Nagoya University, G30 program

Mathematics Tutorial Ia (calculus)

Homework 8

Exercise 1 Determine the maximal domain on which the following functions are defined and sketch their graph as precisely as possible:

a)
$$f(x) = \frac{x-3}{x^2+1}$$
, b) $g(x) = \frac{2x^2-1}{x^2-2}$, c) $h(x) = x + \frac{1}{x}$.

Recall that the logarithm function has been introduced as the inverse of the strictly increasing and differentiable function $\mathbb{R} \ni x \mapsto e^x \in \mathbb{R}_+$. More precisely, $\ln : \mathbb{R}_+ \to \mathbb{R}$ satisfies $e^{\ln(y)} = y$ and $\ln(e^x) = x$ for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_+$. Recall also that the following properties have been proved:

- (i) $\ln(y)' = \frac{1}{y}$ for any $y \in \mathbb{R}_+$,
- (ii) $\ln(yz) = \ln(y) + \ln(z)$ for any $y, z \in \mathbb{R}_+$,
- (iii) $\ln(y^x) = x \ln(y)$ for any $y \in \mathbb{R}_+$ and $x \in \mathbb{Q}$.

Based on this, it is natural to set for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_+$

$$y^x \equiv e^{\ln(y^x)} := e^{x \ln(y)}$$

Exercise 2 Let us set $\varepsilon := e^1 = 2.718...$ Check that $\ln(\varepsilon) = 1$ and that $\varepsilon^x = e^x$.

Exercise 3 Compute the following limits:

a)
$$\lim_{x \to 0_+} x \ln(x)$$
, b) $\lim_{x \to 0_+} x^x$, c) $\lim_{x \to +\infty} \frac{\ln(x)}{x}$, d) $\lim_{x \to +\infty} x^{1/x}$

What can you say for $\lim_{x\to 0_+} x^r \ln(x)$ for any r > 0?

Exercise 4 Compute the following limits:

a)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$
, b) $\lim_{x \to 0} (1+x)^{1/x}$, c) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$, d) $\lim_{x \to \infty} \left(1 + \frac{r}{x}\right)^x$ for any $r > 0$.

Exercise 5 Compute the derivative of the following functions:

$$f: \mathbb{R} \ni x \mapsto a^x \in \mathbb{R} \text{ for any } a > 0, \qquad g: \mathbb{R}^*_+ \ni x \mapsto x^x \in \mathbb{R}$$