Exercise 1 Compute the following limits (and justify your computations) :

1. $\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$
2. $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$
3. $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\sin (6 x)}$
4. $\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}, \quad$ for $x \neq 0$

Exercise 2 Compute the derivative of the following functions, and simplify the results (if possible) :

1. $f: \mathbb{R}_{+} \rightarrow \mathbb{R}, f(x)=\frac{\sqrt{x}-1}{\sqrt{x}+1}$,
2. $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{3} \sin ^{2}(x) \cos (x)$,
3. $h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=\mathrm{e}^{m(x)}+(n(x))^{2}$, for any $m, n \in C^{1}(\mathbb{R})$.

Exercise 3 State the Mean value theorem as precisely as possible, and draw a picture corresponding to the statement. In the proof of this theorem, a certain function plays a key role, what is this function?

Exercise 4 Consider the function $\tanh : \mathbb{R} \rightarrow \mathbb{R}$ defined by $\tanh (x):=\frac{\sinh (x)}{\cosh (x)}=\frac{\frac{e}{}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}$.

1. Determine the range of this function,
2. Show that this function is invertible,
3. Compute the derivative of its inverse,
4. Show that $\tanh (y)^{-1}=\frac{1}{2} \ln \left(\frac{1+y}{1-y}\right)$ for any y in the range of f.

Exercise 5 Consider the curve given by the equation $\left(x^{2}\right)^{1 / 3}+\left(y^{2}\right)^{1 / 3}=4$.

1. Find the equation of the tangent to this curve at $(-3 \sqrt{3}, 1)$,
2. Consider (x, y) with $x, y>0$ and $F(x, y)=0$. Find the slope of the tangent to the curve when (x, y) approach $(8,0)$,
3. Sketch this curve.

Exercise 6 For any $x \in \mathbb{R}$ with $x \neq-1$ we consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by

$$
a_{n}:=\frac{x^{n}-1}{1+x^{n}} .
$$

For which x does the limit $a_{\infty}:=\lim _{n \rightarrow \infty} a_{n}$ exist? Give the value of this limit whenever it exists. Represent your findings on a graph (the horizontal axis corresponds to the x-variable, the vertical axis to the values of a_{∞}).

Exercise 1 pts

1) $\frac{\sqrt{9+h}-3}{h}=\frac{q+h-9}{h(\sqrt{9+h}+3)}=\frac{1}{\sqrt{9+h}+3} \xrightarrow{h \rightarrow 0} \frac{1}{6}$.
2) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}=\lim _{x \rightarrow-2} \frac{2+x}{2+x}=1$.
3) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\sin (6 x)}=\lim _{x \rightarrow 0}\left(\frac{\sin (4 x)}{4 x}\right) \cdot 4 \cdot\left(\frac{6 x}{\sin (6 x)}\right) \cdot \frac{1}{6}=\frac{2}{3}$.
4) Thin in the definition of $\left(\frac{1}{x^{2}}\right)^{\prime}$, and the amer is $-2 \frac{1}{x^{3}}$.

Exercise $2 \quad 3 p$

1) $f^{\prime}(x)=\frac{\frac{1}{2} x^{-1 / 2}\left(x^{1 / 2}+1\right)-\frac{1}{2} x^{-1 / 2}\left(x^{1 / 2}-1\right)}{\left(x^{1 / 2}+1\right)^{2}}=\frac{x^{-1 / 2}}{\left(x^{1 / 2}+1\right)^{2}}$.
2)

$$
\begin{aligned}
g^{\prime}(x) & =3 x^{2} \sin ^{2}(x) \cos (x)+2 x^{3} \sin (x) \cos ^{2}(x) \\
& -x^{3} \sin ^{3}(x) .
\end{aligned}
$$

3) $h^{\prime}(x)=e^{m(x)} m^{\prime}(x)+2 n(x) n^{\prime}(x)$.

Exercise $3 \quad 4$,
For any $f=[a, b I \rightarrow \mathbb{R}$, continuous, ard differentiable in (a, b), there exist $c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{\prime f(b)-f(a)}{b-a} \cdot 2
$$

Key function: $h:[a, b] \rightarrow \mathbb{R}$

$$
h(x)=f(x)-\left(\frac{f(b)-f(a)}{b-a} \cdot(x-a)+f(a)\right)
$$

Exercise $4 \quad 4$ pt

1) Since $e^{x}-e^{-x}<e^{x}+e^{-x}$ and

$$
-\left(e^{x}+e^{-x}\right)<e^{x}-e^{-x} \quad \forall x \in \mathbb{R}
$$

one infers that $\left|e^{x}-e^{-x}\right| \leqslant e^{x}+e^{-x} \quad \forall x$

Since $\lim _{x \rightarrow \infty} \frac{e^{x} \cdot e^{-x}}{e^{x}+e^{-x}}=1 \quad$ and

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=-1 \quad \text {, and since }
$$

the function is continuous, one gets $\operatorname{Ran}(\rho)=(-1,1)$
A the values ± 1 are never reached.
2) One has $\tanh ^{\prime}(x)=\left(\frac{\sinh (x)}{\cosh (x)}\right)^{\prime}=\frac{\operatorname{cohh}^{2}(x)-\sinh ^{2}(x)}{\cosh ^{2}(x)}$

$$
\begin{aligned}
& =1-\tanh ^{2}(x)>0 \quad \forall x \in \mathbb{R} \\
a & =\frac{1}{\cosh ^{2}(x)}>0
\end{aligned} \quad \forall x \in \mathbb{R} .
$$

\Rightarrow He function tanh in strictly increasing, and the invertible. Its in verne is denoted by arctanh.

$$
\text { 3) } \operatorname{arctanh}^{\prime}(y)=\frac{1}{\tanh ^{\prime}(\operatorname{arctanh}(y))}=\frac{1}{1-\tanh \left(\operatorname{arctanh}(y)^{2}\right.}=\frac{1}{1-y^{2}}
$$ $\forall \quad y \in(-1,1)$.

4) Several passible methods. One is: set $g(y):=\frac{1}{2} \ln \frac{1+y}{1-y}$ and $f(y):=\operatorname{arctanh}(g)$, and observe $\operatorname{ltat} \operatorname{lot} g(0)=\frac{1}{2} \ln (1)=0=f(0)$.
In addition,

$$
g^{\prime}(y)=\frac{1}{2}\left(\frac{1+y}{1-y}\right)^{-1} \frac{1(1-y)-(-1)(1+y)}{(1-y)^{2}}=\frac{1}{2} \frac{1-y}{1+y} \frac{2}{(1-y)^{2}}=\frac{1}{1-y^{2}} .
$$

Thu f and g are equal at one point $(g=0)$ and have same derivative everywhere
$\Rightarrow f=g$ (you can comider $f-g$ witt $(f-g)^{\prime}=0$ and $\left.(f-g)(0)=0 \quad \Rightarrow \quad f-g=0\right)$.

Exercise $5 \quad 4,5$

1) Set $F(x, y):=\left(x^{2}\right)^{1 / 3}+\left(y^{2}\right)^{1 / 3}-4$ and suppose Hat "locally, He curve defined by $F(x, y)=0$ can be obtained by $y=f(x)$.
Then $\left.F(x, f(x))^{\prime}=\frac{1}{3}\left(x^{2}\right)^{-2 / 3} 2 x+\frac{1}{3}(f(x))^{2}\right)^{-2 / 3} 2 f(x) f^{\prime}(x)$ $=0$ became $F(x, f(x))=0$

$$
\Rightarrow f^{\prime}(x)=-\frac{\left(x^{2}\right)^{-2 / 3} x}{\left(f(x)^{2}\right)^{-2 / 3} f(x)} .
$$

Since $\quad F(-3 \sqrt{3}, 1)=3+1-4=0, \quad(-3 \sqrt{3}, 1)$ belongs to the curve, and one has

$$
f^{\prime}(-3 \sqrt{3})=-\frac{\frac{1}{9}(-3 \sqrt{3})}{1}=\frac{\sqrt{3}}{3} .
$$

Tangent of the curve at $(-3 \sqrt{3}, 1)$:

$$
y=\frac{\sqrt{3}}{3}(x+3 \sqrt{3})+1
$$

2) If $(x, y) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$and notify $F(x, y)=0$,

Then $y=f(x)>0$ and $\left(f(x)^{2}\right)^{-2 / 3} f(x)=f(x)^{-1 / 3}$.

$$
\Rightarrow \quad f^{\prime}(x)=-\frac{x^{-1 / 3}}{f(x)^{-1 / 3}}=\frac{f(x)^{1 / 3}}{x^{1 / 3}} .
$$

When $(x, y) \rightarrow(8,0)$, one han $f^{1 / 3}(x) \longrightarrow 0$,
$x^{1 / 3} \longrightarrow 2$, and thus $f^{\prime}(x) \rightarrow 0$.
3),

Exercise 6 $\quad 3 \mu 5$
1). If $|x|<1$, Then $x^{n} \xrightarrow{n \rightarrow \infty} 0$, and $a_{n} \xrightarrow{n \rightarrow \infty}-1$.
2) If $x=1, \quad a_{n}=0$
3) If $|x|>1$, then $\frac{x^{n}-1}{1+x^{n}}=\frac{1-1 / x^{n}}{1+1 / x^{n}} \xrightarrow{n \rightarrow \infty} 1$.

