Exercise 1 Let $A=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right), B=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $C=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ be elements of \mathbb{R}^{4}. Compute the following expressions : (i) $A+B$, (ii) $A+C-B$, (iii) $2 A+3 B$, (iv) $\|\overrightarrow{A B}\|$, (v) $\overrightarrow{A B} \cdot \overrightarrow{A C}$, (vi) the cosine between the located vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Exercise 2 In \mathbb{R}^{3}, consider the four points $P_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), P_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), P_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $\mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
(i) Find the equation of the plane passing through the three points P_{1}, P_{2} and P_{3},
(ii) Determine the equation of the line passing through $\mathbf{0}$ and perpendicular to the plane defined in (i),
(iii) If $Q=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $N=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$, determine the intersection of the line passing through Q and having the direction N with the triangle defined by the three points $\mathbf{0}, P_{1}$ and P_{2}.

Exercise 3 Let $\mathcal{A}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \in M_{31}(\mathbb{R}), \mathcal{B}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \in M_{3}(\mathbb{R})$ and $\mathcal{C}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in M_{13}(\mathbb{R})$. Compute the products (i) $\mathcal{B A}$, (ii) $\mathcal{A C}$, (iii) $\mathcal{C} \mathcal{A}$.

Exercise 4 Let $\mathcal{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in M_{2}(\mathbb{R})$. Determine all matrices $\mathcal{B} \in M_{2}(\mathbb{R})$ such that $\mathcal{A B}=\mathcal{B} \mathcal{A}$.

Exercise 5 For $c \in \mathbb{R}$, consider the matrix $\mathcal{U} \in M_{4}(\mathbb{R})$ given by

$$
\mathcal{U}=\left(\begin{array}{llll}
c & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

1. Compute ${ }^{t} \mathcal{U}$,
2. Determine \mathcal{U}^{-1},
3. For which value(s) of c does the equality ${ }^{t} \mathcal{U}=\mathcal{U}^{-1}$ hold?
4. For $c=1$ and any $X \in \mathbb{R}^{4}$, show that $\|\mathcal{U} X\|=\|X\|$.

Exercise 6 Find all solutions for the following system of equations:

$$
\left\{\begin{array}{l}
2 x+y+4 z+w=1 \\
-x+3 y+z+2 w=2 \\
x+y+z=0
\end{array}\right.
$$

Midterm
Exercise 1
i) $A+B=\left(\begin{array}{l}1 \\ 1 \\ 8\end{array}\right)+\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right)$.
ii) $A+C-B=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$
iii) $2 A+3 B=\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)$

$$
\text { iv }\|\overrightarrow{A B}\|=\|B-A\|=\left\|\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\|=\sqrt{2}
$$

v) $\overrightarrow{A B} \cdot \overrightarrow{A C}=(B-A) \cdot(C-A)=\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)=2$.
vi) $\|\overrightarrow{A C}\|=2 \Rightarrow H_{e}$ angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$ is given by $\cos (\theta)=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\|\left\|\overrightarrow{A C}^{2}\right\|}=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.

Exercise 2
i) One looks to $N=\binom{n_{1}}{n_{3}}$ anal that $\overrightarrow{O N}+\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{O N} \perp \overrightarrow{P_{1} P_{3}}$

$$
\Leftrightarrow\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
-1 \\
1 \\
0
\end{array}\right)=0 \quad \operatorname{and}\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=0
$$

$\Rightarrow n_{1}=n_{2}=n_{3}$ and one can choose $N=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
The $H_{\text {e }}$ plane is given by $H_{P_{1}, N}=H_{P_{2}, N}=H_{B_{2}, N}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x \cdot N=P_{1} \cdot N\right\} \\
& =\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=1\right\} .
\end{aligned}
$$

ii) $L_{Q, N}=[0+t N \mid t \in \mathbb{R}\}=\left[\binom{1}{k} \in \mathbb{R}^{3}| | \in \mathbb{R}\right]$.
iii) $L_{Q, N}=\{Q+N \mid 1 \in \mathbb{R}\}=\left\{\left.\left(\begin{array}{cc}1+2+ \\ 1+2 t \\ 1,3 t\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, t \in \mathbb{R}\right\}$

Since He triangle defined by O, Pr and Pa lien on He
 intersect thin plane for $t=-\frac{1}{3}$. Theme, 16 e interaction in ginger by the point $\left(\begin{array}{c}1-2 / 3 \\ 1-2 / 3 \\ 0\end{array}\right)=\left(\begin{array}{c}1 / 3 \\ 1 / 3 \\ 0\end{array}\right)$.

Exercise 3
i) $B A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)$,
ii) $A C=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 2 & 3\end{array}\right)$,
iii) $C A=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=4$.

Exercise 4
Let $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)$
while $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}b & a \\ d & c\end{array}\right) \Rightarrow A B=B A \quad$ ($a+d$ only if $\left\{\begin{array}{l}c=b \\ 0=d\end{array}\right.$. The $B=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ foe $a, \quad a, b \in \mathbb{R}$.

Exercise 5

1) ${ }^{1} U=U$,
2) $U^{-1}=\left(\begin{array}{llll}1 / 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$ as it can easily he checked,
3) One han $U^{-1}={ }^{1} U=U$ if and only if $c=1$ or $c=-1$.
4) If $c=1$, then It is orllogonol, which implies $\|U x\|=\|x\|$ c) homework 6, ex 3.

Exercise 6
The correpronding angmented matrix is

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
2 & 1 & 4 & 1 & 1 \\
-1 & 3 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
0 & 4 & 2 & 2 & 2 \\
0 & -1 & 2 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -1 & -1 \\
0 & 0 & 10 & 6 & 6
\end{array}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & 0 & -4 / 5 & -4 / 5 \\
0 & 1 & 0 & 1 / 5 & 1 / 5 \\
0 & 0 & 1 & 3 / 5 & 3 / 5
\end{array}\right)
\end{aligned}
$$

The ayplem in thas equisoleat to

$$
\left\{\begin{array}{l}
x=+4 / 5 \omega-4 / 5 \\
y=-1 / 5 \omega+1 / 5 \\
z=-3 / 5 \omega+3 / 5 \\
\omega \text { are bitary }
\end{array}\right.
$$

