Nagoya University, G30 program

Linear algebra I Midterm exam

Exercise 1 Let $A = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ be elements of \mathbb{R}^4 . Compute the following expressions: (i) A + B, (ii) A + C - B, (iii) 2A + 3B, (iv) $\|\overrightarrow{AB}\|$, (v) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, (vi) the cosine between the located vectors \overrightarrow{AB} and \overrightarrow{AC} .

Exercise 2 In \mathbb{R}^3 , consider the four points $P_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

- (i) Find the equation of the plane passing through the three points P_1 , P_2 and P_3 ,
- (ii) Determine the equation of the line passing through $\mathbf{0}$ and perpendicular to the plane defined in (i),
- (iii) If $Q = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $N = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$, determine the intersection of the line passing through Q and having the direction N with the triangle defined by the three points $\mathbf{0}$, P_1 and P_2 .

Exercise 3 Let $\mathcal{A} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in M_{31}(\mathbb{R}), \ \mathcal{B} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M_3(\mathbb{R}) \ and \ \mathcal{C} = (1 \ 2 \ 3) \in M_{13}(\mathbb{R}).$ Compute the products (i) $\mathcal{B}\mathcal{A}$, (ii) \mathcal{AC} , (iii) $\mathcal{C}\mathcal{A}$.

Exercise 4 Let $\mathcal{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R})$. Determine all matrices $\mathcal{B} \in M_2(\mathbb{R})$ such that $\mathcal{AB} = \mathcal{BA}$.

Exercise 5 For $c \in \mathbb{R}$, consider the matrix $\mathcal{U} \in M_4(\mathbb{R})$ given by

$$\mathcal{U} = \begin{pmatrix} c & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

- 1. Compute ${}^{t}\mathcal{U}$,
- 2. Determine \mathcal{U}^{-1} ,
- 3. For which value(s) of c does the equality ${}^{t}\mathcal{U} = \mathcal{U}^{-1}$ hold ?
- 4. For c = 1 and any $X \in \mathbb{R}^4$, show that $||\mathcal{U}X|| = ||X||$.

Exercise 6 Find all solutions for the following system of equations:

$$\begin{cases} 2x + y + 4z + w = 1 \\ -x + 3y + z + 2w = 2 \\ x + y + z = 0 \end{cases}$$

Midterm

Exorcise 2 i) One looks to N= (n) anchillat ON I P.P. and ON I P.P. $\begin{array}{c} \left\langle n \\ n_2 \\ n_3 \end{array} \right\rangle \circ \left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array} \right) = 0 \quad \text{and} \quad \left(\begin{array}{c} 1 \\ n_2 \\ n_3 \end{array} \right) \circ \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right) = 0$ => $n_1 = n_2 = n_3$ and one can choose $N = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Thus the plane is given by HPIN = HBIN = HBIN $= \left\{ \begin{pmatrix} x_4 \\ x_2 \\ x_2 \end{pmatrix} \in \mathbb{R}^3 \mid X \cdot N = P_1 \cdot N \right\}$ $= \left[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \right] \times 1 + \times 2 + \times 3 = 1 \right],$ ii) $L_{0,N} = \left[0 + tN \right] + eR^{2} = \left[\left(\frac{t}{t} \right) eR^{2} \right] + eR^{2}$. iii) Lain = $\left[Q_{1} t N \right] t \in \mathbb{R} = \left[\begin{pmatrix} 1+2t \\ 1+2t \end{pmatrix} \in \mathbb{R}^{3} \right] t \in \mathbb{R}^{3}$ Since le triangle defined by O, Pr and P2 lier on He hoirzould plane ((*) e R3 x, y an biteary f, the line interection this plane for $t = -\frac{4}{3}$. Thus, the interection is given by the point $\begin{pmatrix} 1 & -\frac{2}{3} \\ 1 & -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 0 \end{pmatrix}$.

2

Exercise 6 The corresponding augmented mathics in $\begin{pmatrix} 2 & 1 & 4 & 1 & 1 \\ -1 & 3 & 1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 4 & 2 & 2 & 2 \\ 0 & -1 & 2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -1 & -1 \\ 0 & 0 & 10 & 6 & 6 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 & -4/5 & -4/5 \\ 0 & 4 & 0 & 1/5 & 1/5 \\ 0 & 0 & 1 & 3/5 & 3/5 \\ \end{pmatrix}$ The system in this aquivalent to $\begin{cases} X = + \frac{4}{5} \omega - \frac{4}{5} \\ Y = -\frac{1}{5} \omega + \frac{1}{5} \\ 2 = -\frac{3}{5} \omega + \frac{3}{5} \\ \omega \quad \text{arc bibrary} \end{cases}$

3