Homework 3

Exercise 1 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions. Show as precisely as possible that

1. the sum $\lambda f+g$ is continuous on \mathbb{R} for any $\lambda \in \mathbb{R}$,
2. the product $f g$ is continuous on \mathbb{R},

Exercise 2 Compute the following limits, it they exist:

1. $\lim _{x \rightarrow 0_{-}}\left(\frac{1}{x}+\frac{1}{|x|}\right)$ and $\lim _{x \rightarrow 0_{+}}\left(\frac{1}{x}+\frac{1}{|x|}\right)$,
2. $\lim _{x \rightarrow 2_{+}} \frac{x^{2}+x-6}{|x-2|}$ and $\lim _{x \rightarrow 2_{-}-} \frac{x^{2}+x-6}{|x-2|}$,
3. $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$.

Exercise 3 Let I be an open interval in \mathbb{R}, and let $f: I \rightarrow \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for some $x \in I$, show that there exists $\delta>0$ such that $f(x+h) \neq 0$ for any $h \in[-\delta, \delta]$.

Exercise 4 Determine the slope of the tangent at each point of the graph of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}-3 x+2$.

Exercise 5 For each positive integer n consider the polynomial function $p_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $p_{n}(x)=$ x^{n} and show that

$$
p_{n}^{\prime}(x) \equiv \frac{\mathrm{d} p_{n}}{\mathrm{~d} x}(x)=n x^{n-1}
$$

In your proof you can use the equality

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

with $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

