Nagoya University, G30 program

Mathematics Tutorial Ia (calculus)

Homework 5

Exercise 1 Show that there are exactly two tangent lines to the graph of the function $f : \mathbb{R} \ni x \mapsto (x+1)^2 \in \mathbb{R}$ which pass through the origin. Find the equation of these lines (\Leftrightarrow find the two functions whose graphs correspond to these straight lines).

Exercise 2 Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 \sin(1/x)$ if $x \neq 0$ and f(0) = 0.

- 1. Show that f is continuous at 0,
- 2. Compute the derivative of f at 0,
- 3. Compute the derivative of f at any $x \neq 0$,
- 4. Show that the derivative of f is well-defined but that this derivative is not continuous at 0.

<u>Indication</u>: you can use that $\lim_{y\to 0} \frac{\sin(y)}{y} = 1$.

Exercise 3 a) Let $f(x) = x^2 \sin(1/x)$ and $g(x) = \sin(x)$ for any $x \in (-1,0) \cup (0,1)$. Show that $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ does not exist, but that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$.

b) Explain how this example fits in with L'Hospital's rule ?

Exercise 4 Find the equation of the tangent of the curve in \mathbb{R}^2 defined by the relation

$$F(x,y) = x^2 - y^2 + 3xy + 12 = 0$$

at the point (-4, 2).

Exercise 5 By using the indication mentioned above, compute the following limits:

- 1. $\lim_{h \to 0} \frac{\cos(h) 1}{h}$,
- 2. $\lim_{h\to 0} \frac{\cos(h)-1}{h^2}$.