Mathematics Tutorial Ia (calculus)

Homework 3

Exercise 1 Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions. Show as precisely as possible that

- 1. the sum $\lambda f + g$ is continuous on \mathbb{R} for any $\lambda \in \mathbb{R}$,
- 2. the product fg is continuous on \mathbb{R} ,

Exercise 2 Compute the following limits, it they exist:

1. $\lim_{x \to 0_{-}} \left(\frac{1}{x} + \frac{1}{|x|}\right)$ and $\lim_{x \to 0_{+}} \left(\frac{1}{x} + \frac{1}{|x|}\right)$, 2. $\lim_{x \to 2_{+}} \frac{x^2 + x - 6}{|x - 2|}$ and $\lim_{x \to 2_{-}} \frac{x^2 + x - 6}{|x - 2|}$, 3. $\lim_{h \to 0} \frac{\sqrt{1 + h} - 1}{h}$.

Exercise 3 Let I be an open interval in \mathbb{R} , and let $f: I \to \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for some $x \in I$, show that there exists $\delta > 0$ such that $f(x+h) \neq 0$ for any $h \in [-\delta, \delta]$.

Exercise 4 Determine the slope of the tangent at each point of the graph of the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 2x^2 - 3x + 2$.

Exercise 5 For each positive integer n consider the polynomial function $p_n : \mathbb{R} \to \mathbb{R}$ defined by $p_n(x) = x^n$ and show that

$$p'_n(x) \equiv \frac{\mathrm{d}p_n}{\mathrm{d}x}(x) = nx^{n-1}.$$

In your proof you can use the equality

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

with $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.