Homework 8

Exercise 1 Determine the maximal domain on which the following functions are defined and sketch their graph as precisely as possible:
a) $f(x)=\frac{x-3}{x^{2}+1}$,
b) $g(x)=\frac{2 x^{2}-1}{x^{2}-2}$,
c) $h(x)=x+\frac{1}{x}$.

Recall that the logarithm function has been introduced as the inverse of the strictly increasing and differentiable function $\mathbb{R} \ni x \mapsto \mathrm{e}^{x} \in \mathbb{R}_{+}$. More precisely, $\ln : \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies $\mathrm{e}^{\ln (y)}=y$ and $\ln \left(\mathrm{e}^{x}\right)=x$ for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_{+}$. Recall also that the following properties have been proved:
(i) $\ln (y)^{\prime}=\frac{1}{y} \quad$ for any $y \in \mathbb{R}_{+}$,
(ii) $\ln (y z)=\ln (y)+\ln (z)$ for any $y, z \in \mathbb{R}_{+}$,
(iii) $\ln \left(y^{x}\right)=x \ln (y)$ for any $y \in \mathbb{R}_{+}$and $x \in \mathbb{Q}$.

Based on this, it is natural to set for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_{+}$

$$
y^{x} \equiv \mathrm{e}^{\ln \left(y^{x}\right)}:=\mathrm{e}^{x \ln (y)}
$$

Exercise 2 Let us set $\varepsilon:=\mathrm{e}^{1}=2.718 \ldots$. Check that $\ln (\varepsilon)=1$ and that $\varepsilon^{x}=\mathrm{e}^{x}$.
Exercise 3 Compute the following limits:
a) $\lim _{x \rightarrow 0_{+}} x \ln (x)$,
b) $\lim _{x \rightarrow 0_{+}} x^{x}$,
c) $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}$,
d) $\lim _{x \rightarrow+\infty} x^{1 / x}$.

What can you say for $\lim _{x \rightarrow 0_{+}} x^{r} \ln (x)$ for any $r>0$?
Exercise 4 Compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$,
b) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$,
c) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$,
d) $\lim _{x \rightarrow \infty}\left(1+\frac{r}{x}\right)^{x}$ for any $r>0$.

Exercise 5 Compute the derivative of the following functions:

$$
f: \mathbb{R} \ni x \mapsto a^{x} \in \mathbb{R} \text { for any } a>0, \quad g: \mathbb{R}_{+}^{*} \ni x \mapsto x^{x} \in \mathbb{R} .
$$

