Homework 10

Exercise 1 Write out the lower and the upper Riemann sums for the function $x \mapsto x^{2}$ in the interval $[0,2]$. Use a regular partition of the interval divided into n subintervals of the same length. The following formula can be used:

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

What happens when $n \rightarrow \infty$?

Exercise 2 Consider the function $[0,1] \ni x \mapsto \mathrm{e}^{x} \in \mathbb{R}$, and consider a regular partition of $[0,1]$ divided into n intervals of length $\frac{1}{n}$. Compute the following Riemann sums:

1. $I_{l}:=\sum_{j=0}^{n-1} \frac{1}{n} \mathrm{e}^{\frac{j}{n}} \quad$ left rule,
2. $I_{r}:=\sum_{j=1}^{n} \frac{1}{n} \mathrm{e}^{\frac{j}{n}} \quad$ right rule,
3. $I_{m}:=\sum_{j=0}^{n-1} \frac{1}{n} \mathrm{e}^{\frac{j+1 / 2}{n}} \quad$ midpoint rule,
4. $I_{t r i}:=\frac{1}{2}\left(I_{l}+I_{r}\right) \quad$ trapezoidal rule,
5. $I_{\text {Sim }}:=\sum_{j=0}^{n / 2-1} \frac{1}{3 n}\left(\mathrm{e}^{\frac{2 j}{n}}+4 \mathrm{e}^{\frac{2 j+1}{n}}+\mathrm{e}^{\frac{2 j+2}{n}}\right)$ for n even \quad Simpson's rule.

Illustrate these rules on a drawing. The following formula can be used for any $a>0$ with $a \neq 1$:

$$
\sum_{k=0}^{m-1} a^{k}=\frac{1-a^{m}}{1-a}
$$

Exercise 3 With Riemann sums, compute the following integral: $\int_{0}^{3}\left(x^{3}-6 x\right) \mathrm{d} x$. You can use the two equalities:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2} .
$$

Exercise 4 (Mean value theorem for integrals) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Show that there exists $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) \mathrm{d} x=f(c)(b-a)
$$

Provide a geometric interpretation of this equality when f is a positive function.

