Large deviation

Consider Sp:= X,+Xat =+ Xn
; (o sum of -independent, adenicolly distributed r.v.
with mean p ood vorignce 6*)
By the low of lorge vumber Sn~nu omd of veriance me?,
and deviat'ion== JvorGa) = o
It's unlikely that Sn wil deviote from nu by more tham n* (x>%).
Such vnlikely events are called lorge devintion.
Let X be o rv. with E(X) =0,
and Mx () = E (e?X) exists for It1<$S with §>0
X 4s the common r.v. of idertically distributed X, X,
Since x> e¥™ 4s strictly incrensing for t>0
=Sn>na for AER © %" >t
=>]E(Sn >no) = ﬁ(ets" Sethay é [E(etSn) (lE(etx) (Mx(t))

P Markovs mequa.llty mdeyendence

Since the lefi~hand side s independent of t, one has
P (Sa>na) € 'Véfw{( R"("))})

Set A) --InMx(-t)
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with A¥ (o) = sup (at-AW)) (Fenchel - Leﬁendve transform)
cfc’r%

S IP(Sh > ) € (&N
& log IP(S.>an) < nlog e N @ =-p AX (q)
& 3+ log P(Se>an) € - A* (@)




Thm (Large deviation thwm)
Let %, Xa, - be independent identically distributed rondom voriables
with mean 0 ond common moment generating function [Mx de

defined on interval (-3,3) for §>0. let a>0 such that
P(X>a) >0

Then A* (@) >0 oand
+ log IP (Sn>na) £22s - \* ()

Unprecisely, P(Sn>ain) decays to 0 as e—/\*Ca)n




| X BYMC“HM Process (discrete time reproduction process)

Each momad lives for 4 wndt of time

and has k children with o probability py (f Pe =1).
At time =0, there’s 1 nomod.
The nwmber of ch\ldren ofead\ novnud inis Tndependont.
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Let Zn denote the muumber of nomods at time n.
Clearly P(Zo=1)=|
P(Z, =k) =Pk
P (Z2 = k) olready quite complicoted ,
let’s denote by C the integer-valued rondom varioble given by P(C=k) =P«
And Cj will denote a r.v. with the same probability distribwtion
Then Z,=C,+Ca+++Cg,
Zn=C, HE e ""Cz,...,
Recadl that o roandom sum of random wariables has been studied in Chapter I\
It wos treoted with the probability generating function
G(s) "G (s) = ? s* Pk P
Gn(9)= G zp(s)= E (3%) = & SKE(Za=k)
Thm: For any n€p* “
* Gol(S) =S Gnb) =Gt (GCS) and  Gals) =GGLG (G () =)  (X)

h times compesition

Ffaaf : Since Zo = = Gio () =5
Gn(s) = Gn-i (G(s))  (shown in the random sum formula in Chapter (V)
ond by iteration we get (%)

Remark

Knowing Ga(s), we can compute [E(Zn=k) for any k




Let's set m=[E(C) =§ kp <00
Thm E(Zn) ’/A—n
Proof - Recall [E(Zn)= Gn @) = Gn-i (GU)G'Q) = Gy (D E(C) = UG V)
by iteration, we get [E(Zn)=p"
Exercise
If u=[EC) and 6*= var(C)
Fhen—vorlZe+= "\/ﬂ""-‘*—" if m#!
Then var (Za) '-'{
ne* if m=)
What obout extinction?
Clearly if <!, then we have an OSymptotic extmch"“
Bw(; wkat Obowt lu, > :
Set e:=P(Zn =0 for Some n} = 0)
Let En:={Z,=0} the event that the branch process is extinct ot the n?h gonerad
and set en= [P (En)
' Set {U En = {INEN* : 7,=0} ond observe that EnSEnnDep<elts
Since. his sequence is increasing ond since the probability measwe is continues,
we get e= 1’1& en
Remork: If P.=0 then e =0
Thm (Extinction probability thm) =
The Probabxllty af e 4s given by the smallest hon-nejod:we Voot Of -Lhee
=G (x)
Proof : Kecall en = IP(Zn=0) = Gn(0)
Since Gn(s)=GoGo2G(S) = G(Gni(s)
We fnfer en = Galo) = G (Gn=(0)) = G(en-l)
for any n=b2,, with the initial condition €. =0
Toking N on ba'bh sides
(e !\'-',“u €n 7 v‘.’-a"go G(en) = G (i en) = G(e) since G is continuous on €




TO Show 4t's the smallest one, we ASsume 'V]é(o, 1) Saﬁsfjfﬂg "I"‘Gl(‘n)-
Since G2 on (0,1) (since G'(s) = éks"" Pk >0)
One has
e =G00)=G<G(y) =17
enF-Gle <G =% Assume en <7,
en=Glen)) €Gn)=n .. By iteration,
e=lime,<w. o
Thm P 71 8= if w<)
Proof : Suppose Fo >0
Then on [0,13, G is continwous, increasing and convex. (Gn >0)
Only 2 situntions oppear :

| / k=0

Aol ’ V.




