Exercise 1 Find the equation of the plane in \mathbb{R}^{3} passing through the three points $P_{1}=(1,0,0)$, $P_{2}=(0,2,0)$ and $P_{3}=(0,0,3)$.

Exercise 2 By using Gauss elimination, find all solutions for the following systems:
a) $\left\{\begin{array}{cc}x_{1}+x_{2}+x_{3}+x_{4} & =1 \\ x_{1}+2 x_{3}-x_{4} & =2 \\ x_{1}+2 x_{2}+3 x_{4} & =1 \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =3\end{array}\right.$
b) $\left\{\begin{array}{cc}-2 x+3 y+z+4 w & =0 \\ x+y+2 z+3 w & =0 \\ 2 x+y+z-2 w & =0\end{array}\right.$

Exercise 3 By using elementary row operations, find the inverse for the following matrix: $\left(\begin{array}{lllll}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1\end{array}\right)$.
Exercise 4 Consider the vectors $X_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), X_{2}=\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 0\end{array}\right), X_{3}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 0\end{array}\right), X_{4}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, and $X_{5}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$.

1. Does the family $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$ generate \mathbb{R}^{4}, and why?
2. Is the family $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$ a basis for \mathbb{R}^{4}, and why?
3. Is the family $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ a basis for \mathbb{R}^{4}, and why?

Exercise 5 Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $F\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\binom{2 x}{y-z}$ for all $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$.

1. Is F a linear map? (Justify your answer)
2. Determine the range of F.
3. Determine the kernel of F.

Exercise 6 A square $n \times n$ matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0 , as for example in $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Are permutation matrices invertible? And if so, is the inverse of such a matrix a permutation matrix as well ? Explain your answers.

Exercise 7 Consider the set \mathcal{E}_{n} of all $n \times n$ diagonal matrices which satisfy $a_{11} a_{22} \ldots a_{n n}=1$ (the product of the elements of the diagonal is equal to 1).

1. Is \mathcal{E}_{n} a vector space? (Justify your answer)
2. Exhibit $n-1$ linearly independent elements of \mathcal{E}_{n}.
3. If $\mathcal{A}, \mathcal{B} \in \mathcal{E}_{n}$, does $\mathcal{A B}$ belong to \mathcal{E}_{n} ? (Justify your answer)

Final exam
Exercise 1
One looks for $N \in \mathbb{R}^{3}$ such that $\overrightarrow{O N} \perp \vec{P}_{1} \vec{P}_{2}$ and $\overrightarrow{O N}+\overrightarrow{P_{1}} \vec{P}_{3}$. If $N=\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right)$, then $\left(\begin{array}{l}n_{1} \\ n_{3} \\ n_{3}\end{array}\right) \perp\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right) \Leftrightarrow-n_{1}+2 n_{2}=0$ and $\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right) \perp\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right) \Leftrightarrow-n_{1}+3 n_{3}=0$. Thu one gets $\left\{\begin{array}{l}n_{1}=2 n_{2} \\ n_{1}=3 n_{3}\end{array}\right.$. By choosing $n_{1}=6$, one chains $N=\left(\begin{array}{l}6 \\ 3 \\ 2\end{array}\right)$ and $H_{N, P_{1}}=\left\{\left(\begin{array}{l}x \\ \nu \\ 2\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{l}x \\ y \\ 2\end{array}\right) \cdot\left(\begin{array}{l}6 \\ \frac{1}{2} \\ 2\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}6 \\ 3 \\ 2\end{array}\right)\right.\right\}$ $=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 6 x+3 y+2 z=6\right\}$,

Exercise 2
a) The augmented matrix salsifies:

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 2 & -1 & 2 \\
1 & 2 & 0 & 3 & 1 \\
1 & 2 & 3 & 4 & 3
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & 1 & -2 & 1 \\
0 & 1 & -1 & 2 & 0 \\
0 & 1 & 2 & 3 & 2
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 3 & 2
\end{array}\right)
$$

However, one get from the third now, that $O x_{1}+O x_{2}+O x_{3}+O X_{4}=1$, which mean that thin agatem haw no solution.
b) The augmented matrix ratifies

$$
\left(\begin{array}{ccccc}
-2 & 3 & 1 & 4 & 0 \\
1 & 1 & 2 & 3 & 0 \\
2 & 1 & 1 & -2 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 2 & 3 & 0 \\
0 & 5 & 5 & 0 & 0 \\
0 & -1 & -3 & -8 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 1 & 2 & 2 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & -2 & -6 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 3 & 0
\end{array}\right) .
$$

The general solution in $\left\{\begin{array}{l}x=2 \omega \\ y=\omega \\ z=-3 \omega \\ \omega=\text { axbibe }\end{array}\right.$ w anbitomy

Exercise 3 See Homework 10 , ex. 1.e).
Exercise 4

1) $Y_{e},\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ gererete $\mathbb{R}_{1}^{\prime \prime}$ be cause

$$
E_{1}=X_{1}, E_{2}=X_{2}-X_{1}, \mathbb{E}_{3}=X_{3}-X_{2}-X_{1} \text { and } E_{4}=X_{4}-X_{3}-X_{2}-X_{1}
$$

and $\left\{E_{1}, \ldots, E_{4}\right\}$ is the standard basis for \mathbb{R}^{4}.
2) N_{0}, it is not a basis became 5 sectors in $\mathbb{R}^{\prime \prime}$ a an not be teneconly independent. And indeed, $X_{5}=X_{3}-X_{1}$.
3) $Y_{e s},\left\{X_{1}, \ldots, X_{4}\right\}$ in a basin of $\mathbb{R}^{\prime \prime}$ since they generate E_{1}, \ldots, E_{1} by line ar co bindions, a 1 these vector generate the standard basin of \mathbb{R}^{4}.

Exercise 5

1) Y es, F is linear. Indeed, if we comider $\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)$ and $\left(\begin{array}{l}x_{1} \\ y_{2} \\ z_{2}\end{array}\right)$ belong $t_{0} \mathbb{R}_{3}$, then $F\left(\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)+\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right)\right)=F\left(\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2} \\ 21+z_{2}\end{array}\right)=\binom{\left(x_{1}+x_{2}\right)}{\left(y_{1}+y_{2}\right)-\left(z_{2}+z_{2}\right)}=\binom{2 x_{1}}{y_{1}-z_{1}}+\binom{2 x_{2}}{y_{2}-z_{2}}$

$$
=F\left(\begin{array}{l}
x_{1} \\
x_{1} \\
21
\end{array}\right)+F\left(\begin{array}{c}
x_{2} \\
x_{2} \\
z_{2}
\end{array}\right) .
$$

Similarly, for $\left(\begin{array}{l}x \\ z \\ z\end{array}\right) \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}, \quad F\left(\begin{array}{l}\lambda\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\end{array}\right)=F\left(\begin{array}{l}\lambda x \\ \lambda y \\ \lambda z\end{array}\right)=\binom{2 \lambda x}{\lambda y-\lambda z}$

$$
=\lambda\binom{2 x}{y-z}=\lambda F\left(\begin{array}{l}
x \\
z \\
z
\end{array}\right) .
$$

2)

$$
\begin{aligned}
\operatorname{Ran}(f) & =\left\{\binom{0}{v} \in \mathbb{R}^{2} \left\lvert\,\binom{ 0}{0}=\binom{2 x}{y-z}\right. \text { for any }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{2}\right\} \\
& =\left\{\left.\binom{0}{v} \in \mathbb{R}^{2} \right\rvert\, u=x, v=y \text { for an g } x, y \in \mathbb{R}\right\}=\mathbb{R}^{2} .
\end{aligned}
$$

3) Kex $(\mathbb{F})=\left\{\binom{x}{y} \in \mathbb{R}^{3} \left\lvert\,\binom{ 2 x}{y-z}=\binom{0}{0}\right.\right\}=\left\{\left.\left(\begin{array}{l}0 \\ y \\ y\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, y \in \mathbb{R}\right\}$.

Exercise 6:
Yer, permutation matrices are invertible be cane they are now equisoolent to 1_{1} by simple permutation of the rows. The inverse of a permutation matrix is also a permutation matrix because it is obtained from In boy simple percuntationo of roves. Sn foo for apermatation matrix of one has $A^{-1}={ }^{t}(A$.

Exercise 7

1) N_{0}, it in not a vector pace since if $A=\left(\begin{array}{cc}a_{n} & 0 \\ 0 & \\ a_{n n}\end{array}\right)$ belong to ε_{n}, then $\lambda \Lambda=\left(\begin{array}{ccc}\lambda_{\text {ann }} & & \\ \ddots & \lambda_{\text {awn }}\end{array}\right)$ does not belong to En for any $\lambda \neq 1$. Ended, ($\lambda_{\text {anil }} \mid\left(\lambda a_{22}\right) \ldots\left(\lambda_{\text {min }}\right)$ $=\lambda^{n} a_{n 1} \ldots a_{n n}=\lambda^{n}$ if $a_{n 1} \ldots a_{n n}=1$.
2) The following matrices belong lo En and are linearly independed:

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & 0 \\
0 & 1 \\
1 / 2
\end{array}\right),\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 / 2
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 1 \\
1 & 0 \\
0 & 1_{2} \\
\hline
\end{array}\right) .
$$

3) If A, B belong to ε_{n}, with $A=\left(\begin{array}{cc}a_{n 2} & 0 \\ 0 & a_{n n}\end{array}\right)$, $B=\left(\begin{array}{ll}b_{11} & 0 \\ 0 & b_{n, n}\end{array}\right)$, Han $A B=\left(\begin{array}{ccc}a_{11} b_{11} & 0 \\ 0 & \ddots & a_{\text {man }} b_{\text {man }}\end{array}\right)$ and $\left(a_{11} b_{21}\right)\left(a_{22} b_{22}\right) \ldots\left(a_{n 4} b_{n n}\right)=a_{11} a_{22}+a_{n 4} b_{11} \ldots . b_{n n}$ $=1 \cdot 1=1$ 。
T hms A B belongs to E_{n}.
