```
Random walk on Id
Consider \mathbb{Z}^d \ni x, y, the symmetric walk is a Markov chain with S = \mathbb{Z}^d
         p_{x,y} = \begin{cases} \frac{1}{2d} & \text{if } x \sim y \\ 0 & \text{otherwise} \end{cases} \quad x \sim y \Leftrightarrow \text{they have a common edge} \\ \Leftrightarrow |x-y|_1 := \sum_{n=1}^{d} |(x-y)_n| = 1
Thm. Polya' thm
     For d=1 or 2, any state is recurrent
     For d > 3, any state is transient (lost in dimension)
A generalization of first time passage
Def. For any ACS, the hitting time HA is defined by
         H^A = \inf \{ n \ge 0 | X_n \in A \}
Remark: H^A takes values \{0, \dots, \infty\} (inf \phi \stackrel{by \text{ def}}{=} \infty)
The hitting probability is the prob. of reaching A starting at i is
         h_i^A := P_i (H^A < \infty)
                                                                        in a finite time.
Thm. Set h^A = (h_i^A)_{i \in S}, then h^A is the minimal non-negative solution of
         h_{i}^{A} = \begin{cases} i & \text{if } i \in A \\ (Ph^{A})_{i} & \text{if } i \notin A \end{cases}
     with h^A a vector; "minimal" means if X = (X_i)_{i \in S} is another solution
     * then ViES: hi < X;
Def. The mean hitting times K_i^A := E_i(H^A)
     with the convention K_i^A = \infty if IP(H^A = \infty) > 0
Thm. If K^A = (K_i^A)_{i \in S} then K^A is the minimal solution of
         K_{i}^{A} = \begin{cases} 0 & \text{if } i \in A \\ 1 + (PK^{A})_{i} & \text{if } i \notin A \end{cases}
Classification of states
Thm. Suppose X_0 = i and define V_i = |\{n \ge 1 | X_n = i\}| \in \mathbb{N} \cup \{\infty\}
      (the number of subsequent visits to i)
     Then V; has a geometric distribution
         P_i(V_i = r) = (1 - f_{i,i}) f_{i,i}
         with f_{i,i} = \mathbb{P}_i (T_i < \infty) = \mathbb{P}_i (X_n = i \text{ for some } n)
     In particular, P_i(V_i = \infty) = 1 if f_{i,i} = 1 \iff i \text{ is recurrent}
                           P_i(V_i < \infty) = 1 if i is transient
```

Def.

1) Mean recurrence time μ_i for the state i is

 $\mu_i = E_i(T_i) = \sum_{n \in \mathbb{N}} n f_{i,i}(n) = \sum_{n \in \mathbb{N}} n P_i(T_i = n)$ if i is transient

2) If i is recurrent and $\mu_i = \infty$, then i is null;

 $\rightarrow \mu_i < \infty$, then i is positive (or non-null)

3) The period d; for the state i is defind by aperiodic 314 give di = gcd {nl pi, i (n) > 0} with gcd: gretest common divisor 最大公函数 If di = 1, the state is aperiodic, while if di > 1 then it's periodic.

4) If i is recurrent, positive and operiodic, then i is called engodic.

Thm. These properties are shared in any communicating class.

Corollary: If the chain is irreducible, and if one (and then all) state is recurrent, then $P(Xn = j \text{ for some } n \ge 1) = 1$ independently of the initial state.

Def. Let X be a Markov chain, with transition matrix P

A vector $\pi = (\pi_i)_{i \in S}$ is an invariant distribution if

1) $\pi_j \geqslant 0$ and $\sum_{i \in S} \pi_i = 1$

2) $\pi = \pi P \Rightarrow \pi = \pi P^n$ (regard π as a line vector)

Thm. If X is irreducible, \exists invariant distribution π iff all states are positive recurrent, and then

 $\forall i \in S: \pi_i = \frac{1}{\mu_i}$

The invariant distribution is unique.

Thm. (convergence to equillibrium)

Suppose X is irreducible, each state is engodic, then $\forall i,j \in S: p_{i,j}(n) \xrightarrow{n \to \infty} \pi_j$

Kondon walk of the contract of	
Def. A stochastic matrix $P = (p_{i,j})_{i,j \in S}$ and a distribution $\lambda = (\lambda_i)_{i \in S}$ in detailed balance if	5
$\forall i, j \in S: \lambda_i p_{i,j} = \lambda_j p_{j,i}$	(**
An irreducible M.c. X with transision matrix P	
and invariance distribution & TI is reversible if in equilibrium	if
Vijes: Tipij = Tij piji	(*
Remark	
T=TP is a global equillibrium; on the other hand,	
(*) is a local equillibrium, the flow in 1 direction is equal t	ס
the flow in the other direction. In addition (**) for $\forall i,j$ then $\lambda = \Pi$ and $\Pi = \Pi$ P .	
Random walk on finite graphs vertices	
A graph $G = (V, E)$ with $u, v \in V$, then $u \sim v$ iff $\exists e = (u, v) \in E$ The didegree of $u \in V$ $d(u) = \{v \sim u\} $	llipro m _{erro}
If G is finite then one has $\sum_{u} d(u) = 2 E $	
Thm.	19
A random walk on a finite connected graph $G = (V, E)$	
is an irreducible Markov chain with unique invarient distribut $\Pi_{v} = \frac{d(v)}{2 E }$	ion
The If (1) the secret described by the secret of the secre	m/
The state of the s	