Mathematics Tutorial Ia (calculus)

Homework 6

Exercise 1 By using that $\sin'(x) = \cos(x)$ show that $\cos'(x) = -\sin(x)$ for any $x \in \mathbb{R}$.

Exercise 2 1) Compute the derivative of the function $(0, \infty) \ni x \mapsto \frac{1}{x} \in (0, \infty)$.

2) For any $q \in \mathbb{Q}$ with q > 0 let us define the function P_{-q} by $P_{-q}(x) \equiv x^{-q} := \frac{1}{x^q}$. With the previous statement together with the content of Exercise 4 of Homework 4, show that

$$P'_{-q}(x) = -qx^{-q-1} \equiv -q\frac{1}{x^{q+1}}$$

Exercise 3 Show that $sin(x) \le x$ for any $x \ge 0$.

Exercise 4 Let us set $e^{-x} := \frac{1}{e^x}$, and consider the functions hyperbolic cosine $\cosh : \mathbb{R} \to \mathbb{R}$ and hyperbolic sine $\sinh : \mathbb{R} \to \mathbb{R}$ defined by the formulas

$$\cosh(x) := \frac{e^x + e^{-x}}{2}$$
 and $\sinh(x) := \frac{e^x - e^{-x}}{2}.$

Compute the derivative of these functions and sketch the graph of the functions cosh and sinh. Prove the following relation:

$$\cosh(x)^2 - \sinh(x)^2 = 1, \qquad \forall x \in \mathbb{R}.$$

Exercise 5 Compute and simplify the derivative of the functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a)
$$\sin\left((2x^2-3)^2\right)$$
 b) $\frac{(x+3)^3}{(2x-3)^2+1}$ c) $\frac{1}{\sin^2(3x)+1}$

Exercise 6 Compute the derivatives of order 1, 2 and 3 for the functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a)
$$\cos(x)$$
 b) $\cos(x)\sin(x)$ c) $x^4 + x^3 + x^2 + x^1 + 1$