Homework 12

Exercise 1 a) Provide the Taylor's expansion (for x around 0) of order n for the following functions, and provide an estimate on the remainder term:

1) $(-1, \infty) \ni x \mapsto \ln (1+x) \in \mathbb{R}$,
2) $(-1,1) \ni x \mapsto(1+x)^{s} \in \mathbb{R}$ for any $s \in \mathbb{R}$,
3) $\mathbb{R} \ni x \mapsto \sin (x) \in \mathbb{R}$,
4) $\mathbb{R} \ni x \mapsto \sinh (x) \in \mathbb{R}$,
5) $\mathbb{R} \ni x \mapsto \cosh (x) \in \mathbb{R}$,
b) Provide the Taylor's expansion (for x around 0) of order 3 for the function

$$
(-1,1) \ni x \mapsto \ln \left(\frac{1+x}{1-x}\right) \in \mathbb{R}
$$

What about the terms with an even power of x when we write its Taylor's expansion of order n for arbitrary n ?

Exercise 2 Provide the Taylor's expansion (for x around $\pi / 4$) of order n for the functions mentioned below, and provide an estimate on the remainder term:

$$
\mathbb{R} \ni x \mapsto \cos (x) \in \mathbb{R}
$$

Exercise 3 By using Taylor's expansions compute the following limits:

1. $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x \tan (x)}$,
2. $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{\sin (x)}$,
3. $\lim _{x \rightarrow 0} \frac{\sin (x)-e^{x}+1}{x}$.
