Exercise 1 Find the equation of the plane in \mathbb{R}^3 passing through the three points $P_1 = (1, 0, 0)$, $P_2 = (0, 2, 0)$ and $P_3 = (0, 0, 3)$.

Exercise 2 By using Gauss elimination, find all solutions for the following systems:

a) $\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1\\ x_1 + 2x_3 - x_4 &= 2\\ x_1 + 2x_2 + 3x_4 &= 1\\ x_1 + 2x_2 + 3x_3 + 4x_4 &= 3 \end{cases}$ b) $\begin{cases} -2x + 3y + z + 4w &= 0\\ x + y + 2z + 3w &= 0\\ 2x + y + z - 2w &= 0 \end{cases}$

Exercise 3 By using elementary row operations, find the inverse for the following matrix: $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{pmatrix}$.

Exercise 4 Consider the vectors $X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $X_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, and $X_5 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$.

1. Does the family $\{X_1, X_2, X_3, X_4, X_5\}$ generate \mathbb{R}^4 , and why ?

- 2. Is the family $\{X_1, X_2, X_3, X_4, X_5\}$ a basis for \mathbb{R}^4 , and why?
- 3. Is the family $\{X_1, X_2, X_3, X_4\}$ a basis for \mathbb{R}^4 , and why?

Exercise 5 Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $F\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ y-z \end{pmatrix}$ for all $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$.

- 1. Is F a linear map ? (Justify your answer)
- 2. Determine the range of F.
- 3. Determine the kernel of F.

Exercise 6 A square $n \times n$ matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0, as for example in $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Are permutation matrices invertible ? And if so, is the inverse of such a matrix a permutation matrix as well ? Explain your answers.

Exercise 7 Consider the set \mathcal{E}_n of all $n \times n$ diagonal matrices which satisfy $a_{11}a_{22}...a_{nn} = 1$ (the product of the elements of the diagonal is equal to 1).

- 1. Is \mathcal{E}_n a vector space ? (Justify your answer)
- 2. Exhibit n-1 linearly independent elements of \mathcal{E}_n .
- 3. If $\mathcal{A}, \mathcal{B} \in \mathcal{E}_n$, does \mathcal{AB} belong to \mathcal{E}_n ? (Justify your answer)

Final exam

Exercise 1
Oue looks for N e R² such that ON 1 PiP. and ON 1 PiPs.
If N =
$$\binom{n+1}{n+2}$$
, then $\binom{n+1}{n+2} \pm \binom{n+1}{2}$ are not to n = 0 and
 $\binom{n+1}{n+2} \pm \binom{n+1}{2}$ are not to an = 0. Thus are gets
 $\binom{n+2}{n+2} + \binom{n+2}{2} +$

1

Then
$$F\left(\begin{bmatrix}\frac{y_{1}}{2t}\right) + \begin{bmatrix}\frac{y_{2}}{2t}\\\frac{y_{1}}{2t}\end{bmatrix} = F\left(\frac{y_{1}+y_{2}}{2t+2z}\right) = \begin{pmatrix}2(x_{1}+x_{2})\\(y_{1}+y_{2})-(z_{1}+z_{2})\end{pmatrix} = \begin{pmatrix}2x_{1}\\y_{1}-z_{1}\end{pmatrix} + \begin{pmatrix}2x_{2}\\y_{2}-z_{2}\end{pmatrix}$$

$$= F\left(\frac{x_{1}}{y_{1}}\right) + F\left(\frac{x_{2}}{y_{2}}\right) \circ$$
Similarly, for $\begin{pmatrix}\frac{x}{2}\\z\end{pmatrix} \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$, $F\left(\lambda\begin{pmatrix}\frac{x}{2}\\z\end{pmatrix}\right) = F\left(\frac{\lambda x}{\lambda y}\right) = \begin{pmatrix}2\lambda x\\\lambda y}{\lambda z}\right) = \lambda \left(\frac{2\lambda x}{\lambda y-\lambda z}\right)$

$$= \lambda \begin{pmatrix}2x\\y-z\end{pmatrix} = \lambda f\left(\frac{y}{2}\right) \circ$$

$$2) \operatorname{Ran}(F) = \left\{\begin{pmatrix}0\\0\\0\end{pmatrix} \in \mathbb{R}^{2} \mid 0 = x, 0 = y \text{ for any } x, y \in \mathbb{R}\right\} = \mathbb{R}^{2} \circ$$

$$3) \operatorname{Ker}(F) = \left\{\begin{pmatrix}\frac{x}{2}\\z\\z\end{pmatrix} \in \mathbb{R}^{3} \mid (\frac{2x}{y-z}) = \begin{pmatrix}0\\0\\z\end{pmatrix}\right\} = \left\{\begin{pmatrix}0\\y\\z\end{pmatrix} \in \mathbb{R}^{3} \mid (\frac{2x}{y-z}) = \begin{pmatrix}0\\0\\z\end{pmatrix}\right\} = \left\{\begin{pmatrix}0\\y\\z\\y\end{pmatrix} \in \mathbb{R}^{3} \mid y \in \mathbb{R}\right\},$$

Exercise 6 :

Yer, permutation matrices are incostible because they are now equivalent to the by simple permutation of the nows. The invoerse of a permutation matrix is also a permutation motion because it is obtained from the by simple permutation of nows. In fact, for a permutation matrix it one has $A^{-1} = tA$.

1) No, it is not a vector space since if I = (air O ann)
belong to En, then
$$\lambda I = (\lambda air \lambda and)$$
 does not
belong to En for any $\lambda \neq 1$. Indeed, ($\lambda air (\lambda azz) = (\lambda ann)$
= $\lambda^n an = \lambda^n$ if $a_{n-1} = a_{nn} = 1$.
2) The following motorices belong to En and are linearly
independent:

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & y_2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & y_2 \end{pmatrix} \cdots \begin{pmatrix} 1 & 0 \\ 0 & 1 & y_2 \end{pmatrix}$$

$$3) I \int J B belong to En , with $J = \begin{pmatrix} a_{ee} & 0 \\ 0 & a_{en} \end{pmatrix}$

$$B = \begin{pmatrix} b_{ee} & 0 \\ 0 & b_{ee} \end{pmatrix} , \text{ then } J B = \begin{pmatrix} a_{ebee} & 0 \\ 0 & a_{ebee} \end{pmatrix}$$$$

and
$$(a_{11}b_{11})(a_{22}b_{22}) = (a_{11}b_{11}) = a_{11}a_{22} = a_{11}b_{11} = b_{11}$$

= 1.1 = 1.

Thun AB belongs to En.