Homework 7

Exercise 1 Compute the following limits:

(*i*)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x^3}$$
,
(*ii*) $\lim_{x \to 0} \frac{x^2}{1 + x - e^x}$.

Exercise 2 Find the critical points for the differentiable functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a) $-x^2 + 2x + 2$, b) $x^3 - 3$, c) $\cos(x)$, d) $\sin(x) + \cos(x)$.

Exercise 3 Find the point of the curve of equation $y^2 = 4x$ which is the nearest one to the point (2,3).

Exercise 4 Prove the following statement: Let $f : [a, b] \to \mathbb{R}$ be a strictly increasing and continuous function, and set $\alpha := f(a)$ and $\beta := f(b)$. Then there exists an inverse function $f^{-1} : [\alpha, \beta] \to [a, b]$ such that $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$ for any $x \in [a, b]$ and $y \in [\alpha, \beta]$.

Recall that we have shown the existence of a unique differentiable function $f : \mathbb{R} \to \mathbb{R}$ satisfying f'(x) = f(x) for any $x \in \mathbb{R}$ and f(0) = 1. In addition, it has been shown that this function satisfies the following properties:

- (i) f(x)f(-x) = 1 for any $x \in \mathbb{R}$,
- (ii) f(x) > 0 for any $x \in \mathbb{R}$,
- (iii) f is strictly increasing,
- (iv) f(x+y) = f(x)f(y) for any $x, y \in \mathbb{R}$.

From now on, the notation e^x for f(x) will be used. The previous relations read $e^x e^{-x} = 1$, $e^x > 0$, $x \mapsto e^x$ is strictly increasing, and $e^{x+y} = e^x e^y$. It follows then from the previous exercise that this function is invertible. This inverse is denoted by ln. More precisely, $\ln : \mathbb{R}_+ \to \mathbb{R}$ satisfies $e^{\ln(y)} = y$ and $\ln(e^x) = x$ for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_+$.

Exercise 5 Prove the following properties of the function $\ln :$

- (i) $\ln(y)' = \frac{1}{y}$ for any $y \in \mathbb{R}_+$,
- (*ii*) $\ln(yz) = \ln(y) + \ln(z)$ for any $y, z \in \mathbb{R}_+$,
- (*iii*) $\ln(y^x) = x \ln(y)$ for any $y \in \mathbb{R}_+$ and $x \in \mathbb{Q}$.