Homework 4

Exercise 1 Consider the curve in \mathbb{R}^{2} defined by the relation

$$
\frac{(x-1)^{2}}{9}+\frac{y^{2}}{4}=1, \quad(x, y) \in \mathbb{R}^{2}
$$

Sketch this curve and determine the slope of the tangent at each point of it.

Exercise 2 Compute the derivative of the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)$ provided by the following expressions:
a) $5 x^{4}+4 x^{2}-1$,
b) $\left(x^{5}+1\right)\left(x^{2}-1\right)$,
c) $\frac{5 x-1}{x-5} \quad$ for $x \neq 5$,
d) $\frac{x^{25}-2 x}{x^{2}+3}$.

Exercise 3 Consider the function f defined by $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for any $x \in \mathbb{R}$.

1. For any fixed $x \in \mathbb{R}$ show that the sum is convergent,
2. Compute the derivative of f,
3. What can you say about this function?

Exercise 4 1) For $n \in \mathbb{N}^{*}$ let $P_{\frac{1}{n}}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be the function defined by $P_{\frac{1}{n}}(x)=x^{\frac{1}{n}}$. Show that the following equality holds:

$$
P_{\frac{1}{n}}^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1}
$$

For the proof you can use the equality

$$
\left(a^{n}-b^{n}\right)=(a-b) \sum_{k=0}^{n-1} a^{n-k-1} b^{k}
$$

for $a=(x+h)^{\frac{1}{n}}$ and $b=x^{\frac{1}{n}}$.
2) Deduce that if $P_{\frac{m}{n}}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is defined for $m, n \in \mathbb{N}^{*}$ by $P_{\frac{m}{n}}(x)=x^{\frac{m}{n}}$, then

$$
P_{\frac{m}{n}}^{\prime}(x)=\frac{m}{n} x^{\frac{m}{n}-1}
$$

