Homework 6

Exercise 1 By using that $\sin ^{\prime}(x)=\cos (x)$ show that $\cos ^{\prime}(x)=-\sin (x)$ for any $x \in \mathbb{R}$.

Exercise 2 1) Compute the derivative of the function $(0, \infty) \ni x \mapsto \frac{1}{x} \in(0, \infty)$.
2) For any $q \in \mathbb{Q}$ with $q>0$ let us define the function P_{-q} by $P_{-q}(x) \equiv x^{-q}:=\frac{1}{x^{q}}$. With the previous statement together with the content of Exercise 4 of Homework 4, show that

$$
P_{-q}^{\prime}(x)=-q x^{-q-1} \equiv-q \frac{1}{x^{q+1}} .
$$

Exercise 3 Show that $\sin (x) \leq x$ for any $x \geq 0$.

Exercise 4 Let us set $e^{-x}:=\frac{1}{e^{x}}$, and consider the functions hyperbolic cosine $\cosh : \mathbb{R} \rightarrow \mathbb{R}$ and hyperbolic sine $\sinh : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formulas

$$
\cosh (x):=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \sinh (x):=\frac{e^{x}-e^{-x}}{2}
$$

Compute the derivative of these functions and sketch the graph of the functions cosh and sinh. Prove the following relation:

$$
\cosh (x)^{2}-\sinh (x)^{2}=1, \quad \forall x \in \mathbb{R}
$$

Exercise 5 Compute and simplify the derivative of the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for $x \in \mathbb{R}$ by
a) $\sin \left(\left(2 x^{2}-3\right)^{2}\right)$
b) $\frac{(x+3)^{3}}{(2 x-3)^{2}+1}$
c) $\frac{1}{\sin ^{2}(3 x)+1}$

Exercise 6 Compute the derivatives of order 1, 2 and 3 for the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for $x \in \mathbb{R}$ by
a) $\cos (x)$
b) $\cos (x) \sin (x)$
c) $x^{4}+x^{3}+x^{2}+x^{1}+1$

