Homework 2

Exercise 1 Consider the sequences $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ defined below and show (with ε and N) that these sequences are convergent. Can you find their limit ?
(i) $a_{n}=\frac{1}{n^{2}}$,
(ii) $a_{n}=\sqrt{n+1}-\sqrt{n}$.
(iii) $a_{n}=\sqrt{n^{2}+5 n}-n$.

More challenging (and optional): Consider $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ and show that the corresponding sequence is convergent. In your proof you can use the equality

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

with $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Exercise 2 Show that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by $a_{1}=1$ and $a_{n+1}=3-\frac{1}{a_{n}}$ for any $n \geq 1$ is increasing and bounded from above by 3. Deduce that this sequence is convergent and give its limit.

Exercise 3 Consider two real sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left|b_{n}\right| \leq C$ for one $C>0$ and all $n \in \mathbb{N}$ (we say that the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ is bounded). Show that $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

A parametric curve on \mathbb{R}^{2} is a map

$$
I \ni t \mapsto(x(t), y(t)) \in \mathbb{R}^{2}
$$

where I is an interval of \mathbb{R}, and where $x: I \rightarrow \mathbb{R}$ and $y: I \rightarrow \mathbb{R}$ are real functions defined on I.

Exercise 4 Represent the following parametric curves:
(i) $x(t)=\cos (t)$ and $y(t)=\sin (t)$ for any $t \in[0,2 \pi]$,
(ii) $x(t)=\mathrm{e}^{t} \cos (t)$ and $y(t)=\mathrm{e}^{t} \sin (t)$ for any $t \in \mathbb{R}$,
(iii) $x(t)=\sin (2 t)$ and $y(t)=\sin (3 t)$ for any t.

