} \backslash \mathbb{R})
$$

$Q_{\star}:=$ operator of multiplication by the variable in $\mathcal{H}_{w_{\star}}$,
we can determine the initial sets of $W_{ \pm}\left(M, M_{0}, J, I_{\max }\right)$:

Theorem

The wave operators $W_{ \pm}\left(M, M_{0}, J, I_{\text {max }}\right): \mathcal{H}_{0} \rightarrow \mathcal{H}_{w}$ are partial isometries with initial sets

$$
\begin{aligned}
& \mathcal{H}_{0}^{+}:=\chi_{(-\infty, 0)}\left(V_{\ell}\right) \mathcal{H}_{w_{\ell}} \oplus \chi_{(0, \infty)}\left(V_{\mathrm{r}}\right) \mathcal{H}_{w_{\mathrm{r}}}, \\
& \mathcal{H}_{0}^{-}:=\chi_{(0, \infty)}\left(V_{\ell}\right) \mathcal{H}_{w_{\ell}} \oplus \chi_{(-\infty, 0)}\left(V_{\mathrm{r}}\right) \mathcal{H}_{w_{\mathrm{r}}}
\end{aligned}
$$

Thank you!

References

- G. De Nittis, M. Moscolari, S. Richard and R. Tiedra de Aldecoa. Spectral and scattering theory of one-dimensional coupled photonic crystals. Preprint on arXiv, 2019
- C. Gérard and F. Nier. The Mourre Theory for Analytically Fibered Operators. J. Func. Anal., 1998
- S. Richard, A. Suzuki, and R. Tiedra de Aldecoa. Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys., 2019
- S. Richard and R. Tiedra de Aldecoa. A few results on Mourre theory in a two-Hilbert spaces setting. Anal. Math. Phys., 2013
- L. Thomas. Time dependent approach to scattering from impurities in a crystal. Comm. Math. Phys., 1973

