Homework 13

Exercise 1 Prove the following statement (the ration test) :
Let $\left\{a_{j}\right\}_{j=1}^{\infty}$ be a sequence with positive terms only. Assume that there exists $c \in(0,1)$ and $N \in \mathbb{N}$ such that

$$
\frac{a_{j+1}}{a_{j}} \leq c \quad \forall j \geq N
$$

Then the corresponding series $a_{1}+a_{2}+a_{3}+\ldots$ is convergent.

Exercise 2 1) Show that the series with generic term $a_{j}=\frac{j}{3^{j}}$ is convergent, in other terms show that

$$
\sum_{j=1}^{\infty} \frac{j}{3^{j}}<\infty
$$

2) Show that the series with generic term $a_{j}=(-1)^{j} \frac{j^{3}}{3^{j}}$ is absolutely convergent.

Exercise 3 For $f:[1, \infty) \rightarrow \mathbb{R}_{+}$decreasing, prove the following statement (the integral test) : The series $f(1)+f(2)+f(3)+\ldots$ is convergent if and only if $\lim _{M \rightarrow \infty} \int_{1}^{M} f(x) \mathrm{d} x$ is convergent, or in a more simple form show that

$$
\sum_{j=1}^{\infty} f(j)<\infty \quad \Longleftrightarrow \quad \int_{1}^{\infty} f(x) \mathrm{d} x<\infty
$$

Exercise 4 For any $\varepsilon>0$ show that the series with generic term $a_{j}=j^{-1-\varepsilon}$ is convergent.

