Homework 2

Exercise 1 Consider the sequences $(a_n)_{n \in \mathbb{N}^*}$ defined below and show (with ε and N) that these sequences are convergent. Can you find their limit ?

- (*i*) $a_n = \frac{1}{n^2}$,
- (ii) $a_n = \sqrt{n+1} \sqrt{n}$.
- (*iii*) $a_n = \sqrt{n^2 + 5n} n$.

More challenging (and optional): Consider $a_n = (1 + \frac{1}{n})^n$ and show that the corresponding sequence is convergent. In your proof you can use the equality

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$

with $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Exercise 2 Show that the sequence $(a_n)_{n \in \mathbb{N}}$ given by $a_1 = 1$ and $a_{n+1} = 3 - \frac{1}{a_n}$ for any $n \ge 1$ is increasing and bounded from above by 3. Deduce that this sequence is convergent and give its limit.

Exercise 3 Consider two real sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} a_n = 0$ and $|b_n| \leq C$ for one C > 0 and all $n \in \mathbb{N}$ (we say that the sequence $(b_n)_{n\in\mathbb{N}}$ is bounded). Show that $\lim_{n\to\infty} a_n b_n = 0$.

A parametric curve on \mathbb{R}^2 is a map

$$I \ni t \mapsto (x(t), y(t)) \in \mathbb{R}^2$$

where I is an interval of \mathbb{R} , and where $x: I \to \mathbb{R}$ and $y: I \to \mathbb{R}$ are real functions defined on I.

Exercise 4 Represent the following parametric curves:

- (i) $x(t) = \cos(t)$ and $y(t) = \sin(t)$ for any $t \in [0, 2\pi]$,
- (*ii*) $x(t) = e^t \cos(t)$ and $y(t) = e^t \sin(t)$ for any $t \in \mathbb{R}$,
- (iii) $x(t) = \sin(2t)$ and $y(t) = \sin(3t)$ for any t.