Homework 5

Exercise 1 Show that there are exactly two tangent lines to the graph of the function $f: \mathbb{R} \ni x \mapsto$ $(x+1)^{2} \in \mathbb{R}$ which pass through the origin. Find the equation of these lines (\Leftrightarrow find the two functions whose graphs correspond to these straight lines).

Exercise 2 Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2} \sin (1 / x)$ if $x \neq 0$ and $f(0)=0$.

1. Show that f is continuous at 0 ,
2. Compute the derivative of f at 0 ,
3. Compute the derivative of f at any $x \neq 0$,
4. Show that the derivative of f is well-defined but that this derivative is not continuous at 0 .

Indication: you can use that $\lim _{y \rightarrow 0} \frac{\sin (y)}{y}=1$.
Exercise 3 a) Let $f(x)=x^{2} \sin (1 / x)$ and $g(x)=\sin (x)$ for any $x \in(-1,0) \cup(0,1)$. Show that $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist, but that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0$.
b) Explain how this example fits in with L'Hospital's rule?

Exercise 4 Find the equation of the tangent of the curve in \mathbb{R}^{2} defined by the relation

$$
F(x, y)=x^{2}-y^{2}+3 x y+12=0
$$

at the point $(-4,2)$.
Exercise 5 By using the indication mentioned above, compute the following limits:

1. $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}$,
2. $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h^{2}}$.
