Homework 9

Exercise 1 Differentiate the function $\mathbb{R}_{+} \ni x \mapsto \frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}} \in \mathbb{R}_{+}$.
Exercise 2 Compute
a) $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln (x)}\right)$,
b) $\lim _{x \rightarrow 0_{+}}(1+\sin (4 x))^{\cot (x)}$ with $\cot (x)=\frac{1}{\tan (x)}$.

Exercise 3 Find the area under the following curves between the given bounds:

1. $x \mapsto x^{3}$ between $x=0$ and $x=2$,
2. $x \mapsto \mathrm{e}^{-x}$ between $x=0$ and $x=b>0$, what happens when $b \rightarrow \infty$?
3. $x \mapsto \cos (x)+\cos (2 x)$ between $x=0$ and $x=\pi / 4$,
4. $x \mapsto x-\sin (x)$ between $x=0$ and $x=\pi / 2$,
and represent each of these areas on a drawing.

Exercise 4 Let $f: I \rightarrow \mathbb{R}$ be a continuous function at $b \in I$, and let g be another function satisfying $\lim _{x \rightarrow a} g(x)=b$. Show that the following equality holds:

$$
\lim _{x \rightarrow a} f(g(x))=f(b) .
$$

