Exercise 1 Compute the following limits:

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}, \quad \lim _{x \not \pi \pi} \frac{\sin (x)}{1-\cos (x)}, \quad \lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}, \quad \lim _{x \searrow 0} \frac{\mathrm{e}^{-1 / x^{2}}}{x^{2020}} .
$$

Exercise 2 Compute the derivative of the following functions (and simplify the results, if possible):
a) $x \mapsto \frac{1}{\sqrt[3]{x^{2}+x+1}}$,
b) $x \mapsto\left(\frac{x-2}{2 x+1}\right)^{2}$,
c) $x \mapsto(2 x+1)^{5}\left(x^{3}-x+1\right)^{4}$.

Exercise 3 Compute the following integrals:
a) $\int x^{2}(\ln (x))^{2} \mathrm{~d} x$,
b) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} \mathrm{~d} x$,
c) $\int_{-1}^{1} \frac{\sin (x)}{1+x^{2}} \mathrm{~d} x$.

Exercise 4 Compute the value $\mathrm{e}^{0.1}$ correct to 3 decimal places ($=$ X.XXX). Indication: use Taylor expansion.

Exercise 5 Let $f:[0,1] \rightarrow \mathbb{R}_{+}$be continuous and consider the volume of revolution generated by the rotation of $\{(x, f(x)) \mid x \in[0,1]\}$ around the x-axis. Show (by using Riemann sums) that the volume V of this solid is given by the expression

$$
V=\pi \int_{0}^{1} f(x)^{2} \mathrm{~d} x .
$$

Exercise 6 (Alternating series) 1) Recall the criterion of convergence for alternating series.
2) Let us now prove this criterion. Write the alternating series as $b_{1}-c_{1}+b_{2}-c_{2}+b_{3}-c_{3}+\ldots$ with $b_{j} \geq 0$ and $c_{j} \geq 0$ for any $j \in \mathbb{N}$. Set also

$$
\begin{aligned}
s_{n} & :=b_{1}-c_{1}+b_{2}-c_{2}+b_{3}-c_{3}+\cdots+b_{n}, \\
t_{n} & :=b_{1}-c_{1}+b_{2}-c_{2}+b_{3}-c_{3}+\cdots+b_{n}-c_{n} .
\end{aligned}
$$

Show that $\left\{s_{n}\right\}_{n \in N}$ is a decreasing sequence, that $\left\{t_{n}\right\}_{n \in N}$ is an increasing sequence, and find the relation between s_{n} and t_{n}. Conclude about the convergence of the alternating series.

Find exam
Total： 26 pt

Exercise 1 6pt
1） $\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1} \stackrel{\int^{\text {Hop itol }}}{=} \lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=1$ ．
2） $\lim _{x>\pi} \frac{\sin (x)}{1-\cos (x)}=\frac{0}{2}=0$ ．
thin reprerenth any －Janction satijuing：
23）

$$
\begin{aligned}
& \text { Recdl } \quad \sin (x)=x-\frac{1}{3!} x^{3}+O\left(x^{5}\right) \quad \lim _{x \rightarrow 0} \frac{\frac{O\left(x^{4}\right)}{x^{n}} \text { exit }}{} \\
& \cos (x)=1-\frac{1}{2} x^{2}+O\left(x^{4}\right) \\
& \Rightarrow \tan (x)=\frac{\sin (x)}{\cos (x)}=\left(x-\frac{1}{3!} x^{3}+O\left(x^{5}\right)\right)\left(1-\frac{1}{2} x^{2}+O\left(x^{4}\right)^{-1}\right. \\
& =\left(x-\frac{1}{3!} x^{3}+O\left(x^{5}\right)\right)\left(1+\frac{1}{2} x^{2}+O\left(x^{4}\right)\right) \\
& =x-\frac{1}{3!} x^{3}+\frac{1}{2} x^{3}+O\left(x^{4}\right)
\end{aligned}
$$

$$
=x+\frac{1}{3} x^{3}+O\left(x^{4}\right)
$$

The we of
L＇Hapitcl is aldo
Ihm $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}=\frac{1}{3}$ ．
4）

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{2020}}=\lim _{y \rightarrow \infty} \frac{e^{-y^{2}}}{y^{-2020}}=\lim _{y \rightarrow \infty} \frac{y^{2020}}{e^{y^{2}}}=0,
$$

becaure the exponentid goen fouter to wo Hor ang polynomial．

Exercise 26 p

$$
\text { 2 a) } \begin{aligned}
\left(x^{2}+x+1\right)^{-\frac{1}{3}} & =-\frac{1}{3}\left(x^{2}+x+1\right)^{4 / 3}(2 x+1) \\
& =-\frac{2 x+1}{3\left(x^{2}+x+1\right)^{4 / 3}}
\end{aligned}
$$

b）$\left(\frac{x-2}{2 x+1}\right)^{2}=2 \frac{x-2}{2 x+1} \frac{2 x+1-2(x-2)}{(2 x+1)^{2}}$

$$
=10 \frac{(x-2)}{(2 x+1)^{3}} .
$$

2c）$\left((2 x+1)^{5}\left(x^{3}-x+1\right)^{4}\right)^{\prime}=$

$$
\begin{aligned}
& =5(2 x+1)^{4} 2\left(x^{3}-x+1\right)^{4}+(2 x+1)^{5} 4\left(x^{3}-x+1\right)^{3}\left(3 x^{2}-1\right) \\
& =(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left[10\left(x^{3}-x+1\right)+4(2 x+1)\left(3 x^{2}-1\right)\right] \\
& =(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left(34 x^{3}+12 x^{2}-18 x+6\right) \\
& =2(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left(17 x^{3}+6 x^{2}-9 x+3\right) .
\end{aligned}
$$

bott anwer accepted．
$\frac{\text { Exercise } 3}{\rho^{\prime}} \quad i^{\prime}$
2 a)

$$
\text { a) } \begin{aligned}
& \int x^{2}(\ln (x))^{2} d x=\frac{1}{3} x^{3}(\ln (x))^{2}-\frac{2}{3} \int x^{2} \ln (x) d x \\
= & \frac{1}{3} x^{3}(\ln (x))^{2}-\frac{2}{9} x^{3} \ln (x)+\frac{2}{9} \int x^{2} d x \\
= & \frac{1}{3} x^{3}(\ln (x))^{2}-\frac{2}{9} x^{3} \ln (x)+\frac{2}{27} x^{3}+\operatorname{cst} .
\end{aligned}
$$

b) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x \quad$ set $\sqrt{x}=y \quad \frac{1}{2} \frac{1}{\sqrt{x}} d x=d y$

$$
=2 \int \sin (y) d y=-2 \cos (y)=-2 \cos (\sqrt{x}) .
$$

1.c) $\int_{-1}^{1} \frac{\sin (x)}{1+x^{2}} d x=0$ because it is at odd function or a symmetric domain.

Exerche $4 \quad 3 \times 5$
Set $f(x)=e^{x}$. Then $f\left(\frac{1}{10}\right)=1+\frac{1}{1!} \frac{1}{10}+\frac{1}{2!}\left(\frac{1}{10}\right)^{2}$

$$
\begin{aligned}
& +\frac{1}{3!}\left(\frac{1}{10}\right)^{3}+R_{4}\left(0, \frac{1}{10}\right) \\
& =1+0,1+0,005+\frac{1}{6} \cdot 0,001+R_{4}\left(0, \frac{1}{10}\right)
\end{aligned}
$$

$$
=1,105
$$

and $R_{4}(0,1) \leqslant \frac{1}{4!}\left(\frac{1}{10}\right)^{4} \underbrace{e^{\frac{1}{10}}}_{<2}$ which is thus nestigitle.

Exercue 5 2p

Intenval $[0,1]$ divided in 1 sub－intervals of length $\frac{1}{n}$

$$
\text { volume } \simeq \frac{1}{n} \times \pi f\left(y_{j}\right)^{2}
$$

volume of a thin
Totel volume $\cong \sum_{j=0}^{n-1} \frac{1}{n} \pi f\left(y_{j}\right)^{2}$

$$
\begin{aligned}
& =\pi \sum_{j=0}^{n-1} f\left(y_{j}\right)^{2}\left(x_{j+1}-x_{j}\right) \\
& \xrightarrow{n \rightarrow \infty} \pi \int_{0}^{1} f(x)^{2} d x
\end{aligned}
$$

by dofinition of the limit of Ricmann sumn， wher it exish．Scuce f and f^{2} are continnom， the limit exints．

Exercise $6 \quad 5 \mathrm{p}$
21) A prier $\sum_{j=1}^{\infty} a_{j}$ is alternating if

1) $a_{j} a_{j+1} \leq 0$
2) $\left|a_{j}\right| \geqslant\left|a_{j+1}\right|$
3) $\lim _{j \rightarrow \infty}\left|a_{j}\right|=0 \quad$ (ar $\lim _{j \rightarrow \infty} a_{j}=0$)

Thu: any alternating series is convergent.
32) P_{200} Set the series $b_{1}-c_{1}+b_{2}-c_{2}+\ldots$,

$$
S_{n}:=b_{1}-c_{1}+b_{2}-c_{2}+\ldots+b_{n} \text {, }
$$

$$
t_{n}:=s_{n}-c_{n} .
$$

Observe oe that $S_{n+1}=S_{n} \frac{C_{n}+b_{n+1}}{\left.\leqslant 0, b_{j} 2\right)} \leqslant S_{n}$.
Also $\quad t_{n+1}=t_{n}+\underbrace{b_{n+1}-c_{n+1}}_{\left.00, b_{y} 2\right)} \geqslant t_{n}$
$\Rightarrow\left\{S_{n}\right\}$ is decreasing, $\left\{t_{n}\right\}$ is increasing.
Also, since $t_{n}=S_{n}-c_{n} \Rightarrow t_{n} \leq S_{n}$. We
get $\begin{array}{ccccc}S_{1} \geqslant S_{2} \geqslant S_{3} \geqslant S_{4} & \ldots \\ v & v & v & v & \end{array}$

$$
t_{1} \leq t_{2} \leq t_{3} \leq t_{4}
$$

$\Rightarrow\left\{t_{n}\right\}$ in an increasing and upper bonded sequence \Rightarrow it converges. by S_{1}
and $\left\{S_{u}\right\}$ is a decocasiij and lower bounded \uparrow sequence \Rightarrow it converges. $^{\text {n }}$.

Since $\left.\quad S_{n}-t_{n}=c_{n} \xrightarrow\left[b_{y} 3\right)\right]{n \rightarrow \infty} 0$
it follows that $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} t_{n}$, which mean that the 2 sequence n conerrje to the name limit.

