ATING CONVERGENCE

not assume that the terms a_n erges absolutely if the series

is a_n converges. This is now a oply the tests for convergence; important, because we have:

sequence, and assume that the

equal to a_n itself if $a_n \ge 0$. Let $-a_n$ if $a_n \le 0$. Then both a_n^+ arison with $\sum |a_n|$, we see that

$$\sum_{n=1}^{\infty} a_n^-$$

es our theorem.

gence of a series which may

Theorem 5.2. Let $\sum_{n=1}^{\infty} a_n$ be a series such that

$$\lim_{n\to\infty} a_n = 0,$$

such that the terms a_n are alternately positive and negative, and such that $|a_{n+1}| \leq |a_n|$ for $n \geq 1$. Then the series is convergent.

Proof. Let us write the series in the form

$$b_1 - c_1 + b_2 - c_2 + b_3 - c_3 + \cdots$$

with b_n , $c_n \ge 0$. Let

$$s_n = b_1 - c_1 + b_2 - c_2 + \dots + b_n,$$

 $t_n = b_1 - c_1 + b_2 - c_2 + \dots + b_n - c_n.$

Since the absolute values of the terms decrease, it follows that

$$s_1 \ge s_2 \ge s_3 \ge \cdots$$
 and $t_1 \le t_2 \le t_3 \le \cdots$,

i.e. that the s_n are decreasing and the t_n are increasing. Indeed,

$$s_{n+1} = s_n - c_n + b_{n+1}$$
 and $0 \le b_{n+1} \le c_n$.

Thus we subtract more from s_n by c_n than we add afterwards by b_{n+1} . Hence $s_n \ge s_{n+1}$. Furthermore, $s_n \ge t_n$. Hence we may visualize our sequences as follows:

$$s_n \geq s_{n+1} \geq \cdots \geq t_{n+1} \geq t_n$$
.

Note that $s_n - t_n = c_n$, and that c_n approaches 0 as n becomes large. If we let L be the greatest lower bound for the sequence $\{s_n\}$, and M be the least upper bound for the sequence $\{t_n\}$, then

$$s_n \ge L \ge M \ge t_n$$

for all n. Since the difference $s_n - t_n$ becomes arbitrarily small, it follows that L - M is arbitrarily small, and hence equal to 0. Thus L = M, and this proves that s_n and t_n approach L as a limit, whence our series $\sum a_n$ converges to L.