Mathematics Tutorial Ia (calculus)

Homework 4

Exercise 1 Consider the curve in \mathbb{R}^2 defined by the relation

$$\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1, \qquad (x,y) \in \mathbb{R}^2.$$

Sketch this curve and determine the slope of the tangent at each point of it.

Exercise 2 Compute the derivative of the functions $f : \mathbb{R} \to \mathbb{R}$ with f(x) provided by the following expressions:

a)
$$5x^4 + 4x^2 - 1$$
, b) $(x^5 + 1)(x^2 - 1)$, c) $\frac{5x - 1}{x - 5}$ for $x \neq 5$, d) $\frac{x^{25} - 2x}{x^2 + 3}$.

Exercise 3 Consider the function f defined by $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for any $x \in \mathbb{R}$.

- 1. For any fixed $x \in \mathbb{R}$ show that the sum is convergent,
- 2. Compute the derivative of f,
- 3. What can you say about this function ?

Exercise 4 1) For $n \in \mathbb{N}^*$ let $P_{\frac{1}{n}} : \mathbb{R}_+ \to \mathbb{R}$ be the function defined by $P_{\frac{1}{n}}(x) = x^{\frac{1}{n}}$. Show that the following equality holds:

$$P'_{\frac{1}{n}}(x) = \frac{1}{n}x^{\frac{1}{n}-1}$$

For the proof you can use the equality

$$(a^{n} - b^{n}) = (a - b) \sum_{k=0}^{n-1} a^{n-k-1} b^{k}$$

for $a = (x+h)^{\frac{1}{n}}$ and $b = x^{\frac{1}{n}}$.

2) Deduce that if $P_{\frac{m}{n}}: \mathbb{R}_+ \to \mathbb{R}$ is defined for $m, n \in \mathbb{N}^*$ by $P_{\frac{m}{n}}(x) = x^{\frac{m}{n}}$, then

$$P'_{\frac{m}{n}}(x) = \frac{m}{n} x^{\frac{m}{n}-1}$$