Homework 7

Exercise 1 Compute the following limits:
(i) $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}$,
(ii) $\lim _{x \rightarrow 0} \frac{x^{2}}{1+x-\mathrm{e}^{x}}$.

Exercise 2 Find the critical points for the differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for $x \in \mathbb{R}$ by
a) $-x^{2}+2 x+2$,
b) $x^{3}-3$,
c) $\cos (x)$,
d) $\sin (x)+\cos (x)$.

Exercise 3 Find the point of the curve of equation $y^{2}=4 x$ which is the nearest one to the point $(2,3)$.
Exercise 4 Prove the following statement: Let $f:[a, b] \rightarrow \mathbb{R}$ be a strictly increasing and continuous function, and set $\alpha:=f(a)$ and $\beta:=f(b)$. Then there exists an inverse function $f^{-1}:[\alpha, \beta] \rightarrow[a, b]$ such that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$ for any $x \in[a, b]$ and $y \in[\alpha, \beta]$.

Recall that we have shown the existence of a unique differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f^{\prime}(x)=f(x)$ for any $x \in \mathbb{R}$ and $f(0)=1$. In addition, it has been shown that this function satisfies the following properties:
(i) $f(x) f(-x)=1 \quad$ for any $x \in \mathbb{R}$,
(ii) $f(x)>0$ for any $x \in \mathbb{R}$,
(iii) f is strictly increasing,
(iv) $f(x+y)=f(x) f(y) \quad$ for any $x, y \in \mathbb{R}$.

From now on, the notation e^{x} for $f(x)$ will be used. The previous relations read $\mathrm{e}^{x} \mathrm{e}^{-x}=1, \mathrm{e}^{x}>0$, $x \mapsto \mathrm{e}^{x}$ is strictly increasing, and $\mathrm{e}^{x+y}=\mathrm{e}^{x} \mathrm{e}^{y}$. It follows then from the previous exercise that this function is invertible. This inverse is denoted by \ln. More precisely, $\ln : \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies $\mathrm{e}^{\ln (y)}=y$ and $\ln \left(\mathrm{e}^{x}\right)=x$ for any $x \in \mathbb{R}$ and $y \in \mathbb{R}_{+}$.

Exercise 5 Prove the following properties of the function \ln :
(i) $\ln (y)^{\prime}=\frac{1}{y} \quad$ for any $y \in \mathbb{R}_{+}$,
(ii) $\ln (y z)=\ln (y)+\ln (z) \quad$ for any $y, z \in \mathbb{R}_{+}$,
(iii) $\ln \left(y^{x}\right)=x \ln (y) \quad$ for any $y \in \mathbb{R}_{+}$and $x \in \mathbb{Q}$.

