Exercise 1 Compute the following limits (and justify your computations) :

- 1. $\lim_{h \to 0} \frac{\sqrt{9+h}-3}{h}$ 2. $\lim_{x \to -2} \frac{2-|x|}{2+x}$
- 3. $\lim_{x\to 0} \frac{\sin(4x)}{\sin(6x)}$
- 4. $\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} \frac{1}{x^2}}{h}$, for $x \neq 0$

Exercise 2 Compute the derivative of the following functions, and simplify the results (if possible) :

1. $f : \mathbb{R}_+ \to \mathbb{R}, f(x) = \frac{\sqrt{x}-1}{\sqrt{x}+1},$ 2. $g : \mathbb{R} \to \mathbb{R}, g(x) = x^3 \sin^2(x) \cos(x),$ 3. $h : \mathbb{R} \to \mathbb{R}, h(x) = e^{m(x)} + (n(x))^2, \text{ for any } m, n \in C^1(\mathbb{R}).$

Exercise 3 State the Mean value theorem as precisely as possible, and draw a picture corresponding to the statement. In the proof of this theorem, a certain function plays a key role, what is this function?

Exercise 4 Consider the function $\tanh : \mathbb{R} \to \mathbb{R}$ defined by $\tanh(x) := \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Determine the range of this function,
- 2. Show that this function is invertible,
- 3. Compute the derivative of its inverse,
- 4. Show that $\tanh(y)^{-1} = \frac{1}{2} \ln\left(\frac{1+y}{1-y}\right)$ for any y in the range of f.

Exercise 5 Consider the curve given by the equation $(x^2)^{1/3} + (y^2)^{1/3} = 4$.

- 1. Find the equation of the tangent to this curve at $(-3\sqrt{3}, 1)$,
- 2. Consider (x, y) with x, y > 0 and F(x, y) = 0. Find the slope of the tangent to the curve when (x, y) approach (8, 0),
- 3. Sketch this curve.

Exercise 6 For any $x \in \mathbb{R}$ with $x \neq -1$ we consider the sequence $(a_n)_{n \in \mathbb{N}}$ given by

$$a_n := \frac{x^n - 1}{1 + x^n}.$$

For which x does the limit $a_{\infty} := \lim_{n \to \infty} a_n$ exist ? Give the value of this limit whenever it exists. Represent your findings on a graph (the horizontal axis corresponds to the x-variable, the vertical axis to the values of a_{∞}).

Total : 22 15 hidterm Exercise 1 4 15 $\frac{\sqrt{q+h}-3}{h} = \frac{q+h-q}{h(\sqrt{q+h}+3)} = \frac{1}{\sqrt{q+h}+3}$ $\frac{h \rightarrow 0}{6}$ 2) $\lim_{x \to -2} \frac{2 - |x|}{2 + \infty} = \lim_{x \to -2} \frac{2 + \infty}{2 + \infty} = 1$ 3) $\frac{1}{2c} \frac{\sin(4x)}{x - 20} = \frac{1}{\sin(6x)} = \frac{1}{2c} \frac{\sin(4x)}{4x} \cdot \frac{1}{4x} \cdot \frac{1}{2c} = \frac{2}{2}$ 4) This is the definition of (1/2), and the assure is -21. Exercise 2 3pt 1) $\int (x) = \frac{\frac{1}{2}x^{-1/2}(x^{1/2}+1) - \frac{1}{2}x^{-1/2}(x^{1/2}-1)}{(x^{1/2}+1)^2} = \frac{x^{-1/2}}{(x^{1/2}+1)^2}$ $g'(x) = 3\chi^2 A(n^2(x) \cos(x) + 2\chi^2 A(n(x) \cos^2(x))$ 3) $b'(x) = e^{m(x)} m'(x) + 2n(x) n'(x)$. Exercise 3 4 th For any $f: [a, b] \rightarrow \mathbb{R}$, continuous, and differentiable in (a, b), there exists ce (a, b) with $f'(c) = \frac{f(b) - f(a)}{b - a} \cdot 2$ $f(a) = \frac{f(a)}{a - b} + \frac{1}{a - b}$ Key function $i h : [a, b] \rightarrow R$ h(x) := f(x) - (f(b) - f(a)) (x - a) + f(a)

Exercise 4 4 pt
1) Since
$$e^{x} - e^{-x} \le e^{x} + e^{-x}$$
 and
 $-(e^{x} + e^{-x}) \le e^{x} - e^{-x}$ $\forall x \in \mathbb{R}$,
one infant that $1e^{x} - e^{-x}$ $\forall x \in \mathbb{R}$,
 $e^{x} - e^{-x} = E - 1, 11$.
Since $\lim_{x \to \infty} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = 1$ and
 $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = -1$, and since
 $\lim_{x \to -\infty} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = -1$, and since
the function is continuous, one gets $\operatorname{Pan}(P) = (-1,1)$
A the values ± 1 one never heached.
2) Our has $\operatorname{tank}^{1}(x) = (\frac{\operatorname{sink}(x)}{\cosh(x)})' = \frac{\operatorname{coh}^{2}(x) - \operatorname{sinh}^{2}(x)}{\cosh^{2}(x)}$
 $= 1 - \operatorname{tanh}^{2}(x) > 0$ $\forall x \in \mathbb{R}$,
 $\operatorname{con}^{-x} = \frac{1}{\operatorname{coh}^{2}(x)} > 0$ $\forall x \in \mathbb{R}$.
 $= \sum_{i=1}^{n} \operatorname{tanh}^{2}(x) = 0$ $\forall x \in \mathbb{R}$.
 $= \sum_{i=1}^{n} \operatorname{tanh}^{2}(x) = -\frac{1}{\operatorname{tanh}^{2}(x)} = \frac{1}{-\frac{1}{2}}$
 $\operatorname{tanh}^{2}(x) = \frac{1}{\operatorname{tanh}^{2}(x)} = -\frac{1}{-\frac{1}{2}}$

4) Several pairible methods. One is:
not
$$g(y) := \frac{1}{2} \ln \frac{(+x)}{1-3}$$
 and $f(y) := \arctan(y)$,
and observe that $\frac{1-3}{3} g(x) = \frac{1}{2} \ln (t) = 0 = f(0)$.
In addition,
 $g'(y) = \frac{1}{2} \left(\frac{(+y)}{1-3}\right)^{-4} \frac{1(t-3)^{-}(-1)(t+3)}{(1-3)^{2}} = \frac{4}{4+3y} \frac{1}{(t-3)^{2}} = \frac{4}{4-5y^{2}}$.
Thus f and g are equal at one point $(-g = 0)$
and have some derivative every where
 $=> f = g$ (gon can counder $f = g$ with
 $(f-g)' = 0$ and $(f-g)(0) = 0 \implies f - g = 0$).
Exercise 5 4 pb
1) Set $F(x, y) := (x^{2})^{1/3} + (y^{2})^{1/3} - 4$ and suppose that
 $\frac{1}{2} \log dy$, the curve defined by $F(x, y) = 0$ can be
obtained by $g = f(x)$.
Then $F(x, f(x)) = \frac{1}{3} (x^{2})^{-2/3} 2x + \frac{1}{3} (f(x)^{2})^{-2/3} 2f(x)f(x)$
 $= 0$ because $F(x, f(x)) = 0$
 $=> f'(x) = -\frac{(x^{2})^{-2/3}}{(f(x)^{2})^{-2/3}} f(x)$
Since $F(-3)\overline{3}, 1) = 3 + 1 - 4 = 0$, $(-3)\overline{3}, 1)$
belongs to the curve, and one has
 $f'(-3)\overline{3}) = -\frac{\frac{1}{3}(-3)\overline{3}}{1-3}$.
Tangent of the curve of $(-3)\overline{3}, 1) = 3$.

$$\frac{3g}{1} \quad (x, y) \in \mathbb{R}, \quad \times \mathbb{R}, \quad \text{and} \quad ne^{\frac{1}{1}} \left[\frac{g}{y} \quad \mathbb{F}(x, y) = 0 \right] ,$$

$$\frac{1}{12} \quad \frac{g}{12} \quad \frac{1}{12} \quad$$

名古屋大学大学院多元数理科学研究科

4