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0 Introduction

The purpose of this course is to provide a quick and self-contained exposition of some basic
notions and theorems in the probability theory. We try to get the feeling of “real world”
probabilistic phenomena, rather than to learn a rigorous framework of “measure theoretical
probability theory” (though we do use the measure theory as a convenient tool to describe the
“real world” ).

We start by introducing the notion of independent random variables. Then, without too
much preparations, we proceed to random walks, which will be the central topic of this course.
Some interesting properties of random walks will be explained and proved. Classical theorems
in the probability theory, like the law of large numbers and the central limit theorem, are
presented in the context of random walks. We first show as an application of the law of large
numbers, that the random walk travels along a constant velocity motion (including the case
of zero velocity). We then see from the central limit theorem that the fluctuation around the
constant velocity motion, if properly scaled in space and time, looks like a normally distributed
random variable. Finally, we investigate a question whether or not the random walk comes
back to its starting point with probability one, the answer to which depends on the dimension
of the space.

If we have enough time, then we will also discuss Brownian motion.
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0.1 Overview

To start with, we outline the content of this course.
e Random variables

Imagine a game such that its outcome is determined by chance, e.g., tossing a coin and
seeing if it falls head or tail. Suppose that you play the game and that you record the outcome
as follows;

P { +1 if the coin falls head, (0.1)

—1 if the coin falls tail.

The value X is not always the same (may be —1 for the first toss and +1 for the second)
and hence is considered as a function X : Q@ — {—1,+1} on a suitable set . Since one
cannot predict the value X for sure, you may be interested in how large is the “probability”
P(X = £1) of the “event” {w € Q; X(w) = £1}. In this overview, we temporarily adopt the
following convention?:

e There is a set 2 and number P(A) € [0, 1] for each “measurable” A C Q2. P(A) is called
the probability of the event A.

e A random quantity is described by a function
X: Q=R (we X(w)) (0.2)

such that
{we Q; X(w) € I} is measurable for all interval I C R%. (0.3)

A function with the above property is called a random variable (abbreviated as "r.v.”).
The above set {w € Q; X(w) € I} and its probability P({w € Q; X(w) € I}) are often
denoted simply as {X € I'} and P(X € I), respectively.

e Forarv. X :Q — S, where S is a finite subset and a function f : S — R, we define the
expectation of f(X) as:

Ef(X)=E[f(X)] =) f(s)P(X =5s). (0.4)
seS
¢ Random walk

Imagine that you walk “randomly” on Z?, the d-dimensional integer lattice. Let:

X, = the displacement made at n-th step,
S, = Xi+..+ X, = the position at the n-th step (0.5)

3Here, to keep the presentation as elementary as possible, we leave the notion of measurability ambiguous.
We will discuss it in section 1.



We now describe how the random vectors Xi, X, ... is determined. Let e, ...., e4 be the canon-
ical basis of R?, that is, e, = (5aﬂ)%21. We introduce

d
&= U{ea, —eq} C Z°,
a=1

p:E€—10,1), > ple)=1.
ec&
That is, £ is the set of all nearest neighbors of the origin, and p is a probability distribution
on £. A typical example p: £ — [0, 1) is given by:
Ve € €. (0.6)

We suppose that X, X, ... are determined by the following rule:

P (ﬂ{Xj = xj}> = Hp(xj) for any n > 1 and 4, ..., 2, € €. (0.7)
=1

j=1

In particular,

P(X,=z)=p(zx), foranyn>1andzx€é. (0.8)
Recall the standard notation of conditional probability:
P(ANB)
P(A|B) = ———.

Then, it follows from (0.7) that:

n—1
ﬂ{Xj = x3}> =P (X, =z, foranyn>1andxq,..,x,€E. (0.9)
7j=1

P (Xn =z,

We see from (0.9) that the values of X7, .., X,,_1 have no influence on how X, is determined. For
this reason, Xi, ..., X,, are said to be independent. For the moment, we call the sequence (S,,),>1
defined by (0.5) a random walk (More general definition will be given later, cf. Definition 3.1.1.).
In particular, the special case (0.6) will be called the simple random walk.

e The law of large numbers

We are interested in the behavior of the random walk S,, when n " oco. Here is the first
question we ask:

Is there a particular direction in which the random walk prefers to travel? (0.10)
To investigate it, we introduce the following vector:
m = (ma)_, €RL mgy = plea) — p—ea). (0.11)

¢—1, we have

If we write X,, = (X,,.4)2

E[Xna] = M. (0.12)
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To see this, note that

(0.13)

[ E X = e,
) 0 if otherwise.

Therefore,

EX,a B 1 P(X, = e0) + (—1)P(X, = —e0) E plen) — p(—ea).

An answer to the question (0.10) is provided by:

Theorem 0.1.1 (Law of Large Numbers)

P(&’H_Of’m):L
n

Let us decompose S, in a silly expression:

Sy =nm + (S, —nm).

Then Theorem 0.1.1 says that S,, — nm is of order o(n). In this sense, one can conclude that,
if n — oo, then

Sy, is close to nm up to the random correction: S, —nm = o(n). (0.14)

e The central limit theorem

Having understood (0.14), we proceed to address a further question.
How does the correction term .S,, — nm look like? (0.15)
To investigate this question, we introduce the following d x d matrix:
V= (vaﬁ)iﬁ:l, Vap = 0a8(p(€n) + p(—€a)) — Mamg. (0.16)

The component v, g stands for the covariance of X, , and X,, 3. Indeed, it follows from (0.13)
that

1 if a=p and X, = *e,,
XnaXnp = { 0 if otherﬁwise.
This implies that
E[XnaXnp] = dap(plea) + p(—€a)). (0.17)
Therefore,
coV(XnaXng) 2 E[XnaXng — E[XnoE[X0s)
(0.12),(0.17)

=" dap(p(ea) +p(—€a)) — mamsg. (0.18)
From here on, we will assume for simplicity that

p(xes) >0, Va=1,..,d. (0.19)



Now, we list two facts, whose proofs are omitted here*:

det V > 0, (0.20)
1

\det(27V)

The function py is the density of mean-zero Gaussian distrubution with the covariance matrix
V' (See Example 1.2.4 for more details).
We are now in position to state:

/ py =1, where py(x) = exp (—3z -V 'z). (0.21)
Rd

Theorem 0.1.2 (Central Limit Theorem)
For every interval I C RY,
Sn —nm n—oo
P —EI) —>/pv. 0.22
(7 I (022)

To answer the question (0.15), we introduce a random variable Y with values in R¢ such
that

PYel)= /pv for every interval I C R%
I

By (0.22), for every interval I C R?,

P (Sn_% € I) is close to P(Y € I) if n is large enough. (0.23)
n

If we are allowed to replace I above by I/+/n, we would be able to answer the question (0.15)
in the following form:

P(S, —nm € I) is close to P(v/nY € I) if n is large enough. (0.24)

Although, the replacement of I by I/y/n suggested above is not rigorous, the approximation
(0.24) is known to be good enough for some applications, and is used in statistics.

e Transience and recurrence

Here, we take up a question whether a simple random walk (5,,),>1 (cf. (3.3)) comes back
to its starting point with probability one. Note that the simple random walk satisfies m = 0
(cf. (0.11)) and (0.19). We will prove the following

Theorem 0.1.3 Suppose that m =0 (cf. (0.11)) and (0.19), then,

=1 d<2,

P(Sn:()forsomenZl){ <1 d>3

Theorem 0.1.3 is often explained with a joke:

“ A drunk man will find his way home but a drunk bird may get lost forever”.

1See Example 3.2.3 for a proof of (0.20).



0.2 Notations

For a set S,

25: the colloection of all subsets of S,
o(A): the o-algebra generated by A C 29 i.e., the smallest o-algebra which contains A.

For z and y in R,

z Vy =max{z,y},
r Ay = min{z,y}.

For z = (z;)%, and y = (y;)%, in RY,
Y= Z?:1 Lili,
2| = (z - 2)',
e;(y) = e, (z) = exp (V-1z - y),
For a topological space S,

C(S): the set of continuous functions on S

Cy(S): the set of bounded continuous functions on S

C.(S): the set of continuous functions on S, which vanish outside a compact subset.
B(S): the Borel g-algebra of S, i.e., the g-algebra generated by all open subsets of S.



1 Independent Random Variables

1.1 Random Variables

The reader is supposed to be familiar with basics of the measure theory such as Lebesgue’s
monotone convergence theorem, Fatou’s lemma, Lebesgue’s dominated convergence theorem
and Fubini’s theorem. Nevertheless, we start by reviewing some basic terminology.

Definition 1.1.1 (Measurability)

» A couple (S, B) is called a measurable space when S is a set and B C 2% is a o-algebra, i.c.,
S1) SeB.

S2) If B € B, then B € B, where B¢ denotes the complement of the set B.

S3) If By, By, ... € B, then U,>1B,, € B.

Let (©, F) and (S, B) be measurable spaces.
» A map X : QQ — S is said to be measurable if

def

o[ X] = {XYB); BeB}CF (1.1)

The o-algebra o[ X] is called the o-algebra generated by X.

Example 1.1.2 ( The Borel o-algebra) When S is a topological space, we let B(S) denote
the Borel o-algebra of S, i.e., the smallest o-algebra that contains all open subsets of S. In
this course, S will usually be R or its Borel subset.

Definition 1.1.3 (Probability) Let (S,B) a mesurable space and p : B — [0,00] be a
function.

» The function p is called a measure when it satisfies
M1) 0= p(0) < u(B) for all B € B,
M2) If By, By, ... € B are disjoint, then p (Uy>1B,) = > -, #1(By).
» A measure p is called a probability measure when it satisfies
M3) wu(S) = 1.
We introduce the following notation:
P(S,B) = {u; p is a probability measure on (S, B)}. (1.2)

We abbreviate P(S, B) by P(.S) when the choice of the g-algebra B is obvious from the context.

» A triple (S,B,u) is called a a measure space if (S,B) is a measurable space and p is a
measure on (5, B).

» A measure space (S, B, i) is called a probability space if p € P(S, B).

We already have a rough idea of the notion of random variable cf. (0.2)—(0.3). We now put
it in more solid mathematical framework.
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e For the rest of this subsection, let (2, F, P) be a probability space, (S, B) be a measurable

space (cf. Definition 1.1.1, Definition 1.1.3), and X : Q — S be a map.

Definition 1.1.4 (Events and random variables)

» Aset ACQis called an eventif A € F.

> X : Q — Sis called a random variable (“r.v.” for short) if it is measurable (cf. Definition

1.1.1). The set S in this case is called the state space for the r.v. X.
» The law (or the distribution) of the r.v. X is a measure pu € P(S, B) defined by

w(B)=PH{weQ; X(w) e B}), Beb.

We abbreviate the above relation of X and u by

law

X=p or X=pu
For another r.v. X' : Q) — S defined on a probability space (£, P’), we write
XX o X=X,
when X and X’ share the same law.

Remark: Here are some remarks on the use of notation.

(1.3)

(1.4)

(1.5)

1) The set {w € Q; X(w) € B} will often be abbreviated by {X € B}, and the right-hand

side of (1.3) by P(X € B).

2) The law of a r.v. X, i.e., the measure defined by the right-hand side of (1.3) will often be

denoted by P(X € -).

Let a measurable space (S, B) and a 1 € P(S, B) be given. We look at a couple of examples

in which a probability space (2, F, P) and ar.v. X — S with X ~ u are given.

Example 1.1.5 (Identity map on the state space) Let:

o (U F,P)=(58,pun), X(w)=uw.
Then o[X]| = F, and hence X is measurable. Moreover, X = p, since

P(X €B)=puw; we B)=puB) forany B € B.

Example 1.1.6 (Unit interval as a probability space) Let:
e S=an at most countable set, B = 2%, u € P(S,B).

We split (0, 1] into disjoint intervals {I}scs with length |I| = u(s) for each s € S.

e QO =(0,1], F = B((0,1]), P=the Lebesgue measure on (0, 1],
e X(w)=s ifwel,.
Then, X is measurable. In fact, for any B € B,

X'B)=JLerF.

11



Moreover, we see that X =~ pu as follows. First, for for any s € .S,
P(X =3s)=P(w € L) = || = p(s).

Then, for any B € B,

P(XeB)=) P(X=s)=> pu(s)=

seB seB

Definition 1.1.7 (Expectation and (co)variance)

» For an R-valued r.v. X, the integral f XdP is called the expectation or mean and is usually
denoted by
EX, E(X) or E[X]. (1.6)

» For X,Y € L'(P) such that XY € L'(P), we define their covariance or correlation by

cov(X,Y) = E((X —EX)(Y — EY))
= E(XY)- E(X)E(Y). (1.7)

In particular, cov(X, X) is called the variance of X and is denoted by
var X or var (X). (1.8)

Remark: Notations (1.6) are also used to denote the expectations for complex or vector
valued r.v.

-~

Proposition 1.1.8 Suppose that X : Q — S is a r.v. and that p € P(S,B). Then, the
following are equivalent:

a) X ~ u.

b) For a measurable function f:S — [0, 0],

= / fdu. (1.9)
s
N J
Proof: a)= b): By (1.3), the equality (1.9) is true for f = 15 with B € B. Thus, (1.9) is also
true when f is a simple function °. Finally, for a measurable function f : S — [0, 00], there
is a sequence of simple functions f,, such that f,  f. Thus, by the monotone convergence
theorem,

n—o0

Ef(X)= lim Ef,(X hm /fnd,u /fd,u
b)= a): By setting f = 1 with B € B in (1.9), we get (1.3). \("a™)/

Remark: Suppose that X =~ p in the setting of Proposition 1.1.8. Then, it follows from (1.9)
that
f(X)e LYP) <= feL'(n

and that (1.9) holds true for f € L'(u).

°A function of the form Y"1 | ¢;1p, (¢; € R, B; € B) is called a simple function.

12



Proposition 1.1.9 (Chebyshev’s inequality)
EX

P(X>a)<— forarwv. X :Q—[0,00) and a > 0. (1.10)
a
Proof: It is obvious that
lixsar < —.
{X2a} = a
By taking the expectation of the both hand sides, we get the desired inequality. \("e™)/

Exercise 1.1.1 Prove that o[X] (cf (1.1)) is indeed a o-algebra.

Exercise 1.1.2 Let —co < a < b < oo and suppose that X € L!'(P) satisfies X < b a.s.

Prove then that
b—FEX

b—a

P(X <a)<

Exercise 1.1.3 Suppose that f € C'([0,00) — R) is non-decreasing. Use f(z) — f(0) =
fo f'(t)dt and Fubini’s theorem to prove;

/ (f() — F(0)ulda) = /  Pule x> o)t

for a Borel measure p on [0,00). In particular, for a non-negative r.v. X,
Ef(X / f'()P(X > t)dt (1.11)

Exercise 1.1.4 Suppose that f : N — R is non-decreasing. Use f(n) — f(0) = >7_,(f(j) —
f(j — 1)) and Fubini’s theorem to prove that

D () = fO)u(n) = > (f(n) = f(n = 1)u(z: x> n)

n>1 n>1

for a measure p on N. In particular, for an N-valued r.v. X,

Ef(X)=f(0)+> (f(n) = f(n—1))P(X >n). (1.12)

n>1

Exercise 1.1.5 Suppose that X € L'(P). Prove then that for any € > 0, there exists § > 0
such that |E[X : A]| < ¢ for all A € F with P(A) < §. Hint: Suppose the contrary. Then,
for some € > 0, there exist A,, € F, n € N\{0} such that P(A,) < 1/n and |E[X : A,]| > <]

Exercise 1.1.6 Suppose that X is ar.v. with values in NU{oo} and set f(s) = E[s¥ : X < o]
for s € (0,1). (i) Show that f'(s) =4 E[X : X < o0, including the possibility that the limit
diverges. Hint: The monotone convergence theorem. (ii) Generalize (i) to the case where X

takes values in (Z N [—m, 00)) U {oc} for some m € N.
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Exercise 1.1.7 (Inclusion-exclusion formula) Let Aq, ..., A, be events. Prove then that

(U Ak> = Z “DF Y P(A NN A). (1.13)

k=1 1<iy<..<ip<n
Hint: Let Ay = U Ak, x5 = 14, (j = 0,1,...,n) and 0y, = D i<y <cip<n Xin T Xi
(k=1,...,n). Then,
=TI =x0) =D (D)o (1.14)
k=1 k=1

Exercise 1.1.8 (Bonferroni inequalities) Let 1 <m < n — 1. Then, the following variants
of (1.13) hold:

(90

Prove these inequalities by going through the following steps (i)—(ii).
. n 1/n m n <0 if mis odd,
) S (-1 () = S () {

k >0 if m is even.
nothing but (1—1)" = 0. To prove the inequality for m < n/2, note that k — (Z) is increasing
for k < n/2. Then, use (1 —1)” = 0 again and the symmetry (" ) = (}) to take care of the
case m > n/2.

ke | \ J if m s odd,
}Z( 1) Z P(A“m'”ﬂA““){ if m is even.

k=1 1<i1<...<ixg<n

IV IA

. Hint: The first equality is

< . .
ii) The following variant of (1.14) holds: xg4q = (=D, ?f s odd, Hint:
> k=1 )

if m is even.
Let £ =%",_, xx- Then, 0, = (Z) 1x<¢. Combine (1.14) with this observation and (i) to see

B <0 if mis odd,
that xo — >, (—1)" U”k_Zk m1 (= b* 1<£){ >0 if miseven.

Exercise 1.1.9 (Payley-Zygumund inequality) Let X € L*(P), m “ EX > 0. Prove
then that P(X > em) > {9 — for ¢ € [0,1). Hint: Let Y = X/EX. Then, 1 —c =

ElY — ¢ < E[(Y — ¢)1{ys¢], and hence (1 —¢)? < E[(Y — ¢)?]P(Y > ¢).

Exercise 1.1.10 Let S be a real d-dimenisonal vector space equipped with an inner product
z-y, (r,y € 9), and let {u,}¢_, C S and {v,}¢_; C S be respectively orthonormal systems.
Prove then the following. (i) (uq - v5)% 53—, € Oq4, where Oy denotes the totality of d x d real
orthogonal matrices. (ii) Let X = (X,)?_, be an R? valued r.v. such that UX ~ X for all
U e O,4. Then, Zi:1 Xty ~ 22:1 X, U,

Definition 1.1.10 (Conditional probability) Let (£, F, P) be a probability space. If B €
F and P(B) > 0, then the conditional probability given B is defined by

P(A|B)=P(ANB)/P(B), AcF. (1.15)
Exercise 1.1.11 Suppose that B = > | B;, where B; € F and P(B;) > 0. Prove then that
P(A|B) =5"" , P(A|B;)P(B;|B) for any A € F.

14



1.2 Examples
Example 1.2.1 (Uniform distribution) Let —oo < a < b < 0o and I = (a,b) C R.
» Arv. U:Q — I is said to be a uniform r.v. on I if

P(U € B) = ;& [, dt for all B € B(I). (1.16)

The law of U is called the uniform distribution on I. One can easily verify (Exercise 1.2.1)
that
EU = (a+b)/2, var U= (b—a)*/12. (1.17)

Example 1.2.2 (Poisson distribution) Let ¢ > 0.
» Arv. N:Q — Nis called a c-Poisson r.v. if

e “c"
n! ’

P(N € B) = .(B) =y

neB

BCN. (1.18)

A probability measure 7, defined above is called c-Poisson distribution. It is not hard to see
(Exercise 1.2.2) that
EN =var N =c. (1.19)

Here are some pictures of how the function 67;!‘3" (n=0,1,2,...) looks like.

1 0.607 -+ 0.368 -+ 0.271 —r—i - 0.224

I
w

c=0.5 c=1 c=2 c

012 3 4 012345 0123456738 012345678910

Example 1.2.3 (Gaussian distribution; one dimension) Let m € R and v > 0.
» Arv. X :Q — Ris called a (m,v)-Gaussian (or normal) r.v. if

P(X €B) = \/217T_U/Bexp (—(SC;—:‘)Q) dzx for B € B(R). (1.20)

15



m— /v m m+ /v

The law of an (m,v)-Gaussian r.v. is denoted by N(m,v). In particular, N(0,1) is called
the standard Gaussian (or standard normal) distribution. N(m,v) and N(0,1) is related as

follows.

Y~ N0,1) < XY m+ oY~ Nm,v). (1.21)

To prove (=), we take a measurable f : R — [0,00) and compute:

Efx) & \/—/fm+x/_y)exp (—3v°) dy
m)

Ay \/%/Rf(l“) eXp( (T> dr.

This proves (=) of (1.21). The converse can be proved similarly.
Next, let us verify that

X~N(m,v) = EX=m, varX =v. (1.22)

By (1.21), this boils down to the case of (m,v) = (0,1), where we have that:

EX (L9 \/%/ xexp m2) dr =0,
var X (L9 / z? eXp 1x2) dr = i /00 z? exp (—lIZ) dx
V2 2 V2r Jo ?
T=/2y \/§

~ \/ﬂ/ 2y exp (—y) Ty‘mdy = %F(S/%‘

Here, we have introdued the Gamma function as usual:
[(a) = / 2" e *dz, a€ C, Re(a) > 0. (1.23)
0
Recall that I'(a + 1) = al'(a) and that I'(1/2) = /7. Hence,

var X =

2 1
TG/2) = Zr0/2) =1

Example 1.2.4 (Gaussian distribution; higher dimensions) Let m € R? and V be a
symmetric, strictly positive definite d x d-matrix.
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> Arv. X :Q — R?is called a (m, V)-Gaussian (or normal) r.v. if

P(X € B) = (x—m) -V 'z —m))dx for B BR?Y). (1.24)

N[

T
Vdet(27V) JB P

The law of an (m, V)-Gaussian r.v. is denoted by N(m,V’). (See also Example 2.2.4 for the
case where the matrix V' may degenerate.) When m = 0 and V is the identity matrix I,
N(0,1,) is called the standard normal (or standard Gaussian) distribution.

Let A be a d x d matrix, not necessarily symmetric, such that V' = AA*. See Proposition
8.2.4 for a characterization of such A for a given V. Now, N(m, V) and N (0, I;) is related as:

Y& NO,I;) < X m+AY ~Nm,V). (1.25)

The proof goes similarly as that of (1.21). To prove (=), we take a measurable f : R? — [0, 00)
and write

1) Ef(X)=Ef(m+ AY) (L9) W/}Rd f(m+ Ay)exp (—%]y|2) dy.

We rewrite the integral on the right-hand side of 1) in terms of the new variable z o+ Ay.
We first compute the Jacobian of the transformation x — y. Since

we have

y=A"(x —m) and (det A)* = det Adet A* = detV,
1 1

det (aya)d = =
08 ) o 5=1 |det A|  /det V'

Next, we express |y|? in terms of the variable z. We have

2) = |det(A™Y)]

P = A @ —m)P = A (@ = m) - A& —m) = (z—m) - (A7) A7 (& — m)

and

(A_l)*A_l — (A*)—IA—l _ (AA*)—l — V_l.
Therefore,
3) yl* = (@ —=m) - V7' z —m).

By 1),2) and 3), we obtain

Ef(X) z)exp (—i(z —m) -V 'z —m)) dz.

1
N det(2wV) /Rd #

This proves (=) of (1.25). The converse can be proved similarly.
The relation (1.25) can be used to verify (Exercise 1.2.5) that

a=1

m = (EX,)" V = (cov(Xa, Xg))d 5. (1.26)
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Example 1.2.5 (Gamma, exponential, and x? distributions) Let a,c > 0.

» We define (¢, a)-gamma distribution 7., € P((0,00)) by

Ca
ca(B) = /x“lec"”da:, for B € B((0,00)),
B = s [ ((0,00)

Ye.a 18 also denoted by (¢, a). There are two important special cases of 7. 4
» .1 is called the c-exponential distribution.

» Yi/2,4/2 (d € N\{0}) is called the x3-distribution.
For ar.v. X = 7,.,, we easily see that

_T(p+a)
EXPl=c?P——-—, p> —a.
Indeed, since
chta o
—/ aPTo o™y = 1,
T'(p+a)

we have

[ . c T'(p+a) _T(p+a)
E[X?] = pro-le=crgy = =c? :
[X7] ['(a) /0 v © [(a) cpte ¢ ['(a)

It follows from (1.28) that
EX =aje, var X =a/c*

Example 1.2.6 (Square of a Gaussian r.v.) Let v > 0. Then,
X~N0Ovl) = [XPP=7(5,9).
In particular,
sv=1 = [X~xj

e d=2 = |X]*~ %—exponentaﬂ distribution.

(1.27)

(1.28)

(1.29)

(1.30)

To prove (1.30), let f : [0,00) — [0,00) be measurable. We compute by the polar coordinate

transformation. Let Ay = 2% / F(ﬂl) (the area of the unit sphere in R%). Then,
Ef(XP) & F(laPyexp (55 ) d
= ) YT —T T exp — 5, ) dx

27:21})[1/2/ f(r Yexp (-%) dr

2 a
2

= (1) F(ﬂl)/o F(s)s5 exp (=) ds—/ fdva a.

This proves the relation (1.30). This relation can be combined with (1.28) to verify that

BUXP] = oy .
e (128), (130) [ 1\ P2 T2 I(e)
BIIXP) = Bl(X Py (2_) Ty~ @Y

18
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Example 1.2.7 (Beta distribution) We define the Beta function as usual:
B(a,b) = / 211 - x)""tdx, a,b>0. (1.32)
(0,1)

We define (a,b)-beta distribution B, € P((0,1)) by

1

Bap(B) = Blab) /Bxa_l(l —2)" 'z for B € B((0,1)) (1.33)

Bap are also denoted by S(a,b). For a r.v.Y = f,,, we have that

ab
BY = 2 Y = f. Exercise 1.2.11. 1.34
ot 0 (@t 02(atbr1) O T (1.34)

There are two important special cases:

» (11 is the uniform distribution on (0, 1).

» 31/2,1/2 is called the arcsin law. Since B(%, %) = 7, the arcsin law has the density %

z(l—x)
on (0,1). To explain why 31212 is called the arcsin law, let Y be a r.v. with values in (—1,1)
such that for —1 <a <b <1,

2 (* drx 2
— ——— = —(Arcsin b — Arcsin a).

[ = )

Then, Y? ~ B(%, %) as is easily verified. In this respect, it would be more correct to call ﬂ(%, %)
the “squared arcsin law” rather than the arcsin law.

Pla<Y <b) =

Example 1.2.8 (Cauchy distribution, T,-distribution)
» Let a,c > 0. We define the generalized Cauchy distribution ju., € P(R?) by:

T2 + a) dx
pealB) = / —. BeBR). (1.35)
P (2 +]af)s ™
We will see in Exercise 1.2.13 below that
A T(4 + a) dx _, (1.36)
/2T (a) d doo '
R (@ foft) 2

There are two important special cases:

» Lic1/2 is called the (c)-Cauchy distribution. For d =1 and B = [a, b], one can compute:

b
d 1 b
peas2(la, b)) = E/ _a 2 (Arctan— — Arctang) )

T A+ 07 c c
» For d =1 and n € N, p,,/3 /2 is called the T,,-distribution and used in statistics.

Exercise 1.2.1 Verify (1.17).

Exercise 1.2.2 Verify (1.19).
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Exercise 1.2.3 Let X : Q — N be a (¢)-Poisson r.v. Prove then that for n € N,

1 CQn 1 62n+1
—, P(X =2 1|X is odd) =
cosh ¢ (2n)! ( n+ 11X is odd)

P(X =2n|X is even) = snbe @n 1)

Exercise 1.2.4 Let X be ar.v. &~ N(0,1) and x > 0. Then, prove that

¢12—7T (1 . i) exp(—22/2) < P(X > 1) < %1 exp(—a2/2). (1.37)

Hint: [ exp(—y?/2)dy = x~exp(—2?/2) — [y~ ? exp(—y?/2)dy

Exercise 1.2.5 Verify (1.26). Hint: First, consider the case of for N (0, I,), where (1.22) and
Fubini’s theorem can be used. Then, use (1.25) to settle the general case.

Exercise 1.2.6 Let X be a positive r.v. Prove then that the following conditions are equiv-
alent. (a) dc € (0,00), X = 7.1. (b) P(X >t+s|X >s)=P(X >1t) >0 for any t,s > 0.
(The property (b) is referred to as the “memoryless property”.)

Exercise 1.2.7 Suppose that two positive r.v's X, U are related as U = exp(—cX) (¢ > 0).
Prove then that U is uniformly distributed on (0, 1) if and only if X ~ ~(c, 1).

Exercise 1.2. 8 Let X & 7.4. Prove then that (i) X/r ~ 7., for r > 0.
zv ' exp(— cxp)da: for p € R\{0}.

Exercise 1.2.9 (%) (Preparation for Exercise 1.2.10) Let hy(r) = logr (r > 0), hy(r) = r*7¢
(d>3,r>0),and e; = (1,0,...,0) € R Let also o4 be the surface measure on S¢°1, so that

Ay ¥ 5(8971) = 27%2/T(d/2). Prove the following. (i) The fnction, u — sup,-q ha(le1 + rul)
is integrable on S?~! with respect to o4. Hint: |e; + rul®> > (1 A r?)|e; + ul? + (r — 1) for
we S (i) [y ha(ler +rul)dog(u) = Aghq(r v 1). Hint: Start with the case of r € (0,1),
noting that h4 is harmonic on R?\{0}.

Exercise 1.2.10 (x) Let d > 2 be an integer and ¢ : [0,00) — [0,00) be locally bounded,

def roo dl

measurable, such that 74 = |, g(r)dr < oco. We consider an Re-valued r.v. X =

«,d114d9(|$|)d‘”7 where Ay = 27%2/T(d/2), the area of the unit sphere in R?. Using the polar

coordinate transform and Exercise 1.2.9, prove the following identities for m € R?, ¢ > 0. For

d=2,

1 oo r2 _
Elog|m + cX]| = { 10gc+%f0 rlogrexp <—7> dr, (m =0),

log|m| + 5 i v2(r)r~"dr, (m #0).
where yo(r) = [~ ug(u)du (r > 0). For d > 3,
Y2/ Y4 (m = 0)
Ellm +cX |4 = - ' ml/e 3 ’
X { (= 2)L [V (1), (m £ 0).

Remark: The special case g(r) = exp(—r?/2) is of particular interest, where X ~ N(0, I),
d
Yo =227'T(%) and 4»(r) = g(r) = exp(—r?/2).
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Exercise 1.2.11 Verify (1.34).

Exercise 1.2.12 (%) Prove that Sg,—x1((0,p]) = >, (%) p"(1 — p)"~" for p € [0,1] and
1 <k <n. Hint: Induction on k.

Exercise 1.2.13 Prove that foo qijf;; = F(b;()br o) for a,b,c > 0 such that bc > a. Then,
use this to see (1.36).

Exercise 1.2.14 Let X be a r.v. with (¢)-Cauchy distribution. Then, prove that

B(3. 1), the arcsin law.

~
~

2+X2

Exercise 1.2.15 Let U be a r.v. With uniform distribution on (—% Z)- Then prove the
following. (i) P(sinU € B) = 2 fB s for B € B((—1,1)). (ii) sin®U = cos>U = (3, 3),
the arcsin law. (iii) ctanU ~ ( )- Cauchy distribution on R (c>0).

Exercise 1.2.16 Suppose that Y is a r.v. with (1)-Cauchy distribution. Prove the following.
() For ¢ > 0, X “ clog|V| ~ 2 cosh(r/e) ldr. (i) E|X[1] = *=0(s) 02 =10
(Vs € (1, 00)).

1.3 When Do Two Measures Coincide?

In this subsection, we take up a question as follows; Let p; and us be probability measures on
a measurable space (5, B), A C B and

o[A] = the smallest o-algebra that contains A. (1.38)
Then, is the following true?
pi(A) = pe(A) forall Ac A = 1(A) = po(A) for all A € o[ Al. (1.39)

Unfortunately, this is not true in general, see e.g. Example 1.5.3 below. On the other hand, a
positive answer is provided by the following:

Lemma 1.3.1 (Dynkin’s lemma) Let p be a signed measures on a measurable space
(S,B) and that p(S) = 0. Suppose that A C B is a w-system (i.e., A1, A € A =
AiNAy € A). Then,

p(A)=0 forall Ac A = u(A) =0 for all A € o[A. (1.40)

In particular, (1.89) is true for py, e € P(S,B), as can be seen by applying (1.40) to
H= 1 — H2.
\ J

The proof of this lemma is presented in Section 1.4. It is more important to know how to
apply Lemma 1.3.1 than to know how to prove it. Here is an example of such application.

Lemma 1.3.2 Let S be a metric space with the metric p, and B the Borel o-algebra. Then,
the following conditions for a signed measure p on (S, B) are equivalent:

a) u=0
b) [ fdu =0 for all bounded, Lipschiz continuous f : S — [0, 00).

c) u(G) =0 for any open subset G C S.
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Remark f : S — R is said to be Lipschiz continuous, if there is a constant L such that
|f(z) = f(y)] < Lp(z,y) for all z,y € 5.

Proof: a) = b): Obvious.
b) = ¢): It is enough to prove that u (F) = 0 for any closed subset F' C S. For z € S and a
closed set I, let

fulz) = (1 —np(z, F))" €[0,1]. (1.41)

Then,
|fn(x) - fn(y)| < np(x7y> for all T,y € S (142)

(cf. Exercise 1.3.1) and hence f, is bounded, Lipschiz continuous. Moreover, f, N\, 1F, as
n /" oo. Thus, by the bounded convergence theorem,

p(F) = lim/fnd,u:().

n—oo

c) = a): Let O be the totality of open subsets in S. Then, O is a m-system and B = o¢[O].
Moreover, p(S) =0, since S € O. Thus, a) follows from c¢) by Lemma 1.3.1. \("e™)/

Exercise 1.3.1 Prove (1.42).

Exercise 1.3.2 Suppose that p is a signed measure on (R?, B(R?)). Use Lemma 1.3.1 to prove
that p = 0 if and only if

i (H?Zl(—oo, bj]) =0 for any (b;)}_, € R (1.43)

1.4 (%) Proof of Lemma 1.3.1
Let p be a signed measures on a measurable space (S, B) and that pu(S) = 0. Let us consider

D, Y {BeB; uB)=0}. (1.44)

If the class D, defined by (1.44) happens to be a 7-system, it is then not difficult to prove that
D, is a o-algebra® and hence that o[A] C D,. Unfortunately, D, is not a m-system in general.
In fact, we see in Exercise 8.7.2 an example where

e the family D, in (1.44) is not a o-algebra and hence is not a m-system (Exercise 1.4.1).
o “u(A) =0 for all A€ A” does not imply “u(A) =0 for all A € o(A)”.

This difficulty can be circumvented as follows. We begin by introducing the abstract termi-
nology.

Definition 1.4.1 Suppose that S is a set.

» A subset D of 29 is called a d-system or a Dynkin class if the following conditions are
satisfied;

D1) SeD.

6Use inclusion and exclusion formula to prove that D, is closed under finite union.
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D2) {An}nZI C D, A, C An+1 (n > 1) = An+1\An eD (n > 1), UnZlAn e D.

» For, A C 2° we define:
3[Al =D, (1.45)

where the intersection is taken over all d-system D that contains A.

\
Lemma 1.4.2 Suppose that S is a set and that A C 2°. Then, the following are equivalent:

a) 6[A] = o[A.
b) AN B €A forall A,B € A.

c) 0[A] is a m-system.
N J

Before proving Lemma 1.4.2, we first finish the proof of Lemma 1.3.1.
Proof of Lemma 1.3.1: It is easy so see that D,, defined by (1.44) is a d-system (Here, we use
the assumption p(S) = 0). Since A C D, and A is a 7-system (and thus, satisfies condidtion
b) of Lemma 1.4.2), we see by Lemma 1.4.2 that o[A] = §[A] C D,,. \("a™)/

Proof of Lemma 1.4.2: a) = b): Obvious.
b) = c¢): Stepl: We first show that A € A, B € 6[A] = AN B € 6[A]. To do so, we introduce

Dy = (){B€2%; AnB € j[A]}.
AcA

Then, the claim of Stepl can be paraphrased as 0[A] C D;. We have A C D; by b). On the
other hand, it is easy to verify that D; is a d-system (Exercise 1.4.2). Since 6[.A] is the smallest
d-system that contains A, we have 0[A] C D;.

Step2: We now show that A, B € 6[A] = AN B € §|A], which implies ¢). To do so, we
introduce

Dy= () {Be2®; AnBej[A]}.
A€d[A]

Then, the claim of Step2 can be paraphrased as d[A] C Dy. We have A C Dy by Stepl. On
the other hand, it is easy to verify that D, is a d-system (Exercise 1.4.2). Since §[A] is the
smallest J-system that contains .4, we have 0[A] C Ds.
c) = a): §|A] C g[A]: g[A] is one of the d-system which contains A, while 6[.A] is the smallest
among them.
d[A] D o[A]: By b), §[A] is a m-system, which implies that d[A] is a o-algebra which contains
A (Exercise 1.4.1). Since o[A] is the smallest o-algebra that contains A, we have §[A] D o[A].
\("e™)/

Exercise 1.4.1 Prove that a d-system D is a g-algebra if and only if D is a 7-system.

Exercise 1.4.2 Prove the following: (i) Let Dy (A € A) be d-systems on a set S. Then

Mica D is a d-system. (ii) Let D be a d-system on a set S and A € D be fixed. Then,
D(A) o {B €2%; AN B € D} is a d-system. (iii) Conclude from (i) and (ii) that D; and D,

in the proof of Lemma 1.4.2 are §-systems.
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1.5 Product Measures

Thoughout sections 1.5 and 1.6, we will use the following notation. Let A be a set and
{(Sx, Bx)}rea be measurable spaces. For I' C A, let Sp = [],. Sx be the direct product,
S = S, and 7p : § — St be the canonical projection, my = my for A € A. Recall that for
A C 29, 0| A] denotes the smallest o-algebra that contains A, cf. (1.38).

Definition 1.5.1 (The direct product of measurable spaces)

» A subset of S of the form 7, '(B,) for some A € A and By, € By, is called a simple cylinder
set. We define Co(S) C 2° by

Co(S) = all the simple cylinder sets of S. (1.46)

» The following o-algebra is called the product o-algebra on S:

=X B\ = o[Co(S))- (1.47)

AEA
» The measurable space (S, B(S5)) is called the direct product of {(Sy, Bx)}aea-
Remark: The o-algebra B(S) can also be characterized as follows.
B(S) = {m'(A) ; T C A is at most countable, A € B(Sr)}.
See Proposition 1.5.6 below.

The following lemma characterizes the measurable maps with values in (.S, B(S)) in Defi-
nition 1.5.1.

[
Lemma 1.5.2 Let (2, F) be a measurable space, (S,B(S)) be as in Definition 1.5.1 and
X(w) = (Xx(w))rea be a map from Q) to S. Then, the following are equivalent.

a) X : (,F)— (S,B(S)) is measurable.

b) X, : (Q,F) — (S\,By) is measurable for all A € A.
/

Proof: a) = b): m\ : (S,B(S)) — (Sx, By) is measurable for all A € A. Thus, by assumption,
X, = my o Xis measurable for all A\ € A.
a) <= b): We have to prove that

1) VB € B(S), X '(B) € F.

But this amounts to saying that
2) B(S)C X(F) ¥ {Be2%: X1(B) e F}.

To prove 2), it is enough to verify that X (F) is a o-algebra which contains Cy(5), since
B(S) = o[Co(S)]. It is obvious that X (F) is a o-algebra. On the other hand, we have for any
A€ A and B, € B, that

XU m{(BY) = (my o X)7H(B)) = X[ '(B)) € F.
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This implies that Co(S) C F. \("a™)/
Let (S, B(S)) be as in Definition 1.5.1, and u,v € P(S, B(S)). Although B(S) = o[Cy(5)],

it is not true that
w(B) =v(B) for all Be€ Cy(S) = p=r. (1.48)

Let us now look at a simple, but enlightening example.

Example 1.5.3 (Simple cylinder sets do not determine the measure) Let S| = Sy =
{0, 1}, S =5; xSy and Uy € P(S,\), A= 1,2.
We define vy € P(S) by

b (o oy (o 00 )
ve(1,0) 1p(1,1) p12(0) =60 1+ 0 — 111 (0) — p2(0) )7
where, for vy to be a probability measure, we suppose that 6 € [0y, 0;] with
b0 = (111(0) + p2(0) — 1)* and 61 = 411 (0) A p2(0).

(We easily see that 6y < 0, with equality iff 1,(0) € {0,1} or us(0) € {0,1}.) We will show
that for p € P(S) and 6 € [y, 04],

2) p=vy < pom, =puy(A=1,2)and u(0,0)=10.

Note that 6y < 07 iff 0 < u\(0) < 1 (A =1,2). Thus, the above simple example already shows
that (infinitely) many different probability measures on a product space can take the same

values on Co(S) = {m,(By) ; A=1,2, By C S\}.
To prove = of 2), we check that vy o 7y ' = py, A = 1,2 for all § € [0y, 6,]. Since

7T1_1(0) = {(07 O)v (O’ 1)}7 7T1_1(1) = {(17 0)7 (17 1)}7
we have that
vgom H(0) = 1p(0,0) + vg(0,1) = 11(0),
vpor (1) = wp(1,0) +vp(1,1) = 1 — p1(0) = s (1).
Similarly,

_ 1
e oy H(0) = 1s(0,0) + (1, 0) 2 1a(0),

vpomy (1) = p(0,1) + 1p(1,1) 2 1 — 115(0) = pa(1).

To prove <= of 2), let u € P(S) be such that pomy, ' = py (A =1,2) and § = 12(0,0). Then, it
is clear from the above computation that p(sy, se) = vg(s1, so) for all (s, s2) € S. \("a?)/

Instead of (1.48) which is not true, we have the following
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Lemma 1.5.4 (Cylinder sets determin the measure) Let everything be as in Defini-
tion 1.5.1.

» A finite intersection of simple cylinder sets is called a cylinder set. We define C(S) C
25 by :

C(S) = all the cylinder sets of S. (1.49)
a) B(S) = o[C(5)].
b) The set C(S) is a m-system.

\c) p,v € P(S,B(S)), u(B) =v(B) for all B C(S) = u=v.

J

Proof: a) It is clear that Co(S) C C(S) C a[Co(S)], and hence o[Cy(S)] = o[C(S)].

b) Let By, By € C(S). Then, there exist finite sets Cy,Cy C Co(S) such that

B;=()B, i=1.2
BeC;
Thus,
BiNB,= ()| Bec(s)
BeC1UC2
c¢) This follows from a), b), and Lemma 1.3.1. \("a™)/

Theorem 1.5.5 (Product measures) Let everything be as in Definition 1.5.1. Suppose
that 1y € P(Sx, By) for each X € A. Then, there exists a unique u € P(S,B(S)) such that

L ( ﬂ w;l(BA)> = H pix (By) (1.50)

AEAg A€Ao

for any finite Ag C A and By € By (A € Ay).

» The measure p defined by (1.50) is called the product measure of {y}ren and is
denoted by Qxeafiy-

j

Proof: The uniqueness follows from Lemma 1.5.4. For the existence’, we refer the reader to
[Dud&9, page 201, Theorem 8.2.2]. A self-contained exposition is given by Proposition 8.3.1 in
a special case that A is a countable set and each (Sy, By) is a complete separable metric space
with the Borel o-algebra. \("a™)/

Remark: Concerning Theorem 1.5.5, note that:
= Q@xeAfly == O 7T>T1 = uy, forall A € A. (1.51)

This can be seen from (1.50) by taking Ag = {\}. Note also that the converse is not true. A
counterexample is provided by Example 1.5.3, where y907rj_1 =i (j=1,2) for all 6 € [0, 64],
but vy = 1 ® pe only when 6 = 141(0)p2(0).

If each (Sy,By) is a complete separable metric space with the Borel o-algebra, then one can also apply
Kolmogorov’s extension theorem [Dur95, page 26 (4.9)].
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Exercise 1.5.1 Let everything be as in Lemma 1.5.4. Prove then that the following conditions
for a set B C S are equivalent:

a) B eC(9).

b) B = [[,ca ma(B) with my\(B) € By for all A, and m,(B) = Sy except for finitely many .

c) B =[] ca B, with By € By for all A, and By = S) except for finitely many A.

Exercise 1.5.2 Let S; = Sy = {0, 1}. Find cylinder sets A, B C S; x Sy such that AU B is
not a cylinder set. This in particular shows that the set C is not closed under union in general.

Exercise 1.5.3 Let everything be as in Theorem 1.5.5.
(i) Suppose that A = {1,2,...}. Prove then that (1.50) is equivalent to that

1 (ﬂ le(Bj)> =[] (B)
j=1 j=1
for any n > 1 and B; € B; (1 <j <n).

(ii) Suppose that each Sy is at most countable. Prove then that (1.50) is equivalent to that

p ( N Wx_l(%)) = 11 (@)

AEAy A€Ag
for any finite Ag C A and x) € Sy (A € Ay).

(x) Complement to section 1.5

Proposition 1.5.6 Referring to Definition 1.5.1,

B(S) = {np'(A) ; T C A is at most countable, A € B(Sr)}.

Proof: We first show that
1) B(S) D D(S) o {mz'(A); T C A is at most countable, A € B(Sr)}.
To this end, we fix a ' C A, at most countable, and verify that

2) B(Sr) C A(Sr) € {A C Sp: mp'(A) € B(S)}.

It is clear that A(Sr) is a o-algebra on Sp. We will check that A o Wi%(B,\) C A(Sr) for any

By € By, where 7y r denotes the canonical projection from St to Sy. Indeed,
w0 (A) = (mar omr) " (By) = w3 {(By) € B(S).
Hence, we have 2). Next, we show that

3) B(S) c D(S).
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It is clear that 7, '(By) C D(S) for any By € By. Thus, it is enough to verify that D(S)
is a o-algebra. It is easy to see that S € D(S) and that D € D(S) = D¢ e D(S). To
check that D(S) is closed under countable union, let I, C A be at most countable, A, €
B(Sr,), I' = U, »; I'n- Also, let nr, r denotes the canonical projection from Sp to Sp, and

A =U,>1 71, r(As). By 1) (appplied to Sr, instead of S), we see that ny.! .(A,) € B(Sr) for
all n > 1, so that A € B(Sr). Note that

i, (An) = (a0 0 mr) " (An) = 7 (7, 1 (An))-

Therefore,

U w2l (4,) = m'(A) € D(S),

n>1

which concludes the proof of 3). \("a™)/

Corollary 1.5.7 Referring to Definition 1.5.1, suppose that U € B(S). Then, there exists
an at most countable set I' C A with the following propoerty.

zreS, yelU, mr(x) =nr(y) = x€U.

Proof: By Proposition 1.5.6, there exist an at most countable set I' C A and A € B(Sr) such
that U = 7' (A). Since y € U, we have that mr(y) € A and hence that 7p(x) = 7r(y) € A.
This implies that x € U. \("a™)/

We present a following variant of Lemma 1.5.2, which applies to a subset U of S, rather
than S itself. The proof is almost the same as that of Lemma 1.5.2, hence is omitted.

-

~
Lemma 1.5.8 Let (2, F) be a measurable space, (S, B(S)) be as in Definition 1.5.1, U C S

and B(U) o {BNU; Be B(S)}. Let also X(w) = (Xx(w))rea be a map from Q to U.

Then, the following are equivalent.

a) X :(Q,F)— (U B(U)) is measurable.

\b) Xy (Q,F) — (Sx, By) is measurable for all A € A. J

We present a following variant of Lemma 1.5.4, which applies to a subset U of S, rather
than S itself.

Lemma 1.5.9 Let everything be as in Lemma 1.5.4, U C S and A
cE{cnU: cec9))

A set in C(U) is called a cylinder set in U.

a) BU) Y {BNU:; B e B(S)} =olC(U)].

b) The set C(U) is a w-system.

c) u,vePUBWU)), u(C)=v(C) foral CeClU) = pu=r. )
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Proof: a) Obviously, B(U) > C(U), and hence B(U) D ¢[C(U)]. On the other hand, let
A={BcCS; BNnU € o[C(U)]}. Then, A is a o-algebra on S, which contains C(S), and
hence A D o[C(S)] = B(S) (Lemma 1.5.4). This implies that B(U) C C(U).

b) Let C1,Cy € C(S). Then C; N Cy € C(S) (Lemma 1.5.4), and hence (C; NU)N(CoNU) =
(CiNCy)NU e C(U).

c¢) This follows from a), b) and Lemma 1.3.1. \("o?)/

1.6 Independent Random Variables

Let us now come back to our informal description (0.1) of playing a game. If you play two
games with outcomes X; : Q@ — {—1,+1} (: = 1,2) in such a way that the outcome of one
game does not affect that of the other, e.g., tossing two coins on different tables. We then

should have
P(Xy =e3]X1 =¢1) = P(Xy =¢9) forall g, = +1.

The above expression of “independence” is equivalent to that
P(Xl = 61,X2 = 82) = P(Xl = El)P(XQ = 82) for all Ek — +1.

We now come to the definition of independent r.v.’s. In what follows, (£, F, P) denotes a
probability space.
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Proposition 1.6.1 (Independent r.v.’s) Suppose that {(Sx, B, tx) }aea are probability
spaces indexed by a set A and that X, : Q — Sy is a r.v. such that X, ~ u, for each
A € A. Then the following conditions a)-c) are equivalent:

a) For any finite Ay C A and for any By € By (A € Ay),

P ( (N {X\e BA}) = [ P(Xx € By). (1.52)
AeAg A€AQ

b1) (Xi)sea = X1 -

AEA
b2) (Xy)rea, = ® px for any Ay C A.

AEA
b3) (Xa)rea, =~ ® iy for any finite Ay C A.

AEAg

c) For any finite Ao C A and for any fr € L'(uy) (A € Ay),

1T fA(XA)] =[] ElHG)]. (1.53)

AEAQ AEAQ

> R.v.’s {X)\}rea are said to be independent if they satisfy one of (therefore all of)
conditions in the proposition.

» Let {X)}rea be independent. If (Sx, By, pa) are identical for all X € A, then the r.v.’s
are called iid (independent and identically distributed) r.v.’s.

N J
Proof: Let u be the law of x & (X/\))\GA Q0 — [ e Sr. For any finite Ag C A and for any
By € B, ()\ S AO),

1) P ( [ {Xxe BA}> —P (X e w;l(BA)) @, ( N w;l(BA)> :

A€AQ AEA A€

2) H P(X)\ € B)) = H px(By).

A€ A€AQ
a) < bl):
a) ¢ LHS 1) =LHS 2), V finite Ay C A
<= RHS 1) =RHS 2), V finite Ay C A
Y, = ®,UA <~ bl).
AEA

a) = b2): a) implies that (1.52) holds in particular for all finite Ag C A;. Then, by letting A,
play the role of A in the proof of “a) = bl)” above, we get b2).
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b2) = b3): Obvious.
b3) = c¢): Let Sy, = HAeAO Sy and pp, = @xepgptn- Then,

LHS of (1.53) / [IE | f)\d/@\ 9 RHS of (1.53).
Sho AeAg PYEN
c) = a): This can be seen by plugging f, = 1p, into (1.53). \("e™)/
Remarks:

1) The condition a) in Proposition 1.6.1 amounts to saying that the o-algebras {o(X))}ea
(cf. (1.1)) are independent in the sense of Definition 8.7.1 b).

2) Let uy € P(Sy, B,) for each A € A be given. Then, of course, there can be r.v.’s {X,}rea
with

Xy~ puy forall A€ A
which are not independent. For example, consider the measure vy in Example 1.5.3 and {0, 1}-
valued r.v.’s X1, X5 such that (X1, X5) & vy with 6 # 11(0)u2(0).
f

Corollary 1.6.2 Let {(S), B))}rea be measurable spaces indexed by a set A. Suppose that
a) X,,Y,:Q — S\ are a r.v.’s such that X =Y, for each \ € A,

b) {X)}rea are independent,

c) {Ya}ren are independent.

Then, (Xa)xea = (Y))rea-

\_ )
Proof: Let puy € P(Sy, By) be the common law of X, and Y. Then, by Proposition 1.6.1,
(Xa)rea =~ @aeaptn and (Ya)rea =~ @reafia- \("a™)/
[

Proposition 1.6.3 Suppose that X;,Y;, X;Y; € LY(P) for all i > 1. Then, conditions
a)-c) listed below are related as a) = b) = ¢);

a) X; andY; for i # j are independent.
b) X; andY; fori # j are uncorrelated , i.e., cov(X;,Y;) =0 if i # j.
c)
cov ZXZ,ZY Zcov X.,Y)) ifm<n. (1.54)
\_ J

Remark: (1.54) is most commonly applied to the special case: X; =Y, where it becomes:

var (i X;) = ivar X;. (1.55)
i=1 i=1

Proof: a) = b): Since X; and Y for i # j are independent,

(1.53)

cov(X;,Y;) = E[X;Y;] — EX;EY; "= 0
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b) = ¢):

m n

COV(i X, iY}) = Z ZCOV(XZ-, Y;) > icov(Xi, Y:).
=1 j=1 i=1

i=1 j=1

(x) Complement to section 1.6

Lemma 1.6.4 (Kolmogorov’s 0-1 law) Referring to Proposition 1.6.1, suppose that
{X)}ren are independent. Then, P(B) = 0 or 1 for all B € T, where T is the tail
o-algebra defined by

T = ﬂ o [(Xa)rear] - (1.56)
I ig%;\zite
\_ /
Proof: Let G = o [(X)\)xea), Or = o [(Xa)rer] for T C A,and A=J rca Gr. Fix BT

T" is finite
and consider the following two measures on (2, G),

i(A) = P(ANB), a(A) = P(A)P(B), (A€ Q).
Then,
1) 11 = pe on AU{Q}.

Indeed, it is clear that u;(2) = ue(2) = P(B). Moreover, If A € A, then A € Gr for some
finite set I' € A. Since 7 = (| rca  Gar, we have B € Gy\r. Therefore, A and B are

T is finite

independent, which implies that p;(A) = ua(A).

Since A is a m-system and G = oA, it follows from 1) and Lemma 1.3.1 that p; = pe on
G. In particular, we have P(B) = uy(B) = po(B) = P(B)?, which implies that P(B) = 0 or 1.
\("e™)/

Let (€2, F, P) be a probability space and A be a finite set. We consider the following setting.
e For each o € A, (Sax, Bar), A € A, are measurable spaces indexed by a set A, and

(Sﬁvlg(sa)):: ( I]:éinkacgb Eiu)) .

AEA, AeA,
(cf. Definition 1.5.1).

e Foreachae A, X,: Q — S, isar.v.

Lemma 1.6.5 Referring to the above setting, the following conditions are equivalent.
a) X,, a € A are independent.

b) 7 (Xa.), a € A are independent for arbitrarily choosen finite subset I',, C Ay, where
Ty Sa = [Iaer, Sa denotes the canonical projection.

\_ )
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Proof: It is enough to prove that b) implies a). The r.v. (X,)aca takes values in the product

space
SET] Sa=11III San-

a€cA aEA NeA,

Let o € P(Sa, B(Sa)). We prove that

1) (Xa)aeA ~ ®Na-

a€cA

If C' is a cylinder set in .S, then,

C: ﬂ 7TF_al (H Ba7>\>
OJGA )\Era

for some finite set I'y C Ay and B,y € B(Sa,»). Therefore, by setting B, = [ cp, Ban, we

have that

P((Xa)aca € C)

P (m {Xa € Wri(Ba)}) =P <ﬂ {mr.(Xa) € Ba})

acA a€A
b _
2 TIPrr.(Xa) € Ba) = [[ P (Xa € 75 (Ba)
acA acA
- (®n)©
acA
which proves 1) by Lemma 1.5.4. \("a?)/

Exercise 1.6.1 Let a r.v. U be uniformly distributed on (0, 27). Prove then that X = cosU
and Y = sin U are not independent and that cov(X,Y) = 0.

Exercise 1.6.2 8 Let XY be r.v.’s with values in {0,1}. Prove then that X, Y are indepen-
dent if and only if cov(X,Y) = 0. Hint:Example 1.5.3.

Exercise 1.6.3 Suppose that a r.v.X is independent of itself. Prove then that there exists
¢ € R such that X = ¢, a.s.

Exercise 1.6.4 Suppose that X; j = 1,...,n are independent r.v.’s and that X, +...+ X, = C
a.s., where C is a constant. Prove then that there are cy,...,c, € R such that X; = ¢;, a.s.
(j=1,.,n). Hint: X,, =C — Z?;l X,. Therefore, X,, is independent of itself.

Exercise 1.6.5 Let S,, = U; + ... + U, where Uy, Us, ..., are i.i.d. with uniform distribution
on (0,7). For a measurable function ¢ : R — R with period T, prove that (¢ (S5;));_, and
(¢ (Uj));_; have the same law for any n € N\{0}.

8cf. T. Ohira:”On Statistical Independence and No-Correlation for a Pair of Random Variables Taking Two
Values: Classical and Quantum” Progress of Theoretical and Experimental Physics, Volume 2018, Issue 8, 1
August 2018, 083A02
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Exercise 1.6.6 Let (Xj),>1 beii.d. with values in a measurable space (S, B), and let (Ni)r>1
be N\{0} valued r.v.’s such that Ny < Ny < ... a.s. Assuming that (Xj)g>1 and (Ng)g>1 are
independent, prove that (Xj)i>1 and (X, )k=1 have the same law.

Exercise 1.6.7 (x) Let (Xj)k—o,1 be indpendent r.v.’s with values in a measurable space (.5, B),
and let N be {0, 1}-valued r.v. independent of (Xj)x—o1. Then prove that Xy and X;_y are
independent if and only if (i): (X)k—01 is i.i.d., or (ii): N is constant a.s. Hint: Take bounded
measurable f; : S — R (k= 0,1) and compute cov(fo(Xn), f1(Xi1-n)).

Exercise 1.6.8 (x) Let (5,.A) and (T, B) are measurable spaces. Let also X7, .., X,, be inde-
pendent r.v.’s with values in S, and ¢; : S — T (j = 1,..,n) be measurable functions such
that ¢;(s1,...,;-1, X;) has the same law as ¢;(X;) for all j = 1,..,n and s1,...,5;_1 € S.
Prove then that

(0i( X1, Xjm1, X5))iy and (91(X5))),

have the same law. This generalizes Exercise 1.6.5.

Exercise 1.6.9 (%) Let everything be as in Proposition 1.6.1. For a disjoint decomposition
A = U,erA(7) of the index set A, consider r.v.’s {X },cr defined by

Xy twer (X)heam € J[ S vel
AEA(Y)

Prove that r.v.’s {)z,}%p are independent if {X},ca are. Hint: Condition b) of Proposition
1.6.1.

1.7 Some Functions of Independent Random Variables

Let X, X5, ... be independent r.v.’s for which the distributions are known. Then, one can
compute the distribution of a r.v. of the form f(X;, Xs,...). Let us look at some examples.

Definition 1.7.1 Forar.v. X : Q — Nwith X ~ p € P(N), we define its generating function
by the following expectation, or the absolutely convergent power series:

G(u; s) © ps¥ = Z,u(n)sﬂ seC, |s| <1, (1.57)
n=0

where p(n) = u({n}).
-

Lemma 1.7.2 For j = 1,2, let u; € P(N) and let X; : Q — N be independent r.v.’s with
X; ~ pj. Then, for p € P(N), the following conditions are equivalent.

a) X;+ Xy~ pu.

b) u(n) = Y mk)ua(0).

k,LeN
k+l=n

|9 Glss) = Gl 9)Glmis), Vs €C. ol < 1.
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Proof: a) < b): The equivalence can be seen by the following identity. For any n € N,

P(Xi+Xo=n)= Y PXi=kP(Xp=10= > m(k)pa(l).

k,LeN k,LeN
k+L4=n k+l=n

b) < ¢): The equivalence can be seen by comparing the following two identities.

Glis) = > un)s",

Gp; 8)Gpa; s) = (Zm(k)sk> (ZM(@SZ) = > m(k)ps(e) | s
k=0 /=0

n=0 k,LeN
k+4=n

\("a”)/
Remark Let p be a complex measure on N. Then, the series > |n({n})| converges (and
equals to the total variation of p). Thus, we can define its generating function G(u;s) (s € C,
|s| < 1) by the right-hand side of (1.57). Moreover, the equivalence between b) and c¢) of
Lemma 1.7.2 remains valid in the case where p, 1 and py are complex measures on N.

Example 1.7.3 (Bin(n,p) and its independent summation) Let p € [0,1] and n =
1,2, ... A probability measure j,,, on {0, 1,..,n} defined as follows is called the (n, p)-binomial
distribution, and will henceforth be denoted by Bin(n, p):

n

Here are histograms of k +— p, ,(k) for (n,p) = (20,1/2) and (n,p) = (24,1/8).

- 0176 [ e ERREES 0.239
(n,p) = (20,1/2) (n,p) = (24,1/8)
3456 7 8 910111213 14151617 0123456789

Note in particular that Bin(1, p) is given by:
| if k=1,
Suppose that Z;, Z, are independent r.v.’s, and that n,n(1),n(2) € N. We show that
Z; =~ Bin(n(j),p) (j =1,2), = Z1 + Zy =~ Bin(n, p). (1.60)

where n & n(1) + n(2). Since the generating function (1.57) for p,, is given by:

Glinpis) =D () ) (1= p)" ™" = (ps+ 1= p)". (1.61)

k=0
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we have
G (ttnp3 8) = G (ttn(1),p5 )G (Hn),3 5);
which implies (1.60) via Lemma 1.7.2.
Let {X;}}_, be iid. with X; ~ Bin(1,p) Then, by applying (1.60) repeatedly, we have

def

S, = X1+ ...+ X, = Bin(n, p). (1.62)

The relation (1.62) can also be used to compute the expectation and variance of Bin(n, p).
Note that X7 = X; = 1{X; = 1}. Thus,

BIX;] = EX;=P(X;=1)=p,
var X; = B[X]] - (EX;)” =p(1-p),
ES, = Y EX;=np. (1.63)
j=1

Since X1, ..., X, are independent,

var Sy, Zvar X; =np(l —p). (1.64)

7j=1
\(*a")/

Example 1.7.4 (Summation of independent Poisson r.v.’s) Suppose that N; and N
are independent r.v.’s. and that ¢(1),¢(2) > 0. We prove that

Nimmgy (=1,2) = N+ Np~ e, (1.65)
where ¢ = ¢(1) + ¢(2). Since the generating function (1.57) for 7, is given by:

o0 )n

G(me; ) = exp(— Z —— = exp(c(s — 1)), (1.66)
n=0
we have
G(rme;s) = G(meq); 8)G(Te2); 8),
which implies (1.65) by Lemma 1.7.2. \("a™)/

Example 1.7.5 (Relation between gamma and beta distributions) Let a,b,¢ > 0 and
suppose that X, Y, S, T are r.v.’s such that X,Y,S € (0,00), T € (0,1) and

(S, T) = (X +Y, X)JiY) ie, (X,Y)=(ST,S(1-1)).
Then, the following are equivalent:

a) X and Y are independent, X ~ 7., and Y & v.s;

b) S and T are independent, S & 7,415 and T & [, .
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Remark: The following well-known formula will also be reproduced in the course of the proof
of a) = b):

[(a)I'(b)
B(a,b) = ——= 1.67
(0.6) = T (167)
a) = b): It is enough to show that
1) P((S,T) €I xJ)="cars(I)Bap(J) for all intervals I C (0,00), J C (0,1).
We first show that
B(a,b)T'(a +b)
2 P T [ - c,a [ a .
) ((Sv ) €l X J) F(G)F(b) Ye, +b( )6 ,b(‘])
Note the following simple equality for s > 0:
3) / 2% (s — x) Ny = gt / (1 — )" dt = 5“7 B(a, b) Bas(J),
sJ J
where sJ = {sz, ; x € J}. Let us write D = {(z,y) € (0,00)*; (v +y, ;%) € I x J}. Then,
P((ST)elxJ) = P(XY)€eD)=(Yea®@es)(D)

a+b
(127) F /xa lyb 1 C(x+y)d$dy

a+b
T / _csds/ z)* " dx

3) M sotblemes g

= F(a)r(b) \/I + d /Bab( )
(2r)  B(a,b)'(a +b)

= I‘(a)F(b) 7c,a+b(1)ﬂa,b(‘])‘

This proves 2). Letting I = (0,00) and J = (0,1) in 2), we get
~ B(a,b)['(a+b)

Tl0) ie., (1.67).

Finally, plugging this back in 2), we arrive at 1).
a) < b): Let X’ and Y’ be independent r.v.’s such that X’ ~ 7., and Y’ ~ ~.;. Then, we
know that

g def -y /  def — xv : I~ !~
S'=X'"+Y" and T" = =~ are independent, 5" & Y o4y and T" = [ .

This implies that (S,7T) ~ (S’,T"). Therefore,
(X,Y) = (ST, S(1 — T)) =~ (S'T", S'(1 - T')) = (X', Y"),
which implies a). \("a™)/
Example 1.7.6 (Poisson process) Let X; (j > 1) be iid ~ .1 (cf. (1.27)) and S, =
X1+ ...+ X,. Then, for t > 0,
N, © sup {neN; S, <t} x~my, (cf (1.18)). (1.68)

(N¢)i>o is called the Poisson process with the parameter c. N; has, for example, the following
interpretation; .S, is the time when the n-th customer arrives at the COOP cafeteria in a day
and NV, is the number of customers who visited the cafeteria up to time t.
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Proof: It is enough to prove that

(ct)™
m!

1) P(N; >n)=¢e“ i

m=n
We start by computing:

Exam[ie 1.7.5

PN, >n) " pes, <t en((0,1])

n t ct

(1.27) c el —me s T=Y/c 1 el —

= =1 2" temredy T (=1 / y" e Vdy.
- Jo ©Jo

—_

Thus, we can conclude 1) from:

o0

1 ° n—1_-—vy __ _—s s
2) m /0 Yy € dy =€ ;L m, S Z 0.
We prove 2) in the following generalized form:
3) L/S a=lemvq —e_siL a>0, s>0
I'(a) Jo Y Y = T(a+m+1) LT
In fact,
—s—z € ° [? e = 1 [°
LHS 3) "= / (s —2)* te¥dr = —/ (s — 2)* ta™dw
I'(a) Jo I'(a) T;) m! Jo
z=s2 €78 = 54t (1.67)
F(a) rnZ:O m' <a7 m + ) )

\("a™)/

Example 1.7.7 (x) Let X ~ N(0,v]) (d > 1,v>0)and Y = 7., (¢,a > 0) be independent.
Then,

2c0)°T d d
X/\/—%(cv)d/lea—l—Q) T _
T (a) (2cv + |z]2)*"2

The right-hand side is the generalized Cauchy distribution, c¢f. Example 1.2.8. There are two
important special cases:

(1.69)

def

e Let Z ~ N(0,w) (w > 0) be independent of X. Then, we see from (1.30) that Y = Z? ~
Y(5=, 3) Thus, applying (1.69) with (¢, a) = (5=, 3), we have that
X/|Z| = (y/v/w)-Cauchy distribution. (1.70)

elfd=1X~N(0,1), Z =~ x2 =~(1/2,n/2) (n > 1) (cf. Example 1.2.5), and X and Z are
independent. Then, Z/n ~ v(n/2,n/2). Thus, by (1.69) withd=1,v=1, c=a =n/2,

X/\/Z/n=~T, cf Example 1.2.8. (1.71)

In statistics, the r.v. on the left-hand saide of (1.71) is used to estimate the population mean,
when n (the number of samples) is relatively small.
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The proof of (1.69) goes as follows. Let f : R? — [0,00) be measurable. Then,

BIXNVY) = [ PO edy) [ PX € donfolvi

~ e | e [ e (K5 s/ v
_ W/O ya+%71€fcydy /Rd exp (—%> f(z)dz

= W e f(z)dz /OOO ya+%_1 exp (—y (C + %)) ay.

We easily see from the definition of the Gamma-function that
o0 I (a+ 4
/ ya+g_1exp (—y <c+ \25)) dy = ( 2) .
0

|2[2 at3
(C + %>
Thus, we conclude that

Ef(X/VY) = (2cv)T (a + %) /Rd ( f(2)dz

721 (a) 2cv + |2|?)

7
at3

\("a")/
Exercise 1.7.1 Let Z be a r.v. defined on a probability space (€, F, P) such that Z =~

Bin(n,p). Is it always true that there exist iid X; ~ Bin(1,p) (j = 1,...,n) defined on
(Q,F, P) such that Z = X; + ... + X,,?

Exercise 1.7.2 Let X = (Xj)?zl and S, = X7 + ...+ X, where Xj,..., X, are iid, X; =
Bin(1,p) (j = 1,...,n). Prove the following:

i) P(X = z|S, = m) = (:1)71, regardless of the value of p, for any m = 0,1,...,n and
v = (r;)7, € {0, 1} with x; + ... + x,, = m.

ii) dipEf(X) = —2L —cov(f(X),S,) for any f:{0,1}" — R.

p(1-p)

Exercise 1.7.3 Let XY and Z be r.v.’s with (X,Y) = 7., ® v55. and Z = .. Prove then

that
X s Z _(r/s)* aldu

Y T r1—=2Z  B(ab) (1+rz/s)ett
When r = a = m/2 and s = b = n/2 (m,n € N), the above distribution is called the F"
distribution and is used in statistics.

X1

Hint: Let (X1,Y7) = Y14 ® 715. Then, (X,Y) = (X;/r,Y1/s) and % = 1)(1;;11 Then use
TX11Y
Example 1.7.5. o

Exercise 1.7.4 Prove the following extension of Example 1.7.5. Let X; ~ v.4,, 7 = 1,..,n+1

be independent r.v.’s and S X 4.+ Xpt+1. Then, S and T o ( ’)5_, are independent
r.v.’s such that S ~ vc4,+.44,,, and

n ap+1—1
Llay + .. + ans1) 41 -1 :
T~ A 1-— T dxy - - dx,.
Mo Tl o |12 !
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Exercise 1.7.5 Let e and U are independent r.v. such that e ~ 7;; and U is uniformly
distributed on (0, 27). Prove then that v/2e(cos U, sinU) ~ N(0,1) ® N(0,1).

Exercise 1.7.6 Let X; ~ .1 (i=1,...,ncf. (1.27)) be independent r.v.’s and M,, = 'nglin X;.

,,,,,

Prove then that for any j =1,...,n and z > 0,

i=1 "1

P(M, = X; and X; > z) = —ij exp (—x > ci> .
C,
=1

In particular, M,, = Ve, 4. 4cn1

Exercise 1.7.7 (Thinning of a Poisson r.v.) Let N be ar.v. with N ~ 7, and let (X,,),>0
be i.i.d. with values in a finite set S. We suppose that N and (X,,),>o are independent.
Prove then that N, = Zé\;o 1{X; = s} (s € S) are independent and that N, ~ ()., where
p(s) = P(Xo = s).

Exercise 1.7.8 (Geometric distribution) Let G = inf{n > 1; X,, = 1}, where (X,,),>1 are
{0, 1}-valued i.i.d. with P(X,, = 1) = p. Then, show that P(G =n) = p(1—p)"~!, EG = 1/p,
and var G = (1 — p)/p. The distribution of G is called the p-geometric distribution.The
geometric distribution can be thought of as a discrete analogue of the exponential distribution.

Exercise 1.7.9 (n-th success in a Bernoulli trial) Let (Xj)i>1 be as in Exercise 1.7.8,
Sp=X1+ ..+ X, and

To=0, T,=inf{k>1; Sy =n}, n=1,2,..

Then, prove the following:

i) T, — T—1, n=1,2,... are iid with p-geometric distribution.

i) P(T,=m) = (" )p"(L—p)™™ 1<n<m.

iii) Sy =nfor T, <k <T,, n=01,..

In the Bernoulli trial (Xj)x>1, T, is the time of n-th success, and T,,—n is the number of failures
before it. The distribution of the latter is called the (n,p)-negative binomial distribution. It

follows from ii) above that

P(T,—n=k)= (n+ll:_1)p"(1—p)k, ke N.

On the other hand, the description of (Sy)x>1 in iii) above can be thought of as a discrete-time
analogue of Poisson process (Example 1.7.6). This also shows that (Sk)x>1 (and hence (Xj)g>1)
can be recoverd from (77,)n>0.

Exercise 1.7.10 Let G, 7,7y, ... be independent r.v.’s such that P(G = n) = p(1 — p)"!
(n=1,2,..) and P(71; € -) = 7.1 (cf. (1.27)). Prove then that P(1y + ...+ 7¢ € -) = Yep1-
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1.8 Applications to analysis

The following lemma is a weaker version of the law of large numbers (Theorem 1.10.2). This
lemma will be applied to Example 1.8.2 and Example 1.8.3.

Lemma 1.8.1 Let I C R be an interval, X,, : Q — I (n > 1) be such that X,, € L*(P),
cov(Xy, Xp) = 000, EX, =m for all {,n > 1. Then, for S, = X1+ ...+ X, f: I - R,
and 6 > 0,

Sh

P(W_mhﬁ)g %? (1.72)
Sh

E‘f (7)‘“””)’ < AL sy 17) — s, (1.73)

where |f]| = sup | f(@)].
S

\_ /
Proof: (1.72):

Sno_ m‘ > 5) — P (1S, —mn|* > 6n?)

Chelzshev var (Sn) (1.55) v

- 9%n? 2n’
(1.73): We first observe that
| 1 (1.72)
1) E||f Sn — f(m)] S > 5| < 2||f||IP &—mzé 2 2[/lv
L n n | n )

On the other hand, it is clear that

2) E_f(&)—f(m B ] <5 < sup 1) - Fam).

n n zel
- [z—m|<§
By 1) and 2), we get (1.73). \("a™)/
Example 1.8.2 (Weierstrass’ approximation theorem) Let I = [0,1], f € C(I — R)
and .
def. E NN\ ke \n—k
R Y (5) ()t
k=0
Then,
1) f =3 f uniformly on I.

To prove this, we apply Lemma 1.8.1 for X, ~ Bin(1,p). Then S, ~ Bin(n, p) (Example 1.7.3)
and hence

fulp) = Ef(3).
Since
EX, =p, and var X,, = p(1 —p) < 1/4,
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we see from (1.73) with § = n~1/3 that

)= 1 < )7 (2) - ) < P+ s 1@ - 1)

- 2”1/3 zel
lz—pl<n—1/3

Since f is uniformly continuous on 7, the right-hand side of the above inequality converges to
zero uniformly in p, as n — oo, which proves 1). \("e™)/

Example 1.8.3 (Injectivity of the Laplace transform) Let p be a Borel signed measure
on [0,00). Then, the following are equivalent.

a) u=0.

b) e du(x) =0 for all A > 0.
[0,00)

c) g ™ du(x) =0 for all k € N and n € N\{0}.
[0,00)

Proof: a) = b): Obvious.
b) = c): By differentiating the identity b) k times in A, and then setting A = n € N, we have

c).

¢) = a): By Lemma 1.3.2, it is enough to prove that

1) fdu =0 for f € Cy([0,0)),
[0,00)
Let f € Cy([0,00)) be arbitrary. We define f,, : [0,00) = R (n € N) by
= (B) s

k=0

We prove the following approximation:
2) fo(x) =5 f(x) for any z € [0, 00),

(As is explained in the remark after this proof, the convergence 2) is uniform in x € [0, M] for
any M > 0. But, we do not need this fact to prove 1).) To prove 2), we fix x > 0 and apply
Lemma 1.8.1 to X, = 7, (cf. (1.18)). Then S,, = m,, (Example 1.7.4) and hence

falw) = Ef(52).
Since
EX, =var X, =z,
we see from (1.73) with § = n~1/3 that

)= £l < £|r (2) < s < s 110 flo)
ly—z|<n

~1/3

Since f is continuous, the right-hand side of the above inequality converges to zero as n — oo,
which proves 2).

We now use 2) to prove 1). By multiplying both hands-sides of the identity c) by Z_;: f (%), and
adding over k € N, we arrive at:
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3) faudp = 0.

[0,00)

We obtain 1) from 2) and 3) via the bounded convergence theorem. \("o™)/

Remark: The convergence 2) in the proof of Example 1.8.3 is uniform in x € [0, M| for any
M > 0. In fact, if x € [0, M], we see from the above proof that

Sh 21| fl| M
o) = sl < 2|7 (32) = s < B4 s 150 - s
|y—z\;n_1/3

Since f is uniformly continuous on [0, M + 1], the right-hand side of the above inequality
converges to zero uniformly in = € [0, M] as n — oo. Note also that the function f, can
naturally be extended as a holomorhic function on C. These prove that, for any f € Cy,([0, 00)),
there exists a sequnece of holomorphic functions f,, : C — C (n € N) which converges uniformly
to f on any bounded subset of [0, c0).

Exercise 1.8.1 (Weierstrass’ approximation theorem in higher dimensions) Let I =
[0,1]¢ and f € C(I — R). Prove that there exist polynomials f,, : R? — R (n > 1) such that
lim max |f,(p) — f(p)] = 0. Hint: Fix p = (p,)?_, € I and n € N\{0} for a moment. Let

n—oo pel
Sn = (Snu)?y, where S}, ..., S are independent r.v.’s with P(S% =7) = (") (p,)"(1 — p,)""
(0<7r<n,1<v<d). Then, P(S, =2) =T"_, (%) (p.,)" (1 —p,)"*".

v=1 \zg

Exercise 1.8.2 (%) Show the following: (i) For any n € N\{0} and z € C\{0},

def. 12 —2"—27" 1 o
" = - 7 _—14-= E ", 1.74
@n() n2—z—z1 +n ‘ (174)
1<t,m<n
L#m

where we define @, (1) = n. Hint: Let s,(z) =1+ z+ ... + 2”1, Then,
22"z "=(1-2"1—-2")=(1—-2)(1—2Ysp(2)sn(z7").

def.

1
(ii) F,(0) = Qn(e*™) >0 for all § € R, / E,(0)do = 1.
0

These show that F,, is a density of a probability measure on [0, 1] with respect to the Lebesgue
measure. F), is called the Fejér kernel.

Exercise 1.8.3 () (Uniform approximation by trigonometric polynomials) A func-
tion @ : R — C is called a trigonometric polynomial, if it is a finite linear combination of
{0 — €™} 7. Let f € C(R — C) be of the period 1 and

£2(6) = / 16 - ) Fa(@)de,

where F), is the Fejér kernel (Exercise 1.8.2). Prove then that f, is a trigonometric polynomial
and that

lim sup |£.(6) = £(6)] = 0.

n—o0 0<h<1

Hint: f,(0) = fol f(p)F.(0 — p)dp by the periodicity. Then, use (1.74) to see that f, is a
trigonometric polynomial.
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1.9 Decimal Fractions

We begin by introducing the notation we use in this subsection. Let ¢ > 2 be an integer.
Recall that, for each t € (0, 1], there exists a unique sequence d,(t) € {0,...,¢ — 1} (n > 1)

such that
=320 d Y a0) = oo (1.75)

n
n>1 q n>1

Thus, d,(t) stands for the n-th digit in the g-adic expansion of the number ¢, where the
expansion is unique, thanks to the second condition of (1.75). As we describe below, the

functions dy,...,d, are in correspondence to the partition {/s, s, Z;,.l..,snzo of the interval
(0, 1] into ¢" smaller intervals of length ¢~™. For each s =0,...,¢ — 1,
1
LY {te(01]; di(t)=s} =2+ (0,—} .
q q
Similarly, for each n > 1 and sy, ..., s, € {0,...,q¢ — 1},
I L te(0,1]; dit) =s; 1<Vj<n}:iﬁ+(0i1 (1.76)
S1ye0ySn ) ; Uy R > = - qj 5 qn . .

Example 1.9.1 (Decimal fractions are i.i.d.) Suppose that (2, F, P) is a probability
space and that U : Q@ — (0, 1) is a r.v. with the uniform distribution on (0, 1). Then,

{d,,(U)}p>1 are iid. with P(d,(U)=s)=q ', s€{0,...,q—1}. (1.77)
Proof: We see from the definition above that for all sq,...,s, € {0,...,¢ — 1},

= (1.76)
(Wd;j(U) =s;} =" {U € L,..s,}
7=1
and hence that
1) P <ﬂ{dj(U) - sj}> =PU€eIl )= |l.|=q"
j=1

In particular, for any n > 1,

q—1 n 0 q—1
SRCRCEISED SRR (T E) ED SRy
j=1

S1yeees 8p—1=0 S1seeey Sn—1=0

We conclude (1.77) from 1) and 2). \("a™)/

Example 1.9.2 (Cantor function) We give an example of nondecreasing continuous func-
tion from [0, 1] onto [0, 1], whose associated Stieltjes measure is singular with respect to the
Lebesgue measure. Let ¢ > go > 2 be integers, and Sy be a subset of {0,...,q — 1} with go
elements. We define

Xn
X:Zq—n, Ft)=P(X <t) (0<t<1),
n>1

where X,, : Q — Sy (n > 1) are i.i.d. with P(X,, =) =1/qo (s € Sp). Note then that the law
w € P([0,1]) of the r.v. X is the Stieltjes measure associated to the function F'. We prove the
following
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a) F' is nondecreasing, continuous, F'(0) =0, F(1) = 1.

b) The measue p is singular with respect to the Lebesgue measure A, as can be described
more precisely as follows. Let
C= ﬂ U ]51 ..... Sn )

n>1s1,...,5n€Sp

where {I,, 17" . _, (n > 1) are the partition of (0,1] defined by (1.76). Then,
u(C) =1and A(C) = 0.

Proof: a) We only need to prove the continuity, since the other properties can easily be seen
from the definition. It is also not difficult to see that

F(t+) = F(t) fort € [0,1),
F(t)— F(t—) = P(X =t) fort € (0,1].

Thus, it is enough to verify that

1) P(X =t)=0forallt € (0,1].

To do so, let us note the following.

2) P (ﬂnzl{Xn = dn(X)}) =1

Indeed, D & {0 X =00} CN),5{Xn = dn(X)}, thanks to the uniqueness of the digits
in g-adic expansion (1.75). Moreover, P(D) = 1, since

P(DC):P<G ﬁ{x;o}) = 0.

This proves 2). We conclude 1) from 2) as follows. By the uniqueness of the digits in g-adic
expansion (1.75), X =t if and only if d,,(X) = d,(¢) for all n > 1. Therefore,

P(X (g{d ) (Q{X = d,,( ):o.

b) Since C,, o U s, N\ C as n — 00, it is enough to show that u(C,) =1 for all

77777

S1yeey sn€So
(L.3) P(Xe U L. >(176) (ﬂ{d ESO>
815,50 €S0
2:) p (n{X] c SO}) (deﬁmtlzl of Xn) 1
j=1
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Remark See Example 1.9.3 a) for an alternative expression of the function F'. Also, under an
additional assumption that 0 € Sy, the set C' is identified with the support of the measure p
(cf. Remark after Example 1.9.3). For ¢ = 3 and Sy = {0, 2}, the set C' is the Cantor’s middle
thirds set, and the function F' is the Cantor function.

Example 1.9.3 (x) We retain the setting of Example 1.9.2. We prove the following addtional
properties.

don(t)
=W

Suppose in addition that Sy > 0. Then,

a) Fort e (0,1], F(t) = , where dy ,,(t) = |So N [0, d,(t))].

b) The set C' has no isolated point. To put it more precisely, let

Co - ﬂ U [sl ..... Sn*

n>1s1,...,5, €50

Then Vit € C H{tN}N>1 C Oo\{t} tN N—>oo t.

c) For any t € C| either ¢ is a point of strict increase of F' to the right (3 t; € (¢,1], Vs € (t,t1],
F(t) < F(s)), or t is a point of strict increase of F' from the left (3 ¢; € [0,¢) V s € [t1,1),
F(s) < F(t)).

Proof: a) Note that

{X <t} = J{X; = d;(t) for j < n and X,, < dn(t)}.

n>1

Since P(X =t) = 0 as is shown in the proof of Example 1.9.2 a), we have

F(t) = P(X<t) ZP t) for j <n and X, < d,(t))
n>1
= Y P(X;=dy(t) for j <n) P (X, < du(t))
n>1
_ Z 1 don(t) _ Z do.n(t)
b) Case 1, t € Cy: By (1.76), t = 2@1 %, where s, € Sy foralln > 1and ) >1 8n = 00. For
each N > 1, we choose sy € Sp\{sn} (# () since ¢y > 2) define ty =3 s gN)/qJ (N >1),
where .
s U#FN),
! sy (1 =N).
Then, {S(N)}j21 C So, D js1 sgN) = 00, and hence {ty}n>1 C Co\{t}. Finally it is clear that
ty 238

Case 2, t € C\Cp: In this case, t = ", = J - for some {s;}7_; C Sp. We choose s € S\{0}
(# 0, since qo > 2), and define ty = Z]>1 i N @ (N > 1), where

sj (L<j<n),
s;7=4 0 (n<j<n+N),
s (j>n+N).
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Then, {s }J>1 C Sp, since 0 € Sp. Moreover, > .-, s E ) = 00, and hence {tn}n>1 C Co\{t}.

Finally it is clear that ¢y Nogey,

c) We start by observing that
3) ) don(t) = oo for all t € (0, 1].
n>1
Indeed, d,(t) > 1 implies that Sp N [0,d,(t)) 2 0
Therefore, 1) follows from that ) -, d,(t) = oc.
We first prove that
4) F is strictly increasing on Cjp.
Since F' is nondecreasing, it is enough to prove that F'is injective on the set Cy. To do so,
suppose that s,t € Cy and F(s) = F(t). Then, it follows from a) and 4) that dy,,(s) = do.(?)
for all n > 1. By the definition of dy,, this implies that for all n > 1,

So OV [dn(8) A dy(t), dn(5) V d(t)) = 0.

However, since d,,(s) Ad,(t) € Sp, the above is possible only when d,,(s) Ad,,(t) = d,(s) Vd,(t),
i. e., dn(s) = d,(t). Therefore we have s = t.

Suppose that ¢ € C. Then, by bl) and b2), either there exists a decreasing sequence

t; >ty > ... in Cy which converges to t, or there exists an increasing sequence t; < t5 < ...

in Cy which converges to t. In the former case, it follows from 4) that F(t) < F(s) for all

€ (t,t1]. Similarly, it follows in the latter case as well that F(s) < F(t) for all s € [ty,1).

\("a”™)/
Remark If 0 € Sy, then, supp(u) = C. Indeed, it follows from Example 1.9.2 b) that
supp(u) C C, whereas the opposite inclusion follows from Example 1.9.3 c).

(since Sy 3 0), and hence that dy,(t) > 1.

Example 1.9.4 (x) Construction of a sequence of independent random variables
with discrete state spaces: Let p, € P(S,,B,) (n > 1) be a sequence of probability
measures, where for each n > 1, S, is a countable set and B,, is the collection of all subsets
in S,,. We will construct a sequence X,, : (2, F) — (Sy, B,) of independent r.v.’s such that
X, = uy, for alln > 1.

The construction is just a slight extension of Example 1.9.1. We first construct a sequence

I, .., of sub-intervals of [0, 1) inductively as follows, where n =1,--- and (sq,...,s,) € S1 X

-+ xS, We split [0, 1) into disjoint intervals {I}ses, with length |I5| = uy(s) for each s € 5.
Suppose that we have disjoint intervals Ig,..s, , such that |l | = pi(s1) - pn—1(Sn—1)
for (s1,...,8,-1) € S1 x --- x S,_1. We then split each I .5 , into disjoint intervals

{Is, s, 15, }snes, so that |Ig..s, s | = p1(s1) - pn_1(Sn—1)tn(sn) for each s, € S,,. We now
define

77777

We see from the definition that
MHws (@) =5} = {w X(@) € Ly )
j=1

and hence that

1) P (ﬂ{X] = Sj}) = |Lsysn| = p1(51) -+ pin(Sn)-

Jj=1
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We conclude from 1) that (X,,),>1 are independent and that X, ~ p, (cf. Exercise 1.5.3).
\("a™)/

Exercise 1.9.1 Referring to Example 1.9.2 with Sy = 0, ¢ — 1, show the following.
(i) F(t) = 3,5, 28 for t € (0,1]. Hint: {X < t} = J,5,{X; = dj(t) for j < n and X, < d,,(t)}.

2'/L
(ii) F is strictly increasing on the set C.

1.10 The Law of Large Numbers

Let {X,,}n>1 be the outcome of independent coin tossings;

Y _ 1 if the coin falls head by n-th toss,
"1 0 if the coin falls tail by n-th toss.

Then, S, = X;+...4+ X, is the number of tosses by which the coin falls head. For this reason,
one would vaguely expect that

&—%(: EX;), asn 2 oo. (1.78)
n

The law of large numbers we will discuss in this section gives a mathematical justification for
this intuition. However, here is one thing we should be careful about; there do exist exceptional
events on which (1.78) fails, for example,

(J{Xn. =0} or [J{X,=1}.
n>1 n>1
We first formulate a notion which is used to exclude such exceptions.
e Let (2, F, P) be a probability space in what follows.

Definition 1.10.1 Let A ={w e Q; ...} C Q.

» We say “.... almost surely” (“..... a.s.” for short) if A€ is a null set.
Therefore, “almost surely” (“a.s.”) just synonymizes “almost everywhere” (“a.e.”) in measure
theory.

Theorem 1.10.2 (The Law of Large Numbers) Let S, = X, +...+X,,, where {X,, }n>1
are i.i.d. with E|X,| < co. Then,

Sn n o
Y EXy, P-as. (1.79)
n

Before proving Theorem 1.10.2, let us make a small (and useful) detour:

Lemma 1.10.3 (the first Borel-Cantelli lemma) Let X,, >0, n > 1 be r.v.’s

ZEXn<oo = ZXn<oo, a.s. = Xn“—"?o, a.s. (1.80)

n>1 n>1
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Proof: a) Let X =3 ., X,,. Then,

EX MM NT pY < 0.
>

n>1

Therefore X < 0o, a.s., which implies that X, "% 0, a.s. \("o™)/

Here, we give a proof of Theorem 1.10.2 in a special case X; € L*(P), which is much simpler
to prove and is enough in many applications. The proof for the general case is presented in
Section 8.9. See also Exercise 1.10.6 below to see what happens if we do not assume E|X,,| < oc.

Proof of Theorem 1.10.2 in a special case X; € L*(P) : By considering X,, — EX,,
instead of X,,, we may assume that £X,, = 0. Then, by (1.80), it is enough to prove that

1) Y E[S)] /n < oo

We have

n

2 ES)- Y BNXXX] - EX+6 Y B

1,5,k =1 1<r<s<n

Here is an explanation for the second equality of 2). The only terms in Z? ;i ke—1 that do not
vanish are those of the form either

e E[X!] (i=1,...n), or

o E[X2X? = E[X}E[XZ (1 <r < s<n). Forgivenr and s, there are () = 6 possibility
for (i, 4, k, ) such that two among them are r and the other are s.

Note also that there is a constant C' such that
3) EX;]?P<E[X,]<C, m=12,..

Now, 1) follows from 2)-3), since

2 3)
E[S}] < On+3Cn(n—1) < 4Cn”. \("a™)/

Example 1.10.4 (Almost all numbers are normal.) Let U be a r.v. with uniform distri-
bution on (0,1) and ¢ > 2 be integer. Let also d,(U) € {0,...,q — 1} (n > 1) be the digits of
U in its g-adic expansion defined by (1.75). Then, Borel’s theorem asserts that,

1) Almost surely, each number s =1,...,q — 1 appears in (d,(U)),>1 with equal frequency.

This will be formulated and proved as follows. We know from Example 1.9.1 that the digits
d,(U) (n > 1) are i.i.d. with P(X,, =s) =1/¢, s =0,...,¢ — 1. We now fix any s and set
X, = 1{d,(U) = s}. Then, X,, (n > 1) are i.i.d. =~ Bin(1,1/q) and hence EX,, = 1/q. Thus,
by Theorem 1.10.2,

(the number of k = 1,...,n with dg(U) = s) _ X+ 4+ Xy 2% 2 Poas.
n n q
\("a")/
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Example 1.10.5 (Laws of distinct i.i.d’s are mutually singular.) Let (S, B) be a mea-
surable space, pi,pus € P(S,B), and p; # pe. Then, for any infinite set A, the product
measures P; = ®@xeapt; (j = 1,2) are mutually singular.

Proof: Since py # o, there exists B € BB such that ui(B) # pe(B). Since A is an infinite set,
we can choose an sequence Ay C Ay C ... C A such that |A,| =n (n > 1). We consider the
following set.

C; = {x = (m)er € [ 5 - > () =3 ,uj(B)}, (U =12).
AEA AEA,

Under the measure P;, {15(z))}rea are i.i.d. with mean p;(B). Thus, it follows from Theorem
1.10.2 that P;(C;) = 1. Since C; N Cy =0, P, and P, are mutually singular. \("a™)/

Complement to section 1.10

Proposition 1.10.6 (x)(the second Borel-Cantelli lemma) Suppose that X, > 0,
n > 1 are independent r.v.’s and that there exists a constant M such that

sup X, < M, a.s.

n>1
Then,
ZEXn =00 = ZX” =00, a.s. (1.81)
n>1 n>1
\_ /
Proof: We may assume that M = 1/2 (Consider X,,/(2M), if necessary). We note that
1) l—x<e*forxz>0,
2) e ?* <1—gzforxel0,1/2].
We have
3) E|]Ja- ] Hl—EX <exp< ZEX)
j=1 j=1

Letting n — oo in 3), and applying the bounded convergence to the left-hand side,

hence

4) ﬁ ) =0, a.s.

Jj=1

On the other hand,

5) exp (—Zin) = ﬁexp(—2X 2§) ﬁ
j=1 Jj=1

Jj=1
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We conclude from 4) and 5) that Z;’;l X; = 00, as. \("e™)/

Exercise 1.10.1 Let X,Y, X,,,Y,, € L'(P) (n € N) be such that X,, <Y, a.s. (Vn € N) and
that X,, — X, Y, — Y in probability. Prove then that X <Y a.s.

Exercise 1.10.2 (Shannon’s theorem) Let S be a finite set and p € P(S) be such that
0 < pu(s) <1 forall s €S, we define the entropy H(u) of u by

== u(s)log u(s) > 0.

SES

Let {X,}n>1 be S-valued i.i.d. &~ u. Prove that

n 1/n
(H M(Xj)> X e W plas.
j=1

Let us interpret S as the set of letters. Then, the above result says that the probability
[1;-, #(X;) of almost all randomly generated sentence X;X»....X,, decays like e —nH() as n N
00.

Exercise 1.10.3 (LLN for renewal processes) Let N; = sup {n € N ; T,, < t}, where {T,,—
Th—1}n>1 are positive r.v.’s with 7y = 0 and ET,, < oo for all n (cf. Example 1.7.6 for a special
case). Prove then the following.

i) Noo - hm Ny = 00, P-as.
Hint: P(N < OO) = P(U521 mle {Nm < g}) and {Nm < g} C {m < Tg_H}.
i) If {T,, — T,,—1}n>1 are i.i.d., then l>m N;/t =1/ET,, P-as.
- t /oo
Hint: T, <t < Tyn,4+1 and tli/m Ty, /Ny = ET; by Theorem 1.10.2.

Exercise 1.10.4 (%) Let ¢ > 2 be an integer and {p(s)}?Z C [0,1) be such that S9! p(s) =

1. For an iid. X, € {0,...,¢—1} (n > 1), with P(X1 =35)=p(s) (0<s<g—1),w
denote by pu the law of the rv.X = 3" | %. Then, prove the following. i) If p(s) = 1/q,
then 4 is the Lebesgue measure on [0, 1], ii) If p(s) # 1/q, then u is singular with respect to
the Lebesgue measure. Hint Look at the set

1 & n—00
C=<t 0,1]; — 1{d = 0<Vs<qg-1
{6(7]7n;{k() 8}—>p()7 > VS > 4¢q }7
where, for each t € (0,1], d,(t) € {0,1,...,¢g — 1} (n > 1) is the unique sequence such that
t=> = and 3., do(t) = oo

Remark Exercise 1.10.4 ii) shows that the function F(t) = u([0,¢]) (0 <t < 1) is singular
with respect to the Lebesgue measure. If ¢ = 3 and p(0) = p(2) = 1/2, then, F' is the Cantor
function (cf. Example 1.9.2). On the other hand, if ¢ = 2 and p(0) # p(1), then, F' is called
the de Rham’s singular function.
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Exercise 1.10.5 (%) (functional equation which characterizes the generalized Cantor
functions) Referring to Exercise 1.10.4,consider the following functional equation for f :
0,1] — R.

_ s+t\ _ [ p(0)f(t), (s =0),
f) =1, f( p )_{p(0)+---+p(s—1)+p(s)f(t), s=1.. . q-1) tE01

Prove that I is the unique right-continuous solution to the above functional equation. Hint: To

. . Xn
show that 7 is a solution, note that {X < *} = {X; <sju{Xi =5, o, "5 <t}, s€ 8.

Exercise 1.10.6 (%) Let S, = X; + ... + X,,, where { X, },,>1 are i.i.d.

i) (Infinite mean) Suppose that E[X,/] = co and E[X] < co. Prove then that 2= "3 oo
a.s. Hint: X,, Am € L'(P) for any fixed m € (0, 00).

ii) (Indefinite mean) Suppose that E[XF] = co. Prove then that P(S, /n converges) = 0.
Hint: Use Proposition 1.10.6 to show that > ., 1{X, > n} = oo, a.s. Then, note that

Snt1  Sp . Xnta Sn

n+1 n n+1 n(n+1)"

1.11 (%) Ergodic theorems
The presentation of this subsection is based on [Dur95] and [Wal82].

Definition 1.11.1 Let (€2, F, P) be a probability space, and T' : Q@ — Q be a measurable
map.

» Arv. X :Q — R is said to be T-invariant if X o7 = X, a.s. A event A € F is said to
be T-invariant if 14 is T-invariant. The totality of T-invariant events is denoted by Z.

» The map 7T is said to be P-preserving if PoT~! = P, meaning that P(T~A) = P(A) for
all A e F.

» The map 7' is said to be P-ergodic if it is P-preserving and
Xel>®P), XoT=X, as. = X=FEXas. (1.82)

The main purpose of this subsection is to prove:

\
Theorem 1.11.2 (Birkhoff Ergodic Theorem) Let T' : Q@ — Q be P-preserving, X €
LY(P), and

n—1
Sn=ZXoTj, n > 1.
=0
Then, the following hold:

a) There exists a T-invariant r.v. X* such that

Sn XY as. (1.83)
n
b) Forp e [1,00], ||Sull, < nl|X||, for alln > 1, and || X*|, < || X]],-

\c) E[X*: Al =E[X : A] forall A€ I. In particular, if T is ergodic, then X* = EX, a.s.
/
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Remark: By part c) of Theorem 1.11.2, X* = F[X|Z] (cf. Proposition 4.1.3).

From Theorem 1.11.2; we easily deduce:

Corollary 1.11.3 (von Neumann Ergodic Theorem) Let T': Q — Q) be P-preserving,
X € LP(P) (p € [1,00)), Sy, n > 1 and X* be as in Theorem 1.11.2. Then,

Sn n—oo .
TR X, in LP(P). (1.84)
n

Proof: Suppose first that X € L>®(P). Since ||S,/n|lc < || X |00, (1.84) for p € [1, 00) follows
from the bounded convergence theorem. Note next that L>°(P) is dense in LP(P). Combinning
the observations made above, it is easy to prove that S, /n is a Cauchy sequence in LP(P),
via standard e/3-argument. Since the convergence S,,/n — X* takes place a.s. by Theorem
1.11.2, this proves (1.84). \("a?)/

Remark: Corollary 1.11.3 does not extend to the case of p = co. See the remark at the end
of Example 1.11.4.

Example 1.11.4 (Shift of an i.i.d.) Let (S,, B, un) = (5,B,u) (n € N) be copies of a
probability space and let (€2, F, P) be their product:

Q=[5 F=QR B P=)

neN neN neN
We define 7' : @ — Q by
Tw = (wjt+1)jen for w= (w;);en-
Then,
1) T is P-preserving,
since w and Tw have the same law P. Moreover
2) T is P-ergodic.
To see this suppose that X € L>(P) is T-invariant. Since T"w = (Wy+;)jeny and X o T" = X,
a.s., X is measurable by the o-algebra o[T,, N, where N is the totality of P-null sets and
T, < olwntj; j €N
Since n is arbitrary, X is measurable by the o-algebra [T, N, where T is the tail o-algebra:
T= ()T
n>1

The o-algebra T is trivial by Kolmogorov 0-1 law, hence so is o7, N]. This implies that
X =FX, as.

Finally, we apply Birkhoff ergodic theorem (Theorem 1.11.2) to give a proof of law of large num-
bers (Theorem 1.10.2). Let (S, B, u) = (R, B(R), i), where the measure p satisfies [ |z|du(z) <

oo. We write m = [ adu(z). For X(w) o, X(T"w) = wp, (n € N) are i.i.d. =~ p and

93



S, = Z;.:S w;. Moreover, X* = EX = m by 2). Thus, it follows from Birkhoff ergodic

theorem that )

w; X m, as. (1.85)

n

SN

<.
Il
o

Remark: By von Neumann ergodic theorem (Corollary 1.11.3), the convergence (1.85) takes
place in LP(P) if p € [1,00) and |z| € LP(u). However, this is no longer true for p = oo.
Indeed, take p = (d_1 4+ 61)/2. Then, m = 0 and ||S,,/n||oc =1 for all n > 1.

Example 1.11.5 (Rotation of the circle) Let = R/Z, which is identified with the interval
[0,1), F = B([0,1)) (the Borel o-algebra), P = the Lebesgue measure on [0, 1). For a € (0, 1),
we define T, : 2 — ) by:

T.0=0+a—[0+a.

Then,
1) T, is P-preserving.

To see this, we start by a simple observation. For a function f : {2 — R, its periodic extension
is defined as a unique function F': R — R, such that F|jo1) = f and F(0) = F(6+1) (V8§ € R).
Then, for f: Q — R, its periodic extention F, and 6 € [0,1),

2) F(Tuh) = F(Tob) = F(0+a— |0 +a]) = F(0 +a),
Therefore, for f € L'([0,1)),

/OlfoTa:/OlF(-+a)F('+:1)F/OlF:/Olf.

This implies 1).
We next prove that

3) T, is P-ergodic <= a & Q.

(=) Suppose that o = p/q (p,q € N, 1 < p < q). Take a bounded measurable function
f:[0,1) = R of period 1/¢, which is not a.s. constant. Then, f is T} -invariant, and hence
is T,-invariant, since T, = (77 /4)?-

(<) Suppose that f € L>(P) is T,-invariant. Then, F' = F(- + «), a.s. by 2). We look at the
Fourier coefficient F € (>(Z):

Fn) = /0 F(0) exp(—2ind)do.

On the other hand, let Fj, & F(-+ «). Then,

)

F(n) = Fu(n) = /0 1F(9—|—oa)exp(—27rin9)d9

F() exp(—27in( — a))df = exp(2rina) F(n).

I
S—
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Since a & Q, exp(2rina) # 1 for all n # 0, and hence F(n) = 0 for all n # 0. This implies
that F'is a.s. constant, and therefore f is a.s. constant.

As a consequence of Birkhoff ergodic theorem, we observe the equidistribution of the irrational
rotation in the following form. Let F' : R — R be measurable, of period 1, and fol |F| < o0.
Then, for o € R\Q, and for alomst all 6 € [0, 1),

1 n—1 1

=S F(0+ja)7H—°>°/ F.

n 4 0
Jj=0

See also Exercise 2.4.12.

We now turn to the proof of Theorem 1.11.2, which is based on ths following:

[
Lemma 1.11.6 For a € R, let

B;F:U{Sn>cm}, B;:U{Sn<cm}.

n>1 n>1
Then, for any A € T,
E[X—a:ANB>0>E[X —a:ANB,].

The above inequalities remain true if BE are replaced respectively by Botn = U;L:1 {S; > aj}
and B;, =", {8; < aj} (n € N\{0}).
N J
Proof: Since By, ~ Bi asn / oo, it is enough to consider the case of B, instead of Bi.
Then, by replacing X by X — a, we may assume that a = 0. Finally, we may concentrate
on the first inequality, since the second one follows from the first, by replacing X by —X.

Therefore, it is enough to prove that

1) E[X:ANBj,] >0, for n e N\{0}.

The inequality 1) is obvious for n = 1, since S; = X and hence Bf, = {X > 0}. For n > 2,
the inequality 1) is a consequnce of the following equality.

2) (Mn,1 9] T)+ = Mn — )(7 where Mn = maXj<;j<n S]’.
Indeed, 2) implies 1) as follows. Note that By, = {M, > 0} and hence Mplgs = M.
Therefore, ’

3) (My1 0T) > (Myoy 0 T) 1pye 2 (M, — X)1p, = M — X1y |

0,n

On the othr hand, E[(M,_,oT)" : A] = E[M, | : A], since A € Z. Hence,

n

3)
EX:ANBj,] > E[M; : Al - E[(My_10T)" : A

= E[M*:A]—E[M;{_l:A]EO.
Let us turn to the proof of 2). Since S; 0T = Sj1; — X (Vj > 1), we have
4) M, 10T = max S;oT = max S;j;; —X.

1<j<n—1 1<j<n—1
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Takig a trivial equality 0 = 57 — X into account, we obtain 2) as follows.

(M, 10T)" = (M, 10T)VO= (M, 10T)V (S —X)
Y max Sj— X =M, - X.
0<j<n—1
\("a™)/
Proof of Theorem 1.11.2: a) Let
X = lim S—, X = lim 5n
n—oo 1 n—oo N

Then,

1) XoT=X,and XoT = X.

Indeed, since S, o T = S,,;1 — X, we have,
SnoT_n—l—lSnH X

n  n n+l n

By taking the upper and the lower limits, we obtain 1).
On the other hand, we have

(X <X} = [ Aap, with A, ={X <a}n{B<X}.
a,BeQ
a<fp
Thus, to prove that the limit X* exists a.s., it is enough to show that
2) P(Ayp) =0if a < B.

By 1), we see that A, 3 € Z. Moreover, Ay s C By N By and hence A, 3 = Aqp N By =
Aap N By. Thus, by Lemma 1.11.6,

BP(Auap) < E[X 1 Aupl < aP(Aap),

which implies 2).

b) The first inequality follows from the triangle inequalty for LP-norm. The second inequality
follows from the first one via the Fatou’s lemma (Note that Fatou’s lemma is valid for L°°-
norm).

c) We next prove that E[X*: A] = E[X : A] for all A€ Z. Let

An,k:Aﬂ{X*e (E,kﬂ}}el
n n

n

We observe that
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Indeed, A, C B,:r/n and hence A, = A, ;N B,:T/n. Thus, by Lemma 1.11.6, we obtain 2).
It follows from 2) that

2)
EW%AMhﬁiimmggEMHMA+PM“X
n

n

Thus, by summing over k € Z,

EX": A< BX: A+~

Letting n — oo, we obtain E[X*: A] < E[X : A]. Then, by replacing X by —X,

E[X:Al = —E[(-X): A < —E[(—-X)": A] = E[X* : A].

This finishes the proof. \("a™)/

Exercise 1.11.1 Let 2 be a finite set with cardinality ¢ > 2, P = % Y weq 0z and T': Q2 —
be a bijection. i) Verify that T is P-preserving. ii) For each x € 2, let p(z) be the minimal
p € N such that TPz € {zj}ﬁ;é. Then, verify that TP®x = . iii) Prove that the following
conditions a)—c) are equivalent: a) Vz € Q, p(z) = ¢. b) Jzg € Q, p(xy) = q. ¢) T is ergodic.
iv) Let f: Q — R and = € Q be arbitrary. Then, verify by direct computation the following
special case of Birkhoff ergodic theorem.

1 n—1 1 p(z)—1
) n—>oo y
=3 f(T2) " —— F(T7z).
n 7=0 ( ) 7=0
log2 JA 1+:)3

Exercise 1.11.2 Let Q = (0,1), P(A) = (AeB(Q),and Tz =1 — |1] (z € Q).
i) Verify that T is P-preserving. ii) It is known that T is P-ergodic [Bil95, p. 322]
this, use Theorem 1.11.2 to show that for any & > 1,

n—1
1 4 n—oo 1 1 1
— E H{|1/T’x| =k} — —— (1 1+—-) -1 1+ — P(dx)-

Remark For z € (0,1)\Q, the numbers a,(x) = [1/T"mj ( > 1) give the digits in continued-

Assuming

fraction representation of  in the sense that F'(ay(z), . ( )) =3 x, where
Flai(x), ..., an(2)) = m
ag(z)+
1
Ap_o(T) +
2( ) an71<x> + anl(x)

cf. [Bil95, pp.319-320]. Therefore, the limit considered in ii) can be interpreted as the asymp-
totic frequency with which the number k appears in the continued-fraction representation of
x.
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2 Characteristic functions

2.1 Definitions and Elementary Properties

Definition 2.1.1 (Fourier transform)

» For a Borel signed measure p on R?, the Fourier transform of u is a function 7 : R* — C
defined by

=)

0) = /exp (10 - ) du(zx). (2.1)

Example 2.1.2 a) (Fourier transform of L'-functions) Suppose that a signed measure
w1 is of the form:
du(z) = f(x)dz, fe L'Y(R%).

Then,
76) = 7(6) / exp (10 4) f(o)d (2.2)

Thus, (2.1) is given by the classical Fourier transform f of the L'-function f.

b) (Fourier series of (!-series) Suppose that a set S C R? is countable, (c,).cs € ¢*(S),
and that a signed measure p is of the form:

= Z Cy0y.

Then,
i(0) =3 coexpli6 - x). (2.3)

z€eS

If S =79 (2.1) is given by the classical Fourier series of a sequence in ¢*(Z%).

The following proposition states that a finite measure is uniquely characterized by its
Fourier transform:

Proposition 2.1.3 (Injectivity of the Fourier transform) For a Borel signed measure
w on R4,
p=0 <= () =0 for all § € R%.

We will postpone the proof of this proposition until section 2.4.
Let (2, F, P) be a probability space in what follows.

[
Proposition 2.1.4 (Characteristic function) For u € P(R?) and a r.v. X : Q — R4,

the following are equivalent:

a) Eexp(if - X) = 1(0) for all 0 € R%;
b) X =~ pu.

» The expectation on the left-hand side of a) above is called the characteristic function
(ch.f. for short) of X.
\ J

Proof: Let v = P(X € -). Then,
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1) Fexp (i - X) / exp(if - 2)dv(z) 2 5(0).
Therefore N
a) b p=p PRI, ).

Remark: By Proposition 2.1.4,

the ch.f. of a r.v. = the Fourier transform of its law.

Corollary 2.1.5 (Criterion of the independence) Let X; : Q — R% (j=1,...n) be
r.v.’s. Then, the following are equivalent:

a) £ Hexp(iﬁj : Xj)] = HEeXp(in - X;) forall0; e R% (j=1,...,n).

Jj=1 J=1

b) {X;}}_, are independent.

J
Proof: Let d =dy + ... + d,,, 0; € R% and pu; = P(X; € -) € P(R%) (1 < j < n). We write:
0=(0,)"_ R, X =(X;)"_: Q=R p=e_u €PRY.
Then,
1) exp(if - X) = exp ( ZQ X; ) = Hexp(ié’j - X;).
j=1
Therefore,
2) FEexp(if - X) Yg Hexp(iﬁj . Xj)] ,
j=1

and

)

u(0) 2.1) /d exp(if - x)du(x /d Hexp 10, - xj)dp (1) - - - dpin (zy,)
R R
Fubini - .
3) = H/d exp(if; - ;) dp;(x;)
j=1"87

\ J=1

Therefore,
a) — RHS 2)=RHS 3) 2% LHS 2)=LHS 3) "2 > x oy
Propogit_i)r: 1.6.1 b)
\("0™)/
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Exercise 2.1.1 Let u be a Borel signed measure on R, and |u| be its total variation. Prove
that

0)] < 1R, [70) @) < [ expli(o =0 - 2) = 1l
for 6,0’ € RY. In particular, 7i is bounded and uniformly continuous.

Exercise 2.1.2 Let X = (X,)*_, be an R* valued r.v. Prove that the following conditions
are equivalent. (a) UX ~ X for all U € O, where Oy denotes the totality of k x k real
orthogonal matrices. (b) Eexp(if - X) = E exp(i|0|X,) for all § € R*.

Exercise 2.1.3 Let X be an R* valued r.v. which satisfies the conditions stated in Exercise
2.1.2. Prove then that AX ~ BX for d x k matirices A and B such that AA* = BB*. Hint: If
AA* = BB*, then, |A*0| = |B*0| for all §# € R?. Combine this observation with Exercise 2.1.2.

2.2 Basic Examples

Example 2.2.1 (ch.f. of binomial and Poisson r.v.’s) Let 4 € P(N) and X : Q@ — N be
ar.v. with X = u. Recall that we have defined the generating function by

Gl s) <

Es* =) pun)s", s€C, |s| <1,
n=0
where p(n) = u({n}) (Definition 1.7.1). By plugging s = exp(if) in the above expression, we
see that
() = Eexp(ifX) = G(u; exp(if)). (2.4)
Let p,, be (n,p)-binomial distribution, and 7. be ¢-Poisson distribution. Then, we see from
(1.61), (1.66) and (2.4) that

finp(0) = G(pnpiexp(if)) = (pexp(if) +1 —p)", (2.5)
me(0) = G(me; exp(if)) = exp(c(exp(if) — 1)). (2.6)

Example 2.2.2 (ch.f. of a Uniform r.v.) Suppose that a r.v. U is uniformly distributed
on an interval (a,b) (cf. (1.16)). Then,

exp(ifb) — exp(ifa)

E i0-U) = 2.

exp(if - U) =)0 (2.7)

Proof: Since U has the density: u(z) = (b — a) " '1(,4)(x), we have that

b
Eexp(if - U) D (b — a)_l/ exp(ifz)dz = RHS (2.7).
\("a")/
Example 2.2.3 (ch.f. of N(0,1;)) Let X be an Ri-valued r.v. ~ N(0,1;). We will show
that

Eexp(if - X) = exp (—1[0%) . (2.8)

Since X has the density : h(x) o (27m) =42 exp (—@), we have that

Eexp(if - X) & / exp(if - x)h(x)dx.
R4
Let us prove that
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1) / exp(20 - x)h(z)dz = exp (32°[6]*), VO € R?, Vz € C
Rd

and hence (by setting z = i) that (2.8) holds. Note first that both hand sides of 1) are
holomorphic in z. Therefore, by the unicity theorem, it is enough to prove the equality for all
z =1t € R. Note that

t0 -z — x> = 12)0)* — Lz —t0)?,

and therefore,
2) exp(t0 - x)h(x) = exp(5t20]*)h(x — t6).
Thus,
/Rd exp (t0 - x) h(x)dx 2 exp (3t°]0]%) /Rd h(z — t0)dx = exp (3t°|0]%),

'

=1

which implies 1). See Exercise 2.3.3 for an alternative proof. \("e™)/

Example 2.2.4 (ch.f. of N(m,V)) For d € N\{0}, we denote by S; the totality of sym-
metric, non-negative definite d x d real matrices. Let m € R? and V € 8] in what follows. In
Example 1.2.4, we have defined multi-dimensional Gaussian distribution N(m, V') when V is
strictly positive definite. We now generalize the definition to the case where V' is non-negative
definite, but not necessarily strictly positive definite.

Let k € N\{0}. We take a d x k matrix A such that V' = AA*. See Proposition 8.2.4 for
a characterization of such A for a given V. Let Y be an R*-valued r.v. ~ N(0, I;). Then, we
define N(m, V') to be the law of the following r.v.

X m4 Ay, (2.9)

We will prove that:
Eexp(if - X) =exp (i -m—16-V0), 0 € R (2.10)

This, together with Proposition 2.1.4, shows that the law N(m, V) is uniquely determined by
m and V', without depending on the choice of A (See also Exercise 2.1.3). Note that:

1) 0- X 0. mtr0-AY =0-m+ A0V,
2) A0 = A0 - A0 = 0- AA"0 =0 V0.

We use these to see (2.10) as follows:

Eexp(if - X) y exp (if - m) Eexp(iA*60 - Y)
2

D exp (i0-m — 1A%02) 2 exp (0 - m — 10-V6).

&
=

We will next use (2.10) to show the following. Let X; : @ — R? (j = 1,2) be independent
r.v.’s such that X; ~ N(m;,V;), where m; € R and V; € §). Then,
XdﬁleqLngN(m,V), where m =mq +mo, V =V 4+ V. (2.11)
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We have for any 6 € R? that

(1.53)

Eexp(if - X) HEexp i0 - X;)

7j=1

2
S T exp (18 m; — 10+ V36) = exp (i0-m — 36 V).

j=1
This implies (2.11) via Proposition 2.1.4. \("e?)/
Example 2.2.5 (ch.f. of a Cauchy r.v.: dimension one) Suppose that an R-valued r.v.
Y has (¢)-Cauchy distribution: ¥ a £ . Then,

Eexp(ifY) = exp(—c|d|), 0 € R. (2.12)

Let ge(x) — e*;\:d

~ (g oo —c\x|+i9xd 00 e—(c—i@)xd 00 e—(c+i6)wd
gc()—/—x—/o 5 :B—i—/o 5, 4%

1 1
= — = . 2.1
2c (0—19 c+19) 2+ 02 (2.13)
Thus,
: 1 [
exp(—clf|]) = 2cg.(0) B30 9 . 2—/ exp(—ifx)g.(z)dx
™ —00
213) ¢ [ exp(—ifz) ¢ [ exp(ifx) )
2] e = peaem)
\("a")/

Remark (Relevance of (2.13) to functional analysis) We see from (2.13) that ffreQ = gAC(Q)fA(Q)
for f € L*(R). By the Fourier inversion, this implies that

(@ =8 (@) = [ g.la - )W
R
where Af = f” with the domain:
{f € L*(R); f and f’ are absolute continuous, f” € L*(R) }.

Exercise 2.2.1 Let Uy, U, be i.i.d. with uniform distribution on (—1,1). (i) Show that
Ut  f(z)dz, where f(z) = o (1—|z|)* and that f(6) = Sme/gﬂ (ii) Show that 5= [ f=
%fis the density of Polya’s distribution. Hint: (2.37).

Exercise 2.2.2 Let X, Xy, .. be iid such that P(X; = +1) = 1/2. Prove the following. (i)
) 6

Hcosz—n for 6 € R.

n=1

sin 9

vy Zn>1 o is uniformly distributed on [—1,1]. (ii)
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Exercise 2.2.3 Let V' be a symmetric, non-negative definite d x d real matrix with eigenvalues
(Ma}é_, and let X : Q@ — R? be ar.v. ~ N(0,V). Prove then that |X[> ~ 3¢ \|Yal?,
where Y = (Y,)4_, = N(0,1;). Hint Let D = (v/Aa0as)% 5—; and let U be an orthogonal
matrix such that V = UD?U*. Then, X ~ UDY .

Exercise 2.2.4 (Stability of Gaussian distribution) Let X;, X, be R%-valued independent
r.v.’s such that X; ~ N(0,V;), cf. (1.24) and A;, Ay be d x d matrices. Prove then that

X A X, + 4,X, ~ N(0,V), where V = 4V, A% + Ay V5 Al

Hint: Compute Fexp(if - X) and use Proposition 2.1.3.

Exercise 2.2.5 Let X be a mean-zero R%valued r.v. Prove then that X is a Gaussian r.v. if
and only if X - 6 is a Gaussian r.v. for any § € R%. Hint: (2.10), Proposition 2.1.3.

Exercise 2.2.6 Suppose that X = (X,)¢_, is a mean-zero R%valued Gaussian r.v. Prove
then that coordinates {X,}2_, are independent if and only if E[X,X3] = 0 for o # 3. This
shows in particular that the independence for r.v.’s {X,}2_, above follows from the pairwise
independence. Hint: (2.10), Corollary 2.1.5.

Exercise 2.2.7 () Suppose that X is a real r.v. &~ 2 cosh(z/c)"'dz (¢ > 0) (cf. Exercise
1.2.16). (i) Show that Fexp(i#X) = cosh(cmf/2)~! (V6 € R). Hint: One can use residue
theorem. (ii) Noting that z € C\ (i + WlZ) + (cosh z)~! is holomorhic, we write its Taylor
expansion around the origin as (coshz)™ = 77 (=1)"E2?%/(2k)! (|z| < 7/2), where the
numbers E}’s are called Euler numbers. Then prove for k € N that E[X?*] = (cr/2)?*E},, and
deduce therefrom the following celebrated formula.

o n ’7T2k+1

=0 2n—i— 2k+1 T Ek22k+3'

n

Exercise 2.2.8 (%) Suppose that X = X;+X,, where X; and X, areiid. ~ 2 cosh(z/c) " dx
(¢ > 0). (i) Show that Eexp(i@X) = cosh(emf/2)72 (V0 € R). Hint: Exercise 2.2.7 (i).
(i) Show that X ~ Br=f—de. (iii) Show that E[|X[*?] = 55T (s) Y02 (2n + 1)~
for s € (1,00). (iii) Noting that z € C\ (%i+ miZ) +— tanhz is holomorhic, we write its
Taylor expansion around the origin as tanhz = Y 7o | 22%(22F — 1)(—1)" "1 By2?*=1/(2k)! (]z| <
7/2), where the numbers By’s are called Bernoulli numbers. Then prove for k € N\{0} that
E[X?2 = 2(2% — 1) By(em)?*72 and deduce therefrom the following celebrated formula.

i (22k 1)Bk 2k
(2n +1)2 2 (k)

n=0

exp(ifz)

o to give an al-

Exercise 2.2.9 Apply the residue theorem to a melomorphic function
ternative proof of (2.12).

Exercise 2.2.10 (Stability of Cauchy distribution) (i) Suppose that Y; (j = 1,2) has
(¢;)-Cauchy distribution and that ¥; and Y5 are independent. Prove then that Y; + Y5 has
(¢1+ ¢2)-Cauchy distribution. (ii) Let S, = Y1 +...+Y,,, where Y}, Y5, ... are independent r.v.’s
with (¢)-Cauchy distribution. Prove then that S,,/n =~ Y; for all n > 1. This shows that S,,/n
does not converge to a constant, even weakly (cf. Theorem 1.10.2).
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2.3 (%) Further Examples

Example 2.3.1 (ch.f. of a Gamma r.v.) Let X be a real r.v. such that X ~ ~.,. We will
show that

2\ —a/2 9
Vea(l) = (1 + ?) exp (iaArctan —) . (2.14)

c
To prove this, we go thruough a little of complex analysis. For z € C\{0}, we define Arg z €
(—m, 7] (argument of z) by
1) z = |z] exp(iArg 2),
and Logz € C by
Log z = log|z| + iArg z.

By definition, Arg z is the angle, signed counter-clockwise, from the positive real axis to the
vector representing z.

Finally we set:
2® = exp (sLog z), for z € C\{0} and s € C.

It is well-known that Log z is holomorphic in z € C\(—o0, 0], and hence so is z°. Note also
that

2) 2° = exp (sLog z) = exp (slog |z| + isArg z) = |z|" exp(isArg z).
We first show that

3) Eexp(—zX) = (1 + E>_a for any z € C with Rez > —c.
c

To prove 3), note that both hand-sides are holomorphic in z for Re z > —c. Therefore, by the
unicity theorem, it is enough to prove the equality for all z =t € (—c¢, 00). Then,

Eexp(—tX) (127) ﬁ/ xa—le—(t-‘rC)wdx
0
a=yftre) (1 N[ t\"
& dy=(1+2) .
r<a><t+c> / v (*o
—_—

=I'(a)

This proves 3).
Finally, we use 3) to derive (2.14). For 6 € R,
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i0 92 1/2 i 9
4) ‘1 g (1 + —2) , Arg (1 — 1—) = —Arctan —.
c c c c
Therefore,
Vea(O) 2 (1 — ﬁ) 21— 10 exp (—iaArg (1 - ﬁ))
c c c

=

62\ 0
(1 + —2) exp (iaArctan —) .
c c

Example 2.3.2 (Stieltjes’ counterexample to the moment problem) We consider the
following question. Suppose that a function f € C(]0,00)) satisfies

/ t"|f(t)|dt < oo, and / t"f(t)dt =0 for all n € N.

0 0
Then f = 07 Stieltjes gave the following counterexample to this question (1894):
f(t) o exp(—t'/*) sin t1/4.

We can use (2.14) with c =1, a = 4n+ 4 (n € N), § = 1 to verify that the above function is
indeed a counterexample. Let n € N. Since Arctan 1 = w/4, we have

1) exp(4(n + 1)iArctan 1) = exp((n + 1)7i) = (—1)".

Therefore, we see that

1 o ) L (214), 1) _
2) ———— 8 exp(— dr = Panra(l) =7 (=12 e R
) fT [ el +inde = ) 2 -
Thus, taking the imaginary part, we have
> T A .
02 / 248 exp(—a) sin adz "= 1 / t" exp(—t'/*) sin t'/4dt.
0 0

Example 2.3.3 (Euler’s complementary formula for the Gamma function) We will
use (2.14) to prove the following identity due to FEuler:

1 _ sin(ma)
F(a)I'(1 — a) T

€ (0,1). (2.15)

For a = 1/2, the above identity follows from I'(1/2) = /7. Moreover, the identity is invariant
under the replacement of a by 1 — a. Thus, to prove identity, we may and will assume that

a < 1/2. Let f,(z) = ﬁx“_le_””lmo (the density of v(1,a)). Note that fii, € L*(R) for

a < 1/2. Thus, we have by the Plancherel formula that:

1) /f1+a Vfrala :—/f1+a \Fra(—6)d6

Since
1
14 a)l'(1—a)

—2x
€ 1{E>07

f1+a('r)f17a(x) =

we see that
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1
oT(1+a)l(1—a)

2) / " frra(@) foala)da =

On the other hand,

—_— . 1
f1aa(0) f1—a(—0) @14 1T o exp(i(1 + a)Arctan § — i(1 — a)Arctan 0)
= (Arctan 6) exp(2iaArctan 6).

Thus,

/\ o B w/2

[ @ oe =t [ expeian
3) R —7/2
exp(iar) — exp(—ira)  sin(ma)
B 2ia a
By 1)-3), we see that
1 _ sin(ma)

2r(1+a)l(1—a)  27ma ’
which is equivalent to (2.15), since I'(1 + a) = al'(a).

Before Example 2.3.5, we prepare the following Lemma.

\
Lemma 2.3.4 ForaeR, ¢c,A >0,

/0  exp (— 5 3 ) di = /0 e (<5 - ) e
= 2N ) Ka(ch), (2.16)

where K, stands for the Macdonald’s function, defined by (2.25). In particular, for a =
n + % (n € NU{—1}), the above integral takes the following more explicit form.

V2re MDA (1/eX)e, (2.17)

where p_1(x) = 1 and p,(x) = 3", ! (£)" forn > 0.

r=0 rl(n—r)!

\_ /
Proof: The first equality is easily obtained by the change of variable ¢ — 1/¢. On the other
hand, by the change of integral variable t = (A/c)e”, we have

/ t* Lexp (—% - ’;—:) dt = (/\/c)“/ exp(—cA cosh x) exp(ax)dzx.
0 —0o0
Therefore, we obtain (2.16) and (2.17) from Lemma 2.3.8. which proves (3). \("o™)/

Example 2.3.5 Le a,¢ > 0, and X ~ 7(¢,a). Then, the Laplace transform of 1/X is com-
puted as:
~2(eN)?

Bexp(—2) = o) K (2VeN), A >0, (2.18)
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where K, stands for the Macdonald’s function, defined by (2.25). In particular for a = 1/2,
RHS of (2.18) equals exp(—2v/cA). This result is used later, e.g., Example 2.3.6 and (6.50).
We have:

py c’ > a—1 A
Eexp(—%) = I (@) /0 t* exp (—ct — ) dt
By Lemma 2.3.4, the above integral equals the RHS of (2.18). \("a™)/

Example 2.3.6 (ch.f. of a Cauchy r.v.: higher dimensions) With ¢ > 0 and a > 0 fixed,
we consider pi., € P(R?) defined as follows.

. *I(a+ %) / dz B < BRY
c,a = /2 d’ .
m?I'(a) Jp (c+ [z2)? T 2

Then, p 1 is the (¢)-Cauchy distribution. We will show that
&y
2 2)*
/ exp(iz - 0)dpeq(z) = MI@@WU 0 € RY, (2.19)
R4 ’ [(a)

where K, stands for the Macdonald’s function, defined by (2.25). In particular,

/ exp(iv - 0)dp, 1 (z) = exp(—cld]), 0 € R?
Rd 2

Proof: We will use (1.69) to prove this. Let X, Xy, ..., X4, Y be independent r.v.’s with
X;~N(0,1),1<j<d(cf (1.24)) and Y = 7e2j04 ( cf. (1.27)). Let us write X = (Xj)7_,
for simplicity. Then,

(1.69

/ exp(iz - O)dpcq(x) = ) Eexp(if - YV2X) = / Eexp(if -y~ *X)dy 2 W)
Ré 0 o

(210) [ 0] (218) 2(cl0]/2)"
= - 2 = — 2K )
/0 eXp ( 2y df)/%ya(y) F(&) a(C'Ql)

Remark: An alternative proof of (2.19) for d = 3 can be given by applying the inversion
formula (2.37) to F,.»(0) = m (Exercise 2.3.2) as in Example 2.2.5.

Before Example 2.3.7, we need some preparation. For v € (—1,00), we introduce the
following power series.

1
F(v+n+1)n!

e 2n
F,(z2) = ch <f) , z € C, where ¢, =

; (2.20)

n=0

See (2.23)—(2.25) below for the relation of this power series to the Bessel functions. The series
(2.20) converges for all z € C, since

ot ! )
o (WHn+1)(n+1) '
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Example 2.3.7 (a) For z € C, v € (—1,00), and n € N,

2.d\" ) 2d\" .
Fy+n(Z) = (;E) FV(Z>, Fl,+n<lZ) = (_;E> FV<IZ). (221)
In particular, settig v = —1/2 in (2.21),
1 /2d\" ) 1 2.d\"
Fn_l/Q(Z) = ﬁ (;E) COShZ, Fn_l/z(lZ) = ﬁ (_ZE) COS . (222)

(b) For z € C and v € (—1/2,00),

™ 1 1
/ exp(z cos 0) sin® 0df = / exp(2t)(1 — t*)""2dt = /al(v + 1)F, (2).
0 —

1

(c) For an integer d > 2, z € C, and z € R,
/ exp(zx - u)dog(u) = QWd/zF%71(|a:|z).
Sd—1

where o, stands for the surface measure on S% 1.

Proof: (a) It is easy to see (2.21) for n = 1, and hence they follow by induction. To see (2.22),
it is enough to show that F_;y(2) = \% coshz and F_y5(iz) = \/LE cos z. To do so, note first
that

(1) T (n+ 1) = 2T

22nn)
Then,
2) 1 0) 22np)| _ 22n
F'(n+H)nl  Va@2n)n!  /r(2n)V
Therefore,
© 2n . 92n 2n
Fop(z) = HZ_OW (g) s Lﬂ' nz—o (gn)' (§> - %COShZ’

Hence F_y)5(iz) = \/%? COS 2.
(b) The first equality follows from the change of integral variable ¢ = cos@. To prove the
second equality, we note that

@ [ -yt = BINE L0+

22rpl T'(v4+n+1)

Indeed, by the change of integral variable ¢ = /s, we have

' 2 2\ w2 ' 2 2\ v—1 bl -1
/t"(l—t)” 2dt = Q/t"(l—t)” 2dt:/s” 2(1—s)" 2dt
— 0 0

1
L(n+ HT(v+32)
— Bn4lu+ly— 2 2
(n+3.v+3) T +nt1)
2n)ly7T Tv+3)
22! T(v+n+1)

—
—
~—

68



1
Since (1 — #?)""2 is an even function, we have

— [ I — 2 2\ w2
exp(tz)(1 —t%)" 2dt = / (1 — )" 2dt
;/1 ; 2n)! J 4
(_) \/_F 1 o0 1 z 2n
- VT (”+5);P(u+n+1)n! (5) '

This proves the second equality.

d . . . :
(c) Let Ay = 04(S97") =272 /T (). Since o, is invariant under rotation, we may assume that
x = |z|e;. Then,

/ oxp(22 - u)dog(u) = / exp(|z[zu1)doq(u) = Adl/ exp( ||z cos @) sin?~2 0d6
Sa-1 Sd—1 0
= AVl (5 1) Fy_y(jo]2) = 202 Fy_y(|al2).

\("a™)/

Complement (Bessel functions): We have defined the power series (2.20) for v € (—1, 00).
We now extend its definition for v € R. To do so, recall that the Gamma function I'(z) =
J, ot exp(—t)dt (z € C, Rez > 0) has a unique holomorphic extension on C\(—N), which
we denote by the same notation I'. Recall also that the extension I' satisfies the following
properties.
(a) T" has no zero’s;
(b) I'(2) » < as z — —n (Vn € N);
(c) T'(z+1) = 2I'(2) (Vz € C\(—N)).
For n € N, we set ['(—n) = 0o and 1/I'(—n) = 0, which is justified by the property (b) above.
Using the extended Gamma function introduced now, and via the formula (2.20), we extend
the definition of the power series F,(z) (z € C) for all v € C.

If v g {—m; m e N\{0}}, then ¢, # 0 (Vn € N). On the other hand, if v = —m for some
m € N\{0}, then ¢g = ... = ¢,—1 = 0 and ¢, # 0 (Vn > m). In both cases, ¢, # 0 for all
sufficiently large n’s and

Cn+1 . 1 n—00 0
cn  (WEn+1D(n+1)

Therefore, the series (2.20) converges for all z € C. Moreover, the recursion (2.21) extends to
all v € R and z € C.
For v € R and z € (0,00), we introduce,

I (z) = (g)yFy(iz):i(—l)”cn (g)”“", (2.23)

3
o

2\ V > 2\ v+2n
L(z) = (5) E(z) =3 e (§> , (2.24)
n=0
oml(2) = L(2) . L :
K,(z) = DI — if v € C\Z and K,(z) = }EIEI)I\%Z K,(z) ifneZ. (2.25)

The function J, is called the Bessel function. The function I, (resp. K,) is called respectively,
the modified Bessel function of the first kind (resp. Macdolald’s function). Note that we now
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have the recursions (2.21) for all v € C and z € C\(—o00,0]. They imply the raising operator

relations. o (_ @, Z) 2, Ln(s) = ( d% B z) L(2). (2.26)

dz =z z

We also note the lowering operator relations.

T, 1(2) = <dilz + g) T(2), I, 1(z) = (dilz + g) L(2). (2.27)

Finally, by (2.25), (2.26) and (2.27),

d v d v
K,/+1(Z) = (—% —|— ;) KV(Z) Kl,,l(Z) = — (E —|— ;) KZ,(Z). (228)
It follows from (2.26)—(2.28) that both [,(z) and K,(z) solve the following differntial equation.
d? d v
- 1= =0. 2.2
<dz2 + 22> u(z) =0 (2.29)

In fact, I,(z) and K,(z) are independent solution to (2.29), as can be seen from their assymp-
totic behavior as z — oo, cf. [Leb72, p.123, (5.11.8), (5.11.9)].

L(2) ~ (i)m e, K(2) ~ (o )1/2 e, (2.30)

2z E

We also note the following formulas for n € N, which follow from (2.22).

1(z) = (%)mzn—% (—%dii)ncosz, (2.31)
(z) = (2)1/22"—% (ldi)ncoshz. (2.32)

™ Zaz

We now prove the following representation formulas for K, (z).

Lemma 2.3.8 | oo
K,(z)= —/ exp(—zcoshx — va)dz. (2.33)

o0

Moreover, for n € N,

z

K,1(2) = (%)1/2 e “Pn (1> : (2.34)

where p_i(z) =1 and p,(z) = > ", TSZ:?;, (£)" forn > 0.
N J
Proof: Let us donote the integral on the right-hand side of (2.33) by u,(z). To prove (2.33),
it is enough to verify that
1/2
(1) u, solves (2.29). (2) uy(z) ~ (;) e .
z
To verify (1), it is is enough to show the following two equations separetely.

70



z
We have,
Tu() = 5 [ explozcoshin) coshrexp(-va)de = Suui(2) + g (2
Tun(z) = 3 _Ooexp zcoshz) coshaexp(—va)de = u,—1(2) + Fu4(2),
1 [1 d
gu,,(z) = —5/_00;eXp(—zcoshx)%(exp(—l/az))da:
11 * 1 [ i
= -3 [—exp(—zcoshx)exp(—ux)] —5/ exp(—z cosh x) sinh z exp(—vz)dx
z — 0 —0o0
1 1
= —u-1(2) + Susa(2),

from which (3) follow. Since coshaz > 1 + ‘%2, we have

e~® [ 2x? N\ 1/2 V2
uy(z) < 5 / exp (—? — l/x) dex =e™~* <2_z> exp (§>

o0

™

= (D) aroe),

which gives the upper bound for (2). As for the lower bound, we note that cosh z < 1+§—|—C’54,
for |z| < e. Therefore,

o0

1 [~ 1
u,(z) = —/ exp(—z cosh x)ch (yx)dx2§/ exp(—z cosh x)dx

2 —00 —00

s 4 € 2 DV 4 vz 2
> exp(—z — Cze*) / exp (_ﬂ) dp — exp(—z — Cze*) / exp (_x_) "
2 . 2 2z s 2

T\/2 2 ez
> exp(—z — Cze?) (<§> — 5P <—7)) .

1/3

Choosing ¢ = z7"°, we get the desired lower bound.
For n = 0, (2.34) easily follows from (2.25) and (2.32). On the other hand, we see from
tedious, but straightforward computations that

o) (42 n ()

Suppose that (2.34) is valid for some n € N. Then, by (2.28), the induction hypothesis (IH),
and (4),

4 —(n+2)€—zpn+1(1/z)‘
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Exercise 2.3.1 Let a > 0 and faT-H<I> = WSU T e 1,00 (the density of (1, a+1))’ Iy =

Jo© fea (@)%de, Jo = [ (14 |2[2)~"F dz. Prove then the following. (i) I, = F(f (ii)
Jo = F(a—)i\g Hint: Exercise 1.2.13. (iii) [, = 5=.J,. Hint: Plancherel identity. (iv)

(a) = Q%F(g)r (a‘;) a>0.

Exercise 2.3.2 (i) Let f : [0,00) — R be a Borel function such that [ 72| f(r)|dr < co and
that F(x) = f(|z]), * € R3. Prove then that F' € L'(R?) and that for § € R3\{0},

'S

7o) :% Ooorf(r)sin(r|9]) _ %Im </Oo7’f(r) exp(irw\)dr).

(ii) Use (i) and Example 2.3.1 to show that

— C . |9‘ 1 a—2 —clz|
Fc,a(e) = W S1n (aArctan ?) for FC7G(ZL') = m| | , a,c> 0.
In particular, f;(@) = % and fc\g(ﬁ) = %. F., is a constant x the Green function,

while }/70\2 is a constant x the density of the Cauchy distribution, cf. the remark after Example
2.3.6.

Exercise 2.3.3 Give an alternative proof of (2.8) via polar coordiate transform and Example
2.3.7 (¢).
2.4 Weak Convergence

The following fact has an important application to probability theory.
f

Proposition 2.4.1 (Weak convergence of measures) Suppose that (i, )n>0 are Borel
finite measures on R%. Then the following are equivalent:

a) in(0) =3 [1(0) for all § € R? (cf. (2.1)).
b) For all f € C,(RY),

n

i = | fdno. (2.35)

» The sequence (fin)n>1 1S said to converge weakly to ug if one of (thus, both) a)-b)
holds. We will henceforth denote this convergence by

Hn = Ho. (2.36)

Here, the measure pg is called the weak limit of the sequence (fi,)n>1-
\_ _ )
Remark (i) For a sequence (fi,),>1 of Borel finite measures on R?, its weak limit is unique.
Indeed, if p and v are both weak limits, it follows from (2.35) that fRd fdu = fRd fdv, for
Vf € Cp(R%), which implies that 4 = v by Lemma 1.3.2. (ii) See Theorem 9.1.1 for some
other equivalent conditions to a)-b) in Proposition 2.4.1.
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The proof of Proposition 2.4.1 will be presented at the end of this section, followed by the
proof of Proposition 2.1.3. We now look at a simple example to get familiar with the notion
of weak convergence.

Example 2.4.2 (Riemann sum) Let f € C([0,1]). Then, we know very well that

1) —Zf( )n /fduo,

where fi9 is the Lebesgue measure on [0, 1]. However, the proof of 1) usually depends on the
fact that

2) f is Riemann integrable.

Indeed, without resorting to 2), we would not even know the existence of the limit as n — oo
of the left-hand side of 1). On the other hand, as we see now, we can show 1) by Proposition
2.4.1, instead of 2)

Let o, = o Okm € P(R) for n € N\{0}, where 8, is a point mass at = € R. We will
show that

3) Hn L Ho,

or equivalently,

%Zf( )= [ ran = [ i

which proves 1). By Proposition 2.4.1, 3) is equivalent to
4) 1,(0) =5 [ip(6), for all # € R.

This can be seen as follows. We have

exp(i@)fl f 9 % 0
~ e ,
fio(0) { 1, if =0,

n—1 exp(if)—1 :
Z exp lk:Q %expl()i@T’ lf 6 g 27TTLZ,
1, if 0 € 27nZ.

Let 8 € R be arbitrary. Then, for n > %,

1 oexp(if) =1 o exp(if) —1
fin(9) = nexp (if/n) — 1 7 i6 = fio(®),

which proves 4).
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Proposition 2.4.3 (Weak convergence of r.v.’s) Forn =0,1,..., let X,, be R%-valued
r.v.’s and that X,, ~ pi,, € P(RY). Then, the following are equivalent:

a) Eexp(if - X,,) — Eexp(if - Xo) for all 6 € R

b) Hn l} Ho-

» The sequence (X,)n>1 is said to converge weakly (or converge in law) to Xy if
one (therefore all) of the above conditions is satisfied. We will henceforth denote this

convergence by
Xo - Xy or X, — po

Here, the r.v. Xy is called the weak limit (or limit in law) of the sequence (X,,)n>1.
\_ J
Proof:

Eexp(if - X)) = u,(0), n=0,1,...
Thus,

a) <= Jin(0) — fio(6), VO € R PE 2 ),

\("0")/
Example 2.4.4 Let (N.).~o be r.v.’s such that m.(k) o P(N.=k) =e°"/k! for all k € N

and ¢ > 0. We will prove the following two facts, of which the first is probabilistic, the second
purely analytic:

) N, —c
a

Ve
b) n! " V2mn (n/e)” (Stirling’s formula).
Proof: Both a) and b) are based on the following observation.

1) 7 (%) exp (—ivef) = exp (—%) .

To verify 1), note that

5 N(0,1), asc— oo.

2

0
exp(if) = 1410 — 5+ O(|0]*) as 6 — 0,
and hence that

2 0 =1 o O o1 fi 6 eR
) exp 176 = +%—%+ 3z ) a8 c—ooforany 6 €R.

Since 7.(0) 29 exp(c(exp(if) — 1)), we have

- (\%) exp (—iv/eh) = exp (c (exp (i\%) —1 —iic )

02 63 oo 92
exp (c (_Z + O (W))) — exp (—?) .

|22

This proves 1).
a) By 1), we have
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3) E exp (ie%) =7, (%) exp (—ivecf) = exp (—%) .

Recall that exp (—%) is the Fourier transform of N (0, 1) (Example 2.2.4). We see the desired

weak convergence from 3) and Proposition 2.4.3.
b) We will prove Stirling’s formula in the following equivalent form.

I

We have that
7o(0) =) exp(ikO)m.(k), 6€R

k>0

Multiplying exp(—inf)/(27) to both-hands sides of the above identity and integrating them
over § € [—m, ], we obtain

5) 7e(n) ! /7r 7.(0) exp(—inf)do.

:% B

. 2
Moreover, since 1 — cos > 2 |6] < 7, we have

e <%)‘ = exp (—c (1 — cos \%)) < exp <—27Ti;) , |0 < my/e

Finally, note that

6)

@(ﬁ)” — ﬁﬁn(n)i)\/_ﬁ Wﬁ(ﬁ)exp(—in@)d@

n! \e 2

L (0 (—iy/nb)do
= — T | —= | eXpl— n
2 —m/n \/ﬁ p

By 1), 6) and the dominated convergence theorem, we conclude that, as n — oo, the right-hand

side of 7) converges to
]. e 92 ].
— -5 )df = —.
27T/_ooexp< 2) \ 2T

This proves 4). \("a”)/

—Tr

7)

Example 2.4.5 (The Stirling’s formula and a certain weak convergence) Let X, and
Y, (a > 0) be r.v’s such that X, ~ v(1,a) and Y, =~ v(y/a,a). We will prove the following two
facts, of which the first is probabilistic, the second purely analytic:

X,—a
Vva
b) T'(a) “X° \/(2n/a) (a/e)” (Stirling’s formula).

a) ~Y, —va -+ N(0,1), asa— oo.

Proof: a) It is easy to verify that X,/\/a = Y,, and hence that (X, —a)/\/a = Y, — \/a. Let

1

fea(z) = Carz(; e~ “1{x > 0} (the density of vy(c, a), ¢,a > 0), and recall from Example 2.3.1
that
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7 i)~ 62\ /2 . 0
1) fea(@)=(1-2)" = (1 + C—2> exp (iaArctan 2) .

[

On the other hand,

n 2
2) —Log(l—z):Z%zz+%+0(|z|3), as 2 — 0.
n>1

Therefore,
[ Bexp(i6(Y, — Va)) = Faa(0) exp(—i0v/a)
D ( — \i/—%>_a exp(—ify/a)
= exp (—aLog ( = \‘/—%> — i@ﬁ)
exp (a (\‘/—9a - % +0 ((g—‘;)) — i&/ﬁ) X exp <—%) :

3)

|22

\

Recall that exp (—%) is the Fourier transform of N(0,1) (Example 2.2.4). We see from 3)

and Proposition 2.4.3 that Y, — v/a — N(0, 1).
b) Suppose that a > 2. We then see from 1) that f., € L'(R)NC(R) and f., € L'(R). Thus,
we have by the inversion formula (Lemma 2.4.6 below) that

1 [~
fealz) = 2—/ fea(0) exp(—ifx)df, Vz € R.
™ — 0o
In particular,

9 o () = LaVa = o [ T es-iovaas

We know from 3) that

5) Taa(®) exp(~i0v/a) =F exp (-5 ), V0 € R

2\% . . .
Moreover, (1 + %) is increasing in @ > 0 and hence for a > 2,

6)  [Taal®exp(-iova) 2 (1+ %)W <(1+2) erm.

We now conclude from 4),5),6) and DCT that

which is to be proved. \("a™)/

To prove Proposition 2.4.1, we will use:
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4 R N
Lemma 2.4.6 Suppose that f, f € L*(R%).

a) (Inversion formula) For a.e. z € R?,

~

f(z) = (2m)~¢ /Rd exp(—if - x) f(6)d6. (2.37)

b) (Plancherel’s formula) Suppose in addition that f is continuous. Then, (2.37) holds
for all x € R and f is bounded. Moreover, for any Borel signed measure j on R?,

[ tan=emt [ For-o)as (239)
\ J
Proof: a) We prepare
1) hyx f — fin LY(R%) as t — 0, where h,(z) = (27t) %2 exp(—|z|?/2t)

We have that
o f= @) < [ =) = @Iy = | M) = Vin) - )y
and hence
2 [ e = f@de < [ m@atdy where ) = [ 1= Viy) = f@ld.
We have for any y € R that
lini(s) =0 and 0 ay) <2 [ [f(@)lds
Thus, by (2) and the dominated convergence theorem,
ing [ koo f = Fl(a)do =

We set fY(z) = (277)_‘1]/‘"\(—1’) (z € RY). We will next show that:

3) f*he = (f R0, where hy(x) = (2mt)~ Y2 exp(—|z|?/2t) (z € RY, t > 0).
By (2.10),
4) hi' (0) = exp(—t[6]*/2).
Using (2.10) again, we see that h; = h}*Y. Therefore,
fxhi(z) = fxh)(z

= (27)” /f T —y dy/ exp(—if - y) hy (6)d6

=exp(—i0-z) exp(i(6-(z—y)))

PR (2m) / oxp(—if - ) (6)db / flz —y)exp(i(6 - (z —y)))dy

J/

—11(0)
= (f'n)Y(x).
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We see from (4) and the dominated convergence theorem that
lir%(fAhf)v(x) = f"(z) for all x € R
5

Combining this, (1) and (3), we arrive at f*Y = f, a.e., which is (2.37).

b) The right-hand side of (2.37) is bounded and continuous in x (Exercise 2.1.1). Thus, if f
is continuous, it follows from a) that (2.37) is valid for all € R?, which also implies that f is
bounded. Considering the positive and negative parts of the Jordan decomposition of y, it is
enough to prove (2.38), assuming that p is a positive Borel measure. Then,

[ ran =0 [ au@en [ expl=io-a)fen
Pt (9 ) /R d F(6)do / exp(—i@-x)d,u(xz

-~

=n(=9)

\("a™)/

Now, we prove the following lemma which includes Proposition 2.4.1. The lemma can also
be used in Exercise 2.4.11 and Exercise 2.4.12. To state the lemma, we introduce the following
notation. For an open subset G C R?, let

C.(G) = {fe€CRY; fhasa compact support in G},
C=(@) = C.(G)NC=(Q).

Lemma 2.4.7 Suppose that (j1,),>0 are Borel finite measures on R? such that jo(G€) = 0
for an open subset G C R (To prove Proposition 2.4.1, it is enogh to take G = R?). Then,
the following are equivalent:

a) 1n(0) =3 [(6) for all & € R%,

b) (2.35) holds for all f € C,(RY).

c) (2.35) holds for all f € C*(G) and lim p,(R?) < po(RY).
n—oo

N J
Proof: a) = c¢): By setting 6 = 0 in the assumption a), we have j,(R%) =% 11o(RY), hence
lim g, (RY) < p1o(RY). Let us prove that (2.35) holds for all f € C>°(R%) and therefore, for all
n—oo
f € C®(G). We have f € L'(RY) for f € C>(RY), which is a well-known properties of the
Fourier transform for the Schwartz space of rapidly decreasing functions (cf. [RS80, page 3,
Theorem IX.1]), so that the Plancherel formula (2.38) is available ®. On the other hand, we
have

1) sup |jin (—0)| < sup pu,(R?) = sup 11, (0) < oo.

n>1 n>1 n>1

9The availability of the Plancherel formula is the very reason for which we go through the space C>°(R?),
rather than working directly with the space Cy,(R?). In fact, f is not defined in general for f € Cp(RY).
Even for f € C.(R?), it is not true in general that fe L'(RY) (A counterexample for d = 1 is provided by
fl@) = (1 =log(1 = |z])) " L{jz<1})-
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Therefore, by the dominated convergence theorem (DCT),

(2.38) a),1),DCT

[ g, eyt [ om0 TR ry [ -0y /Rdfduo-

c) = b): We first verify that
2) any function f € C.(G) is uniformly approximated by an element of C°(G).

Indeed, let ¢.(z) = e % (x/e), ¢ > 0 where ¢ € C®(R?) is supported in the unit ball,
fRd (p - 1. Set

(f *p.)(a) = /Rd we(x —y)f(y)dy.

Then, it is standard to verify that f x ¢. € C°(G) for small enough ¢ and that

sup |(f * ¢.) (@) — f(2)] =3 0.

z€R4

This proves 1).

By 2), we may assume that (2.35) holds for all f € C.(G). Let K,,, m > 1 be an increasing
sequence of compact subsets in G such that G = |J,,~, K, and h,, € Co(G — [0, 1]) be such
that h,, =1 on K,,. Then, N

m—0o0

3) h — 1q.
Note also that for real sequences a,, and b,,,

4) m(an+b)<llman+llmb

n—o0 n—oo

Take f € Cy,(R?) with M = sup, | f(x)|. We then have by the dominated convergence theorem
(DCT) that

[ fana s+ 0@ = [ (£ 3o = [ (£+ Mg
R4 Rd G
D2 i [ (f 4+ M)hodie 2 lim lim [ (f + M) hydan
m— 00 Rd mM—00 N—00 R4
< tim [ (f4 M)dp € lim [ fdp+ M Tim 1, (RY)
n—oo JRd n—oo J R4
a)
< lim [ fdpn + Mpo(RY),
n—oo JRd
and hence that
5) fdpo < lim [ fdp,.
Rd n—oo JRd

By replacing f by —f in 5), we have
fipo = T [ f,
R4 n—o0 R4
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which, together with 5), proves the desired convergence.
b) = a): x — exp(if - ) belongs to Cy,(R?) for all § € R \("a™)/

Proof of Proposition 2.1.3: We only need to prove <=. Thus, we have to prove that
[F(Q) = /;:(9) forall e R = pu"=pu",

where p* are positive and negative parts of the Jordan decomposition of p. We consider
a sequence v, = pt (Vn > 1), which is constant in n. Then we have by assumption that
Un(0) = pt(0) = pu=(0) for all n € N and 6 € R?, and hence that
. ~ (vn i:“Jr) /I . -
lim 7, (0) "7 =" pt(0) = pm(6).
This implies by Proposition 2.4.1 that both u* are weak limits of the sequence i, and hence
put = p~ by the uniqueness of the weak limit (cf. Remark after Proposition 2.4.1).  \("u")/

Exercise 2.4.1 Let X, X|, X5, ... be R%valued r.v.’s. Prove then that the following conditions
are related as “a) or b) ? = ¢) = d) = e). a) X, =3 X, P-as. b) X, =% X in L?(P)
for some p > 1. ¢) X, =3 X in probability, i.e., P(|X, — X| > &) =3 0 for any ¢ > 0.
d) E|f(X,) — f(X)] =3 0if f: R* - R is bounded, uniformly continuous. e) X, =3 X
weakly.

Exercise 2.4.2 Show by an example that e) % d) in Exercise 2.4.1. Hint: X, = (=1)"X,
where P(X = +1) =1/2.

Exercise 2.4.3 Let X,Y, X, X5, ... be R%valued r.v.’s such that X, — X. Is it true in
general that X, +Y 5> X +Y ?

Exercise 2.4.4 Let X;, Xs,... be R? valued r.v.’s and ¢ € R%. Prove then that X,, — c in
probability if and only if X,, ~ c¢. Hint: X,, — ¢ in probability if and only if Ep(X,,) — 0,

where p(z) = H‘f”l;f'c‘.

Exercise 2.4.5 Let (X,,,Y,) be r.v.’s with values in R® x R%. Suppose that X,, and Y, are
independent for each n and that X,, — X and Y,, > Y. Prove then that (X,,Y,) — (X,Y),
and hence that F(X,,Y,) — F(X,Y) for any F € C(R% x R%).

Exercise 2.4.6 Let (X,,Y,) be r.v.’s with values in R x R%. Suppose that X,, — X and
Y, ~ ¢ (Here, we do not assume that X,, and Y, are independent for each n. Instead, we
assume that c is a constant vector in R%). Prove then that (X,,Y,) ~ (X, c), and hence that
F(X,,Y,) = F(X,c) for any F € C(R% x R%). Hint: It is enough to show that

lim Eexp(if - X,, +i6,-Y,) = Eexp(ify - X +i6, - ¢) for (61,0,) € R x R%,

n—oo

In doing so, uniform continuity of the map (z,y) — exp(if; - = + i6, - y) would help.

Exercise 2.4.7 Let X, X, X, ... Révalued r.v.’s. Suppose that X,, (n = 1,2,...) are mean-

zero Gaussian r.v.’s and that they converge weakly to X. Prove then that X is a mean-zero

Gaussian r.v. and that the covariance matrix V = (v,5)% =1 18 given by v, = lim E[XnaXngs).
’ n—00

Hint: Consider characteristic functions to see that limits v,5 (1 < a, 8 < n) exist. Prove then
that Eexp(if - X) = exp(—6-V6/2).
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Exercise 2.4.8 Let Fy(z) = >0 (Q)Qn, x>0 (cf. (2.20)). Referring to Example 2.4.4,

n=0 (n!)2 \2
prove the following. (i) Fo(z) = 252 [T |77 (6)[2d6 for z > 0. (ii) Fy(x) “~ 2L,

Exercise 2.4.9 Let X,Y],Y5, ... ber.v.s with X = 7., and Y,, = ., (n =1,2,.. cf. (1.27),
(1.33)). Prove then that nY, — cX. Hint: Let S, = X; + ... + X,, where X1, Xy, ... be i.i.d.
such that X, = v.1. Then, nY,, = #)gn by Example 1.7.5. Moreover, % — cX, P-a.s. by
Theorem 1.10.2.

Exercise 2.4.10 Let S, = X + ... + X,,, where (X,,),>1 are i.i.d. with Polya distributions
(Exercise 2.2.1). Prove then that S,,/n converges weakly to (1)-Cauchy distribution as n — oo.

Exercise 2.4.11 Suppose that (p,),>0 are Borel finite measures on R such that 10(R\(0,1)) =
0. Prove then that the following conditions (a) and (b) are equivalent. (a) (k) "= (k) for
all k € Z. (b) p, — o as n — oo. Hint: It is enough to prove that a) implies b). Assume
a). Then, by Lemma 2.4.7, it is enough to prove that [ fdu, "= [ fduo for f € C.((0,1)),
while f € C.((0, 1)) is uniformly approximated on [0, 1] by trigonometric polynomials (Exercise

1.8.3).

Exercise 2.4.12 (Weyl’s theorem) Let o, = na — [na, n € N, where o € R\Q and
ly] = max{n € Z ; n <y} for y € R. Then, use Exercise 2.4.11 to prove that the measures
[ =+ ZZ;& da,, converges weakly to the uniform distribution on (0, 1).

Exercise 2.4.13 (Benford law) Let ¢ > 2 be an integer. Then, each z € (0, 00) is expressed

as the g-adic expansion.
n—1

where n € Z,d € {1,...q— 1}, and dj, € {0,...q — 1} for —oo < k < n — 1. Moreover, n and
d are uniquely determined. We call d(x) the initail digit of x. Let m(x) = x — | x| and suppose
that {z, },>1 C (0, 00) is a sequence for which the following measures converges to the uniform
distribution on (0, 1).

1
Hn = E Zaﬂ'(xj)7 n > 1.
j=1

Then, prove that

1 n—00 d+1
EZI{d(qxﬁ'):d} i>logq (%), foralld=1,...,q— 1.
j=1

Hint: Note that d(¢*) = d < 7(x) € [log,d,log,(d + 1)). Then, the desired convergence
follows immediately from the assumption.

Exercise 2.4.14 (x) Let X be a real r.v.and ¢(f) = Fexp(ifX). Then, ¢ € C? <— X €

L?(P). Prove this by assuming that X is symmetric (cf. Exercise 2.4.15 for the removal of

this extra assumption). Hint: If ¢ € C?, then %90”(0) = limg_,o “0(9)+“"(g29)_2“"(0).

Exercise 2.4.15 () Let X be areal r.v. (i) For p € [1,00), prove that X — X € LP(P) <
X € LP(P), where X is an independent copy of X. Hint: X € LP(P), if X — ¢ € LP(P) for
some constant ¢ € R. Combine this observation with Fubini’s theorem. (ii) Use (i) to remove

the assumption “symmetric” from FExercise 2.4.14
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Exercise 2.4.16 (x) Suppose that X, X;, X... are real r.v’s and that Xn_ﬁ> X. Prove then
that ess.supX < ess.supX < ess.supX, where X = lim, , X, and X = lim,,,, X, and, for
ar.v. Y € [—00,00], ess.supY is the supremum of m € R such that P(Y > m) > 0.

Exercise 2.4.17 Referring to Proposition 2.4.1 and its proof, is it true that c) = b)?
Hint p,, = 6,,, where |z,| — oco.

2.5 (%) Convergence of Moments

Let (Y,)n>0 be Ré-valued r.v.’s such that Y, > Yj, and let f € C(R?). If f is bounded, we
have

(+) lm Ef(Y,) = Ef(Y0)

On the other hand, it is natural to ask under which condition we still have (%) even when f is
unbounded, e.g., f(y) = |y|. The following definition plays an important role in answering this
question, where we have X,, = f(Y},) in mind.

Definition 2.5.1 (uniform integrability) Let A be a set. Real r.v.’s (X)) ea are said to be
uniformly integrable (u.i. in short) if

sup E[|X)| : | Xa] > m] — 0 as m — 0.
AeA

The next lemma shows that the uniform integrability is close to, but slightly more than
that

sup B X,| < oo. (2.39)
AEA

~

Lemma 2.5.2 Let (X))en be real r.v.’s.
a) If (Xa)xea are w.i., then (2.39) holds.

b) Suppose that there exists a non-decreasing ¢ : [0,00) — [0, 00) such that

lim () = o0, sup B[ Xale(|Xa])] < o0
c

T—r00

Then, (X\)rea are u.i.

\_ J
Proof: Let €, = supycp E[|Xa| : | Xa] > m].
a):e,, < 1 for large enough m, and for such m and for all A € A,

EIX)| < E[|X)] |1 Xa| <m]+ E[| Xy [ Xa]| >m] <m+e, <m+1.
b): By the monotonicity of ¢ and (a variant of) Chebychev’s inequality (Proposition 1.1.9),
E[IX5] : [Xa] > m] < E[[X5] - @(IXa]) = @(m)] < o(m) " B[ Xx]o(|Xa])-

Thus, €, < p(m)~*C — 0, as m — oo, where C' = sup,, F[|X,|o(X))] < oco. \("a™)/
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Example 2.5.3 Let S, = X; + ... + X,,, where (X,,),>1 are real r.v.’s such that
supvar X,, < M < oo, cov(X,,, X,) =0 if m # n.
n>1
Then, Y, = (S, — ES,)/+/n are u.i. In fact,
E[|Y,)?] = lValrS = livar Xy <M
' " o k=1 T

Thus, Lemma 2.5.2b) applies.

Lemma 2.5.4 (Fatou’s lemma for weak convergence) Suppose that X, X,, (n € N)
be real r.v.’s such that X,, — X weakly. Then,

E|X| < lim B|X,. (2.40)

n—o0

Proof: Since R 5 = — |z| Am is in CL(R) for any m > 0, we have that

E|X| =sup E[|X| Am| =sup lim E[|X,|Am|< lim E|X,]|.
m>0 m>0 N0

n—oo

\("a™)/

Proposition 2.5.5 Suppose that X, X,, (n € N) be real r.v.’s such that X,, — X weakly.
Then, the following are equivalent.

a) (X,)nen are u.i.
b) X, X, € L}(P) (Vn € N), EX,, =3 EX and E|X,| =3 E|X|.
c) X, X, € L'Y(P) (Vn € N) and E|X,| =5 E|X]|.

Suppose in particular that X,, — X in probability. Then, the following is also equivalent
to a)-c) above.

d) X,X, € L'(P) (¥n € N) and E|X,, — X| =3 0.

N J
Proof: a) = b): It follows from Lemma 2.5.2 and (2.40) that X, X,, € L'(P) (Vn € N).

We prove that EX,, "3 EX and E|X,| =3 FE|X]|, by showing that E[X*] =% E[X*]. We

note that

X, — X weakly = XTI — X* weakly,
(X )nen are wi. = so are (XF),en.

n—oo

Thus, it is enough to prove that EX,, — EX assuming that X, X,, > 0 (n € N). By (2.40),
it is enough to show that

1) lim EX, < EX.

n—o0

Note that
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2) lim E[X, : X, <m] < EX for any m > 0.

n—oo

In fact, o o
lim F[X,: X, <m] < lim F[X,Am|=FE[X Am| < EX.

n—o0 n—o0
Then, with £, & sup,>; E[X, 1 X, > m],
— — 2)
lim FX, = lim (E[X, : X, <m|]+ E[X, : X,, >m]) < EX + ¢,

Since m is arbitrary, we get 1).

b) = ¢): Obvious.

c) = a): Let € > 0 be arbitrary. Since F|X,| — E|X|, there exists an ny = ny(¢) € N such
that

3) E|X,| < E|X|+¢/4 for n > n;.
For m >0, let f,, € C,(R) be defined by

x if x € [0,m/2]
fm(x)=¢ m—2a ifz€[m/2,m]
0 if x ¢ [0, m]

Then, by MCT, there exists an ¢ = {(g) > 0 such that

4) E|\X| < Ef(|X]) + /4.

Since X,, — X weakly, there exists an ny = ns(e) such that

5) E[IXo|: [ Xu| < €] > Efo(|Xa]) = Efe(|X])] — /4 for n > n,.
By 3)-5), we have for n > ns dof ny V ng and m > /¢ that

E[|Xn| : |Xn| > m} < E[|Xn| : |Xn| > E] = E|Xn| - E[|Xn| : |Xn| < E]
3),5) 4)
< EX|—=Efi(|X])+¢/2 < 3e/4.

Note that n3 depends only on e. Thus, there exists an my = mg(e) such that

HiaXEHan DX > m] <e/4 for m > my.
n<ng

Putting these together, we conclude that

sup E[|X,| : | Xy > m] <e for m > £V my.
neN

We suppose from here on that X,, — X in probability.
a) = d): Let € > 0 be arbitrary. By a) and the integrability of X, there exists an m = m(e)
such that

6) sup E[|X,| 1 | Xy| > m] + E[|X] : | X| >m] <e/2.

neN
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Let g, € Cp(R) be defined by

—m if x € (—o0, —m)
gm(z) =< x  ifx€[—-m,m)]
m  if z € [m, 00)

Since X,, — X in probability, we have that
(Exercise 2.4.1) and hence, there exists an ng = ng(e) such that

7) sup E|gm (Xn) — gm(X)| < /2.

nzng

Note that |g,,(z) — x| = (|z] = m)Ljg>m < [2]1jz5m- Thus, for n > ny,

ElXy =X < ElXy = gm(Xa)| + Elgm(Xn) = gm(X)| + Elgm(X) — X|
< El[Xal: [Xal > m] + Elgm(Xn) — gm(X)| + E[[X] : [X] > m]

6),
< gf2+¢g/2=¢.

~
~

d) = ¢): Obvious. \("a™)/

Remarks: Let everything be as in Proposition 2.5.5.
1) The following condition does not imply a)—c).

c’) X,X, € L'(P) (VneN), EX, =3 EX.

For example, Let U be a r.v. uniformly distributed on (—1,1), and let X = 0, and X,, =
n*U1{|U| < 1/n}. Then, X, X,, € L'(P) (Vn € N), X,, — X a.s. Moreover, EX = EX,, = 0,
hence £X,, - EX. However, E|X| =0, E|X,| = 1/2, hence E|X,,| /A E|X]|.

2) a)—c) do not imply d) without assuming that X, — X in probability. For example, let
P(X =41)=1/2 and X,, = (—1)"X. Since X,, = X, X,, = X weakly and (X,,),en are u.i.
But for odd n’s, | X,, — X| = 2 and hence E|X,, — X| = 2.

Exercise 2.5.1 Disprove the converse to Lemma 2.5.2a) with the following example: let P

be the Lebesgue measure on (2, F) o ([0,1],B([0,1])) and X,,(w) = nl{w < 1/n}, n > 1.

Exercise 2.5.2 Prove that real 1.v.’s (X,,),>1 are ui. if Efsup,,>; |X,|] < oo.

Exercise 2.5.3 Suppose that X, > 0, n > 1 are i.i.d. and that E[X[°] < oo for some
e > 0. Prove then that the r.v.’s n/(X; + ...+ X,,) converge as n — oo to 1/EX; a.s. and
in L'(P) (with convention 1/0c0 = 0). Hint: Show the convergence in L'(P) via the uniform
integrability.
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2.6 The Central Limit Theorem

Recall that we have introduced in Example 2.2.4 the Gaussian distribution N(m, V'), where
m € R?, and V is a d x d symmetric, non-negative definite matrix. Recall also that we have
introduced in Proposition 2.4.3 the notion of weak convergence of r.v.’s. In this section, we
will discuss the following

~
Theorem 2.6.1 (The Central Limit Theorem) Let (2, F, P) be a probability space
and X, : Q@ — R4 (n > 1) be i.i.d. with E[|X;|*] < co. Define

Sn - X1—|——|—Xn,
m = (BXia))?_, €R and V = (cov(X1a X1.6))2 51

Then,
Sn_% 5 N(0,V) asn — oo, (2.41)

N /

Remarks : 1) Theorem 2.6.1 tells us the following information on the distribution of S, for
large n. Let Y be r.v. such that Y ~ N(0,V). Roughly speaking, Theorem 2.6.1 says that for
large n,

Sn —nm approﬁfnately

~ Y
NLD

or
approximately

Sh 2 nm+vnY.
2) The “central limit theorem” is often abbreviated as CLT.

Although it requires some work to prove CLT in the generality of Theorem 2.6.1, the proof
is remarkably easy in some examples:

Example 2.6.2 (CLT for Poisson r.v.’s) Let 7. denote the (c¢)-Poisson distribution and
suppose that X,, ~ 7 in Theorem 2.6.1. Recall that

EX, =var X,, =1, (Exercise 1.2.2).

Recall also that:
Sp=X1+ ...+ X, =m, (cf. (1.65)).

Therefore, by Example 2.4.4,

S, —n
\/ﬁ

Thus we have verified Theorem 2.6.1 in this special case. \("a™)/

5 N(0,1) (n — 00).

Example 2.6.3 (*) (Stirling’s formula) Let us prove as an application of CLT for Poisson
r.v.’s (Example 2.6.2) that

1) n! ~V2mn(n/e)" asn — 0.
Proof: Let N be a r.v. with P(N =n) = =4~ ((r)-Poisson 1.v.), Then,

n!
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2) E[(N—-r)]=r Il
In fact,
) no—r K K —
BV =r)"] = Z“_")T;! :’”ZTTZ -2 (::1)!
" E‘J P [r]-1 ":0_ ":ir

7]
- Tz n! —rz :rTLrj!

Now, let S,, be an (n)-Poisson r.v. Then,

1
Sp—n\ | 12 1@ i n"e " n"tae
3) E < NG >]—n E[(S,—n)"] =n e =

Since (S, —n)/y/n (n > 1) are uniformly integrable by Example 2.5.3, so are their negative
parts. Thus, we conclude 1) from 3), CLT (Example 2.6.2) and Proposition 2.5.5 as follows:

( ) ] v / e

1 &0 2 1
_ —x?/2 7. A_A
— 1/27T/0 zTe dx—\/%r \("a™)/

Exercise 2.6.1 Suppose that X,, ~ N(m,V) in Theorem 2.6.1. Prove then that S";\/ﬁm” ~

1

n+s . —n
. n e
lim —— = lim F
n—00 n! n—s00

N(0,V) for any n > 1. Thus the theorem in this special case is trivial.

Exercise 2.6.2 (A generalization of CLT) Let (S,),>0 be as in Theorem 2.6.1 and Y ~
N(0,V) Suppose that f: R — R™ be measurable, differentiable at m, and that

|f(m+2) — f(m) — f'(m)z] < Clz]* for all z € R?
where C'is a constant. Use (2.41) to show that
Vi (f(Sa/n) — f(m)) = f(m)Y asn — oo,

This result includes (2.41) as a special case that f(z) = x.
Hint: Set Y,, = (S, — mn)/v/n and g(z) = f(m+x) — f(m) — f'(m)z to write

Vi (f(Su/n) = f(m)) = f'(m)Y, + Vng(Ya/V/n).
Then, apply Exercise 2.4.6 to F'(z,y) = = + y.

Exercise 2.6.3 (x) Let X, X, ... be mean-zero, real iid with E[XQ] € (0,00) and let S, =
Xi + ...+ X,. Prove then that P(lim, \S/’L = o0) = P(lim,,_, 2 = = —o0) = 1. [Hint: Use

the CLT and Fatou’s lemma to show that P(lim,,_. 2 a2 r) > 0 and that P(lim, , =2 * <
x) > 0 for any # € R. Then, combine these with Kolmogorov’s zero-one law (Lemma 1.6.4) to
deduce the conclusion. |
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Exercise 2.6.4 (x) (Wallis’ formula) Prove that 47 (") "¢ L in two different way as

n ™

follows. (i) Prove Wallis’ formula by applying Stirling’s formula (cf. (2.50)). (ii) Let S, be
r.v. with P(S, =) =27"("). Prove first that E[(S5, —n)~] = 247 (*") and then use CLT
to conclude Wallis” formula as in Example 2.6.3.

Exercise 2.6.5 (%) (chi-square test) Referring to Theorem 2.6.1, suppose in addition that
E[X14X1) = gabap with g, > 0 (a, 5 =1,...,d). Then,

d

Sna — mgn 2 w d—1
(*) Z( 7 o ) —>Z|Ya|2+<1_|€|2)|yd|2 as n — 00,
@ a=1

a=1
where V1, ..., Yyareiid. = N(0,1) and ¢ = (ma/\/qa)—,. Prove this by successively verifying
the following. i) V = D(I; — { ® €)D, where D = (qa/*005)? 5, and £ ® € = (Lalp)? 5_,. ii)
(€ Ker([(]? —£®¢) and (RO)* C Ker(£ @ 0). iii) |Z]> = 028 [Val? + (1 — [€2)|Ya]? for ar.v.
7~ N(0,I;— (®10). iv) D! (5—%) s N(0,I; — £ ®0). v) (%) holds.

Remark Here is a typical setting to which the result of Exercise 2.6.5 can be applied. Let &,

be i.i.d. with values in a measurable space (S, B), and By,..., By € B be disjoint sets with

Qo o P& € By) >0 (a=1,...,d). Then, the assumption of Exercise 2.6.5 is satisfied by

X, et (1{&, € Ba})i_,. Moreover, if ¢; + -+ + g4 = 1, then )\g = 1, and therefore, the limit

law for (x) is x2_,.
2.7 Proof of the Central Limit Theorem

We start by explainning the outline of the proof. We will prove that

S, — nm
Vn

By Proposition 2.4.1, (2.42) finishes the proof of Theorem 2.6.1. We set ¥ = X; — m and
¢(0) = Eexp(if - Y). Then,

S, —mn - X —m\ (1.53) ) Y "
E exp (19 ~ —) = E||exp <19 gt ) = <E exp (16 ~ —))

_ . (%)n (2.43)

We will show in Lemma 2.7.2 below that:

Eexp <i9~ ) X exp (—30-V0) for all § € R (2.42)

o) =1-20-VO+0(0%), 6 — 0. (2.44)

2

We will see by Lemma 2.7.3 below that

gp(%) —(1— o —1—0(7)) —>exp(—§9-V0),

which proves (2.42).
We first prepare an elementary estimate.
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Lemma 2.7.1 Fort e R,

t2
exp(it) — 1 — it + 7| < [t A Jt°. (2.45)

Proof: We will prove for z € C and n € N\{0} that

n m

z
exp z — Z—
m)!

m=0

[2|" exp((Re2)*)  [2]"(exp((Re2)") +1)
TS ol

1)

By setting z = it and n = 2 in 1), we obtain (2.45). We fix z € C and introduce f(t) = €',
t € R. By Taylor’s theorem,

n

g(z) E expzr—Y_ %w: = f(1) - [0
m=0 """ m=0

1 1 ( 1) n+1
_ _ f\n g(n+ —

Since |exp(tz)| = exp(tRe z) < exp((Re 2)T), we obtain

2" exp((Re 2)7)
(n+1)!

2) lgn(2)] <

On the other hand,

ZTL

Gn—1(2) + — 2<) |z|"(exp((Re 2)™) + 1)
" n!

|gn(2)| =

n!
\("a™)/

We now present a lemma which implies (2.44). This lemma will also play an important
role in the proof of Theorem 3.2.2.

Lemma 2.7.2 Let Y = X; — m. Then,

|Eexp(if-Y) — (1—=10-V0)| =0(|6]*) as[6] \,0. (2.46)

Proof: We have that

El0-Y]= zdjeaE[Ya] =0, E[0-Y)]= zd: 0.05EY, Y5 =0-V0,

a,B=1
and hence that

{Eexp(i0~Y)—( —10-V0) = Elexp(id-Y)—1—i0-Y +1(6-Y)?]

b — E[f(6-Y))

where f(t) =exp(it) — 1 —it + % (t € R). Therefore,
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left-hand side of (2.46) E[f(Y-0)]| < E[f(Y-0)]]

1
(2.45) 3 2 2 2

< EB[Y-0PAY 0P <[OPE[YP(Y]I0] A D).
We see by the dominated convergence theorem that

lim E[|[Y]2([Y||I0| A 1)] =0
L B[ P(Y]j6] A 1)]

which, together with 2), proves (2.46). \("a™)/

We now conclude (2.42) by (2.43), (2.44) and the following lemma with a@ = 2, h(f) =
~19.vo.
2

4 N
Lemma 2.7.3 Let h,p: R? = C, a > 0 be such that

a) h(rf) =rh(0) for all @ € R and r € (0,1],
b) ¢(0) =1+ h(0) + o(|0|*) as § — 0.
Then,

nl/a

© ( f ) 2% exp(h(0)) for all 6 € RY.

If additionally h is locally bounded, then the convergence above is locally uniform in 6.

Remark: Suppose that h and ¢ are as in Lemma 2.7.3 and that ¢ = [ for some pu € P(R?).

Then (n~1/*)" is the ch.f. of
X1+ ...+ X,

Y, = nlja )

where X1, Xy, ... arei.i.d. = pu. Thus, Lemma 2.7.3, together with Lévy’s convergence theorem
(Theorem 9.2.1) shows that e” is a ch.f. of a random variable Y and Y, > Y.

Proof of Lemma 2.7.3: Recall that

1) |2" —w"| < n(|z| V|w])" Nz —w|, z,weC, n>1

nt/e n

We will apply this inequality to z o © ( o ) and w & exp <h—9)>, so that

2) 2V —w" = (—
We have that

3) cmp (D2 n (L) o (MY 2y RO T
nl/e nl/e n n n

Since e = 1+ z + O(|z[?) as |2 = 0,
Y o (M) <1 KO o (B0

Therefore,
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) w0 (U o (Y,

Moreover, for large enough n'’s,

0 3) h(0)| + |0|*

NEAEIWIUER
n

6) 2] = -

n

n=1 g) h(O)| + 161\ "
2 (1 i M) < exp([h(0)] + 6]°),

n—1

— exp (”T_l Reh(9)> < exp(|h(0))).

Therefore,

’w (nf/a>n — exp (h(9))’

2_) n n P n—1
= " —w" < n(lz] VIw])" |z - w|

2 e+ (o (U)o (MOE) ) =50

Moreover, the final estimate shows that the convergence above is uniform in 6, if h is locally
bounded. \("a™)/

Exercise 2.7.1 (CLT for continuous-time RW) Let S,, = X; + ... + X, be as in Theorem
2.6.1 and (Vy);>0 be Poisson process with parameter ¢ > 0 (Example 1.7.6). We suppose that
(Xn)n>1 and (Ny)s>o are independent and define S; = Sy,. Then, show the following:

(i) Eexp(if - S;) = exp ((Eexp(if - X1) — 1) ct).

Sy —mct ~ S =~
(ii) ot M w, N(0,¢V) as t — oo, where the matrix V' is given by V.5 = E[X1 X1 4]

t
(o, B=1,...,d).

Exercise 2.7.2 (More than L?) Use the argument in the proof of Lemma 2.7.2 to prove the

following;:
(i) If X, € L*T(P) for some ¢ € [0, 1], then,

|EexpY - 0) — 1+ 10 V0| < [0 P[[Y]>H9] = O(|6]>*) as |6] 0.

Hint: min{|Y||0], 1} < |Y]9]0]|%
(ii) If Y is symmetric and X; € L3>T¢(P) for some ¢ € [0, 1], then,

|Eexp(iY - 6) — 1+ 10 V6| < |07 P([Y ) = O(|6]*7) as |6] \, 0.

Exercise 2.7.3 ()(Less than L?) Let X real r.v. with the density ¢|z|~(“"D1{|z| > 1},
where 0 < a < 2. Show that

~

* siny

() of FEexp(ifX) = cosf — |9|O‘/ dy
|

o Y°
{ 1—6%In(1/]0)) + O(6?) if a =2

L= (@8] +o(l6])  f0<a<2 070

where c¢(a) = ;7 S;%aly = m
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Exercise 2.7.4 (x)(Logarithmic correction to Lemma 2.7.3) Replace the condition (c)
in Lemma 2.7.3 by:
p(0) =1 — h(0)In(1/16]) + O(0]*), 0 =0,

while keeping all the other assumptions. Prove then that

7 (%) =5 exp(—h(0)) for all 6 € RY.

nlnon

Exercise 2.7.5 (x) (a-stable law) Let S, = X; + ...+ X,,, where (X,,),>1 are real i.i.d. with
the density ¢|z|~"V1{|z| > 1}, where 0 < a < 2.
(i) For a = 2, use Exercise 2.7.3 and Exercise 2.7.4 to prove that —22— — N(0, 1).

vnlnn
(ii) (x) For 0 < a < 2 and ¢ > 0, use Exercise 2.7.3 and Lemma 2.7.3 to show that

¢(n—1/a9)n e exp(—c()|@]|*) uniformly in |#] < R for any R > 0,

or equivalently, for any ¢ > 0,

n—o0

o(n~Yorg)" "% exp(—c||*) uniformly in |§| < R for any R > 0,
where r = (c/c(a))'/®. This shows that there exists p.. € P(R) such that

_ Sn w
fea(0) = exp(—c|0|¥), 6 € R, and that 7“1_/ — e
n-/e ’
(cf. the remark after Lemma 2.7.3). fi., is called the symmetric a-stable law (For v = 2, it is
N(0,2¢), and for a = 1, it is the (¢)-Cauchy distribution).

2.8 (%) Local Central Limit Theorem

n

Example 2.8.1 (Local CLT for Poisson distribution) Let m.(n) = <=, n € N, ¢ > 0.
If ¢ is large enough, then the histogram of the function n — m.(n) looks like the density of
Gaussian distribution (In Example 1.2.2, we see a picture for ¢ = 14). Here is a mathematical

explication.

1 (n —c)? 1 : .
Te(n) = \/%exp B +0 2], asc— oo uniformly in n € N. (2.47)

This shows that n +— m.(n) is well approximated by the density of N(c,c) as ¢ — co. As we
will see now, (2.10) and (2.6) can be used to prove (2.47).

Proof: We see from (2.6) that

Z me(n) exp(ifn) = exp((? — 1)c),

n>0

which is the Fourier series of the sequence m.(n). Therefore, by inverting the Fourier series,
we have that

1) Te(n) = L /7r exp (—ifn + (¢ — 1)c) do.

2 J_,
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Let ¢(0) = 1+ i0 — €Y and . = (n — ¢)/y/c. We then have that

7e(n) o —/ exp (—if(n — ¢) — cq(0)) db

2)
= 27r\/_/ exp —ifn. — cq (\[)> do.

On the other hand,

ch? . 22
exp (—7) = \/ﬁ exp 19x — —) dr = \/ﬁ/ exp —ifx — %> dx.

Replacing ¢ by 1/c, and interchanging the letters 6 and z, we have that

3) eXp =\ / / exp —ifx — > do.

Let h.(z) = \/T exp <—2—i> (x € R). Then,
1 [~ 2
he(n —¢) 2 Py exp (—i@(n —c)— ¢ > o
4) —o0

s
= 27r1\/E /_OO exp <—i9ﬁc - %) do.

By dividing the integral [ in 4) into fj;(ja and f|0|>ﬂ /e We see from 3) and 4) that

5) sup [ma(n) — ho(n — c)| < —

L +1
neN 2m ( ' 2)’

S

where

b= [ o (- () e (%) 0. 1= [ e (%)

The integral I, can easily be bounded.

(1.37) 9
6) I, < ——exp (—%) )
m/C

To bound the integral I, we recall that

7) lexp z —expw| < |z — w|exp(Re z V Rew), z,w e C.

We will apply this inequality to z = —cq (%) and w = —0?/2. By expanding the exponential,

8) exp (i6) = 146 — & + (), with [r(0)] < 2= < |,
Hence,
9 fu#) |- soen(8) - ) 2eh ()| =




Moreover, we note that
2
1 —cosf > 27%, 0] <,

and hence

10) Re ¢q (\%) =c (1 — cos \%) > 27%2, 0] < m/c,

Therefore, putting together 7), 9), 10) and noting % < 3, we have for |f] < m/c that

o (-en () o ()| < o ().

Hence,
1 > 2
I /OO o exp (~2) db = O(1/ V).

Finally, we conclude from 5), 6), 11) that

sup |7Tc(n> - hc(” - C)| - O<1/C>

neN
\("a”)/

Example 2.8.2 (Local CLT for trinomial distribution) Let p,q,r € [0,1) be such that
p+q+r =1 We assume either r € (0,1) or p =g = 1/2. Let also X,,, n € N\{0} be i.i.d.
such that X,, = 1, —1,0 with probabilities, p, q,r, respectively. Then, m o EXi =p—qand
v ¥ var X, = dpg + r(1 —r) > 0. For n € N\{0}, we define S,, = X; + ... + X,, and

pn(k) = P(S, = k), [k] <n.

If r > 0, then
1 (k—mn)2)‘ _
max |, (k) — e ———||=0(n"%), asn — oo, 2.48
\k\é)ri pn(h) V2mon Xp( 2un ( ) ( )

where a = 3/2 if E[(X; —m)?] = (2m?* + 3r — 2)m = 0, and a = 1 if otherwise. On the other
hand, if p = ¢ = 1/2, then,

fin (k) — \/gexp <—§>' =0 (n3?), asn — oo. (2.49)

Proof: We start by preparing some equalities/inequalities which will be needed later. Let

max
|k|<n
n + k is even

0(0) = Eexp(if(X; —m)) = pell=m0 4 ge=i0Am)0 | ppmmit
0O = pO)—exp (%),

Let also k, = (k — mn)/y/n. We first show that

= 27r1\/ﬁ _:Z exp <—i9%n) %) (\/iﬁ)ndey
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and that

14 (_1>k+n m/n/2 s , n .
1 pn(k) = ————— exp (—i0k, ) |-=) df itp=qg=1/2.
= B [ () (3) |

We have

Z fin (k) exp(i0k) = Eexp(i0S,,) = (pe' 4+ ge ™ + 7)™ = exp(inm)p(0)".

k=—n

Therefore, by inverting the Fourier series, we have

(k) = o / " exp (—i6(k — mn)) o(6)"d6

— o [ e (<) o ()

If p=gq=1/2, then p(f) = cosf and hence p(m — ) = —p(#). Thus,

1 w/2 1 /2

pn (k) v exp (—i0k) o(0)"df + — exp (—i(m — 0)k) p(m — 0)"do
27 —7/2 27 —7/2
1+ (_1)k+n /2

s o / exp (—i0k) 0(6)"d6

2m —r)2
_1\k+tn pry/n/2 - n
_ % e (<i6kn) ¢ ()" ao.
Next, we show that there exists a constant ¢; € (0, 00) which depends only on p, ¢, 7 such that
2) W (0)] <alof, 0] <,
where 8 = 4 if E[(X; —m)3] =0, and 3 = 3 if otherwise. By expanding the exponential,
exp (if) = 1 +i0 — £ —i% + O(0").
Hence
() = (1-20°—LE[(X1—m)’]0®+0(0") — (1— 26>+ O(6"))
= —1E[(X: —m)’)0® + O(6*).

This implies 2).
We next show that there exists a constant ¢ € (0, 00) which depends only on p, ¢, r such that

for || <mif0<r <1,
) lel0)] < exp(—eaf?). { o 192 2/2. 1 0

We note that
|sing] > 24 if 9] < 7/2,

On the other hand, we see from a direct computation that

lp(0)| = \/1 — 4pgsin®§ — 4r(1 — r)sin® £.
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If r € (0,1), then, for || <,

6)] < /1 —4r(1—r)sin§ < /T MO2/E < exp(—2r(1 — )62 /7).

If pg > 0, then, for |0| < 7/2,

()] < \/1 —4pgsin® 0 < \/1 — 16pqh?/n2? < exp(—8pgh?/7?).

These imply 3).
Let h,(x) = —=— exp (—i> (x € R). We will next show that

2mon 2un

)= zﬁl\/ﬁ /_ Z exp (—ie%n - v92> do.

We know from the proof of Example 2.8.1 that

exp U / exp —ifx — ¢ 2>d0, reR, ¢c>0.

Setting ¢ = vn, we have that

5) exp 2m N/ on / exp —ifx — ””9 )d@

Thus

4) hn(k —mn

hn(k —mn) = QL/ exp (—i@(k —mn) — #) do
™ —0o0

= 27r1\/ﬁ /_00 exp (—i@%n - %) do.

We combine 1)-4) above to prove (2.48) and (2.49). Let us first consider (2.48). We have that
We see from 1) and 4) that

1

— <
6) lrl?lgx‘,un( ) hn(k mn)| > 271_\/5([1 +[2)7
where
m/n n 2 2
I = / <\%) — exp (—%) ’ do, I, = / exp (—%) do.
—m/n |0]>m/n

The integral I; can easily be bounded.

(137) 9

We now estimate the integral I;. Recall that

1
7 L= —
) ? \/5 |0|>7/vn

12" —w"| < nlz —w|(|]z] Vw)", zweC, n=12..
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We will apply this inequality to z = ¢ <\%> and w = exp <—%>. Then, if || < 7/n,

o (%) —ew (-%)
=l <l =l Vol

< o (@)l ()

7,8) 805 )
< an'"2]0) exp (—e36?),

)n—l

for some c3 > 0. Therefore, we obtain that

8) I < cml_g / 0% exp (—0392) df = O(n'*~

o

Finally, we conclude from 6), 7), 8) that

max |, (k) — hyp(k —mn)| = O(n™ 2 ),

[kl <n
which proves (2.48). Using 1’) instead of 1), (2.49) can be obtained similarly as above. \("5")/

Exercise 2.8.1 We refer to Example 2.8.1 and suppose that n, ¢ — oo and that n = c+0(/¢).
Prove the de Moivre-Laplace theorem for Poisson distribution:

(o)~ e (—<” 2‘60)2) |

Also, by setting ¢ = n, deduce Stirling’s formula:

n! ~V2mn (ﬁ)n (2.50)
e
Exercise 2.8.2 We refer to Example 2.8.2 and suppose that n,k — oo and that k = mn +

O(y/n). Prove the de Moivre-Laplace theorem for trinomial distribution:

) T}wn exp (—(k;Z;”V) , ifre(0,1)
Hn ~

,/%exp(—%) iftp=qg=1/2.
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3 Random Walks

3.1 Definition

Definition 3.1.1 Suppose that (X,),>; are R%-valued i.i.d. defined on a probability space
(Q, F, P). A random walk is a sequence (S, )n>o of Ri-valued r.v.’s defined by Sy = 0, and

S,=X1+...+X, forn>1.

Remarks

1) Note that the iid (X,,),>1 referred to above certainly exists by Proposition 8.3.1 and so does
the random walk (S),),>0-

2) Our definition of “random walk” is the same as in [Dur95]. This definiton however is rather
wider than traditional ones (e.g., [Spi76]) which will be called, in our language, the Z%-valued
random walk.

Theorem 1.10.2 implies;

Theorem 3.1.2 Let (S,)n>0 be a random walk such that E[|X1]] < co. We define its
mean vector by
m = (ma)i_y = (E[X1a), (3.1)

a=1"
where X o 1s the a-th coordinate of X, € R?. Then,

S/n "% m, P-a.s. (3.2)

N J

Remark: If we write S, in a silly expression:

Sp =nm+ (S, —nm),

then (3.2) says that {S,},>1 almost surely follows a deterministic constant velocity motion
{nm},>1 by the correction term S,, —nm which is of order o(n). In this sense, one can conclude
that the random walk travels in the direction of the vector m.

Exercise 3.1.1 Suppose that the random walk satisfies P(X; € {0, ey, ..., +eq}) = 1. Prove
the following.

i) Mo = plea) — p(—ea) and vap = dup(p(eq) + p(—eqn)) — mamg, where p(x) = P(X; = ).

ii) Two different coordinates X, o, X, s (o # B) of X,, are not independent of each other, even
though they are uncorrelated if m = 0.

Exercise 3.1.2 Consider a Z-valued random walk such P(X; = +1) =py >0, P(X; =0) =
po = 1 —pr —p_. Show the following. (i) For yo,v1,...,yn € Z,let N(0) = Z?Zl Hy;—yj—1 =
0} (x € Z). Then,

~N(O)+yn n—N(0)—yn
n (2)+y n=N(O0)—y N(0)

P<Slzy17~~-5n:yn) = D4 p_ 2 Po
(p+/p=)""P(S1 = —y1,... S0 = —¥n)-

(ii) P(S=y) = ) (&) Pt P ™ = (04 /p_)'P(Sh = =)

[yl <m<n

m £ y are even
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Exercise 3.1.3 An R%valued r.v. X is said to be symmetric if —X ~ X. A random walk
is said to be symmetric if X; is symmetric. Check that a symmetric random walks with
FE|X;| < oo has the mean vector m = 0.

Exercise 3.1.4 Let (S,),>0 be a symmetric random walk (cf. Exercise 3.1.3). For m > 0,
define (Sﬁm))nzo by S{™ = S, for n < m and S{™ = 28S,, — S, for n > m. Prove then that
(Sﬁm))nzo has the same distribution as (S, ),>0 for each m.

Exercise 3.1.5 Consider a random walk such that E|X;| < co. Use Theorem 3.1.2 to prove
that, if m, > 0 (resp. m, < 0), for some o = 1,...,d, then

P(Sn.a s +o00) =1, (resp. P(Sna e —o0) =1.)

Exercise 3.1.6 (LLN for continuous-time RW) Let S,, = X; + ... + X, be as in Theorem
3.1.2 and (Vy);>0 be Poisson process with parameter ¢ > 0 (Example 1.7.6). We suppose that

X, )n>1 and (Ny)e>o are independent and define S; = Sy,. Then, show that S/t 2% em, as.
( n)n_ ( t)t_o p t t ) t/ )

3.2 Transience and Recurrence

In this section, we will take up a question whether a random walk (S,,),>0 comes back to its
starting point with probability one.

Definition 3.2.1 Let (S,),>0 be a random walk in R?, and X,, = S, — S,_1 (n > 1).

o If P(X, € Z%) = 1, or equivalently, P(S, € Z?) = 1 for all n > 0, we say that the random
walk is Z%-valued.

o A Z%valued random walk is said to be simple if
P(X;=2e,) = (2d)"" foralla=1,...,d. (3.3)
e Throughout this section, we will restrict ourselves to Z?-valued random walks.

This is to avoid being bothered by inessential complication. We will prove the following

~
Theorem 3.2.2 Consider a Z-valued random walk with:
E[IX1]Y] < oo, E[X14]=0Va=1,...,d). (3.4)
detV > 0, where V = (cov(X1q, X1,5))e 5-1- (3.5)
Then,
def _ =1 ifd <2,
h(0) = P(Sn—OforsomenZD{ <1 ifd>3
\_ J

Example 3.2.3 Supppose that P(X; € {0, %eq,...,2eq}) = 1 and set p(x) = P(X; = z)
(x € Z%). Then, (3.6) & (3.7) <= (3.5), where

plea) Vp(—ey) >0 forall a=1,...,d, (3.6)
p(0) + Y plea) Ap(—eq) > 0. (3.7)

(See also Example 10.1.3.)
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Proof: (3.5) is equivalent to that
1) 6-V0 >0 for § € R1\{0}.

To simplify the notation, We write

Va = p(ea> \/p(_ea)a Wy = p(ea> /\p(_ea>7
Ga = Plea) +p(—€a) = Vo + Wa.

Then, cov(Xi 4, X1,8) = ¢aa,s — Mamga, cf. (0.18). Thus,

d d d 2
2) 0-VO=" (qgabap — mamp)lals =Y qob2 — (Z ma9a> .
a,f=1 a=1 a=1
(3.6)
If we suppose (3.6), then ¢, > v, > 0 for all @« = 1,...,d, so that we can define:
d 2 (Vo — w )2
5 _ Mo _ o o
(3.6) & (3.7) = (3.5): Since pore < 1, it follows that
d (3.7) d d
3) §<) (o —wa) < p0)+ Y v <p(0)+ ) (va+wa) =1,
a=1 a=1 a=1

d 2 d 2 d
Schwarz
9 (z maea> _ (z e @ea> 53 bt
a=1 a=1 \/q_a a=1
Suppose that # # 0. Then, Zi:1 ¢a0? > 0. We thus obtain 1):

2)4) d 3
0-VO > (1-6))  qab 20,

a=1

(3.6) & (3.7) <= (3.5): Suppose that (3.6) fails, i.e., that v, = 0 for some o = 1,...,d. Then,
do = My = 0, and hence the a-th row and the a-th column of the matrix V' vanish. Thus (3.5)
fails. Suppose on the other hand that (3.6) holds but (3.7) fails. In this case, we have w, = 0,
(o = Vo = |my| > 0 for all a« =1, ..., d, so that

d d

d
5) 52277;_(2)4 :Zva (3.7):failsp(0>+z(va+wa> _1
a=1 1%

a=1 a=1

Now, choosing 6 € RY with 0, = ma/qa #0, a = 1,....d,

d d 2
9-V92=)Zmi/qa—<2mi/qa) —5-5 2o,
a=1 a=1

Thus, 1) fails. \("0™)/
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It is convenient to introduce the following notations. For o € Z?, we set

V(z) = Z 1{S,, = x} = “the number of visits to z”. (3.8)
n>1
R (z) = P(V(z)>m), m=1,...,00 (3.9)
= ‘“probability that z is visited at least m times”.
h(z) = hW(z) (3.10)
= “probability that = is visited at least once”.
glr) = Y P(S,=x)€0,00], 0<s<1, (3.11)
n>0

The function g(x) above is called the Green function of the random walk.

-

N

Proposition 3.2.4 (Transience/Recurrence) Let (S, ),>0 be a Z%-valued random walk.
Then, the following conditions T1)-T5) are equivalent:

T1) hr(0) <1

T2) ¢(0) < co.

T3) g(z) < oo for all z € 7.
T4) h(>)(0) = 0.

T5) h(>®)(x) =0 for all z € 7.

(Sn)n>0 is said to be transient if one of (therefore all of ) conditions T1)-T5) are satisfied.
On the other hand, the following conditions R1)-R5) are equivalent:

R5) h(>)(x) =1 if h(z) > 0.

(Sn)n>0 18 said to be recurrent if one of (therefore all of ) conditions R1)-R5) are satisfied.

Example 3.2.5 Suppose that you and one of your friends perform simple random walks in-
dependently from 0 € Z?. Then, you will meet each other infinitely many times if d < 2 and
you will eventually be separated forever if d > 3.

Proof: Let (S],)n>0 and (S)),>o be independent random walks. Then, S, = S — S/, n >0 is
again a random walk and

1) P(S, = 0) = P(S!, — §" = 0) = P(S}, = 0)
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Let g and ¢’ be the Green functions of S. and S’ respectively. Then,

9(0) = 3" P(S, = 0) £ Y P(Sy, = 0) = g(0),

n>0 n>0

where the reason for the last identity is that P(S5,,,; = 0) = 0. Thus, we see the claim from
Theorem 3.2.2 and Proposition 3.2.4. \("a™)/

Exercise 3.2.1 Prove that

0 for a recurrent RW,

P(nlglc;lo [Sn| = +00) = { 1 for a transient RW.

Exercise 3.2.2 Prove that P(H C {S,},>1) = 1 for any recurrent RW, where H = {z €
Z%; h(z) > 0}. It would be interesting to compare this with Exercise 3.4.1 below.

Exercise 3.2.3 Prove that for all z € Z¢,

g(z) = o+ Eg(z—Xy), (3.12)
h(z) = (1—=h(0)P{X;=z}+ Eh(z — Xy), (3.13)
R (z) = Eh™(z - X)). (3.14)

Exercise 3.2.4 (x)(Green function for continuous-time RW) Let S, = X1 + ... + X, be a
Z%-valued random walk and (NNV;)¢>o be Poisson process with parameter ¢ > 0 (Example 1.7.6).
We suppose that (X,),>1 and (V;);>o are independent. Then, show that [~ P(Sy, = x)dt =
1g(x), x € Z% where g is the Green function for (S, )nen.

3.3 Proof of Proposition 3.2.4 for T1)-T3), R1)-R3)

In this section, we will prove the equivalence of (T1)—(T3), and that of (R1)—(R3). These are
simpler than the other part of the equivalence, and still enough to proceed to the proof of
Theorem 3.2.2. (T4), (T5), (R4) and (R5) will be discussed in section 3.5.

We begin by proving the following

Lemma 3.3.1 For z € 77, )
W () = h(z)h(0)™, (3.15)
L
B 1-h(0) if v =0,
glx) = {1'1(;(0) if £ #0. (310
— h 0 f O‘ 3.17
. g(x) = h(x)g(0) if v # (317)

Remark Intuition behind (3.15) can be explained as follows; A trajectory of a random walk
which visits a point £ m times can be decomposed into m segments; a segment starting from
the origin until its first visit to z and m—1 “loops” (or “excursions” ) starting from x until their
next return to x. One can vaguely imagine that these m segments should be independent for the
following reason; each time the random walk visits x, it starts afresh from there independently
from the past.
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Proof: Define the m™-hitting time to x € Z¢ by

Tm :inf{nz 1; il{Sk:x}:m}. (3.18)
k=1
Then,
1) W (z) = P(T™ < 00) =Y P(T{" ™V =(, In>1, Sy — S =0)
>1

We observe that

E, € {Tim Y =¢}eolX;; j<,

Fr © (3n>1, Sppe—Si=0}€0lX;: j> 1,

and therefore that
2) E; and F, are independent.

We also see that
3) D PE) =PI <o)

0>1

A=Y (z).

Note on the other hand that
(Snte — Se)nzy = (Sn)pzy-
This implies that

10)

4)  P(F)=P(Fy) "= (o),

Combinning 1)-4), we have that

=

'™ (x) Z P(E,N Fy) 2 Z P(E)P(F)

0>1 0>1

3" P(E)R(0) 2 h D (2)h(0).

>1

[l&

We then get (3.15) by induction. Equality (3.16) can be seen as follows;

g@) = Gon+ 3PSy = x) "2 6y, + EV ()

n>1
(1.12) (3.15) h(z)
= ) P > =" — .
0zt Y P(V(z) >m) e T4
m>1 :h(m)(:p)
(3.17) follows immediately from (3.16). \("a™)/

Proof of T1) <= T2) <= T3):
T1) < T2): This follows from the identity g(0) “2” 1/(1 — (0)).
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T2) = T3): This follows from the identity g(x) = h(x)g(0) for x # 0.
T3) = T2): Obvious. \("a")/

Proof of R1) <= R2) <= R3):

R1) < R2): This follows from the identity g(0) “2” 1/(1 — h(0)).

R2) = R3): This follows from the identity g(x) (310 h(x)g(0) for x # 0.

R3) = R2): It is clear that 3z € Z%, h(x) > 0. Then, it follows from R3) that g(z) = co. If
(3.17

x =0, we are done. If z # 0, g(0) "= ) g(x)/h(z) = cc. \("a™)/
Exercise 3.3.1 Conclude from (3.15) that V' (0) for a transient RW is a r.v. with geometric
distribution with the parameter 1 — h(0) (cf. Exercise 1.7.8).

Exercise 3.3.2 (i) Show that h(z + y) > h(z)h(y) for all x,y € Z¢ This implies that
the set H = {x € Z* ; h(z) > 0} has the property that z,y € H = xz+y € H.
Hint: Apply the argument in the proof of (3.15) above. (ii) Use (i) and (3.16) to show that

g(z +y)g(0) > g(x)g(y) for all z,y € Z°.

Exercise 3.3.3 Prove the following for Z-valued random walk. (i) If P(X; > 2) = 0, then,
P(sup,~q S, > x) = h(x) = h(1)” for all x > 1. Hint Apply the argument in the proof
of (3.15) to verify that h(z + 1) = h(z)h(1) for all z > 1. (ii) If P(X; < —2) = 0, then,
P(inf,>0 S, < —z) = h(—z) = h(—1)* for all z > 1. (iii)" If P(|X;] > 2) = 0 and

pe & P(X, = £1) > 0, then h(z) = (g—j A 1)90 and h(—z) = (g—; A 1)96 for all z > 1.

3.4 Proof of Theorem 3.2.2
Let S, = X; + ... + X,, be a random walk in Z? such X; ~ u € P(Zd). As before, we write:
fi(0) = Eexp(if - X1) = > exp(if - x)u(z), 6 € R (3.19)
xE€Zd

The following proposition relates the transience/recurrence of the random walk to the be-
haviour of 1i(f) as 6 — 0:

~
Proposition 3.4.1 Let o, > 0.

a) Suppose that there exists a constant c; € (0,00) such that
alof < 1= 7(0)] for 0] < 6. (3.20)
Then, h(0) <1 if d > a.
b) Suppose that there exist constants co,c3 € (0,00) such that

e2]0* < 1— Rei(0) and |1 — f(0)] < c3|0|° for |0] < 6. (3.21)

Then, h(0) =1 if d < a.
N /

10See also Exercise 3.7.1 and (4.69).
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Proof of Theorem 3.2.2 assuming Proposition 3.4.1: It follows from Lemma 2.7.2 that:

1) 1—7(0) =160-Vo+o(|6]°) as |6 — 0.
Since det V' # 0, 1) implies (3.20), (3.21) with = 2 and small enough § > 0. Thus, the
conclusion follows from Proposition 3.4.1. \("a™)/

For § > 0, we write
6B ={r e R; |z| < 6}.

-
Lemma 3.4.2 For any & > 0, there exists a constant Cs € (0,00) and ws € C(R?) such

that

0 < ws < Cslsp, (3.22)
fl@) < /6Bexp(—i0-a:)w5(9)f(9)d0, (3.23)

~

for all nonnegative f € (*(Z%), where f(0) =, ,aexp(if - z) f(z).
N /
Proof: We first take an even, continuous function v : R? — [0,00) and C' € (0, 00) such
that :

Rd

2

We then define:
vs(z) = 6~ 40(x/8), wy(x) = / vz — 9)us(y)dy.

R4
Then, w;s is even and continuous. Moreover, we have

0< 0 < CO sy, G(0) ER, / vs = 1.

R4
Thus,
1) 0 < ws(x) < [Jvslloo fgavs < CH4,
2) supp ws C {z +y ;z,y € supp vs} C IB,
3) ws(0) = 05(0)* > 0,
9 w(0) = fraws = (Jravs) =1
We see (3.22) from 1) and 2), whereras (3.23) is obtained as follows.
4 ) __
fa) 2 F@m0) < Y f@)Ey - )
yEeZa
= S [ exality — ) B)us(e)as
y€Z4 Re
Fubini / dexp(—ix-Q)w(g(@)dQ > fly)expliy - 0)
R
yeZd

= /R dexp(—ix-9>w5(9)f(e)d9: /63exp(—ia:-9)w5(9)f(9)d9.
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a )
Lemma 3.4.3 . |~ Refi(d)
— ReJi
g(0) > —— / R g, (3.24)
(2m)% S 11— H(0)[2
where 7l = [—r,7]% and T'(u) = {0 € R?; 1i(0) = 1}. On the other hand, for 6 > 0,
do
9(0) < C. / T 3.25
R Gl 329
where Cy is from Lemma 3.4.2. )
Proof: For s € (0, 1], we introduce
gs(x) = Z s"P(S, =), z¢€Z (3.26)

n>0

Then, for s € (0,1), gs(x) converges absolutely and gs(x) ,* g(x) as s ' 1. We first prove
that

1 exp(—if - x)
s(T) = — do f Z4 and 0 < 1. 3.27
gs(x) (27r)d/m- 1= 5i(0) orrx €Z*and 0 <s < (3.27)
Note that Corollary 2.1
Z exp(if - 2)P(S, = ) = Eexp(if- S,) =~ ° (o). (3.28)
xreZd

Thus, by inverting the Fourier series, we get!!:

P(S, =x) = / exp(—if - x)(0)"dd, for v € Z% and n € N. (3.29)
w1

For zx € Z* and 0 < s < 1,

gs(x) = Z s"P(S, = x) (429 (271T)d Z s" /I exp(—if - x)u(0)"do

n>0 n>0

Fubini 1 / . —~ 1 exp(—i9 . .’B)
= — exp(—if - x s"u(0)"do = / — do.
(g ), P00 2RO = o | )

(3.24): Since the left-hand side of (3.27) is a real number, we may replace the integrand in the
right-hand side by its real part. We therefore see that

S 1 1 1 —sRepu(0)
1) 9:(0) = 5y / ST ae " T e /ﬂ T sa)r "

UThe equality (3.29) will also be used in the proof of Proposition 3.6.1 below.
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We use 1) to obtain (3.24) as follows.

MCT y 1 1 — sReu(h)
= 1 o = ——1 ———df
9(0) li 9:(0) = 5y I /ﬂ = s0(0)]

2m)% 1 ey 11— si(0)]

)
Fatou —
% ! / lim 1= sRepu(d) 'u(? do
)4 (xD\D(p) 5,1 11— spi(0)]

B 1 1 — Reu(0)
CTT /w\m i_aer ™

(3.25): Let ws be from Lemma 3.4.2. We apply (3.23) to f(x) = P(S,, = x). Since f=7p"by
(3.28), we have for x € Z¢ and n € N that!?:

[\D

PS8, = ) < / exp(—iz - 0)wy(0)fi(0)"d0. (3.30)
5B
Let 0 < s < 1. Note that for z € C with Rez <1
|1 —sz| > s|1—z]|. (3.31)
In fact, with x = Rez and y = Im z, we have
l—sz>s(1—x)>0.

Hence
1 —sz[? = (1 = s2)* + (sy)* > (s(1 — 2))* + (s9)* = (s|1 — 2|)*.
Thus,

9:(0) = > §"P(S, = (330 < > s /w5 0)"do

n>0 n>0

Fubini ws(6)dl
/ ;0 55 1 — spi(0)

< / wes(0)dl (321) 1 / ws(0)do

N s 11 =su@)] — s Jsp[1—1(0)]

(3.22) (O / do
S - T4 ~/ AN
B 11— R(0)]

Hence,

MCT . do
9(0) "= il}rigsm) < Cs /53 m
\("a™)/
Remark Concerning (3.25), the following inequality is easier to prove.
1 do
2m)?* Jor [L=7(0)]
12The bound (3.30) will also be used in the proof of Proposition 3.6.1 below.

g(x) < x e 7% (3.32)
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In fact,

() " lim gu(r) 2 lim — / g G3 _1 / db
x 1 g, < lim — < = .
g A= B e | = sa0)] = @), 11— a)]

An advantage of (3.25) over (3.32) is that the integral on the right-hand side is only over a
small neighborhood of 6§ = 0, cf. the proof of Proposition 3.4.1.

Proof of Proposition 3.4.1: We begin with a simple observation. Let Ay = 27T%/F(%l) (the area
of the unit sphere in R?). Using the polar coordinate transform, we see that

do o Jd—a—1 <oo ifd>a,
DR R RS (S

a) Let d > «. Then,
(3.25) do (3.20) (s do 1
g(0) < C / —— < _/ e < 0.
(©) * Jsp 11— 11()] ¢ Jsp 10°

Thus, h(0) < 1 by Proposition 3.2.4.
b) Let d < . Let also ¢y, c3 and ¢ be from (3.21). We may suppose that 6 < 7. By the first
estimate of (3.21), we see that (§B)\{0} C (7I)\I'(x). Therefore,

(3.24) 1 Re (0
90) > = / L= Refu6) ;,
(2m)® Jsppgor 11— 1(0)]
(3;1) Co / d_0 1) ~
— (2m)i Jsmyo 101
Thus, h(0) = 1 by Proposition 3.2.4. \("a™)/

Example 3.4.4 Let a € (0,2). We will present an example of u € P(Z?) for which (3.20)
and (3.21) hold true. Let py € P(Z) such that

| ‘—l—a

p1(0) =0 and p(x) = for z # 0,

1

where ¢; =23~ n~'"* We define p € P(Z%) b

(z) = Tia(xg), if z = (0p,25)%, for some f=1,...,d,
pE) = 0, if otherwise.

Then, it is easy to see that

1A
= 327 (6s).
B=1
Thus, (3.20) and (3.21) follow from those for p;. In fact, we will prove that:
1—11(0) o=0 c2 /Ool—cosx T
1 — — — € (0 h =2 dr = .
) 6] ¢ € (0,00), where c; 0 axlte v [(a+1)sin &F
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We may assume that 6 # 0. By symmetry, we may also assume that # > 0. It is convenient

to introduce
1 —cosz

flx) =

. x>0

6—0

and its approximation fp(z) — f(z) (z > 0) defined by:
fo(x) = f(nh) ifz € ((n—1)0,n0],n=1,2,..

We compute:

1
a1(0) = —Z 2|1 exp(iz0) Zn “ cos(nb)

261
TEZ
x#£0

Thus,

1—
2) +:C—12n0 11 — cos(nh)) 01/ fo(z

n>1

We will check that
3) there exists a g € L'((0,00)) such that fy(z) < g(z) for z > 0 and 0 € (0, 1].

Then, 1) follows from 2) and the dominated convergence theorem. Note that

92
4) O§1—0089§2/\§ for 0 € R.

Suppose that x € (0,1) and that € ((n — 1)0,n6]. Then,
1,2) 1
(1+2)" ifac(0,1) } € L((0,1).

Suppose on the other hand that = € [1,00) and that z € ((n — 1)¢,n6]. Then,

fo(x) = (n0) =71 (1 — cos(nh)) 4§) (ng)'—* < { z' e if o € [1,

fo(z) = (n) (1 — cos(nh)) 4§) 2(nB) 17> < 22717 € LY([1, 00)).

These prove 3). \("0™)/

(x) Completion Referring to (3.9) and (3.18), we now define

(m)
my ) ElsT=7], if0<s<1,
ha"(e) = { R (x), if s = 1. (3:33)

and
ho(z) = hV(z), 0<s<1. (3.34)

Note that, by the monotone convergence theorem,

W) = T b (), (3.35)
R (z) = n;bl}%o A (z). (3.36)
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We now prove (3.15) in the following generalized form.

-
Lemma 3.4.5 Consider a random walk (Sy,)n>0 on Z%. For all s € [0,1], z € Z¢ and
m>1,

B (x) = ha(x)hs(0)", (3.37)
hs(x)
95(r) = dopt+ T o _EL o (3.38)

N J
Proof: It is enough to prove (3.37) and (3.38) for s < 1. The results for s = 1 can be obtained
by passing to the limit s 1. We begin by proving (3.37) for s < 1. To do so, we may assume
that P{T, < oo} > 0. In fact, (3.37) is just “0=0" if otherwise. For 1 < k < oo, define

Tém_l’k) = inf{n >1; Zl{Sk+j - S, =0}=m— 1}.

j=1
Then,

1) TR & =),

2) To(mfl’k) is independent of {X;}*_, and thus, independent of {T}, = k}.
3) {T, = k} C {T¥™ = k+ Ty M),

Note also that

ST = sT“EM)l{Tx < o0}
We therefore have that
E [sTﬂgm)} = F [st(m) T, < oo] ) iskE [STém_LM 2T, = }
4) . k=1
12 Z s*E [sTémil)] P(T,=k)=FE [STI} E [sTo(m_l)} )

k=1
By applying 4) to = 0 inductively, we see that

B [STO("L*U] _F [STo}m—l
which, in conjunction with 4), proves (3.37). We next prove (3.38) for s < 1 as follows:

gs(x) = Oou+ Z s"P{S, = x},

n=1
S (s et = oS P == 33 g <)
n=1 n=1 m=1 m=1 n=1
N ] (337) w1 h(a)
- mZ:lE sF ] &l mZ:lhs(x)hs(O) = 2 0

\("0™)/
Exercise 3.4.1 Suppose that fﬂ / #fﬁw) < 00, which is true for the simple random walk with
d > 3. Prove then the following.
)s € Li(xl), g(x) = (2m)~" [, d9=E=EE) 2 e 2,
ii) g(z) — 0 and h(z) — 0 as |z| — oo. Hint: The Riemann-Lebesgue lemma.
iii) P(H ¢ {Sp}n>1) = 1, where H = {x € Z¢ ; h(x) > 0}. This is in contrast with Exercise
3.2.2. Hint: P(H C {Sp}n>1) < h(z) for any z € H.
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Exercise 3.4.2 Prove that

m) . m I 0 1,(m
E[T™ . T™ < o] _%&hg )(z). (3.39)

Exercise 3.4.3 Consider a Z-valued random walk such that
PX;=41)=pr>0and P(X; =0)=py=1—p; —p_.
i) Use residue theorem to compute the integral (3.27) and conclude that

[ S(s)TVf (s)r ifa >0,
s(.’]?) - { 5(8)71/2f+(8)\x| if © S O, (340)
where 6(s) = (1 — pos)? — 4pyp_s? and fi(s) = H?(’és;—ff)lm. ii)!? Use (3.38) and (3.40) to
prove that
f-(s)* if z >0,
he(z) =4 1—4(s)Y2 if x =0, (3.41)
fr(s)! if x < 0.
iii)** Use (3.35), (3.39) and (3.41) to prove that

_J In(py/p-)* itz #0,
h<x)_{1—|p+—p_| if x =0.

E[T,] = { |zl/Ip+ —p-| if z(py —p-) >0,

00 if otherwise.
|2/ Ip+ — p-| if x(py —p-) <0,
BT, |T, <ool =4 (1—I|pt —p-N)(p+ +p- +4pip-)/|py —p-| ifpy #p- and z =0,
00 if p, =p_.

Exercise 3.4.4 (Green function in a subset) Suppose that (S, ),en is a Z%valued random
walk and that 0,2 € A C Z%. Define

T(A%) = inf{n>1; S, ¢ A}, T,=inf{n>1; S, =z},

giw) = 3 s"P(S, = z,n < T(A),
n=0
TI . c .
hA(m): E[s .Tm<cT(A)}, ?fO§s<1,
° P(T, < T(A%)) if s =1.

HA(z) = E [sTA): Spiae) = 2}, if0<s<l,
s - P(T(A%) < oo, ST(Ac) =z) ifs=1.

Then, prove that!®
hi ()
A = s <1 42
g:(x) (5x70+1_h;4(0), 0<s<1, (3.42)
gs(@) = gl@)+ Y Hiwg(xr—y), 0<s<L (3.43)
yEZI\ A

13See also (4.68) below.

14Gee also Exercise 3.3.3, Exercise 3.7.1, and Proposition 4.5.3.

15Special case of these identities can be found in [Law91]; See Exercise 1.5.7 and Proposition 1.5.8. of that
book.
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Exercise 3.4.5 ' Prove the following for the random walk considered in Exercise 3.4.3. For
a,b € N\{0} and s € (0, 1],

T . . f-(s)70 = fi(s)
Bl e <l = o (7 = fo ol T (o) (3449
f+(s>_a_f—(8)a (345)

fe(s)70f=(s)™0 = fa(s)Pf-(s)*

In particular, if p; < p_, then as special cases of (3.44) and (3.45) with s = 1,

(p—/p+)" — 1 1— (p_/ps)~°
(p—/p1)" = (p-/py)™ (p-/p+)" = (- /pr)™

Hint: Referring to Exercise 3.4.4, for A = Z N (—00,b), h(—a) = E[sT : T_, < Ty].
Similarly, or A =ZN (—a, ), hA(b) = E[sT : T, < T_,)].

E[s" : T, < T_,]

P(T_, < Tp) = P(Ty < T.,) = (3.46)

3.5 (*) Completion of the Proof of Proposition 3.2.4

We will finish the proof of Proposition 3.2.4 by taking care of T4),T5),R4) and R5). To do so,
we prepare a couple of lemmas.

Lemma 3.5.1 Fory,z € Z°,

1= hoo(y) = h(2)(1 = hoo(y — 2)). (3.47)

Proof: Define the first hitting time to x € Z¢ by
n(z)=inf{n>11|S, =z}.
Then,

L= hooly) = P(U ﬂ{Sn#y}>

m>1n>m

P (77(2) < o0, U ﬂ {Sn+77(z) 7é y}>

m>1n>m

v

= > Pl =t {Suse =S #y— 2}
; %gﬁl@n + eFY—Z

=:Fy

We observe that
ErcolX;; j<{, FeoX;;j>{,

and therefore that

1) E, and F; are independent.

16See also Proposition 4.5.5.
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We also see that
(3.9)

2) Y P(E) = P(y(z) < 00) = h(2).

>1
Note on the other hand that
(Snre — Se)pzy = (Sn)pe

n=1"

This implies that
3) P(Fy) = P(Fp) =1 = hoo(y — 2).
Combinning 1)-3), we have that

S PENFR) Y S PEIPE)EDS PEN - haly - 2))

—~
N

>1 >1 >1
@
= h(2)(1 = heo(y — 2))-
Putting things together, we obtain (3.47). \("a™)/

The equivalence of T1),T4),T5) and that of R1),R4),R5) are immediate from the following
4 N

Lemma 3.5.2 For xz € 77,
B 0 < h(0)<1orh(z)=0,
frool() = { 1 <= h(0)=1 and h(z) >0 (348)
B 0 < h(0) <1,
hoo(0) = { 1 < h(0)=1. (3-49)
\_ /

Proof: By the monotone convergence theorem (MCT) and (3.15), we have that:

: 315 [ 0 if h(0) < 1,
i fom(@) 7= { h(z) it h(0) = 1.

By setting z = 0 in 1), we see that

MCT

1) heo ()

0 if (0) <1,
oo 0) = { 1 if h(0) = 1.

This implies (3.49). Observe that (3.48) follows from 1) and the following
2) h(0) =1, h(z) >0 = hy(x) = 1.
To see this, suppose that h(0) = 1, h(x) > 0. Then, ho(0) = 1, h(x) > 0 by (3.49). Then, by
taking (y, z) = (0,z) in Lemma 3.5.1, we have
0=1—=hw(0) > h(x)(1 — heo(—x)), hence hy(—z)=1.

This in particular implies that A(—x) > 0. Then, by taking (y, z) = (0, —z) in Lemma 3.5.1,
we have

0=1—hw(0) > h(—2)(1 — heo(x)), hence ho(z) = 1.
This proves 2). \("a™)/
Exercise 3.5.1 Conclude from Lemma 3.5.1 that the set
{x € Z¢; hyo(x) = 1} is either empty or a subgroup of Z¢.
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3.6 (*) Bounds on the Transition Probabilities

In section 3.4, we have used the characteristic function to estimate the Green function. In this
section, we will estimate the transition probabilities by similar argument. We will prove:

Proposition 3.6.1 Let a > 0. h
a) Suppose that there exists a constant c1,d € (0,00) such that
1L —1[(0)] > 110" for 10| < 6. (3.50)
Then, there ezists a constant by € (0,00) such that
sup P(S, =) < % foralln > 1. (3.51)

x€Z4

b) Suppose that X, ~ — X and that there exists a constant ¢y, € (0,00) such that (3.21)
holds. Then, there ezists a constant by € (0,00) such that

P(Ssy, =0) > % foralln > 1. (3.52)
\ )
Remark The condition (3.50) is slightly stronger than (3.20) in general, but they are equivalent
if X7 ~ —Xj, since 1(#) > 0 for 6 close to the origin. The random walk considered in Theorem
3.2.2 satisfies the conditions for Proposition 3.6.1 with a = 2. Example 3.4.4 provides an
example for which the conditions for Proposition 3.6.1 hold for a € (0, 2).

We prepare a technical estimate:

Lemma 3.6.2 Suppose that a,¢,§ > 0 and cd* < 1. Then, there exist by, by € (0,00) such
that:

b < / (1 — clz|*)'dz < b2 forallt > 1 (3.53)
td/a — eRY, |2]<6 — td/a =

Proof: We write the integral in (3.53) by ;. Then,

x:yzl/a

AN\t
1) I t—d/aJt with J, = fy|<5t1/0< (1 _ > dy.

| t

Since the integrand of J; is increasing in ¢ > 1 and converges to exp(—c|y|*) as t — oo, we
have

2) 0< /i< < / exp(—cly|*)dy < oco. for all t > 1.
Rd

(3.53) follows from 1)-2). \("a™)/

Proof of Proposition 3.6.1:
a) We have that

(3.30), (3.22) (3.50) (3:53) by
P(S, =) < C(;/ lz(0)|"do < 05/ (1 —c|0|M)"dd < ——
[o]<é

2
10/<s nd/e
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This proves (3.51).
b) Note that 7i(d) € R and hence that 7i(6)?" > 0. Thus,

(3.29) 1 ~ 2 ~rp\2n
P — — >

This proves (3.52). \("0™)/

3.7 Reflection Principle and its Applications

Reflection principle (Proposition 3.7.1) is an important tool to study nearest-neighbor random
walks in Z. In this subsection, we will focus on the reflection principle and its applications.
Throughout this subsection, we consider a Z-valued random walk Sy =0, S,, = X1 + ... + X,,,
n > 1 such that

P(Xlzj:l):pj:>0, and P(XIZO):]?o:l—er—p,

For a € Z, define
T, =1inf{n >0; S, = a}.

Then, we have

“ 2a — S,
a
V/\V
T,

4 N

Proposition 3.7.1 (Reflection principle). For x € Z* and y € Z",

P (Ta =k, (Sj)fﬂ =, (Sk+j)?:1 = ?J)
= P (Ta = k? (Sj);?:l =, (2@ - Sk-l—j)?;:l = y) (p-i-/p—)yn_a‘ (354)

In particular, letting a = 0,

L P((S)je1=y) = P ((S))j1 = —y) (p+/p-)"". (3-55)j
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Proof: We define the events A, By by

A=A{T, =k, (S))jo1 =2}, Bx={(a=£(Sk+j — SK))j=1 =y}
Note that A € o(Xj,...,X) and that By € 0(Xyyq, .. Xk+n) Therefore, A is independent
of B.. Moreover, A C {Si = a}. Therefore,

the LHS of (3.54) = P(AN {(Skﬂ) . =19})
1) = PAN{(a+ Skyj — Sk‘)]:l =y})
= P(A)P(B,).
Similarly,
(p4/p—)~ ¥~ x the RHS of (3.54)
2) = PAN{(2a — Skyj)i=1 = y})
= P(AN{(a = (Sk+; — S))j=1 = ¥})
— P(A)P(B.).
Note that P(X; = +1) = (p; /p_)*' P(X; = F1). Thus, with the convention y;, = a, we have
P(By) = H;'L:1 P( X5 =5 — Yj-1)
3) = (p+/p-)"~ aH] V P(= Xy =45 — yj-1)
= (p+/p-)"""P(B-).
Therefore,
the LHS of (3.54) 2 P(A)P(B,) oy
2 (py/p_ ) P(A)P(B_) 2 the RHS of (3.54)
Corollary 3.7.2 For a € Z\{0}, n > 1, and z € Z with a(a — x) > 0, b
P(T, >n,S, =x)=P(S,=x)— (p/p-)" P(S, =z — 2a). (3.56)
Moreover,
P(S, <a)— (py/p-)" P(S, < —a), if a >0,
P(T, = a : .
. oz ={ o0 Loy G R S5, ez © "

Proof: (3.56). If @ > 0 and = < a, then, 2a —x > a. If @ < 0 and a < z, then 2a — z < a.
Thus we have the following inclusion in both cases.

1) {Sn =2a—2z} C{T, < n}.

On the other hand, it follows from (3.55) that

P(S, = @) = (ps/p-)"P(S, = —a). (3.58)
Therefore,
(Sp=2—2a) ") (p,/p_)"2P(S, = 2a - )
2) E (py/p )" M P(T, <, Sy = 20— )
P2 (py/po) " P(T, < n, S, = )
= (p+/p-)"{P(Sh=1x) = P(T, > n,S, = z)},

which proves (3.56).
(3.57): If a > 0, then, taking the summation of both-hands side of (3.56) over & < a, we have

P(T, >n) = P(S, <a)— (py/p-)*P(S, < —a).

which proves (3.57) for a > 0. If a < 0, then, taking the summation of both-hands side of 3)
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over x > a, we have
P(To > n) = P(—la| < Sn) = (p+/p-)"P(lal < Sy).
which proves (3.57) for a < 0. \("e?)/

Remark: Suppose that p, = p_. Then, we see from Example 2.8.2 the following. If py > 0,

1
\V2Ton

P(S,=1z) = +0(n7"), asn— oo,

where v = 2p, + 4po(1 — po).
If pg =0, then for x € Z and n € N such that n + x is even,

2
P(Sn:x):\/—n%—O(n_S/z), as n — oo.
T

These, together with (3.57), imply that
2 _3/2
P(T, > n) =la|\/| — 4+ O (n™*"?), asn — .
Ton

Exercise 3.7.1 Use (3.57) to prove the following.
(i)'" For a > 0, P(T,, < 00) = (p4/p-)" A1, P(T_q < 00) = (p—/p+)* A L.

— 0 _ 1 _ _
P(T.1>n) = (1-3%)P(Sy=0)+5-P(Sni1=0)+ (1 -2) P(S, < -1).
P(Ty>n) = piP(I-y>n—1)+p_P(Ty >n—1)
(i) = BP(S, = 0) + (1 - B) P(S,1 = 0)

—|—(p+ —p,)(P(Sn,1 > 1) — P(Sn,1 < —1))
Exercise 3.7.2 Prove the following. (i) For € Z and an even function F : Z" — R,
BIF(Su,.-,8,) : S0 = 1] = E[F(S1,...,5,)  Su = —a](p+ /p_ )"

(ii) Let A, = (M, {IS] = rj} for ri,... € N with |rj — ;] < 1 (rg ' 0). Then,
P(S, = ro|An) = pi /(P +p). (iii) P(An) = H;'lzl p(rj-1,7;), where

(Pt +p /0 +pn)  ifs=r+1,
p(r,s) =< (p-p, +psp")/ () +p") ifr>1and s=r—1,
Do if s=r.

17See Exercise 3.3.3 and (4.69) for alternative proofs.

117



4 Martingales

4.1 Conditional Expectation

Let (2, G) be a measurable space, 1 be a measure on (£2,G), and v be either a measure or a
signed measure on (2, G). v is said to be absolutely continuous with respect to u, and denoted
by v < p it

AegG, wW(A)=0 = v(A)=0. (4.1)

We start by recalling

Theorem 4.1.1 (The Radon-Nikodym theorem) Let (2, G) be a measurable space, p
be a o-finite measure on (Q,G). Suppose that a signed measure v on (2, G) is absolutely
continuous with respect to . Then, there exists a unique p € L*(u) such that

v(A) = /Apdu forall A€ g. (4.2)

The function p is called the Radon-Nikodym derivative and is denoted by g—:.
N

J
. . A
Lemma 4.1.2 Let (Q,G) and p be as in Theorem 4.1.1, Suppose that signed measures

v,v,ve on (Q,G) are absolutely continuous with respect to p and that p = g—;, pj = ‘Z—Zj
(j =1,2). Then,
v=oauv + fr, = p=ap+ PBp2, p-a.e fora,p ER, (4.3)
v <uvy, = p < po, p-a.e., (4.4)
d
Ip| < M, p-a.e., where |v| denotes the total variation of v. (4.5)
dp
N J
Proof: (4.3): Let A € G be arbitrary. Then,
(4.2)
(A) = () + Bualcd) 2 [ (api+ G
A
Thus, p = ap; + Bpa, p-a.e. by the uniqueness of the Radon-Nikodym derivative.
(4.4): Let A € G be arbitrary. Then,
42 42
/Pldﬂ = vi1(A) < 1n(A) = / padfi.
A A
Thus, p; < po, p-a.e.
(4.5): Since v < |v|, it follows from (4.4) that £p < Ciz‘_;il? p-a.e. \("a™)/

For the rest of this subsection, we suppose that (2, F, P) is a probability space, and that
G is a sub o-algebra of F.
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4 N
Proposition 4.1.3 (Conditional expectation) Let X € L*(P).

a) There exists a unique Y € L'(Q, G, Plg) such that
E[X : Al=FE[Y : A] foral A€g. (4.6)

The r.v. Y is called the conditional expectation of X given G, and is denoted by
E[X|g].

b) For X, X, € L'(P) (n € N),

ElaX) + X5|G] = aE[X1|G] + BE[X5|G], a.s. fora,p € R, (4.7)
X; <Xy, as. = E[X4|G] < E[Xs|G], a.s., (4.8)
BIX|G) < EIX|IG), as. (19)
X is G-measurable <— FE[X|G] =X, a.s. (4.10)
X is independent of G = FE[X : A|=EXP(A),VA€G (4.11)
< F[X|G] = FEX, as. (4.12)
L X, =3 X in L'(P) < E[X,-X||G] =30 in L'(P). <4'13)/

Proof: a) Let @ be a signed measure on (2, F) defined by Q(A) o E[X : A] (A€ F). Then,
Qlg < P|g and |Q|(A) = E[|X]| : A] (A € F). Thus, by Theorem 4.1.1, there exists a unique
Y € LY(Q,G, P|g) such that

Q(A) = / YdP, forall Ae€g.
A

which however is nothing but (4.6). In particular,

_ g

E[X|G] = iPlg

(4.14)
b) (4.7), (4.8), (4.9) follow respectively from (4.3), (4.4), (4.5).

(4.10) =: Suppose that X is G-measurable. Since the relation (4.6) is trivially true for Y = X,
it follows from the uniqueness of the conditional expectation that X = F[X|G] a.s.

(4.10) <=: This is obvious, since E[X|G] is G-measurable by definition.

(4.11): Obvious.

(4.12) =: Let Y = EX and A € G. Then,

E[X : A= EXP(A) = E[Y : A].

This implies, via the uniqueness of the conditional expectation, that Y = E[X|F] a.s.

(4.11) <: Suppose that F[X|G] = EX, a.s. Then, by taking the expectation of the both-side
hands over the event A € G, we have that E[X : A| = EXP(A).

(4.12): This follows from (4.11).

(4.13): Let Y,, = E[|X,, — X||G]. Then,

ElY,| Y Blx, - X|.
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Thus E|X, — X| =3 0 < E|Y,| =3 0. \("s")/
Remark Referring to Proposition 4.1.3, if G = o(Y3,Y5,...) for r.v’s Y1,Y5, ..., we write
E[X|G] = E[X[Y1,Ys, ..].

Example 4.1.4 For X € L'(P), the conditional expectation of X, given an event A € F with
P(A) > 0 is defined by
E[X|A] = E[X : A]/P(A). (4.15)

Let J be an at most countable set and {G;};c; C F be such that P(G;) > 0 for all j € J,

Q=U,c,Gjand G;NGy =0 if j # k. Finally, let G = ¢[{G};}jes]. Then, for X € L'(P),
E[X|G] = E[X|G))1g,, as., (4.16)

jeJ
To verify this identity, we take an arbitrary A € G and let
1) Y =) E[X|Gj]1g,.
jeJ
Since there exists K C J such that

2) A= J @G,

JjeK

we have for any j € J that

_ [ Gy ifjek,
3) Gﬂ'ﬁA_{ 0, itjd K.
By putting these together, we see that Y satisfies (4.6) as follows.
1)) 3)
Ely:A] = > EIX|G]P(G;nA) =D E[X|G]P(G))
jeJ jeK
“NTCEX 6 2 EIX AL
jEK

This implies (4.16).

Example 4.1.5 For j = 1,2, let (S5;,B;) be a measurable space, f : S; x S3 — R be
measurable, X; : € — S; be a r.v. Suppose that X; and X, are independent and that
f(X1,X5) € LY(P). Then,

E[f(Xl,X2>|X2] = ; f(.Tl,XQ)P(Xl c dl’l) a.s.

FQ(CCQ) = f(J]l,ZL'Q)P(Xl < d[[‘l), T € XQ.
St

Then, we should prove that
1) VA € O'[XQ], E[f(Xl,XQ) : A] = E[FQ(XQ) . A]
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Note that VA € o[X5], 3B € B(R), A, = {X, € B}. Thus,

BIR(Xy): A] = Euxxgu&efﬂ:/J%@ed@) o, 22) P(X) € day)
B S1

= E[f(Xl,X2> . XQ € B] = E[f(Xl,XQ) . A]

Fubini

[
Proposition 4.1.6 (The projection property) Let X € L'(P). Then, for o-algebras

G1, Gy such that Gy C Gy C F,

E[EIX|GI|G) = E[X|G)], a.s. (4.17)

EEXQQ gl = EXgl, a.s. 4.18
g [E[X]G]|61] [X1G1] ( )j

Proof: Let Y; = E[X|G;] (j =1,2).

(4.17): Since Y; is Gi-measurable, it is also Go-measurable. Thus, we see from (4.10) that
E[Y1|Gs] = Y1,a.s.

(4.18): Let A € Gy be arbitrary. Then, since A € G,

Thus, we see from (4.6) that E[Y3|Gi] = Vi, a.s. \("a™)/

Remark: FE[E[X|G]|Gy] and E[E[X|G]|Go] are not always the same if we do not assume
either G; C Gy or Gy C G (cf. Exercise 4.1.5).

Proposition 4.1.7 Let X, Z be r.v.’s such that Z is G-measurable, X,ZX € L'(P).
Then,
ElZX|G] = ZE[X|G], a.s. (4.19)

Proof: a) We first consider the case where Z = 15 with B € G. Let A € G be arbitrary. Since
AN B € G, we have

E[ZX : A= E[X : AnB] 'Y E[E[X|G] : AN B] = E[ZE[X|G] : A].

Thus, (4.19) holds.
b) We now consider the general case. There exists a sequence Z,, of G-measurable simple r.v.’s
such that Z, =3 Z and that |Z,| < |Z|. By a) and (4.7), we have for each n € N that

1) E[Z,X|G] = Z,E[X|G], as.

n—o0 n—o0

Since Z,X — ZX in L'(P) by DCT, we see from (4.13) that E[Z,X|G] — FE[ZX]|G] in
L'(P). Therefore, there exists a subsequence {Z,,) }ren such that

2) E|Z.wX|G) =3 E[ZX|G], as.
On the other hand, since Z, —= Z, a.s., we have Zn(k) oo Z, a.s., and hence,
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Thus, we obtain (4.19) from 1),2),3). \("e™)/
-

Proposition 4.1.8 (Hélder’s inequality) Let p,q € (1, 00), ]%—i— % =1, X € L?(P) and
Y € LYP). Then,
E[|IXY|IG] < E[IXIPIG]'PE[[Y|"IG]* a.s. (4.20)
In particular,
E[|X]|G)P < E[|X|P|G] a.s. (4.21)
N /
Proof: Thanks to (4.7), (4.8), and (4.19), the proof of (4.20) goes in the same way as that of
usual Holder’s inequality (cf. Proposition 8.1.1). \("a™)/

Proposition 4.1.9 (The orthogonal projection property) Let M = L*(Q,G, P|g)
and M* be its orthogonal complement in L*(P). Then, for X € L*(P),

E[X|Gle M, X - E[X|G] € M*, (4.22)

that is, the map X — E[X|G] (L?*(P) — M) is the orthogonal projection from L*(P) to
M.
\_ /

Proof: ¥ & E[X]G] is G-measurable by Proposition 4.1.3 and it is square integrable by (4.21).

Hence, Y € M. On the other hand, let Z € M be arbitrary. Then,

4.19

2(X —v)“Y zX - B[ZX|G), and hence E[Z(X —Y)] = 0.
Therefore, X —Y € M+*. \(hoh)/

Proposition 4.1.10 (Jensen’s inequality) Let I C R be an open interval and ¢ : [ — R
be conver. Suppose that X : Q — I satisfies X, o(X) € L'(P). Then,

v (B[X|9]) < Elp(X)|G], a.s. (4.23)

Proof: We set Y = E[X|G] to simplify the notation.

a) We first consider the case where Y € J a.s., where J C [ is a compact interval. As is
well known, for y € I, the following limit (the right derivative of ¢ at y) exists and is non
decreasing in y.

ey +h) — o(y)

def
=1

¥ (y) = lim .
h>0
Moreover,
p(r) > o(y) + ¢, () (x —y), forallz,yel.
Thus,

e(X) > (V) +¢ (V)X -Y), as.
Since ¢ is continuous, and ¢’ is monotone on I, both ¢, ¢’ are bounded on J. As a con-

sequence, the right-hand side of the last inequality is integrable. Therefore, by taking the
conditional expectation, and by using Proposition 4.1.7, we have that a.s.,

Elp(X)IG] > o(Y) + ¢ (Y)(E[X|G] = Y) = ¢(Y).
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b) We now consider the general case. By translation, if necessary, we may assume that
0 € I. Let J, (n > 1) be an increasing sequence of compact intervals such that J; 5 0 and
Unsi Jn = 1. Let also Z, = 1{Y € J,}. Then, by Proposition 4.1.7,

E[Z,X|G] = Z,)Y € J,, as.
Hence, we may apply the result of a) to Z, X, in place of X, to obtain that
1) ¢(Z,Y) =9 (E[Z.X|G]) < Elp(Z,X)|F], as.

n—oo

As for the left-hand side of 1), note that Z,Y — Y, a.s. Thus, by the continuity of ¢,
2) ©(Z,Y) =% p(Y), as.

As for the right-hand side of 1), note that

3) (ZnX) = Zne(X) + (1 = Zn)(0),

and hence, a.s.,

1) Elp(Z,X)|9] 2 Z,Elp(X)|F] + (1 = Z,)p(0) =5 Elp(X)|g].
Thus, (4.23) follows from 1),2) and 4). \("a™)/

Lemma 4.1.11 (x) (MCT) Let X,, € L'(P) be such that X,, < X,11 (Vn € N) and that
X = sup,ey X € LY(P). Then,

E[X,|G] =% E[X|G], a.s. and in L'(P). (4.24)

Proof: (4.24) is equivalently stated as Y, o E[X — X,|G] =% 0, a.s. and in L'(P). As for
the L'-convergence, we note that 0 < X — X,, < X — X; € L'(P), which, via DCT implies

n—o0

that X — X,, = 0 in L'(P). Thus, we see from (4.13) that
n—oo

1) Y, "% 0in L(P).
We next show that Y, —% 0, a.s. We see from (4.8) that Y,, > Y,,1 > 0, a.s. for Vn € N.

n—oo

Thus, there exists a G-measurable r.v. Y, > 0 such that Y,, — Y, a.s. We combine this
with 1) to coclude that Y,, = 0, a.s. \("a™)/

K
Proposition 4.1.12 (x) (Fatou’s lemma and DCT) Consider the following conditions
forX, € L'(Q, F, P).

a) sup|X,| € L'(P),

neN
—
b) X, =% X,a.s. for some r.v. X.

Then, under the assumption a),

E[lim X,|G] < lim E[X,|G] < lim E[X,|G] < E[lim X,|G], a.s. (4.25)

n—oo n—o0

Moreover, under the assumptions a) and b),

L X € LYQ,F,P) and E[|X — X,||G] =30, a.s. and in L'(P). (4.26)
J

123



Proof: If we assume a), then, the inequality (4.25) follows from Lemma 4.1.11, exactly in the

same way as Fatou’s lemma follows from MCT in the theory of Lebesgue integration. To see

(4.26), let Y, o E[|X — X,,||G]. Note that a) and b) imply that X,, =3 X in L'(P) via DCT.

Thus,
EY, ¥ BlX - X, =% 0.

Hence Y, =% 0 in L'(P). On the other hand, by using (4.25) with X,, replaced by |X — X,,|,
and by applying condition b), we have

S (425)
lim Y, < FE[lim |X - X,]||G] =0.
n— o0

n—oo

Hence Y, s 0, P-a.s. \("a™)/

Lemma 4.1.13 (%) Let X € L'(P). Then, the family of r.v.’s defined as follows is u.i.

{E[X|G]; G is a sub o-algebra of F}.

Proof: Let ¢ > 0 be arbitrary. Recall from Exercise 1.1.5 that there exists 6 > 0 such that
E[|X|: Al <eforall Ae F with P(A) <¢. Let m > E|X|/d. Then, for any sub o-algebra G
of F,
Chebyshev
P(E[IX]IG] >m) < E[E[X]||F]]/m = E|X]|/m <.
Thus,

ENEX|G]] - |E[X|G]| >m] < E[E[X]|G]]: E[X]|G] > m]
= E[|X|: E[|X]|G] > m| <e.
\("a™)/
Exercise 4.1.1 Let A be a o-finite measure, u be a finite measure, and v be a signed measure,
such that v < u < A. Prove then that \-a.e. Z—K, g—;, fl—’; are well-defined and fl—l/( = g—;g—’;.

Exercise 4.1.2 Suppose that X, X, € LY(P), B € G, and that X; < X, a.s. on B. Then,
prove that E[X;|G] < E[X5|G] a.s. on B.

Exercise 4.1.3 Is the converse to (4.12) true? Hint Let Q = {—1,0,1}, F = 2% P({j}) =
1/3 (5 =0,%£1), G = o[{0},{-1,1}] and X(j) = j.

Exercise 4.1.4 Let X € L'(P), X >0, a.s., and Y = E[X|G]. Then, prove for any «, 3 > 0
that P(X > «|G) < f1{Y > 0} + 1{Y > af}, a.s. and hence in particular that P(X > «) <
BP(Y >0)+ P(Y > ap).

Exercise 4.1.5 Let Q = {1,2,3}, F =29 P({i}) = 1/3, G; = o[{i}], xi(w) = 1{w = i} for
i=1,2,3. Then, for X : Q — R and for (i,7) = (1,2),(2, 1), verify that

Bixig] = X+ T )
BlELXIGNG) = Ty (S FEEE) o),

Conclude from this that E[E[X|G]|G2] # E[E[X|G2]|G1], unless X is a constant.
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Exercise 4.1.6 Suppose that X,Y € L'(P), and that G, H are sub o-algebras of F. Then,
show the following. (i) o(X)VG and o(Y)VH are independent = E[XY|GVH] = E[X|G]E[Y|H],
a.s. (i) o(X)VG and H are independent = E[X|GVH] = F[X|G], a.s. (iii) o(X) and H are in-
dependent, and G and ‘H are independent A E[X|GVH| = E[X|G], a.s. [Hint. Q = {0, 1,2, 3},
F=2% P{w})=1/4 (Vw e Q), X =144, G =0[{2,3}], H =0[{1,3}]]

4.2 Filtrations and Stopping Times I

Throughout this subsection, we assume that

e (2, F,P) is a probability space and T C R.

The set T is considered as the set of time parameters, typical examples of which are N and
[0,00). In section 5.5, we consider the case of T = —N.

Definition 4.2.1 (Filtration, Stopping times)
» A sequence (F;)ier of sub o-algebras of F is called a filtration if

Fs C Fy for all s,t € T with s < t. (4.27)
» Given a filtration (F)er, ar.v. T : Q — T U {0} is called a stopping time if
{T<t}eFforallteT. (4.28)
» Given a filtration (F;)er, and a stopping time 7', we define a sub o-algebra Fr of F by
AecFr <= An{T <t} e FforallteT. (4.29)

Remark It is easy to verify that Fr defined by (4.29) is indeed a sub o-algebra of F and that,
if T'=1t (a constant), then Fr = F;.

Example 4.2.2 (First entry/hitting time) Let (S, B) be a measurable space and X; : 2 —
S, t € T be a sequence of r.v.’s. We set

F =0(X,:s€T, s<t). (4.30)

Then, (F?)ser is a filtration, which we refer to in this example. Now, suppose that T C [0, c0).
For A € B, we define

Ty = inf{teT; X, € A}, (4.31)
Ty = inf{teTnN(0,00); X; € A}. (4.32)

Ty and T are called, the first entry time and the first hitting time. Let us now assume for
simplicity that
every bounded subset of T is a finite set. (4.33)

Then, T4 and T are stopping times w.r.t.the filtraiton (4.30). To see this, we observe that
(4.33) implies the following properties.

1) T is at most countable.

2) Any subset of T is closed in R.
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We will then, verify that the following are equivalent for any t € T.
a) d3se Tn|o,t], Xs € A.
b) T4 <t.

Indeed, it is obvious that a) implies b). To show the converse, let Uy = {s € T, X, € A}
so that T4 = inf U4 by definition. This does not directly mean'® that b) implies a). We will
verify that T4 = min Uy, which does mean that b) implies a). U, is bounded from below by
definition, and is closed by 2). Moreover, Ty < oo <= U # (). Thus, if Ty < oo, then
Ty=infUy = minUy.

Thanks to the equivalence of a) and b), togeter with the property 1), we have

)
{Ta<t}= |J {X.eA}er.
s€TNI0,t]

Similarly, {T'f <t} € F?. Therefore, T4 and T} are stopping times by (4.28).

We summarize some basic properties of stopping times in the following

\
Lemma 4.2.3 Let S, T and T,, (n =1,2,...) be stopping times. Then,
T is Fp-measurable, (4.34)
S<T = FsC Fr, (4.35)
supT,(w) € TU {0}, Vw e Q = supT, is a stopping time, (4.36)
n>1 n>1
min T (n=1,2,...) are stopping times, (4.37)
1<j<n
Fsar = Fs N Fr, (4.38)
{S<t<T} {S<T<tyeF, VteT, (4.39)
{S<T} e Fsnr (4.40)
Moreover, for a r.v. X,
X is Fg-measurable => X1yg<r) i Ferr-measurable. (4.41)
\ J

Proof: (4.34):It is enough to show that A o {T < s} € Fr for Vs € T. We take an arbitrary

t € T to verify the condition (4.29). Then,

(4.28) (4.27)
AnN{T <t} ={T <sAt} € Fgnu C F.

Hence A € Fr.
(4.35): We take an arbitrary A € Fg and show that A € Fp. Let us take ¢ € T to verify the
condition (4.29). Note that

(4.29) (4.28)
1) An{S<t} € Fand{T <t} e F.

18For example, let U = {t + n~'},>1. Then, t = inf U, but U N [0,t] = 0.
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Since {T' <t} = {5 <t} N{T < t}, we see that

An{T <t} = (AN{S<t)n{T <t} & F.

Hence A € Fr by (4.29).
(4.36): By assumption, sup 7,, defines a measurable function from © to T U {co}. Moreover,

neN
forall t € T,
{suan < t} = ﬂ{Tn <t} eF.
neN neN

Hence sup 7, is a stopping time by (4.28).
neN

(4.37): For t € T,
{%ignzy < t} = U{m<tper.

1<j<n
Hence 11r<111£1 Tj; is a stopping time by (4.28).
<j<n
(4.38): The inclusion C follows from (4.35). To prove the opposite inclusion, we take an
arbitrary A € Fg N Fr and ¢t € T and verify that AN{S AT <t} € F. Since {SAT <t} =
{S <t} u{T <t},

4.28
AN{SAT <t} =(An{S<thuUn{T <) & .
Thus A € Fsar by (4.29).
(4.39): As for the first set,
(4.28)
{S<t<T}={S<t}\{T <t} € F.

As for the second, note that S At is Fga-measurable by (4.34) and hence Fi-measurable by
(4.35). Similary T' A t is Fi-measurable. These imply that {S At < T At} € F;. Hence,

{S<T <t} ={SANt<TAt}N{S<t}nN{T <t} e F.
(4.40): We verify that the set A o {S < T} satisties AN{SAT <t} € F,forallt € T as
follows.

4.39
AN{SAT <t} ={S<T.S<t}={S<t<Thu{S<T<t & F.

This proves (4.40).
(4.41): Since it is enough to consider the case where X = 14 for some A € Fg, we have only
to prove that AN{S < T} € Fgar for A € Fg. Note first that

(4.40) (4.35)
{S<T} € Fsar C Fs,

and hence AN{S < T} € Fs. On the other hand, Fs r = Fs N Fr, by (4.38). Therefore, it

only remains to prove that

2) An{S<T} e Fr.
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4.29 4.39
To do so, we take an arbitray ¢ € T. Then, AN{S < t} ( € ) Fiand {S < T <t} ( € : Fi.
Therefore,
(AN{S<T}HN{T <t} =(An{S<thn{S<T <t} e R,

which proves 2) by (4.29). \("a™)/
Remark Referring to (4.37), it is not true in general that

1I;f1 T(w)eT, Vwe Q) = 1r;f1 T, is a stopping time. (4.42)

See Example 6.9.5 for a counterexample. On the other hand, (4.42) holds true under either of
the following assumptions.

e The set T consists only of isolated points (To see that this implies (4.42), apply Exercise

4.2.6 to the sequence S, aof 1r<r1j£1 T; of stopping times).
SJjsn

e T =[0,00) and the filtration is right-continuous (Exercise 6.9.2).

[Lemma 4.2.4 Let T=N, or[0,00). If S and T are stopping times, then, so is S+ T. ]

Proof: If T =N and n € N, then
1) {S+T<n}=|J{S<j, T<n—-j}eF.

Jj=0

Hence, S + T is a stopping time by (4.28).
Suppose that T = [0,00). By (4.28), it is enough to prove that {t < S+ 7T} € F; for all t > 0.
By dividing the event {t < S+ T} into the three possibilities S = 0,0 < S <t,t < 5, we have

{t<S+T}={S=0,t<T}U{0<S<t, t<S+T}U{t<S}.

It is easy to see that, the first, and third events on the right-hand side are in F;. As for the
second event, we note that for r € (0,¢)

{r<S<tit<r+T}={r<S<t,t—r<T}ecF.

Thus,
{0<S<tt-S<Tt= |J{r<S<t t<r+T}eF.

reQ
o<r<t

Hence, {t < S + T} € F;. See also Exercise 6.9.3 for an alternative proof assuming the
right-continuity of the filtration. \("e™)/

Exercise 4.2.1 Let S and T be stopping times and let A € Fgar. Prove then that S1,4+71 4c
is a stopping time.

Exercise 4.2.2 Referring to Example 4.2.2, let U be a stopping time and define
Tap=inf{teT; U<t X, € A}.

Assuming (4.33), prove that T4 iy is a stopping time.
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Exercise 4.2.3 Let T4 be defined by (4.31), A, € S, n € Nand A = J
that TA = infneN TAn‘

nen An. Prove then

Exercise 4.2.4 Referring to Example 4.2.2, suppose that S is a metric space, T = [0, 00),
and that t — X;(w) is left-continuous for all w € Q. Suppose also that (A, ),en is a decreasing
sequence of closed subsets of S and that A = (1, . An. Prove then that T4 = sup,,cy 74,

Exercise 4.2.5 Let T,, (n € N) be stopping times and suppose that, for each w € 2, there
exists m = m(w) € N such that T,, = T,,, for all n > m. Then, prove that T ' im 7, is a

n—o0
stopping time. Hint: Note that Q = U A,,, where A,, = ﬂ {T,, = T),} and that T'=T,, on
meN n>m

A,,. Therefore, it is enough to show that A, N {T,, <t} € F, forallt € T.

Exercise 4.2.6 Let T,, (n € N) be stopping times. Suppose that the set T consists only of
isolated points and that, for all w € Q, T'(w) = lim,,_,», Tp,(w) exists and belongs to T. Then,
prove that 7' is a stopping time. Hint: Check that the assumption for Exercise 4.2.5 is satisfied.

4.3 Martingales, Definition and Examples

Throughout this section, we assume that
e (2, F, P) is a probability space and T C R;
e (F})er is a filtration, cf. Definition 4.2.1;

e X = (X})ser is a sequence of real r.v.’s defined on (2, F, P).

Definition 4.3.1 Referring to the notation introduced at the beginning of this section, X =
(X, Fi)eer is called a martingale if the following hold true.

e (adapted) X; is F;-measurable for all ¢ € T;
e (integrable) X, € L'(P) for all ¢t € T;
e (martingale property)

E[Xi|Fs] = X, as. if s,t € T and s < t. (4.43)

If the equality in (4.43) is replaced by > (resp. <), X is called a submartingale (resp. super-
martingale ).

Remark When we simply say that (X;);er is a martingale, it means that (X, F;)er IS a
martingale for some filtration (F;);er. This applies similarly to submartingales and super-
martingales.

Example 4.3.2 a) If t — X, is a non random function of ¢, then it is a submartingale (resp.
supermartingale) iff it is nondecreasing (resp. nonincreasing).

b) Let Y € L'(P). Then, the process defined by X; = E[Y|F], t € T is a martingale.
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c) Let Fow = 0 (F,t €T), Q be a signed measure on (2, Fy), and P, = P|g, Q; = Q|x,.

Suppose that (); < P, for all t € T. Then, X, L9 4 cTisa martingale.

P’
Proof: a) Obvious.
b) It follows from the definition of the conditional expectation that (X;);er is adapted and

integrable. Moreover, let s,t € T, s <t and A € F,. Then,

(4.18)

Hence, (X;)er is a martingale.
c¢) X; is Fi-measurable and X; € L*(P). Let s,t € T, s <t and A € F,. Then, since A € F;,

BIX, : A] = Qu(A) = Q(A) = Qu(A) = E[X, : A].

Thus, B[X;|F,] = X,, a.s. \("0™)/

Remark: Example 4.3.2 b) is a special case of ¢), where Q(A) = E[Y : A]. One might then
ask:

For all martingale (X;);er, does there exist a signed measure () such that
Q: < P, and X, = 92t for all t € T?

See Proposition 4.7.1 below for the answer.

Lemma 4.3.3 Let X = (X, F)er be a submartingale and ¢ : R — R be a convex
function such that p(X;) € LY(P) for allt € T. Then, (¢(Xy), Ft)ier is a submartingale
if either ¢ is increasing or X s a martingale.

Proof: Let s,t € T, s < t. We will prove that
1) Elp(X)|F] = ¢(X,) as.

By Proposition 4.1.10,

2) Elp(Xy)|Fs] > o(E[Xy|F]) as.

If ¢ is increasing, then 2) implies 1), since E[X;|Fs] > X, a.s. If X is a martingale, then
2) implies 1) again, since E[X;|F;] = X;, a.s. Therefore, (p(X;), Fi)ter is a submartingale in
both cases. \("a”)/

Remark: For a submartingale X = (X;, F;);er and a convex function ¢ : R — R, (¢(X}), F)ier
is not necessarily a submartingale. In fact, let ¢ — X; be a non random, strictly increasing
positive function and ¢(z) = 1/x. Then, X is a submartingale (Example 4.3.2 a)) and ¢ is
convex. However, ¢(X;) = 1/X; is not a submartingale, since it is a non random, strictly
decreasing function.

In what follows, we consider the case of T = N. For r.v.’s X,,, n € N, we set

AX, =X, - Xo1, n>1 (4.44)
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Lemma 4.3.4 Suppose that X = (X, Fn)nen is adapted, integrable. Then, the following
are equivalent.

X is a martingale; (4.45)
E[X,1|Fo] = Xy, a.s. for alln € N; (4.46)
EAX, 1| F.] =0, a.s. foralln e N. (4.47)

Moreover, submartingale (resp. supermartingale) are characterized by similar conditions
as (4.46) and (4.47) with equalities replaced by > (resp. <).

J

Proof: (4.45) = (4.46) <=(4.47): Obvious.
(4.47) = (4.45): Let m,n € N, m < n. Since X,, — X,,, = Z;::n AXj 1, we have

n—1

E[Xn‘}—m] — Xy = E[Xn - Xm|~’rm] = E[AXj+1|IM]
j=m
(4.18) < (4.47)
=" ) E[EAX; | FlFa] =70 as.
j=m

The case of submartingale (resp. supermartingale) can be treated similarly. \("a™)/

As a direct consequence of the preceeding lemma, we have

Example 4.3.5 (summation of conditionally mean-zero r.v’s) Let (£, F,, )nen be adapted,
integrable. We define X = (X, F)nen by

7=0

Then,
El¢n1|Fn] =0as. forn e N <= X is a martingale. (4.48)

Moreover,
El¢11|Fn] > 0 (resp. <0) a.s. <= X is a submartingale (resp. supermartingale). (4.49)

Example 4.3.6 (product of conditionally mean-one r.v’s) Let (&,, F,,)nen be adapted,
integrable. We define X = (X,,, F,,)nen by

X, =][¢&
j=0

We assume that X,, € L'(P) for all n € N. Then,
El¢n1|Fn] =1as. forne N = X is a martingale. (4.50)

The converse is true if X,, # 0 a,s. for n € N.
Suppose in addition that &, > 0 a.s. for all n € N. Then,

El¢n1|Fn] > 1 (resp. <1)a.s. = X is a submartingale (resp. supermartingale). (4.51)

The converse is true if X,, # 0 a,s. for n € N.
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Proof: Before go into (4.50), let us observe the consequence of the preamble. X is adapted by
the definition and is integrable by the assumption. Let n € N. Since X,,11 = X,,&,11, we have

1) E[Xn+1’Fn] = XnE[gnJrlan]

(4.50) (=) The right-hand side of 1) is = X, a.s., if F[§,11]|F.] =1, a. s.

(4.50) (<) If X is a martingale, then, it follows from 1) that X,, = X,,E[{,+1|F] a.s. Thus,
1 = E[&1|Fn] as. if X, #0 ags.

Proofs of (4.51) and its converse are similar. \("a™)/

Remark: Referring to Example 4.3.6 a), suppose that &p,&;,... are independent, F, =

o(Er..y&), n € Nand E&, = 1, n > 1. Then, Elgpi|Fa] "2 By = 1 as. for

n € N. Hence X is a martingale.

(x) Complement to section 4.3: Analogy between martingales and harmonic fnc-
tions Let us briefly review some basic properties of harmonic function on the open unit disc
D cC.

Soppose that a function v : D — R is Borel measurable and locally bounded. u is called

harmonic if .

o u(a + re'?)do = u(a), (4.52)
whenever a +rD C D (a € D, r € (0,1)). Similarly u is called subharmonic (resp. superhar-
monic) if the equality in the definition (4.52) is replaced by the inequality > (resp. <). Suppose
in particular that « € C*(D). Then u is harmonic (resp. subharmonic, superharmonic) if and
only if
0? 0?
(@—i—a—?ﬁ)u:o resp. (>0, <0) on D.

cf. [MP10, p.65, Theorem 3.2].

In what follows, we identify the unit circle S! with the interval (—m, 7], equipped with the
Borel o-algebra and the normalized Lebesgue measure. For 0 < r < 1 and a Borel measurable
and integrable function f : S* — R, we define the Poisson integral H,f : rD — R by

= [T h(z,7e"¥) f(e¥)dp, if z€rD
— 2 J—m ) ) ’
e ={ 5 PSSy (453)
where h(z,w) denotes the Poisson kernel:
w—z _ |w]’ -]z
h = = . 4.54
(o) = Re = (4.54)
It is easy to see that for z € rD and w € rSt,
1 [7 .
0 < h(z,w) <r+]|z|, 2—/ h(z,re)dd = 1. (4.55)
[

Therefore, the function z + H,f(z) on the the disc rD is well-defined and is obtained by
averaging f : S' — R by the probability measure %h(z, rei?)dp. It is known that

H,f is continuous on rD, harmonic on rD. (4.56)
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cf. [Rud87, p.112, 5.25]. For 0 < r < 1, and a Borel measurable function u : rD — R, let
u, : St — R be defined by u,(c) = ul,s:(ro). Then,

If u € C(rD) is harmonic on rD, then H,u, = u on rD. (4.57)
If u € C(rD) is subharmonic (resp. superharmonic) on 7D, then H,u, > u
(resp. Hyu, < wu)onrD. (4.58)

of. [Rud87, p.112, 5.25, p.234, 11.8, p.338, 17.9].
If w € C(D) is harmonic on D, then, it follows from (4.57) that

(Hiug)s =us 0 <s<t<l,

This can be thought of as an analogy of the martingale property E[X;|Fs] = X, (0 < s < 1).
Similarly, if uw € C'(D) is subharmonic (resp. superharmonic) on D, then, it follows from (4.58)
that

(Hyug)s > ug (resp. (Hyugy)s <ug) if0<s<t<l.

This can be thought of as an analogy of the submartingale (resp. supermartingale) property

E[Xy|Fs] > X (resp. E[Xy|Fs] < Xy).

Exercise 4.3.1 Let (X, Fi)ier be a martingale, s,t € T, s < t. Suppose that a r.v. Y is Fs-
measurable and that X;Y € L!'(P). Prove then that X,Y € L!(P) and that E[X,Y] = E[X,Y].

Exercise 4.3.2 Let s,t € T, s < t. Prove the following. 1) If (X;):er is a nonnegative
supermartingale, then, X; = 0 a.s. on {X; = 0}. ii) If (X;):er is a nonnegative submartingale
and X; = 0 a.s. then, X; = 0 a.s. [Here, it is not true in general that X, = 0 a.s. on {X; = 0}.
For example, consider a nonnegative submartingale X,, = |.S,|, where S, is a simple random
walk with Sy = 0. Then, {X5, =0} C {X9,-1 =1} for n > 1]

Exercise 4.3.3 Let (Y}, Fi)ier be a martingale, a € T, and Z;, t € T N (—o0,a] be F,-
measurable r.v.’s. Suppose that ¥; = 0 for ¢ < a, and that Y;Z, € L'(P) for t > a. Prove then
that X; = Y;Z;,, is a martingale. [Hint: Prove (4.43) separately for s < a and for s > a.]

Exercise 4.3.4 Let &,&,... € L'(P) be mean-zero, independent, Fy = {0,Q}, and F, =
(&, ...,&,), n > 1. For k € N\{0}, prove that (Xflk), Fn)nen defined as follows is a martingale.

k
Xé):(), qu,k): Z E G M2 L

1< <..<jr<n

Exercise 4.3.5 Let Xo,&,,m, € L*(P), n € N\{0} be such that E¢, = 0, En, = 1 for
all n € N\{0} and that X, (i, (o, ... are independent, where ¢, = (£,,7,). We define X,,,
n € N\{0} by X,, = & + 1, X,,—1 for n > 1. Then, prove that (X, F,)nen is a martingale,
where F, = 0(Xo, (1, -, Cn)-

Exercise 4.3.6 Suppoese that X; (¢ > 0) is a nonnegative submartigale and b € (0, 00).
Then, prove that (X});<, is uniformly integrable.
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4.4 Discrete Stochastic Integral

Definition 4.4.1 A sequence of r.v.’s H = (H,,)nen is said to be predictable if H, is F,_1-
measurable for all n > 1.

Proposition 4.4.2 For sequences X = (X, )nen, H = (Hyp)n>1 of T.v.’s, we define H-X =
((H : X)n)nEN by

(H-X)o=0 and (H-X), =Y H;AX; forn> 1. (4.59)
=1
cf. (4-44). Suppose that H is predictable and that H,AX, € L*(P) forn > 1.
a) If X is a martingale w.r.t. (F,)nen, then, sois H - X.

b) Suppose that H, > 0 a.s. for alln > 1. If X is a submartingale (resp. supermartingale)
w.r.t. (Fn)nen, then, so is H - X.

The process H - X is called the the discrete stochastic integral of H by X. )

Proof: H - X is adapted by the definition and is integrable by the assumption. Let n € N.
Since A(H - X)py1 = Hy1AX, 41 and H,,4q is F,-measurable, we have

1) E[A(H ' X)n+1|fn} - Hn+1E[AXn+1|Fn]~

The right-hand side of 1) is = 0 a.s., if X is a martingale. Suppose that H, > 0 a.s. for all
n > 1. Then, the right-hand side of 1) is > 0 (resp. < 0) a.s., if X is a submartingale (resp.
supermartingale). Thus, we obtain a) and b) by Lemma 4.3.4. \("a™)/

The following corollary to Proposition 4.4.2 will be applied to proof of the upcrossing
inequality (Lemma 5.1.6), which is a key lemma for the martingale convergence theorem (The-
orem 5.1.1).

Corollary 4.4.3 Suppose that X = (X, )nen 1S a submartingale and that H = (Hn)nzl,\
K = (K,)n>1 are predictable, H,AX,, K,AX, € L*(P), H, < K, a.s., Yn > 1. Then,
EH -X),<E(K-X),, VneN. (4.60)
If X is replaced by a supermartingale, then the inequality < in (4.60) is replaced by >. )
Proof: (K — H) - X is a submartingale by Proposition 4.4.2. Thus,
E(K-X),—EH-X),=E(K—-H)-X),>E(K—-H)-X)y,=0.
\("a")/
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Corollary 4.4.4 (stopped processes) Let S and T be stopping times w.r.t. (Fp)nen
such that S(w) < T(w) for allw € Q. If X = (X,, Fu)nen 1S a submartingale (resp.
supermartingale), then, so is

(XT/\n - XS/\TL7 fn)nEN-

In particular, taking S =0, (X7an, Fn)nen S a submartingale (resp. supermartingale).

Proof: Let H,, = 1{S <n <T}. Then, H,, n > 1 is predictable, since,
{S<n<T}={S<n—-1}\{T<n-1} € F,_1.

Thus, H - X is a submartingale by Proposition 4.4.2. Moreover, for n > 1,

(H-X)n = > LsejenyAX; =3 14enAX; =) 1 AX;

j=1 7j=1 7j=1
TAn SAn
j=1 j=1

\("a™)/

4.5 Hitting Times for One-dimensional Random Walks

Let &,, n € N\{0} be i.i.d. such that &, = 0,+1 with probabilities, py, p+, respectively, where
po >0, pr >0, po+ py +p- = 1. We define (S,)nen by

So=0, Sp41 =25, +&+1, neN.

We consider a filtration defined by Fo = {0,Q} and F, = o(&,...,&,) for n > 1. In this
subsection, we investigate the following stopping time.

T,=inf{n>0; S,=a} acZ

For this purpose, we introdce the following function.

(s, t) &

As for the discriminant of the quadratic function ¢ — g(s,t), we have

stEtS —t = p st — (1 — pos)t +p_s, for s >0and t € R. (4.61)

8(s) def (1 —pos)® —4pyp_s* >0 for s € (0,s.],

where . .
S, = { > 17 lf P+ 7£ p—, (462)
2yDpip—+po | =1, ifpy=p_.

For s € (0, s.], we define
1 —pos —/6(s)
fi<8) - 2pj:5 .
Then, for any fixed s € (0, s,], the equation g(s,t) = 0 has real solutions

t=fi(s) and t = Lo st /o) = f_(s)7L.

2p+ S

(4.63)
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Let us quickly collect some information on fi(s), which we will need. To do so, it is enough to
look at f,(s) only, since fi(s) are essentially the same, with only the roles of p. interchanged.
The function f, is differentiable on (0, s.) and

f+(s)
54/0(s)

fi(s) = s € (0, s.). (4.64)

This can be computed for example as follows. Since g(s, fi(s)) =0, we have

0 = Lol fus)) = (s, fuls)) + (s, Fuls)) 14(5)
D (9 pofo(5) Dt (2015F1(5) — (1 - pos)) F4(5)

= f+(s)/s = VO(s)f(s).

By (4.64), the functions f, behave as we summarize in the following table.

s |07 1 P s
L6 [0 2T /e AL 7 - /p)”

In particular, we note that
f+(s) < f+(1) = (p-/p+) A1, forall s € (0,1). (4.65)

~

Lemma 4.5.1 Let 0 < s <s,, t >0, and X,, = t>s", n € N. Then,

: supermartingale if t € [fi(s), f_(s)7"], : :
a) (Xp)nen is a { submartingale if t € (f.(s), f(s)-1). In particular, the following

processes are martingales.
Xi(n) & fi(s)™s", neN. (4.66)

b) Suppose that T is a stopping time such that (Xo(n AT))nen s bounded, and Xi(n A
n—oo

T) —= Y., a.s. for some r.vYy. Then,

EY, = 1. (4.67)
\ J

Proof: a) We compute
X1 — Xy = oot gl gSngn — Snlgn(ghniatly _p),
Since &, is independent of F,,, we have

ElXni|F] = X, 2D gSu-tgn (s Btena] — )
=t (post® + pos + post — t) =t sg(s, t).
Note that
g(s t){ <0 ifte[f-(s)7\ fi(s)],
' >0 ift & (f-(s)7h f1(9)).
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Therefore, we arrive at the conclusion via Lemma 4.3.4.
b) By a) and Corollary 4.4.4, X.(n AT), n € N are martingales, so that

Then, (4.67) follows from BCT.

\(*a")/

Corollary 4.5.2 Let ¢ : Z — R be defined by ¢(x) =z if pr = p— and p(x) = (p—/p+)*

if pr #£p_. Then, (p(Sn), Fn)nen is a martingale.

Proof: If py = p_, then ¢(S,) = S, is a martingale, since it is the summation of mean-zero

iid ¢&,. If py # p_, then

“6s) [ fe(1) if py > py,
(p*/p+) - { f_(l)il if Py < p_.
Therefore,
)5 ifpy >p
Sn — B Sn f+( - i + +>
(Sn) = (p-/p+) { £ ()5 ifpy <p..
which is a martingale by Lemma 4.5.1. \("a™)/
" )
Proposition 4.5.3 ¢ For a € N\{0} and 0 < s < 1,
Es' = f (s)*, Es’ = f.(s), 4.68)
P(T, < 50) = ((p+/p-) A1), P(Ty < 00) = ((p-/ps) AL (4.69)
with the convention that s> = 0. Moreover, if p,. < p_, then
ET_, = E[T,|T, < 00 = — % (4.70)
P- —DP+
On the other hand, if p, = p_, then
ET ,=FET, = . (4.71)
“See also Exercise 3.7.1, Exercise 3.3.3, and Exercise 3.4.3
- J

Proof: (4.68): To prove the first equality, note that S(n A T,) < a, and that

(4.65)
1< (pr/p-)V1 < f(s)7"

Thus,
0< X_(nAT,) < f_(s) 50 Te) < £ (5)72

n—o0

If T, < oo, then, S(n AT,) — S(T,) = a, and hence,
X_(nAT,) = f_(s) ST gnTa 2% ¢ (5)=agTa,
On the other hand, if T, = oo, then, 0 < f_(s)™%" < f_(s)™%, Vn € N, and hence
X (nAT,) = f_(s) " " 23 0= f_(s) %",
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We now apply (4.67) to X_ and T = Tj:
1= f_(s)“Es™.

This proves the first equality. The second equality is obtained in the same way.
(4.69): We have for any r.v. T : Q — [0, 00] that

lim Es’ = P(T < 0).

s<1

Thus, we see (4.69) from (4.65) and (4.68).

(4.70), (4.71): We compute the limits f’ (1—) o lim 1" (s). We see from (4.64) and (4.65) that

s<1

p+;pf if pi > p-,
D e I
00 ifp, =p_.

It follows from (4.68) and Exercise 1.1.6 that

od (a68) . d _
ET, T, < = lim —FEs’* "= lim — @
[ o] B g%wﬁ
e 1), (4.65) @ pi\”
— af ()t ()
p— — Py \D-

Since P(T, < o0) = (p4+/p-)* by (4.69), we obtain the second equality of (4.70). The other
equalities can be obtained in the same way. \("e™)/

Remark (i) See Exercise 3.3.3 and Exercise 3.7.1 for alternative proofs for (4.69). (ii) If
p+ < p—, the validity of the first identity of (4.68) extends to all s € (0, s, (cf. (4.62)). In
particular, T, is exponentially integrable. To see this, we note that X,, = f_(s,) °"s" is a
martingale by Lemma 4.5.1. Thus Es. * < f_(s,)™® by Exercise ??. This implies that Es’-
for s € C, |s| < s, can be expressed as an absolutely converging power seris. Therefore, by
the unicity theorem, the first identity of (4.68) extends to all s € (0, s,). Finally, the case of
s = s, is obtained by the monotone convergence theorem.

Corollary 4.5.4 Suppose that p, < p_. Then, the following r.v. is geometrically dis-

tributed with parameter py /p_.
def

M = max S,
neN
(4.69) " N
Proof: P(M >a) = P(T, < ) =" (ps/p-)" \("e™)/
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Proposition 4.5.5 * For a,b € N\{0} and s € (0, 1],
f(s)™" = fi(s)
BlsTe T <7 — , 4.72
B T <l = S 0 (P Gor )
Je(s)™ = f-(s)
E[s" T, <T, : 4.73
N ORI RO RS RO AOT 47)
In particular, if py < p_, then as special cases of (4.72) and (4.73) with s =1,
(p-/py)’ —1 1—(p-/ps)°
P(T_,<Ty) = , P, <T_,) = 4.74
U <) = oy = PO = ey = Y
On the other hand, if p, = p_, then
b
P(Ty<Ty) = —=. P(T,<T.,) = :LL 3 (4.75)
%See also Exercise 3.4.5.
\ J

Proof: (4.72) and (4.73): As in the proof of Proposition 4.5.3, we consider the martingales
(4.66). This time, we take T'=T_, A T,. Then,

1) 0< X (nAT)< f(s) 50D < f(s)7, 0 < Xy (nAT) < fr(s)50) < fr(s)™.
We now note that
2) T, # 1T as.

This can be seen as follows. If T, = T, < oo, then, —a = S(T_,) = S(T) = b, which is
impossible. Hence, {T_, = T, < oo} = ). On the other hand, we see from (4.69) that

pr<p. = Pl ,<x)=1, p,>p. — P(l,<o0)=1.

Thus, P(T_, =T, = ) = 0.
It follows from 2) that almost surely,

n—o0

3) { X+(n/\T) = XJr(TL/\T,a)l{T,a < Tb} —|—X+(7”L/\Tb)]_{Tb < T,a}
= fo(s)TasT=e{T , < Ty} + fr(s)PsTe1{T}, < T ,}.

MAT_ )T o < T} + X_(nANTy){T, < T_,}

X_
5 o) T YTy < T} + fo(s) " UT, < T}

¢|I

1) { X_(n/\T)

Now, by applying (4.67), we have

1 = fi(8)"Els™ T o < T + fr(s)PE[s" : T}, < T4,
1 = f(s)E[s™:T ,<T)+f(s)"E[s"™: T, < T,

from which we obtain (4.72) and (4.73).
(4.75): This follows easily from the above argument applied to the (much simpler) martingale
S,, instead of X4 (n). \("a”™)/
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Corollary 4.5.6 Suppose that p_ > p,. Then, the law of the r.v.

def
Z = max S,
n<T_q,

(Note that T_, < oo a.s. by (4.69)) is given by

L—(p—/py)”° ;
PZ>b) =] T moe P <P (4.76)
a/(a+0b) if p+ =p-.

In particular,

- <oo ifpy <p-,
EZ=Y P(Zzb){_ )=
— =00 if py=p_.

\_ )
Proof: P(Z >b) = P(T, < T_) "™ the right-hand side of (4.76). \("o")/

Exercise 4.5.1 Let x,, = 145,-0;. Then, prove the following.
(1) AlSy| = xn-1l&n] + (1 — xn—1)(£&nSn-1/]5n-1]) for n > 1, cf. (4.44). (ii) If p; = p_, then
|Sn| — (1 — po) Z;:& Xj, n € N is a martingale. Hint: Proposition 4.6.2.

Exercise 4.5.2 Prove that

b(p+/p-)_Fa(ps/p-)"=(atb) ;¢
E[T_a A Tb] = { (pf_;;;r)((PJr/Pf)*a—(er/pi)b) 1 Py <p-,
- m lf P+ =p—.

[Hint: For py < p_, use the martingale S,, — (p; — p_)n, and for p; = p_, use the martingale
Sy — (1= po)n.|
Remark By Proposition 4.5.7 below, T, A T}, is exponentially integrable, whenever py < 1.

Exercise 4.5.3 (Position of the first decrease by length /) Let s € (0,1], M, =
maxo<j<n Sj, and

Xn = (p-+ (1= s)ps (M, — Sn))s™".
Prove the following.
i) B[ X1l Fn] = X+ (1 = 8)pe(p- — po)s™1{M, > S,}, n € N. As a consequence,
(Xn, Fn)nen is a submartingale (resp. supermartingale) if p, < p_ (resp. py > p_).
ii) If p; <p_, and a € N\{0}, then T o inf{n >0; M, — S, =} < oo as. and

pP—
EsMr > .
p—+ (1= s)pst

In particular, if p, = p_, then the above inequality becomes an equality, which implies that
the r.v. My + 1(= Sy + ¢ + 1) is geometrically distributed with parameter 1/(a + 1). See
Example 7.6.4 for an analogy in the case of the Brownian motion.

(x) Complement to section 4.5
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Let (£,)n>1 be i.i.d. with values in Z? such that P(&; = 0) # 1. We define (S,,)nen by
S() = 0, Sn—l—l =5, + §n+1, n € N.
For v € Z% and A C Z¢, we set

T(x,A)=inf{n >1; z+ S, € A}.

Proposition 4.5.7 (Exit time from a finite set) For a finite set A C Z%, there is an
e > 0 such that
Eexp (eT(z, A%)) < oo for all x € A. (4.77)

Proof: We first pick z # 0 such that a P& =2)>0.Since A—A={z—2; z,2 € A}

is a finite set, there exists m € N\{0} such that mz ¢ A — A. We then set § =1—a™ < 1.
We will prove by induction that

1) sup P(T(z, A°) > km) < g%, k=1,2,....
€A
We begin with k = 1.
P(T(z, A7) < m)

AVAR AVARLAVARLY,

This proves 1) for k = 1. We now suppose 1) for some k. Then,

P(T(x, A%) > ) <> P(T(x, A% > km, &+ Spm =y, T(y, A°) > m),

yeA

where B
T(y,A°) =inf{n > 1; y + Spikm — Sem € A}

Let Fo = {0,Q} and F,, = 0(&, ..., &) for n > 1. Then,
2) {T(x, A°) > km, x + Skm =y} € Fim,
3) T(y, A) is independent of Fip,

4) T(y, A°) has the same distribution as T'(y, A°).

Thus, we have

ZP (x, A°) > km, x© + Sgm = ¥, T(y,A°)>m)

yeEA
= Y P(T(x,A% > km, x + Sgm = y)P(T(y, A%) > m) by 2)3)4)
yeA
< BZP(T(m,AC) > km, ©+ Sgm =y) byl)for k=1,
yeA

= BP(T(zx,A%) > km)
< ﬁkJrl by the induction hypothesis.
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This completes the induction and proves 1).
Now, 1) can be used to prove that there are C' > 0 and € > 0 such that

P(T(xz,A°) > n) < Cexp(—en), foralln>1,

which proves (4.77) (cf. Exercise 1.1.3). \("a™)/
4.6 Quadratic variation and discrete stochastic integrals

Lemma 4.6.1 Let X = (X, Fn)nen be a predictable martingale. Then, X,, = Xo, a.s.,

Vn € N.
Proof: Since X,,,; is F,-measurable, we have

4.43 4.10
X, L B, R X

Thus, we arrive at the conclusion by induction. \("a™)/
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Proposition 4.6.2 Let X = (X, Fo)nen, Y = (Yo, Fu)nen be adapted, integrable.

a) There exists a unique predictable, integrable process A = (Ay)nen with Ag = 0 such that

M = o (X An7~Fn>n€N

1s a martingale. Moreover, A, for n > 1 is given by

=) E[AX|F ). (4.78)
j=1
The processes M and A are called respectively the martingale part and the pre-

dictable part of X.

b) Suppose that X,,Y, € L'(P) for all m,n € N. Then, there exists a unique predictable,
integrable process { X,Y ) = ({ X, Y )y )nen with ( X,Y )o = 0 such that

MY (XY, = (XY Yy Fo)men

is a martingale. Moreover, { X,Y ), forn > 1 is given by
ZE (X,Y7)|Fj1). (4.79)
Suppose in particular that X and 'Y are martingales. Then,

(XY ), ZEAXAY\]-"J J, n>1 (4.80)

7j=1

The process { X,Y ) is called the bracket of X and Y. In particular, when X =Y,

g the process ( X ) = o ( X, X) is called the quadratic variation of X.
/

Proof: a) We first verify the uniqueness of A. If both A and A’ are such processes, then,
M, def X, — A, and M), dof X, — A, are martingales and M,, — M| = A/ — A,. Thus, by
Lemma 4.6.1, A, — Al = Ay — A =0 for alln € N.

Next, let M,, = X,, — A,,, where Ag = 0 and A,, for n > 1 is given by (4.78). Since

AMn+1 = AXn+1 — E[AXn+1|Fn], n e N,

we have E[AM,1|F,] =0, a.s. Thus, M is a martingale by Lemma 4.3.4.
b) This is a special case of a) in which X, is replaced by X, Y,,. If X, Y are martingales, then,

4.44
EAX,AY)|Fi) 2 EGY; - X0Y) - XY + XY Fio)
= BIX;Yj|Fa] = Xja Bl Fo] = Y BIXGIF ] + XY
(4.43) (4.44)
= EXGYj|Fia] - XY =" EAXGY))|Fa]
This implies (4.80). \("0™)/
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Remark: By Proposition 4.6.2 a), any adapted, integrable process X is decomposed into a
martingale M and a predictable process A. This decomposition is called the Doob’s decom-

position.

Corollary 4.6.3 Suppose that X = (X, Fu)nen and Y = (Y, Fo)nen are martingales

such that X,,Y,, € L*(P) for all m,n € N. Then,

E[X,Y.] = E[XoYo] + E{ XY Ymnn, m,n € N.

(4.81)

Proof: Suppose for example that m < n. Then,

(4.19) (4.43)

1) E[X,.Y,] = E[E[X,,Ya|Funl] E[X,EY,|Full =" E[X0nYnl.
On the other hand, since Mn =X, Y, — (X,Y ), is a martingale, we have
2) E[X,,Yy| — E{X,Y )y, = EM,, = EMy = E[X,Y;]

By 1) and 2),
E[X,Y,] = E[XoYo] + E{X,Y ).

The following special case of Proposition 4.6.2 is well worth being stated as

Corollary 4.6.4 Referring to Proposition 4.6.2, suppose in particular that
Xo, AX1,AXs, ... are independent and F,, = o(Xo,...,X,), n € N.

Then, the following hold true.

a)
A, = ij, n €N, where m; = E[AX;].

j=1

As a consequence, (Xn — Z;”:l m;, ]:n) . is a martingale.
n

b) Suppose that X,, € L*(P) for all n € N, and that m,, =0, n > 1. Then,

(X)), = Zvj, n €N, where v; = E[(AX;)?].

j=1

2 n . .
As a consequence, (Xn =D i1 Y ]:n> s martingale.
n

N

(4.82)

(4.83)

(4.84)

Proof: a) AX; is independent of F,_; for all j > 1. Therefore,

4.12
E[AX;]F;1] 2 E[AX;] = m;.
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This implies (4.83).
b) X is a martingale by a). Moreover,

E[(AX,)’|F; ] 2 El(AX)?] = v;.
Thus, we see (4.84) from (4.80). \("a™)/

-
Proposition 4.6.5 Suppose that X = (X,, Fp)nen is a martingale such that X,, € L*(P)
for all n € N. Then, the following are equivalent.

a) E{X )u < 0.

b) X, converges to a r.v X in L* asn — oo.

Moreover, these imply that

E[X2] = E[X{]+ E( X )eo- 4.8
L (XS] = EXg]+ E(X) ( 5>j

Proof: a) = b): It is enough to prove that X,, is a Cauchy sequence in L2. Let m < n. Then,

1) BLX,X,] 0 Bx2] U2 B + B(X )
Thus,

E[|X, — X,|7] E[X?] + E[X2] — 2E[ X X,]

E(X),—E{(X),, "> 0.

=l

a) < b): Since ( X ), is nondecreasing in n, we have by monotone convergence theorem that

E{X)s = lim B{X), = lim E[X?] - E[X{] = B[X%] - E[X{]

n—oo n—oo
\("a")/
Proposition 4.6.6 Let X = (X,)nen, Y = (Yo)nen be martingales, H = (H,)n>1, K =
(K,)n>1 be predictable. Suppose that H, € L>(P), K, € L*(P), and X,,Y,, € L'(P) for
all m,n € N\{0}. Then, referring to (4.59),
(H-X,K-Y ), =) HKA(XY); neN\{0} (4.86)
j=1
In particular,
mAn
BI(H - X)n(K V) = 3 BIHIGAX,AY)), mneN\{0}.  (487)
j=1
N /
Proof: For j > 1,
(4.80)
N { AH-X,K-Y), o EIAH - X);A(K - Y)ﬂ(ﬁa)l]
= HKGEAXAY)Fa] =" HiGA(X,Y ),
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By taking summation over j = 1, ..., n, this implies (4.86). The equality (4.87) is obtained as
follows

(4.81)

mAn
E(H-X,K-Y ) 2V N E[HK;AX;AY)).

j=1

E[(H - X)m(K - Y)a]

\("a™)/

Lemma 4.6.7 Let X = (X,,, Fn)nen be adapted, integrable, and T be a stopping time w.r.t
(Fn)nen, such that ET < oo and that

sup E[|AX,||Fn-1] < Cy for a constant Cy € [0, 00).

n>1

Then, X7 € L*(P) and
n—oo

IELXj’_')(nATw — 0.
\ J
Proof: Note that

) {T>n}={T<n-1}€e€F,,
Thus,

T
E|Xr = Xunr| = E[Xr—X,|:T>n]<E[ Y |AX)]:T >n

j=n+1
= E[Y  |[AXj|1rsp] = D ElAX]: T > ]
J=n+1 j=n+1
! S . = . n (o]
DS BEIAXIF ) T2 <00 S PT = j) =50,
J=n+l j=n+1

The above estimate shows also that X¢ — X, € L'(P) for all n € N. By taking n = 0, we
see that X € LY(P). \("a™)/

Example 4.6.8 Let X = (X,,, F,)nen be adapted, integrable, and T be a stopping time w.r.t
(Fn)nen, such that ET < oo.

a) Suppose that
sup E[|AX,,||Fn-1] < Cy for a constant C) € [0, c0).

n>1

Let (A,)en be defined by (4.78). Then, X7, Ay € L*(P) and
EXr = EXo + EAr. (4.88)

b) Suppose in addition that X is a martingale and that

sup E[|AX,|*|Fn_1] < Cy for a constant Cy € [0, 00).

n>1
Let ( X ),, n € N be given by (4.80). Then, X2 ( X )¢ € L*(P) and
E[XZ] = E[X{] + E{( X )r. (4.89)
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Proof: a) Let M, def X, — A,. Then, (M,, F,)nen is a martingale (Proposition 4.6.2), and
hence (Muar, Frn)nen is a martingale (Corollary 4.4.4). This implies that

1) EMuar = EMy, VYn € N.

On the other hand, since

|AA,| < Bl|AX,||Fa-1], AM, =AX, — AA,,

we have
sup Bl|AAIFaa] = sup|AA,| < sup E[JAX,||Fo ] < G,
n>1 n>1 n>1
supEHAMnH]:n_l] S 201
n>1

Thus, by Lemma 4.6.7,
Xp, Ap, My € LN(P), E|Mp — Mo =3 0.
In particular, by letting n — oo in 1), we have EMpr = EMj, and therefore,
EXy=EMy=FEMr=FEXy— FAr,

which proves (4.88).

b) We will apply Proposition 4.6.5 to the stopped process X1 aof (XnAT)nen, which is a
martingale (Corollary 4.4.4). We have

T
(X" )oo = (X)r =Y E[|AX,]|Fua] < CoT € L'(P).
n=1
Therefore, X7 = X € L*(P) and
BI(XL)) "2 BIXJ] + B(XT )u.
Since X7 = XL, and ( X7 ), = ( X )7 by Exercise 4.6.1, we obtain (4.89). \("a”)/

Remarks: Referring to Example 4.6.8 a), suppose that (4.82) and E[AX,,] =m, n > 1. Then,
A, =mn, n € N (Corollary 4.6.4). Therefore, the equality (4.88) takes the following form

EXr=EXo+mET (Wald’s first equation). (4.90)
Let us now assume m # 0, but let not assume apriori that ET < co. Then, we have that
ET < 0 <= sup|EX\r| < . (4.91)
neN

In fact, by (4.90) applied to a bounded stopping time n A T', we have that
EXn/\T = EXO + mE[n N T],

from which (4.91) follows immediately.
2) Referring to Example 4.6.8 b), suppose that (4.82), E[AX,] = 0, F[(AX,)?] = v, n > 1.
Then, ( X ), =vn, n € N (Corollary 4.6.4). Therefore, the equality (4.89) takes the following
form

EX? = EX} +vET (Wald’s second equation). (4.92)

\("a™)/
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Exercise 4.6.1 Let X = (X,,),en be a process, (Fy,)nen be a filtration, and T be a stopping

time. Let also X7 % (XnaT)nen be the stopped process. Prove the following. i) If X is
predictable, then, so is X 7.
ii) Suppose that M and A are respectively the martingale part and the predictable part of an
adapted, integrable process X. Then, M7 and AT are respectively the martingale part and
the predictable part of X7
iii) Suppose that X is a martingale such that X,, € L*(P) for all n € N. Then ( XT7) = ( X )T.

4.7 (%) Structure of L'-bounded martingales I

We have already seen the analogy between martingales and harmonic fnctions on the open
unit disc D C C. For a harmonic function v on D, it is known that the following conditions
are equivalent, cf. [Dur84, p.160, (6)].

a) u is a difference of two nonnegative harmonic functions.

b) There exists a Borel signed measure p on [—m, 7| such that
u(z) = / h(z,e®)du(9) for all z € D, where h(z,w) = [Pl

lw—2|?
—7

c) sup/ lu(re?)|df < oc.

o<r<1J—xn

Here is an analogue for martingales.

Proposition 4.7.1 Suppose that the set T is unbounded from above, and that X =
(Xt, F)ier is a martingale. Then, the following conditions are equivalent.

a) X is a difference of two nonnegative (F;¥)-martingales.

bl) There exists a signed measure Q on (2, FX) such that for allt € T, |Q|; < P; and
dQ,/dP, = X,.

b2) There exists a signed measure Q on (2, FX) such that for allt € T, Q; < P and
dQ/dP;, = X;.

c) sup F|X;| < oc.
teT

/

I am grateful to Francis Comets for bringing the following lemma into my interest.

/
Lemma 4.7.2 Suppose that the set T C R is unbounded from above and that X =

(X, Fi)ier s a submartingale such that sup,er E[X;] < oo.
a) There exists a martingale Y = (Y;, Fy)ser such that X, <Y, for allt € T.

b) (Krickeberg decomposition) There exists a nonnegative supermartingale Z =
(Zy, Fi)rer such that X, =Y, — Z; for allt € T. In particular, Z is a martingale if
X is a martingale.

\_ /
Proof: a) We start by observing that
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1) tbu,weT, t<u<v = E[XF|F] <FEX]|F] as.
Indeed, (X,", F;)ser is a submartingale by Lemma 4.3.3. Thus,
X< E[X!F)] as.

We obtain 1) by taking the conditional expextations of the both hands sides of the above
identity.

By 1), the limit ¥, % lim,_,oc E[X;| 7] € [0, 00] exists and X;" < Y, for all ¢ € T. We verify
that

2) Y = (Y, Fi)ier is a martingale.
First, Y; € LY(P) for all t € T, since by 1) and the monotone convergence theorem,

EY; = lim E[E[X|F]] = lim E[X] < cc.
U— 00 U—00
Next, if s, € T and s < t, then, by the monotone convergence theorem for conditional
expectations,

E|Y;|F,] = lim E[E[X]|F]|F] = lim E[X]|F] =Y, as.
U—00 U—00

b) Z, & Y, — X, t € T is a nonnegative supermartingale. In particular, Z is a martingale if

X is a martingale. \("a™)/

Let X = (X;)er be a process. We write FX = 0(X,; s € TN[0,t]) t € T, and FX =
o(FX ; t € T). For a signed measure @ on (2, FX), let |Q| be its variation, QF = (|Q| £Q)/2
(Jordan decomposition) and @Q; = Q|zx.

Lemma 4.7.3 Let Y = (Y;, FX)ier be a nonnegative, mean-one martingale. Then, there
exists a unique probability measure PY on (Q, FX) such that

PY(A) = E[Y,: A for allt € T and A € FX.

Proof: For cach t € T, let B(A) = E[Y, : A] for A € FX. Then, the family of measures
(]:tX,ﬁt), t € T are consistent in the sense that ﬁtlfsx = P, if s,t € T, s < t. Thus, by
Kolmogorov’s extension theorem, there exists a unique probability measure PY on (Q, FX)
such that PY|zx = P, for all ¢ € T. \("a")/

Proof of Proposition 4.7.1: a) = bl): Suppose that X is a difference of two nonnegative
(FX)-martingales Y; and Z;. Then, by Lemma 4.7.3, there exist finite measures Q¥, Q% on
(9, FX) such that for all t € T, QY < P, Q < P, Y, = dQY /dP,, Z; = dQ?/dP;. Set
Q= QY — Q7. Then, |Q| < QY + Q% and hence |Q; < (Q¥ + Q%); < P,. Moreover,

dQ,/dP, = d(Q} — dQF)/dP, = dQ) /dP, — dQ? /dP, =Y, — Z, = X,.
bl) = b2): This follows from the inequality |Q:| < |Q|:.

b2) = c): E|X;| = |Q¢[(2) < [Q[(2) < oo
¢) = a): This follows from Lemma 4.7.2. \("a?)/

149



5 Convergence Theorems for Martingales

5.1 Almost sure convergence

At the beginning of section 4.3, we have seen the analogy between martingales and harmonic
fnctions on the unit disc D C C. Suppose that a harmonic function v on D satisfies

sup / lu(rel?)|df < occ.

o<r<1J_—x

Then, it is known that there exists f € L'([—n,n]) such that
u(re'?) i f(e*) for almost all 6 € [—, 7).

cf. [Rud87, p.244,11.24].
The purpose of this subsection is to present the following analogue for the martingale.

Theorem 5.1.1 (Martingale convergence theorem) Suppose that X = (X, Fy)ier 18
a submartingale or a supermartingale such that

either T =N, or T = [0,00) and (X;)>o is right-continuous, (5.1)

and that
sup || X1 < oo. (5.2)
teT

Then, there exists X € L'(P) such that

t—
X, =% X a.s.

\_ /

Remarks: i) Suppose that X in Theorem 5.1.1 is a martingale. Then, by the assumption
(5.2), there exists a signed measure @ on (2, F) such that X,, = dQ,/dP,, n € N, where
P, = Plz, and Q,, = Q|#,, cf. Proposition 4.7.1. Moreover, the signed measure ) and the a.s.
limit X, in Theorem 5.1.1 are related as d@Q) = X dP + 15dQ, where N € F and P(N) =0,
cf. Proposition 5.6.1 below. ii) Referring to Theorem 5.1.1, the condition (5.2) is not necessary
for the conclusion of the theorem. An counterexample is provided as follows. Let S, be the
random walk considered in section 4.5 with p, = p_ > 0. Then, X,, = S(n AT_1)? is a
submartingale and X, =3 S(T_;)? = 1, a.s. However, since S2 — (1 — py)n is a martingale,
sois X, — (1 —po)(n AT-1) (Corollary 4.4.4). Hence,

n—0o (4.71)

EX,=(1—p))EnANT_] — (1 —po)ET_y =" cc.

We postpone the proof of Theorem 5.1.1 for a moment. As an immediate consequence of
Theorem 5.1.1, we have
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Corollary 5.1.2 Suppose that X = (X, Fi)ier s a nonnegative supermartingale under
assumption (5.1). Then, there exists X, € LY(P) such that X, =% X a.s. Moreover,

a) X, > E[X.|F] as. forallteT.

b) The following conditions are equivalent. bl) X is a uniformly integrable martingale.

b2) EX, = EXy. b3) X, = E[X|F] a.s. forallt €T. J

Proof: Since 0 < EX,; < EX, for all ¢t € T, assmuption (5.2) is satisfied. Thus, by Theorem

5.1.1, there exists X,, € L'(P) such that X; % X as.

a) Since X; is a supermartingale, F[X,|F;] < X, for all ¢,u € T with ¢t < u. Hence by letting
u — oo and applying Fatou’s lemma, we obtain the desired inequality.

bl) = b2): Since X is a martingale, £EX; = EX, for all £ € T. On the other hand, X is

t—o00 .
X in

uniformly integrable and X i X a.s. Therefore, by Proposition 2.5.5, X; —
L'(P). THerefore, EX,, = lim; .o, EX; = EXj.
b2) = b3): Suppose that EX,, = EX, and let Y; “E
a.s. by a) and hence

E[X|F:]. Then, forallt € T, X; > Y,

EX, > EY, =FEX, =FEXy> EX,.

Thus, X; > Y, a.s. and EX; = EY,, which, implies that X; =Y;.
b3) = bl): This follows from Lemma 4.1.13. \("a™)/

The following example is a simple application of Corollary 5.1.2. It shows also that the
convergence of X,, in Theorem 5.1.1 and Corollary 5.1.2 does not necessarily take place in

L'(P).
Example 5.1.3 Let X,, = H?:o &, n € N, where &, > 0, n € N are independent r.v.’s such

that F¢, <1 for all n € N and that H E 55 ¥ 0 for some 6 € (0,1). Then,

< .
a) X, =30 as.
b) Suppose in particular that E¢, =1 for all n € N. Then, X,, does not converge in L'(P).

Proof: a) X,,, n € N\{0} is a supermartingale by Example 4.3.6. Since X,, > 0, we see from
Corollary 5.1.2 that there exists X, € L*(P) such that X, =3 X, a.s. On the other hand,

Fatou
E[X)] < lim E[X’] = lim HEg5

n—oo n~>oo .

Hence X =0 a.s.
b) X,,, n € N\{0} is a martingale by Example 4.3.6. Suppose that X,, — Z in L*(P) for some
Z € L'(P). Then, EZ = lim,_,o, EX,, = 1. On the other hand, there exists a subsequence
Xk such that X,,q) — ooy
\("a™)/

Here is another example in which the convergence of X,, in Theorem 5.1.1 and Corollary
5.1.2 does not take place in L!(P).

n—oo

— Z a.s. This implies via a) that Z = 0 a.s., which is a contradiction.
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Example 5.1.4 Let S,, n € N from section 4.5 with p, = p_. Then, for a € N\{0},

X, ©a+ S(nANT-,) >0, n € N is a martingale by Corollary 4.4.4. Since T_, < oo a.s. by

(4.69), we see that X, ™3 a + S(T_,) = 0 a.s. But the convergence does not take place in
LY(P). Indeed, since a + S(n A T_,) is a martingale (Corollary 4.4.4),

EX,=FEXy=a>0.

We now turn to the proof of Theorem 5.1.1. For a moment, we consider the case of T = N.
Suppose that X = (X, )nen is a process. For —co < a < b < 0o and n € N, we would like to
formulate the number of upcrossing from a to b in the sequence Xg, X1, ..., X,,. Let Ty = 0,
and for £ > 1, we set

Sy = inf{n >T,_1; X, <a},
T, = inf{n>5Sy; X, >0b}.
Then,
S1<TI <S5 <T, <.
If T}, < 0o, then the k-th upcrossing from a to b in the sequence (X,,),en starts at time Sy, and
is completed at time 7. For n € N,

U, o sup{k € N; T, <n},

which represents the number of completed upcrossing from a to b in the sequence Xy, X, ..., X,,.
Noting that U, is nondecreasing, we set Uy, = lim,, o, U, € [0, o0].

/ \/ /N

S1 T S2 15 S 13

Lemma 5.1.5 Suppose that Uy, < 00 a.s. for any —oo < a < b < oo. Then:

a) The limit X, = lim X,, € [—o0, 0] exists a.s.
n—oo

b) Suppose in addition that (5.2) is satisfied. Then, Xo € L'(P) and hence that | X| <

o0 a.s.

N /

Proof: a) It follows from the assumption that
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1) P<1i_an<a<b< an):Oforany—oo<a<b<oo.

n—00 n—o0

On the other hand,

2) {@Xn<ﬂXn}—U{@Xn<a<b<an},
n—00 n—00 abeqg n—00 n—00
a<b

We see from 1) and 2) that

lim X, = lim X,, a.s.
n—00 n—0o0

Hence the limit X, = lim X,, € [—o0, 00| exists a.s.

n—oo
b)
Fatou (5.2)
ElXy| < lim E|X,| < oo.
n—0o0
Therefore, X, € L'(P) and hence that | X, | < oo a.s. \("a™)/

Lemma 5.1.6 (The upcrossing inequality) If X = (X, F,)nen 1S a submartingale,
then,
(b—a)EU, < E[X,Va] — E[XyV al.

Before going through the proof of Lemma 5.1.6, let us use the lemma to persent

Proof of Theorem 5.1.1 for T = N. By symmetry, we may focus on the case of submartin-
gale. We first prove that U,, < oo a.s., which implies Theorem 5.1.1 by Lemma 5.1.5. Let
a,b e R, a<b We see from the monotone convergence theorem and Lemma 5.1.6 that

(b—a)EUs &' (b—a) lim EU,
n—oo
Lemma 5.1.6 (5.2)
< sup F[X,, Va] — E[XoVa] < oc.

neN
Therefore Uy, < o0 a.s.
\("a™)/

Define Y = (Y)yen by ¥, = X, Va. Since Y, = X,, if X, > a, Si, T (kK > 1) are, and
hence U, is unchanged if we replace X by Y. We set

0 Ty <n <S5 for some k > 1,
Hn_{l if S, <n < T, for some k > 1. (5-3)
We define H - Y by
(V)= S H (Y =Y.
j=1
We start by proving the following lemma
[Lemma 5.1.7 b—a)U, < (H-Y), forneN j

Proof: Note that

19The process X need not to be a submartingale or supermartingale for Lemma 5.1.7 to be true.
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1) T, <00 — Y(Sk) =a<b< Y(Tk),
and that
2) Sp<oo = Y(Sk)=a<Y(n)foralneN.

(The inequality 2) is the reason for which we consider Y, instead of X.)
Now, let U, = ¢, so that Ty <n < Tyy;. Then, we will show that

3) (H-Y)(Ty) = (b= a)Un,
4) (H-Y), > (H-Y)(Ty).

from which the lemma follows.
Indeed, 3) follows from the definition of H as follows.

4

H-V)T) = Y| > + > | HY-Y)

k=1 \Tp_1<j<Sr  Sk<j<Tk

= f} S -Y)

= V(T - Y(S) 2 (b—a)t = (b— a)U,.

k=1

Let us next show 4). Noting that 7T, < Syi1 < Tyyq, we consider the following two cases

separately.
e Case 1: T <n < Sgyq. Since H; =0 for Ty < j < Spiq,

5.3)

(
(H-Y)y— (H-Y)T)= > Hj(Y;=Y;1) = 0.
Ty<j<n
e Case 2:5p.1 <n < Tyy1. Then,
(H-Y)—(H-Y)(T;) = oo+ D> | Hi(Y;—Y0)

Te<j<Set1  Se+1<j<n
5.3
YN - =Y - Y(Sen)

Ser1<i<n

(AVASS
o

Proof of Lemma 5.1.6: We show that
1) E(H-Y), < E[Y, — Y forn €N,

This, together with Lemma 5.1.7, implies Lemma 5.1.6. Note that Y is a submartingale
(Lemma 4.3.3) and that Sk, T (kK > 1) are stopping times. Note also that H,, n > 1 is
predictable, because for each k > 1,

{Sk <n§Tk}:{Sk §n—1}\{Tk §n—1} G./T"nfl.
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Since H,, < 1, we see from Corollary 4.4.3 that

E(H-Y), < E(1-Y), = E[Y, — Y.
This proves 1). \("a™)/
Proof of Theorem 5.1.1 for T = [0,00): We assume that T = [0,00) and that (X;);>¢ is

right-continuous. By symmerty, we may focus on the case of submartingale. For I C [0, 00)
and —oo < a < b < 00, Let

U(I) = {k: eN: there exists a sequence s; <t} < ... < sp <{tpin [ }

such that X, <a and b< X, forall j = 1, ... k. (5-4)

Let D be a dense subset of [0,00), t € D, and (D,),en be a sequence of finite subsets of
DN |0,t] such that 0,¢ € D,, for all n € N and that D,, /* DNJ[0,t] asn ,/* oco. Then it follows
from the proof of Lemma 5.1.5 that

(b—a)EU(D,) < E[X_Va]— E[XyV a].
By the monotone convergence theorem in the limit n — oo,
(b—a)EU(DN|0,t]) < E[X_Va]— E[XyVal.
Then, by the monotone convergence theorem in the limit ¢ — oo,

(b—a)EU(D) <sup E[X_Va]— E[X,Va] < oc.

Hence U(D) < oo, a.s., which implies, via the argument of Lemma 5.1.5 that the following
limit exists a.s.
Xoo = lim X; € [—00, o0].
teD
Moreover, by the right-continuity, we can remove the restriction ¢ € D from the above limit.
Finally, we see that X, € L!, similarly as in Theorem 5.1.1. \("a")/

5.2 L' Convergence

Throughout this subsection, we assume that X = (X, F;)er is an adapted process. Here is
the main result of this subsection.

Theorem 5.2.1 (L' convergence theorem) Suppose that there exists a real T.v. Xo
such that X, = Xoo a.s. Then, the following conditions are equivalent.
Xo € LY(P) and X; = E[X|Fi] a.s. for allt € T. (5.5)
There exists a Y € LY(P) such that X; = E[Y|F] a.s. forallt € T.  (5.6)
X is a uniformly integrable martingale. (5.7)
X is a martingale, Xoo € L'(P) and X; == X, in L'(P). (5.8)
Moreover, it follows from (5.5) and (5.6) that the r.v’s Xoo and Y are related as
Xoo = E[Y|Fx] a.s. where Foo = 0 [U Fi (5.9)
teT
\ J
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Pro f: (5.5) = (5.6): Obvious.

(5.7): This follows from Lemma 4.1.13.
(5.8): This follows from Proposition 2.5.5.
(5.5): Since X is a martingale,

1) X, = E[X,|F] as. forall t,u e T, t < u.

On the other hand, it follows from (5.8) and (4.13) that E[X,|F] =3 E[X.|F] in L' (P),
which, together with 1), implies (5.5).
To prove (5.9), we take an arbitrary t € T and A € F;. Then, it follows from (5.5) and
(5.6) that
FE[X. : Al = E[Y : A].

Since ¢t € T is arbitrary, the above equality is valid for all A € (J,cp ;- Then, by Dynkin’s
Lemma (Lemma 1.3.1), the equality extends to all A € F,, which implies (5.9). \("a™)/

Remark: Suppose that X in Theorem 5.2.1 is bounded in L'(P). Then, there exists a signed
measure () on (2, F) such that X,, = dQ,,/dP,, n € N, where P, = P|z, and Q,, = Q|z,,
cf. Proposition 4.7.1. Moreover, conditions (5.5)-(5.8) are equivalent to that @ < P, cf.
Proposition 5.6.1 below.

As a direct consequence of Theorem 5.2.1, we obtain the following

Corollary 5.2.2 Let (F,)ner be a filtration and Y € L*(P). Then,

E[Y|F,] =3 E[Y|Fs)| a.s. and in L*(P).

Proof: The martingale X, & E [Y'|F,,] satisfies (5.6). Therefore, by Theorem 5.1.1, there exists

t—o00

a real r.v. X such that X; =% X a.s. Moreover, by (5.8), X; == X, in L!(P). Finally,
Xoo = E[Y[Fso] by (5.9). \("a")/

Example 5.2.3 Let X,, = H?:o €, where (§,)nen are mean-one nonnegative independent
r.v’s. Then, the following conditions are equivalent.

a) o H E\/&, > 0. b) VX, =% VX in L2(P). ¢) (X,)nen is uniformly integrable.
n=1

Proof: X = (X,,)nen is a mean-one, nonnegative martingale by Example 4.3.6.
a) = b): It is enough to verify that (v/X,)nen is a Cauchy sequence, which can be done as
follows. Let m < n. Then,

£ [V - [t vE] - TT v
j=m+1
and hence
E VX = VXt = EXo+ EXy =28 | VXX
= 228 VXX, | ¥ 0.
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b) = ¢):

EXy = ElV XV Xoo) 2 Jim E[/ X,V X,] = lim E[X,] = EX,.
n—o0 n—oo
By Corollary 5.1.2, this implies c).
c) = a): To prove the contraposition, suppose a = 0. Then, X does not converge in L'(P)
by Example 5.1.3, hence X is not uniformly integrable, by the euivalence of (5.7) and (5.8).

\(*a™)/

5.3 Optional Stopping Theorem

Throughout this subsection, we suppose that X = (X, F})er is adapted process which satisfies
(5.1). Now, suppose for a stopping time 7" that

X converges as t — 0o a.s. on the event {7 = oco}. (5.10)

If T < oo a.s., then nothing is assumed by (5.10). Let S : Q© — [0,00] be a r.v. such that
{S = oo} C {T' = oo}. Then the r.v. Xg makes sense on the event {5 < oco}. Referring to

(5.10),

Xg @ tlim X; on the event {S = oo}. (5.11)
—00

The purpose of this subsection is to present the following theorem.

Theorem 5.3.1 (Optional stopping theorem) Let X = (X, F;)er be an adapted pro-
cess and T be a stopping time for which we suppose (5.10) and adopt the convention (5.11).
Then, the following conditions are equivalent.

Xgonr € LY(P) and EXy = EXgar for any stopping time S; (5.12)
X7 € LY(P) and E[X7|Fs| = Xgar a.s. for any stopping time S; (5.13)
X7 € LY(P) and E[X7|F] = Xiar a.s. for allt € T; (5.14)
(Xinr)ter 1S uniformly integrable martingale. (5.15)

\_ /
Remark See Example 5.3.6 for typical examples for which condition (5.15) is valid.

We present the following Corollary to Theorem 5.3.1, which can easily be seen from the
proof below.

Corollary 5.3.2 Let X = (X, Fi)er be a uniformly integral submartingale (resp. super-
martingale) and T' be a stopping time for which we suppose (5.10) and adopt the convention
(5.11). Then, (5.12)-(5.14) hold with the equalities replaced by > (resp. <).

For nonnegative supermartingales, (5.12)—(5.14) with the equalities replaced by < are al-
ways true, even through they are not uniformly integrable in general. We note this fact as
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Corollary 5.3.3 (Optional stopping theorem for nonnegative supermartigales)
Let (Xy)ier be a nonnegative supermartingale and T be a stopping time for which we sup-
pose (5.10) and adopt the convention (5.11). Then, (5.12)—(5.14) hold with the equalities
replaced by <. In particular, ,

Xrl{X7r =0} =0 forallt >0 a.s. (5.16)
N J
Proof: We will prove (5.12) with the equality replaced by <. Then, (5.12) and (5.14) with the
equalities replaced by < follows from the proof of Theorem 5.3.1. We first observe that

1) E[Xrpi|Fs] < Xgarne a.s. for arbitrarily fixed t € T.

This can be seen as follows. If T = N, then, {X a7 }sen C { X}y is uniformly integrable.
Thus, 1) follows from Corollary 5.3.2. If T' = [0, 00) and ¢ — X; is right-continuous, then, 1)
follows from Lemma 5.3.4 below.

Note that Xp = tlg(r)lo Xiar. Then, by using Fatou’s lemma for the conditional expectation

given Fg, we pass from 1) to (5.12) with the equality replaced by <.
To see (5.16), we note that E[X;,r|Fr] < Xr a.s. and hence

E[Xt+T1{XT = 0}|fT] =0 a.s.
from which (5.16) follows. \("o?)/

Proof of Theorem 5.3.1 for T = N:
(5.12) & (5.13): It is enough to prove (=). By Lemma 5.3.8 below,

E[Xr|Fsnr] "2 B[X7| Fs].

Thus, it is enough to prove that

1) E[X7|Fsar]| = Xsar a.s.

To show this, we take arbitrary A € Fgnr and introduce
U=(SAT)1s+T1y,

which is a stopping time (Exercise 4.2.1) such that U < T. Therefore, X;; € L'(P) and

EXr "X BEXy = E[Xsnr : Al + E[Xp : A9,

i. e, B[ X7 : Al = E[Xgar : A, which implies 1).
(5.13) < (5.14): It is enough to prove (<=). Let A € Fg be arbitrary. Then, AN{S =n} € F,
for all n € N and hence

(5.14)

3) E[Xr: An{S =n}| E[Xunr : AN{S =n}].
Also, it is obvious that

4) Xr = Xgar on the event {S = oo}.
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Therefore,

EXr: Al = ) E[Xr:An{S=n}|+E[Xr: An{S = oo}
2N B X s AN{S = n}] + E[Xsar : AN {S = oo}
= nEEEXS/\T : A],

which implies (5.13).
(5.14) < (5.15): This follows from Theorem 5.2.1 applied to (Xiar)ier-
\("a™)/

Remarks: 1) The condition (5.15) holds if sup | X;,r| € L*(P). This is in particular the case

teT
when T = N and 7" is bounded.
2) Here is a well-known example for which a martingale does not satisfy (5.12) for a stopping
time T, even with S = 0. Let X be a simple random walk on Z such that X, = 0 and

T =inf{n > 1; X,, =z} for x € Z. Since X is recurrent, we have T' < oo a.s. and Xy =z
for all . Thus, for x # 0, EXy =2 # 0 = EX,.

We now turn to the proof of Theorem 5.3.1 for T = [0, c0)
e From here on, we assume that T = [0, 00) and (X});>0 is right-continuous.

The proofs of (5.15) < (5.13) < (5.12) are the same as those for the discrete-time case
(Theorem 5.3.1). We will henceforth concentrate on the proof of (5.15) = (5.13).
Let Ty, N € N be a discrete approximation of 7' from the right defined by

(5.17)

Ty — 2%, ifj2;N1<T§2%Vforsomej€N,
oo, if T = oo.

This approximation sequence is a subsequence of the one previously defined by (6.42). Thus,

Ty are stopping times w.r.t. (F;);>0 such that 0 < Ty — T < 27V, Here, additionally, we have

the monotonocity: Ty < Ty, N € N.

Lemma 5.3.4 Suppose that X = (Xy, Fi)i>0 @s a right-continuous martingale and that
T is a bounded stopping time. Then (5.13) is true. Moreover, if we suppose X is a
right-continuous submartingale (resp. supermartingale) then, (5.13) holds with the equality
replaced by > (resp. <)

Proof: We discuss only martingale case, adjustment needed for submartingale (supermartin-
gale) cases being obvious. It is enough to prove that

E[Xt: Al = E[Xgar : A] for all A € Fg. (5.18)

For N € N fixed, X) = (X,, F});eo-~y is a martingale, and Sy, Ty are stopping times
w.r.t. the filtration (F;);eo-~vy. Moreover, we have A € Fg C Fg,. Since Ty is bounded by
assumption, it follows from Theorem 5.3.1 applied to the discrete-time martingale X ™) that

E[X(Ty): A] = B[X(Sx ATy) : Al.

159



Therefore, it only remains to prove that
X (Tw) "Z53° X(T) and X (Sy A Ty) "=5° X(SAT) in L'(P).
By right-continuity, the above convergences take place a.s. Hence it is enough to prove that

1) {X(Tn)}nen, {X(Sv ATn)}nen are uniformly integrable.

Let Uy be either Sy ATy or Ty. By assumption, there exists m € N such that T' < m a.s., and
hence Uy < Ty <Ty <T +1<m+ 1. Then, by Theorem 5.3.1 applied to the discrete-time
submartingale (|X;|, F;)ie2-~y and the bounded stopping times Uy, m + 1 w.r.t. (F;)iea-nn,
we have

(X (Un)| < E[| X1 |[Fuy]-

By Lemma 4.1.13, the right-hand side of the above inequality is uniformly integrable in N.
Thus, {X (Un)}nen is uniformly integrable, which proves 1). \("a?)/

Lemma 5.3.5 Suppose that X = (X, Fi)i>0 is a right-continuous martingale (resp. sub-
martingale, supermartingale) Then, for any stopping time R, (Xiar, Ft)i>o0 1S a martingale
(resp. submartingale, supermartingale).

Proof: We discuss only martingale case, adjustment needed for submartingale (supermartin-
gale) cases being obvious. By the right-continuity, the process (Xiar, Ft)t>0 is adapted (Corol-
lary 6.6.15). Let 0 < s < t. Then, ¢t A R is a bounded stopping time, and hence by Lemma
5.3.4,

Xinr € LN(P), E[Xinr|Fs) = Xonr ass.

This proves the lemma. \("a™)/

Proof of Theorem 5.3.1 for T = [0, c0):

As is mentioned before, we have only to prove (5.15) = (5.13). For this purpose, it is enough
to prove (5.18). By Lemma 5.3.5, (X;ar, Fi)i>0 is a martingale and it is uniformly integrable
by the assumption (5.15). Thus, for any N € N fixed, X"N) = (X, 7, F;)co-~y is a uniformly
integrable martingale, and Sy, Ty are stopping times w.r.t. the filtration (F;);co-vy. More-
over, we have A € Fg C Fg,. Thus, by Theorem 5.3.1 applied to the discrete-time martingale
X TN we have

T<Iy

E[X1: Al E[X(Ty AT): Al = E[X(Sy AT) : Al

Therefore, it only remains to prove that

X(Sy AT)"Z3° X(SAT) in LY(P).
By right-continuity, the above convergence takes place a.s. Hence it is enough to prove that
1) {X(Sn AT)}nen is uniformly integrable.

By assumption (5.15), the discrete-time submartingale (|Xiar|, Ft)ica-~y is uniformly inte-
grable. Thus, by Theorem 5.3.1 applied to this submartingale, we see that | X (SoAT)| € L'(P)
and that

[X(Sv AT < E[IX(So AT)||Fs].

By Lemma 4.1.13, the right-hand side of the above inequality is uniformly integrable in N,
which proves 1). \("a™)/

160



Example 5.3.6 Let X = (X;, F;)er be an adapted process. Here are typical examples for X
and a stopping time T' for which (X;a7)ser is uniformly integrable. Suppose that |X,| < M,
a.s. for some M € (0,00) and let T = inf{t € TN (0,00) ; |X;| > M}. Suppose:

a) C & sup,er | X3| < o0,

b) Eihter the following b1) or b2) holds true.

bl) T = N and there exists R € (0,00) such that sup,,~; | X, — X,—1| < R.

b2) T = [0,00) and ¢ — X} is continuous. -

Then, (Xia7)ter is uniformly integrable.

Proof: Let A > 0. Then,
El[Xinr| [ Xinr| 2 Al = Li(A) + Ji(A),

where

L(N) = E[|Xy] - | Xe] =N\ t<T), J(N)=E[|Xr|:|Xe] >N\ T <t].
Since {t < T} C {|X¢| < M}, we have

sup I,(\) < Msup P(|X;| > \) < MC/X =5 0.

teT teT

As for Jy(A), let us first assume bl). Then, | X7| < |X7_1| + R < M + R and hence

sup Ji(A) < (M + R)sup P(|X,| > \) < (M + R)C/\ =% 0.

teT teT

If we assume b2), then, |Xy| = M. Thus, we have sup,cp Ji(N) 2% 0 similarly as above.
\("0")/

Example 5.3.7 Suppose that X = (X, F;)i>0 is a nonnegative martingale such that ¢ — X is
continuous and that X, = 0 a.s. For a bounded stopping time S, we write M[s o) = sup;>g X;-
Then, for all z € (1, 00)

P (Mg) > ©X5|Fs) = 27" as. on the set {Xg # 0}.

In particular, if P(Xg # 0) > 0, then, conditionally on the event Xg # 0, the law of the r.v.
M[S,oo)/XS is given by $_21{x>1}d$.

Proof: We will prove that for all Fg-measurable, integrable r.v. Z > 0,

1) P(Mgw) > Z| Fs) = 1A (Xs/Z) as. on the set {Z # 0}.

Then, the desired equality follows by setting Z = zXg. It is easy to verify that
2) P (Mse) > Z| Fs) =1 as. on the set {Xg > Z}.

Indeed,

P (Migpo) > Z|Fs) {Xs > Z} = P(Migoo) > Z, X5 > Z|Fs)
= P(XS > Z|FS) = 1{XS > Z}

By 2), it is enough to prove that
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3) ZP (M[S,oo) > Z| ]-"5) = Xg a.s. on the set {Xg < Z}.

For this purpose, we consider a stopping time 7' = inf{t > S ; X; > Z}. Then, for n € N,
(S +mn) AT is a bounded stopping time, and hence

Lemma 5.3.4

4) Xg E[X(s1mar|Fs] = E[XsinH{T = 00}|Fs] + E[X(s1marH{T < 0o}|Fs].

Since Xgin — 0 a.s. and {T = 0o} C {Xgp, < Z} for all n € N, we have by DCT that
5) E[Xg1nl{T = 00}|Fs] =30 a.s.

n—oo

On the other hand, on the event {Xg < Z,T < oo}, Xgimar — Xr = Z and 0 <
X(s4mar < Z for all n € N. Therefore we have by DCT that

n—oo

6) E[X(ssmnrl{T < 00}|Fs] "=F ZP(T < 00| Fs) = ZP(Mspe) > Z| Fs) as.
Combining 4)-6), we obtain 3). \("a™)/

(x) Complement
We present the following lemma, which was used in the proof of (5.13) < (5.12). This
lemma is valid in the general setting of Definition 4.2.1.

Lemma 5.3.8 Let S and T be stopping times and X € L*(P). Then, )
E[X|Fs] = E[X|Fsar] a.s. on {S <T}. (5.19)
Suppose in particular that X is Fr-measurable. Then,
E[X|Fs| = E[X|Fsar] a.s. (5.20)
\_ /

Proof: (5.19): The (5.19) is equivalent to

Y ¥ B[X|Fs]1{S < T} = E[X|Fsnr|1{S < T} as.,
which can be paraphrased as Y = E[Y|Fsar| a.s. Therefore, it is enough that Y is Fgnr-
measurable.
On the other hand, {S < T} € Fsar by (4.40), and E[X|Fg| is Fs-measurable. Therefore,
Y is Fgar-measurable by (4.41).
(5.20): By (5.19), (5.20) is equivalent to
7 ¥ EIX|F1{T < S} = E[X|Fspr]1{T < S} as.,
which can be paraphrased as Z = FE[Z|Fsar| a.s. Therefore, it is enough that Z is Fgnr-
measurable.
On the other hand, X1{T < S} is Fgar-measurable by (4.41), since X is Fr-measurable.

Hence
Z = E[X1{T < S}|Fs] = X1{T < S}.

Therefore Z is Fgap-measurable. \("a™)/
Exercise 5.3.1 Let S nand T be stopping times and X € L!(P). Prove then that
E[E[Xl./_"TH.Fs] = E[X‘FS/\T] a.s. Hint: (520)
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Exercise 5.3.2 Let (F,)nen be a filtration, Y € L'(P), T be a stopping time, and X,, =
EY|F,], n € N. Then, prove that Xy = E[Y|Fr| a.s. on {T' < co}. Hint: proof of (5.15) =
(5.13).

Exercise 5.3.3 Let (X;);er be a nonnegative submartingale with assumption (5.1) and 7" be
a stopping time. Then, prove the following. i) EX;\r < EX; for all t € T. ii) Suppose that
sup,ct EX; < 00, so that X; — X, a.s. for some X € Ll(P) by the martingale convergence

theorem (Theorem 5.1.1). Then, EXr < sup EX;, where Xr ' X on the set {T = o}.
teT

Exercise 5.3.4 Using the argument of Example 5.3.7, give an alternative proof of the equal-
ities (4.76).

5.4 LP Convergence

Throughout this subsection, we assume that X = (X;, F;)er is an adapted process such that
(5.1) holds. We set
;= sup X, and Y;= sup |X;| (5.21)

s€[0,t]NT s€[0,t]NT

We start by proving the following

\
Proposition 5.4.1 (Doob’s inequalities) Let t € T.

a) (maximal inequality) Suppose that (X;)scpogor i a submartingale. Then, for all
A>0,
AP(Y, > \) < E[X,: Y, > ). (5.22)

b) (LP-maximal inequality) Suppose that (X;)scpgnr @5 @ martingale, or a nonnegative
submartingale. Then,

I¥illy < 251Xl i p € (1,00). (5:23)
N J

Remark The inequality (5.23) is no longer true for p = 1. In fact, we present an example of
martingales for which there is no constant ¢ € [0, 00) such that

1Y;]|1 < cl| X;|l; forallteT (5.24)

cf. Example 5.4.3. In addition, the multiplicative constant p%l on the RHS of (5.23) cannot

be improved (Exercise 5.4.3).

Proof of Proposition 5.4.1 a): Case I: T = N: Let A\ > 0 be fixed and T" = inf{t €
T; X; > A}. Then,

def Lemma 4.2.3

) A v, > ={r<ty e o

Moreover, for each fixed ¢ € N, (Xa)sen is clearly uniformly integrable submartingale, and
hence by 1) and Corollary 5.3.2,

2) E[Xiar: Al < E[X;: Al
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Finally, on the event A, we have that A < X and T'=1t¢ A T. Therefore,
3) AC{)< X}

Combining these,
3) 2)
AP(A) < E[Xinr : Al < E[X, : A],
which proves (5.22).
Case 2: T = [0,00): Let A > 0 and ¢t > 0 be fixed. We approximate the interval [0,t] by a
finite subset set Iy = {27V kt}iio. We also take a strictly increasing positive sequence A, such
that A, A, so that
1) (A, 20) \( [A, 00) as n — 0.
By the argument of Case 1, (5.22) is valid for the discrete-time submartingale {X}ser, -
Therefore, we have for m < n that

AP (mast > /\n) < MNP (maXXS > /\n>

2) seln seln
< E{Xt.maxX > A\ ] <E{Xt.maxX > A\
seln seln
Since X is right-continuous, max X; 7 Y; as N — oo. Note also that the indicator function
sely
of an interval (a,o0) (a € R) is left-continuous, and hence

1(4,00) maxX) ]Vi))o 1, Oo)(Y;g)
Thus, by letting N — oo, it follows from 2) that
3) P (Yi>N) <E[X,: Y, > A\
By letting n — oo first, and then letting m — oo, we obtain (5.22) from 1) and 3).  \("o")/

Proposition 5.4.1 b) will be proved via Lemma 5.4.2 below. The lemm has various appli-
cations beside the proof of Proposition 5.4.1 b), cf. Example 5.4.8. For this reason, we state
the lemma in a setting which is more general than is necessary to prove Proposition 5.4.1 b).
Here is the the settig for the lemma.

1 dtﬂl dp1(N)

e Let ¢ : [0,00) — [0, 00) a right-continuous, nondecreasing function such that f < 00.
For ¢ € ®, we associate it with a function ¢, : [0,00) — [0, 00) defined by
A
doq (t
0 t

We denote the totality of such pairs (¢1,p2) by ®, of which two typical examples are

p1(A) = A (1 <p < o0) and po(A) = gA\P~", where ¢ = ——, (5.25)

©1(A\) = (A= 1) and go(\) = log™ A of (log \) Vv 0. (5.26)

Let f,g > 0 be measurable functions on a measure space (.S, B, ). We consider the following
conditions.

1
wg>n < = / Fdp i A >0, (5.27)
A g=>A

/%(g)du < /fwz(g)du if (¢1,02) € @, (5.28)
S S

/Sg dp < <p—1) /Sf du if p € (1, 00), (5.29)
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These conditions are related as follows.

[Lemma 5.4.2 (5.27) <= (5.28) = (5.29). ]

Proof: It follows from fl 1)~ 5 that 1(0) = ©2(0) = 0, and hence ¢;(\) = fo)\ dr (1)
and () = fA de1®) for all )\ > 0. Therefore, for j =1, 2,

/3 folg)dn = / :(x)du(fc) / o) = \di;()
Fubin / d;(\) /S F(@)1{g(x) > Nydu(2)

= [Taaw [ ran (5.30)
(5.27) = (5.28):

(5.30) [ (621 [ (5.30)
/Ssm(g)du = /0 dpr(Mpu(g > A) < /0 dsoa(A)/gZAfdu /stoz(g)du

(5.27) <= (5.28): For fixed A > 0, take (¢1,p2) € @ defined by dy;(t) = dx(dt) and dps(t) =
20x(dt) = $0x(dt).

(5.28) = (5.29): We may assume that [, fPdu < co. We take @1(X) = A and pg(\) = g\~
As we have already seen, (5.28) implies (5.33). Thus, by applying (5.33) with § = 2, we see

that
/gpdu < q2q/ fPdup < oo.
s S

Then applying (5.28),

(5.28) Hélder 1/p 1/q
/ gPdp < q/fgp fdp < Q(/fpdﬂ) (/gpdu)

By dividing both sides by [ ¢g’dp < oo, we obtain (5.29). \("a™)/

Proof of Proposition 5.4.1 b): If X is a nonnegative submartingale, then §7t =Y;. Hence,
we conclude (5.23) from (5.22) and Lemma 5.4.2.

If X is a martingale, then, the desired inequality is obtained by applying (5.23) to the
nonnegative submartingale (| X;|):er- \("a?)/

Example 5.4.3 Here is an example of a martingale for which there is no constant ¢ € [0, 00)
with property (5.24). Let X = (X, F)ier be a nonnegative martingale which is not uniformly
integrable (for example the martingale in Example 5.2.3 which satisfies @« = 0) Then, by
Theorem 5.2.1, X; does not converge in L'(P) as t — oo. This implies, via Lemma 5.4.5 that

t—o00

|Yi|li = oo. On the other hand, || X;||; = || Xo|l; for all ¢ € T. In conclusion, there is no
constant ¢ € [0, 00) with property (5 24).

The rest of this subsection is devoted to the proof of
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Proposition 5.4.4 (L” convergence theorem) Let X = (X, F;)ier be a martingale, or
a nonnegative submartingale with assumption (5.1) in both cases. Suppose that p € (1, 00)
and that

sup || X¢||, < oo.
teT

Then, there exists Xoo € LP(P) such that

t—o0

X — X a.s. and in LP(P).
\_ J

To prove Proposition 5.4.4, we prepare the following

Lemma 5.4.5 Let T C [0,00) be unbounded, (Xi)ier be a sequence of r.v’s and

t—o00

Y, = I%la]XT|X8|. Suppose that there exists a r.v. X, such that X; — X a.s. and
s€|0,t]N
that B
sup || Y]], < 0o for some p € [1,00), (5.31)
teT
Then, X; == X, in LP(P).
N . Y,
Proof: We let Y., = sup | X;|. Then,
teT

~ Fatou . ~
[Yeoll, < Lim [|Y;]|, < oo.
t—o00

Therefore, Yo € LP(P) and hence

X, — Xoo|? < (2Ya0)? € LY(P).
We see from above considerations and the dominated convergence theorem that X, e Xoo
in LP(P). \("a™)/
Proof of Proposition 5.4.4: Note that

sup [[,/|1 < sup | Xl < oo.
teT teT

Then, it follows from the martingale convergence theorem (Theorem 5.1.1) that there exists
t—00

X € LY(P) such that X; — X, a.s. On the other hand, we let Y, = rfaa]xT | Xs|. Then,
s€(0,t]N

by the LP” maximal inequality,
- (5.23)
sup [[Yill, < gsup||X;l], < oo.
teT teT
Therefore, we see from Lemma 5.4.5 that X,, — X in L? (P).

\("a")/

Complement In addition to the conditons (5.27) and (5.28), we consider the following con-
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ditions.

u(g/B>A) < ﬁ - fdp if A>0and g > 1, (5.32)

/Ssol(g/ﬂ)du < ﬁ/sfs@a(f)du if (¢1,02) € @ and > 1, (5.33)

/(g—ﬂ)eru < a/flog+fdu ifa,ﬁE(l,oo),é—I—%:l. (5.34)
S S

Remark Note that © < (z — 8)* + (3 for all 2,8 € R. Thus, if x is a finite measure, then it
follows from (5.34) that

/gdu < a/ flog" fdu+ Bu(S). (5.35)
S S

We have the following lemma.

Lemma 5.4.6 (x) The conditions (5.27)-(5.34) are related as

(5.27) < (5.28) = (5.32) < (5.33) = (5.34)

Proof:
(5.27) = (5.32):
(5.27)
Balg > BY) < fau= [ s [ g
9B 928 925
>A F<A
< fdu+ (g > BA).
f>X

Subtracting Au(g > GA) from the both-hand sides, we obtain (5.32).
(5.32) < (5.33): This can be shown in the same way as (5.27) < (5.28).
(5.33) = (5.34): Apply (5.33) to p1(A) = (A —1)* and @o(\) = log™t \. \("a")/

Proposition 5.4.7 (x) (L!'-maximal inequality) Suppose that t € T and that
(Xs)se[(),t]my 15 a martingale, or a nonnegative submartingale. Then, for allt € T,

1Yot < all|Xe|log* [ X1 + if o€ (1,00) (5.36)

a—1

Proof: If X is a nonnegative submartingale, then Y, = Y,. Hence, we conclude (5.36) from
(5.22) and Lemma 5.4.6.

If X is a martingale, then, the desired inequality is obtained by applying (5.36) to the
nonnegative submartingale (| Xy|):er- \("a™)/

Remark The reverse inequality to (5.36) holds true in some cases, cf. Example 5.4.8.

Example 5.4.8 (%) Here is an example of a martingale for which reverse inequality to (5.36)
holds true. Suppose that X = (X,,, F,,)nen is a nonnegative supermartingale such that Xy = 1
and that there exists C' > 1 such that X,,,; < CX,, for all n € N. Then,

E[X.log" Xo] < C(EYa — 1).
Proof: Fix A > 1 and set "= inf{n > 1; X,, > A}. We observe that
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1) Xo > A=Y > A<= T < o0,
2) T<OO:>XT§CXT,1§C)\.

Therefore,

—_

) Corollary 5.3.3
EXe: Xoo >N < E[Xyp:T < ] < E[Xr:T < ]

)
< OAP(T < 00) 2 CAP(Ya > ). (5.37)

N

Noting that Y, > Xy = 1, we have

EY, = / P(Yo > N)dA =1 +/ P(Yao > A)dA
0 1

(5.37)

> 1+C/ ElXa: Xo > N2

A

G35 C'E[X, log™ Xoo].

Exercise 5.4.1 For 1 < p < oo, let MP be the totality of the martingales X such that

| X || mw = SUPysg || Xifl, < co. Also, let M be the totality of the uniformly integrable mar-

tingales in M. Prove the following. i) The map X — X, defines a surjective isometry from
(MP ]| - |lme) to LP(Q2, Foo, P) for 1 < p < co. The same map defines a surjective isometry
from (M3, || - |ame) to L2, Fuo, P). ii) For 1 < p < oo, the norms || X || pr and || sup;q | X/ |l
are equivalent. -

Exercise 5.4.2 (exponential maximal inequality) Let ¢ € T. Suppose that (X;)scpgnt
is a submartingale and that Eexp X; < oo. Then, prove that FexpY; < eEexp X;. Hint:
Let p € (1,00). Then, it follows from the assumption and Lemma 4.3.3 that exp(X,/p),
s € [0,t] N T is a nonnegative submartigale. Thus, applying (5.23) to this submartingale, we
have

p
EexpY; < (#) Eexp X;.

Then, we let p — oo.

Exercise 5.4.3 (%) Let Q =[0,1), F = B(Q2) and P be the Lebesgue measure on (2, B(2)).
We let || - ||, denote the norm of LP(P). For f € L*(P) and x € Q, define

The objective of this exercise is twofold. The first is to prove Hardy’s inequality
b .
I1H fllp < EH}”Hp if p € (1, 00). (5.38)

as an application of Doob’s LP-maximal inequality (5.23). The second is to show that for both
(5.23) and (5.38), the multiplicative constant = cannot be improved.
For t € [0,1], z € Q and f € L'(P), we set
y = {AeF;either AC[1—¢t,1)or DNACI[l—1t1)},
fi(x) = (Hf)(1=1)1p1-5(z) + f(2)1p—e1)(2).
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Then, prove the following. i) For fixed z € Q, t — f;(x) is right-continuous, fi(z) = f(z) and
|Hf(x)| < sup,<i |fi—¢(z)]. ii) For fixed t € (0,1], E[f|F](x) = fi(z), P(dz)-a.s. iii) For
p € [1,00),

1H fllp <

sup fi|| < the RHS of (5.38).

te(0,1]

iv) For (5.38), the multiplicative constant -£; cannot be improved in the following sense. If

1 < p < ooandc < B, there exists f € LP(P) such that ||Hf[|, > c[/f|,. Hint: Let

f@) =27 (0 <& < 1/p). Then, [Hf|, = (1-0)"(1—dp)~", |Ifll, = (1 —dp)~"/7 for

p € (1,00) and || f[1 = {&553 exp(—(1 = 9)).

v) For (5.23), the multiplicative constant -2 cannot be improved in the following sense. If

1 <p <ooand c <t there exists f € LP(P) for which || supyep ) fell, > ¢l fillp-

5.5 Backwards Martingales

Theorem 5.5.1 Suppose that X = (X,,)ne_n S a submartingale (resp. supermartingale)
and that
—oo < inf EX, (resp. sup EX, < c0). (5.39)

ne—N ne—N

Then, there exists X_o, € L'(P) such that

X, "= X_o a.s. and in L*(P).

- /

Proof: By symmerty, we may focus on the case of submartingale. We first prove that

1) 3X_o = lim X, € [—o0, 0] as.

n——oo

Let a,b € R, a < b and U,, (n € —N) be the number of upcrossing from a to b by the sequence
X, Xni1, -, Xo. Noting that U, 1 > U, for Vn € —N, we set U_,, = lim,,,_, U, € [0, oc].
Then, we have by the argument of Lemma 5.1.6 that

EU, < E[(X, - a)*] - B[(X, - )] < E[(Xo - a)*).

This implies 1) by the argument in the proof of Theorem 5.1.1.

n——0oo

To prove that X,, "— X . in L'(P), it is enough to show that (X,)nc_n is uniformly
integrable. Noting (5.39) and that EX,, 1 < EX,, for Vn € —N, we set m = lim,,, ., EX,, €
R. Then, for any € > 0, there exists £ € —N such that m < FX,, < m + ¢ for Vn < k. We
claim for n < k and A > 0 that

1) P(|1X,| > ) < (2E[X{] — m)/A
2) ElIX] 1 X0 > N < B[ X4] : | X0 > A] + <.

These imply the desired uniform integrability. To prove 1), we note that m < EX,, and that
X, is a submartingale (Lemma 4.3.3). Hence,

E|X,| = 2E[X] - EX, < 2E[X{] — m.

Then, 1) follows from Chebyshev’s inequality. To prove 2), we note that
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3) E[X, : Xp > N < E[Xp,: X, >

E[X,: X, < -\ = EX,—E[X,:X,>-)

4) EX, —e—E[X): X, > =)\
E[X): X, < =) —e.

[IAVACA]

Putting these together,

E[|X,] ¢ | Xn| > A E[X,: X, >N = E[X,: X, < =)

NS
B

E[X),: Xp > A — E[Xp: X < =N +¢
= E[Xu|: X > A + <.
\("a™)/

Remark: Supppose that X = (X,)ne_n is a martingale. Then (5.39) is obviously true.
Moreover, by Corollary 5.5.3 below, we have that

X_oo = E[Xo|Fo] a.s. with Foo = ) Fou.

ne—N

Corollary 5.5.2 Let Y € LY(P) and F_oo =) Fy. Then,

ne—-NY 1

n—oo

E[Y|F, = E|Y|F_u] a.s. and in L*(P).

Proof: The process X, = E[Y|F,] (n € —N) is a martingale by Example 4.3.2. Thus, by

Theorem 5.5.1, there exists an X_o, € L*(P) such that X,, "=—° X__ a.s. and in L'(P).
Thus, it is enough to show that

1) X_ o = ElY|F_] as.

To verify this, we take an arbitrary A € F_.. Then, A € F, for all n € —N, and thus,
E[X, : Al = E[Y : A]. Letting n — —oo, we have

2) E[X_ o : Al =E[Y: A,
which implies 1). \("0™)/

Corollary 5.5.3 Suppose that X = (X,))ne_n s a submartingale (resp. supermartingale)
and that X, "==° X_o in L'(P). Then,

X o < E[Xo|F_ o] (resp. X o > E[Xo|F_o]) a.s.,

where F_oo = (Ve Fn-
N )

Proof: Suppose that X = (X,,),c_n is a submartingale. Then, for all n € —N

X, < E[Xo|F] a.s.

X, "2 X_ in L*(P) by assumption. Moreover, E[Xo|F,] "= E[Xo|F_s] in L'(P) by
Corollary 5.5.2. Threrefore, the result follows from Exercise 1.10.1. \("a™)/
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5.6 (x) Structure of L'-bounded martingales 1T

Let u be a real harmonic function on the unit open disc D such that
7r .
sup / lu(re'?)|df < oco.
o<r<lJ_—g

Then, there exists a unique Borel signed measure p on [—m, 7] such that

1

—/ h(z,e?)du(9) for all z € D,

u(z) = 2m

where h(z,w) = M=EE of. [Rud87, p.247,11.30]. Then, let dp(6) = f(0)d6 + 1y(0)dpu(6) be
Lebesgue decomposition of p with respect to the Lebesgue measure, where f € L'([—m, 7))

and the signed measure and N C [—7, 7| is a Borel set with zero-Lebesgue measure.

u(re') s f(8) for almost all 0 € [—7, 7],

of. [Rud87, p.244,11.24].

We will explain that an L'-bounded martingale X has an analogous properties.

Let (2, F, P) be a probability space and let (F,,),en be a filtration such that F = F
0 (U, ey Fn)]. Suppose that X = (X,, Fn)nen is a martingale such that sup,cy || Xall1 < oo.
Then, there exists a signed measure () on (€2, F), such that @, < P, for all n € N, where

P, = Plg, Q. = Q|#,, and that X,, = fl%", cf. Proposition 4.7.1. Moreover, by Theorem

n—o0

5.1.1, there exists X, € L'(P) such that X,, — X, P-a.s.

def

The signed measure ) and the r.v. X, is related as follows.

Proposition 5.6.1 Referring to the setting explained before the proposition, the following
hold.

a) The conditions (5.5)—(5.8) in Theorem 5.2.1 for the martingale X = (X, Fn)nen are
also equivalent to that (Q < P. Moreover, if Q < P, then, X, = 3—%.

b) There exists an N € F such that P(N) =0 and dQ = X..dP + 15dQ.

/
Proof: a) Suppose the condition (5.5) of Theorem 5.2.1 and let Q(A) = E[Y : A] (4 € F).
Then, for any n € N and A € F,,

O(A) = EY : Al = E[X,, : A] = Q(A).

Since n is arbitrary, it follows from Dynkin’s Lemma (Lemma 1.3.1) that @ =Qon Fo=F.
Thus, @ < P and dQ/dP = X

Suppose on the other hand that @ < P. Then, Q(A) = E[dQ Al (A € F). Thus, by the
definition of the conditional expectation (cf. (4.14)), we have that E[dQ|]: ] = dQ” = X,

(Vn € N). Moreover, since F., = F, it follows from Corollary 5.2.2 that X, — dQ P-a.s.
and in L'(P).

b) Let QF be the positive and the negative parts of the Jordan decomposition of (). Then,
X* = dQ*/dP,. Hence it is enough to prove the decomposition dQ = X dP + 15dQ for
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Q7 separately. Therefore, we may assume that @ is a positive finite measure. If Q = 0, then
X, = 0 and hence the decomposition dQ = X dP + 15d@ holds with N = (). If Q # 0, then,
by considering Q(-)/Q(f2) instead of @), we may assume that Q(Q2) = 1.

Let @ be a probability measure. Then, there exists an Ny € F such that P(N;) = 0 and
on Q\ Ny,

n—oo

1) X, (n € NU{oo}) are well-defined and X,, — X

Let R =9 R, = 24 4 € N. Note that P < R, Q < R, and Q, < P, < R,, n € N.

Let also Y = fllg" and Z, dg:. Then, by Exercise 4.1.1, R-almost surely, X,,, Y,,, Z, are

well-defined and Z,, = X,Y,. Also, by part a), Y, s Z—II;, R-as. and Z, =% flg, R-a.s.
Therefore, there exists an Ny € F such that R(N2) = 0 and on Q\ Ny,

2) X,.,Y,, Z, (n€N), fl%, Z—g are well-defined, Z, = X,.Y,, Y, =% gg, and Z, —g

Let N = NyUN,. Then, P(N) = 0 and on Q\N, both 1) and 2) are true. Therefore, on Q\N,

we have that

3 - X

For A € F, we have that

dQ dP
QAN:/ ir 2 Xow—=dR = F[X,, : A\N] = F[X, : 4],
(W) = [ GRIRE [ X TpdR = Pt A\N] = BX..
from which we conclude that d@Q) = X odP + 15dQ. \("o™)/

Example 5.6.2 (Kakutani’s dichotomy) Let (S,,B,), n € N\{0} be measurable spaces,
s U € P(Sp, Bp), P = Q&% 1in, and Q = R ,v,,. Suppose that v, < p, for all n € N\{0}.

Then,
o def dl,n >0 = QK P,
H/ d“"{:o = QLP

Proof: Let (0, F) = [[,2,(Sn. B,) and &,(w) = %(wn) for w = (w,)5%. Then, &, >0, n €
N\{0} are mean-one independent r.v.’s on (€2, F, P) and hence X,, = []}_, &; is a nonnegative

martingale. Moreover,
Q(A) = E[X,, : A] for all e N\{0} and A € F,, =0(&,...,T,).

Suppose first that o > 0. Then, by Example 5.2.3, X,, converges in L'(P), which implies via
Proposition 5.6.1 that Q) < P.

Suppose on the other hand that a = 0. Then, by Example 5.2.3, X, = 0 a.s., which
implies via Proposition 5.6.1 that ) L P. \("a™)/
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6 Brownian Motion and its Markov Property

6.1 Definition, and Some Basic Properties

The Brownian motion came into the history in 1827, when R. Brown, a British botanist,
observed that pollen grains suspended in water perform a continual swarming motion. In 1905,
A. Einstein derived (6.3) below from the moleculer physics point of view. A mathematically
rigorous construction with a proof of the continuity (cf. B2) below) was given by N. Wiener
(1923).

We fix a probability space (2, F, P) in this subsection. In the sequel, we will repeatedly
refer to a finite time series of the form

O=to<ti <..<t,, n>1 (6.1)

Definition 6.1.1 (Brownian motion) Let B = (B; :  — R%);5, be a family r.v.’s. We
consider the following conditions.

B1) For any time series (6.1),

B(0), B(ty) — B(0),..., B(t,) — B(t,—1) are independent, (6.2)
B(tj) — B(tj—1) = N(O,(t; —tj—1)la), j=1,...,n,

where 1, is the identity matrix of degree d (cf. Example 1.2.4),
B2) There is an 25 € F such that P(Qp) =1 and ¢t — B,(w) is continuous for all w € Qp.
B3) By = z, for a nonrandom vector z € R%.

» B is called a d-dimensional Brownian motion (BM? for short) if the conditions B1), B2) are
satisfied.

» B is called a d-dimensional Brownian motion started at = (BM¢ for short), if the conditions
B1)-B3) are satisfied.

» B is called a d-dimensional pre-Brownian motion (pre—BMd for short), if the conditions B1)
is satisfied. A d-dimensional pre-Brownian motion is said to be started at z, if it saitesfies B3)
and is abbreviated by pre-BM¢.

Remark: 1) B2) does not follow from B1). In fact, there exists a pre-BM{ (B;)i>o which
is almost surely discontinuos at all ¢ > 0 (Example 6.6.9). 2) If the condition B2) above is
replaced by the following stronger one, B is called an continuous modification of a BM.

t — By(w) is continuous for all w € . (6.4)

In some text books (e.g. [Bil95, p.503], [IkWag89, p.40], [KS91, p.47], [LeG16, p.27]), instead
of B1)-B2) above, B1), B2) and (6.4) are adopted as the definition of the Brownian motion.
However, there is no essential difference between B2) and (6.4). Suppose that B satisfies
B1)-B2) and define B by

=~ o Bt((x}) if w € QB7 t Z 0,
Bt(w) B { Bo<w> if w € QB, t Z 0.
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Then, B satisfies B1),B2) and (6.4).
3) In some text books (e.g. [Bil95, p.498], [KS91, p.47]), "By = z” in the condition B4) above
is replaced by “By = x, a.s.”

Lemma 6.1.2 Suppose that Bisa BM? and that X : Q — R? is a r.v. independent of B

Then, B < (X 4 By)iso is a BM? such that By = X.

Proof: Obvious from Definition 6.1.1. \("a™)/

Recall that r.v.’s {X;}T, is called Gaussian r.v.’s if there exist ii.d. Zy,...,Z, =~ N(0,1)
such that each X; (j =1,...,m) is a linear combination of 73, ..., Z,.

Lemma 6.1.3 Referring to Definition 6.1.1, the condition B1) is equivalent to each of the
following conditions
B1’) For any time series (6.1), the r.v’s

a def o « :
Xe Bt - B (tn), a=1,....d j=1...n

are independent and X§' ~ N(0,t; —t; 1) foralla=1,...,dand j=1,...,n.
B1”) For any time series (6.1), {Ba(tk)}lgggd are mean-zero Gaussian 1.v.’s such that
1<k<n

cov(B*(t1), B (t¢)) = Saptr for alla,B=1,....d and 1 <k < < n. (6.5)
N J
Proof: B1) < B1’): This is because for each j,

B(t;) — B(tj-1) = N(0, (t; — t;-1)1a)
iff {X$}1<a<a are independent and X§ =~ N(0,¢; —t;1) foralla =1,...,d.

B1’) = B1”): By BU'), 20 © X2/, — 61 (1 < a < d,1 < j <n)are iid., ~ N(0,1).

Thus, { B*(tx)}1<a<a are mean-zero Gaussian r.v.’s, since
1<k<n

k k
B (t) = Y X7 =) b~ 7],
j=1 j=1

fora=1,...,dand k= 1,...,n. Moreover,
k k
cov(B®(ty), B*(tr)) = dap D cov(X{, XP) = ap ¥ (t; — tj—1) = bu st
=1 =1

B17) = B1’): Since { B*(t4)}1<o<a are mean-zero Gaussian r.v.’s, so are { X{' } 1<a<a. Moreover,
1<k<n 1<j<n
fora,f=1,...,dand 1 <k </{ <n,

cov(Xg, X7
= E[(B*(t)) — B*(ts_1))(B"(ts) — B®(t,1))]
=  EB“(t;)B"(t;) — EB*(t3,)B®(ti—1) — EB*(t}_1)B"(t;) + EB“(ty_1)B?(t,_1)

B1”
L Sap(te —te Nto—y — te—1 + th1) = 00 g0k o(t — ti—1)-
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By Exercise 2.2.6, this implies B1’). \("a™)/

We note that the Brownian motion can be defined in a different way.

Proposition 6.1.4 Referring to Definition 6.1.1, let B® = (Bf)i>0, @ = 1,...,d be the
a-th coordinate of B. Then, the following conditions are equivalent.

a) B is a BM{.

b) B, ..., B are independent and each of them is a BM(l).

Proof: The equivalence of a) and b) follows easily from that of B1) and B1’) of Lemma 6.1.3.
\("e™)/

The following invariance property of the Brownian motion allows us to investigate its
behavior as time ¢t — oo via that as time ¢ — 0, and vice versa.

a . ] I
Proposition 6.1.5 (Time inversion) Let B be a BM?. Define B = (Bi)i>0 by

> Bo“‘t(Bl/t—B(]), ’Lft>0,
B = { By, ift =0. (6:6)
Then, B is a BM? such that By = B,. )

Let us prove Proposition 6.1.5. Note that By and (B1/, — By):>o are independent. Hence,
by Lemma 6.1.2, it is enough to consider the case of By = 0. We first verify the following

[Lemma 6.1.6 Let B be a pre—BMg. Then, so is the process B defined by (6.6). ]

Proof: We take arbitrary time sequence of the form (6.1). By Proposition 6.1.4, it is enough
to show that

1) (B%(tj))1<a<a are Gaussian r.v.’s which satisfies (6.5).

1<5<n

We know that

2) (B*(tj))1<a<a are Gaussian r.v.’s which satisfies (6.5).

15520
Since 0 < 1/t,, < 1/t,—1 < ... < 1/t1, (B*(1/t;))12a<a is a mean-zero Gaussian r.v. by 2), and
. 1<j<n

hence so is (Ba(tj))1§agd = (tha<1/tj))1§a<§d. Moreover, for 1 < k< ¢ <nanda,B=1,....d,
1<j<n Jj<n

1<

COV(Ba(tk), Bﬁ(tg)) = tkth[Ba<1/tk>Bﬁ(1/tg>] 2:) 5a’gtkt4 . tﬁ_l
= 6a,,8tk-

Thus, we have verified 1). \("a”™)/

To prove the continuity of B(t) at t = 0, we prepare the following
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Lemma 6.1.7 For f € C((0,1) — R),

lim f(t) = lim f(r), lim f(t) = lim f(r).
T, 0= g S0, Jim 1) = lim S0

In particular, for ¢ € [—o00, 0],

f(t) 20 L e f(r) reQ 0t

N J
Proof: Since the first and second equalities are equivalent, we only prove the first one. As for
the first equality, note that

LHS = lim sup f(t), RHS= lim sup f(r).
020+ 4 (0,0) () 00+ 1£(0,6)NQ )

Thus, it is enough to verify that

1) sup f(t)= sup f(r) forany 0 < <1.

te(0,0) re(0,6)NQ
To prove 1), we have only to show that LHS < RHS, since the opposite inequality is obvious.
Let ¢ <LHS, then, there exists t € (0,0) such that ¢ < f(¢). Then, by the continuity, there
exists 7 € (0,d) N Q such that ¢ < f(r). Hence ¢ <RHS of 1). Since c is arbitrary, we see that
LHS < RHS. \("a")/

-

Lemma 6.1.8 (Removability of isolated discontinuity) Let X = (X;);>0 and Y =
(Yy)i>0 be two processes with values in R with the same law. Suppose that there exists
Qx € F with P(Qx) =1 such that

a) t — X;(w) is continuous on [0,00) for all w € Qx.

b) t — Yi(w) is continuous on (0,00) for all w € Qx.

Then, there exists Qy € F with P(Qy) = 1 such that t — Yi(w) is continuous on [0, c0)
for all w € Qy.

J

Proof: Let
oy = {vi-v =0},

reQ, r—0+

Oxg = {XT—XOTEQi>0+O}, Cy,@:{y,q—yo LTy o}.

It is enough to prove that
1) there exists 0y € F with P(2y) = 1 such that Qy C Cy.

We will show this with €y o) x N Cyg. We first verify that
2) CX@, CY,Q e F.

Indeed,
Cxo=[(1 U ) {X —Xol<1/n}eF

neN meN re(0,1/m)
n>1 m>1 reQ

Similarly, Cyq € F.
Now, P(Cxg) =1 by a) and hence P(Cyg) =1, by 2) and X ~ Y. Therefore,
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3) Qx N CY,Q € F, P(QX N Cy}@) = 1.
On the other hand, b) and Lemma 6.1.7 implies that

4) QxﬂCy,Q:QxﬂCy CCy.

3) and 4) implies 1) with 2y o Qx N Cyg. \("e™)/
Proof of Proposition 6.1.5: As is already explained, it is enough to consider the case of
BMS. Then, by Lemma 6.1.6, it is enough to verify the continuity of B, in ¢ > 0. Recall that
there exists an Qg € F such that P(Q2p) = 1 and t — B;(w) is continuous for all w € Qp
Then, for w € Qp, Bt(w) is continuous at all t > 0. Therefore, the desired continuity follows
from Lemma 6.1.8. \("a™)/

For BM?, we define the canonical filtration (F?)i>o by
F)=0(By; s<t). (6.7)

The independence of the increments of the Brownian motion has the following consequence.

4 N
Proposition 6.1.9 (Markov property I) Let B be a BM? and s > 0. Define

~

B = (B})tz0 = (Bs4t — Bs)i>o0. (6.8)

Then,
a) B* is a BMY,
b) F? and B* are independent.

S

Proof: a) Clearly, §3 =0, and t — Ef is a.s. continuous. Let 0 < u < ¢. Then,
éf - B\Z - BS-‘r—t - Bs+u~

Hence, the increments of B are independent and their laws are the same as those for B. Thus,
B* is a BM{.
b) We take 0 =19 < ... <71, < s and 0 =ty < ... < t,,. Then, it is enough to verify that

~

1) (B(r))i, and (B*(ts))}_, are independent.
(cf. Lemma 1.6.5). Let

XL (Blry) = Blrj-))fe and Y 5 (B(s + 1) = Bls + ;1))
We see from B1) in Definition 6.1.1 that

2) By, X and Y are independent.

Moreover, for k =1,....mand £ =1, ..., n,

B(ri) = Bo+ Y (B(r;) — B(r;—1)), B(te) = > (B(s+1t;) — B(s +t;_1)).

Jj=1 Jj=1

Thus,
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3) (B(rg))i, is 0(By, X )-measurable, and (Es(tg))’;:l is o(Y)-measurable.
Now, 1) follows from 2) and 3). \("a™)/

The Markov property implies that the past and the future are independent, given the
present.

Corollary 6.1.10 Let s >0, F € F°, and G € T, o o(By; t>s). Then,

s’

P(G|F?) = P(G|B,), a.s. (6.9)
P(FNG|B,) = P(F|B,)P(G|B,), a.s. (6.10)

Proof: Note that there exists I' € B((R?)[*>)) such that
1) G =A{(Bstt)zo € I'} = {(Bs + Bi)iz0 € T'}.
Note also that the following function is Borel measurable.
f(@) = P((x+ Bf)is0 €T), 2 € R
Since F? and (B;)>o is independent, we see from Exercise ?7 that
P(G|FY) = f(B,), as.
In particular, P(G|F?) is o(B,)-measurable, which implies (6.9). Then,

P(FNGIFY) = 1eP(GIF) 2 1:P(GIB,), as.
By taking the conditional expectations given o(B;) of both hands sides of the above identity,
we get (6.10). \("a™)/

Let B be a BM? and s > 0. The Markov property allows us to construct a new Brownian
motion by replacing the path after the time s by an another Brownian motion S, which is
independent of F,. More precisely, we have

~

Corollary 6.1.11 (Concatenation of Brownian motions I) Let B be a BM%, s > 0,
and 8 be a BMg which is independent of F?. Then the process B = (By)i>0 defined as

follows is a BMX.
5 _ ) B ift <s,
Bt B { Bs + /Btfsa th 2 S. (611)

As a consequence, the Brownian motion (B is expressed as

ﬁt = §s+t - Esa t>0.
\_ J
Proof: Let S = (R%)*>) and define F': S x S — S by

z(t), if t <s,
F(z,y)(t) = { x(s)+y(t—s), ift>s.

Deﬁnealsz:Q—)SandB\S:Q—>Sby
X = (Bins)iz0, B® = (Biss — By)izo-
Then,
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1) B=F(X,B*), B=F(X,}).

Then, X is FO-measurable, and hence by assumption, 3 is a BMg which is independent of X.
On the other hand, we see from Proposition 6.1.9 that B® is a BMg which is independent of
X. As a consequence,

2) (X, B*) ~ (X, B).
This, together with 1), implies that B = B. \("a™)/

(x) Complement to section 6.1

We will prove that a BMS exists on a suitable probability space (€2, F, P). Once we are
given a BMY, then, we can construct many other BM&’s (Exercise 6.1.2). However, “the law
of BM{ is unique” in the following sense.
a R
Proposition 6.1.12 (Uniqueness of the law of pre-BM?) Let S = (R[> and let
B(S) be its product o-algebra (cf. Definition 1.5.1).

a) Suppose that B is a pre-BM2. Then the map w — (By(w))is0 ((Q, F) — (S, B(S)) is
measurable.

b) Suppose that B and B are pre-BM%’s. Then, their laws on (S,B(S)) induced by the
maps w — (Bi(w))>0 and w — (By(w))i>0 are the same;

P((By)i>0 € A) = P((By);>o € A) for all A € B(S). 6.12
g ((Bt)i=o € A) = P((Bi)izo € A) f € B(S) ()J

Proof: a): This follows from Lemma 1.5.2.

b): For time series of the form (6.1), the r.v.’s (B(t;))j=, and (B(t;))}-, have the same law

described in Proposition 6.1.4c). This proves (6.12) for all cylinder set A C S, and hence for
all A € B(S) (Lemma 1.5.4). \("a™)/

Here is a variant of Proposition 6.1.12, which concerns a continuous modification of BM%
(cf. Definition 6.1.1).

a N
Corollary 6.1.13 Let (S,B(S)) be as in Proposition 6.1.12 and let

W = {w=(w)>0 €5 t— w is continuous},
BW) = {AnW; Ae B(5)}.

a) Suppose that B is a continuous modification of BM? (cf. Definition 6.1.1). Then the
map w — (By(w))io from (Q, F) to (W, B(W)) is measurable.

b) Suppose that B and B are two continuous modifications of BMi. Then, their laws on
(W, B(W)) induced by the maps w +— (Bi(w))i>0 and w +— (Bi(w))i>0 are the same;

L P((B)iso € A) = P((B)i»0 € A) for all A € B(W). (6.13)J
Proof: a): This follows from Lemma 1.5.8.

b): This follows from the same argument as in Proposition 6.1.12, using Lemma 1.5.9 instead
of Lemma 1.5.4. \("e™)/
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Remark: The unique law (6.13) on (W, B(W)) of a continuous modification of a Brownian
motion is called the Wiener measure. We note that W ¢ B(S). In fact, suppose that W €
B(S), then, by Corollary 1.5.7, there exists an at most countable set I' C [0,00) with the
following property.

1) zeS, yeW, xy=y forallt el — zeW.

However, for any y € W and for any at most countable I' C [0,00), we can always find an

x & W (ie., t — x, is discontinuous) such that x;, =y, for all t € I'. Therefore the set W does

not have the property 1).

; N
Lemma 6.1.14 Let B be a BM?, S = (RY)%®) and B(S) be the product c-algebra of S.
Then,

a) The map (z,w) — x + B = (x + By(w))>0 is (B(R?Y) @ F)/B(S)-measurable.
b) Let F': S — R be bounded, B(S)-measurable. Then, the function

RY> 2z +— EF(z + B)

1s Borel measurable.

N J
Proof: a) By Lemma 1.5.2, it is enough to verify that the map (z,w) — x + B; is (B(R?) ®
F)/B(R%)-measurable for each fixed ¢ > 0. But this is obvious, since the map (z,w) — z + B;
is a composition of

(z,w) = (z,B;) and (7,y) — x+y,

which are (B(RY) ® F)/B(R?*!)-measurable and B(R??)/B(R¢)-measurable, respectively.
b) It follows from a) that (z,w) + F(x+ B) is B(RY) ® F-measurable. Thus, the measurability
in question follows from a standard argument (Exercise 6.1.12). \("a™)/

Exercise 6.1.1 Let B be a BM?, and

K

he(z) = (2mt)~ Y2 exp (—x—

t RY. 14
275)’ >0, z € (6.14)

Then, prove that
P(By, € Ay,...,By, € Ay)
= / hy, (21 — x)dxl/ hiy—t, (xg — x1)dxs . . / he,—t, (Tn — Tp_1)dx,. (6.15)
A1 A2

n

for time series of the form (6.1) and Ay, ..., A, € B(R?).
Hint: Note that {B;, — By, ,}}_, are independent and that {B;, € Ai,...,B;, € A} =
{(Bi;, — Bi,_,)j—1 € D}, where D = ﬂ?zl{y € RY"; x4y + ... +y; € A;}. Therefore,

LHS of (6.15) = / B (Y1) g0 (y2) - Pyt (Y )y -+ - Ay
D

Exercise 6.1.2 Suppose that B is a BMZ. Then, prove that (¢"'/2B.);>0 is a BMZ for all

¢ > 0 and that (UB,);>0 is a BMZ for any orthogonal d x d matrix U.
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Exercise 6.1.3 Let B be a BM? and s > 0. Then, prove that (B — Bs_t)o<i<s ~ (B; —
Bo)o<i<s-

Exercise 6.1.4 Let B be a BM{. Then, prove the following for p > 0 and ¢t > 0. i) E[|B,|™"] =
t=P2C(p, d) where C(p,d) < oo if p < d and C(p, d) = oo if otherwise. ii) [; |B,|7ds € L'(P)
if p<2Ad.

Remark: For d = 1, it follows from ii) above that fot | Bs| Pds < oo a.s. for p < 1. On the other

hand, it is known, as an application of Engelbert-Schmidt zero-one law that fot |B|"1ds = oo
a.s. cf. [KS91, p.217].

Exercise 6.1.5 Let B be BM; Prove the following i) Suppose that F' : [0,t) — R be right-

. c def
continuous and of bounded variation. Then, B(F

r.v. Hint: The step function B = > i B(tj/n) (G—1)t/n,jt/n))(8) (0 < s < 1) converges
uniformly to B,. ii) Suppose that Fj : [0,¢) — R (j = 1,2) are continuous and of bounded
variation. Then,

fo BidF(t) is a mean-zero Gaussian

FE [B(Fl)B(FQ)] = tFl(t)Fz(t) —|—/ Fl(S)FQ(S)dS — Fl(t)/o FQ(S)dS — Fz(t)/o Fl(S)dS.

0

Exercise 6.1.6 Let B be a BM? (d > 2, x € RY) and f : [0,00) — [0,00) be a measurable
function. Let also F,(z) (v,z € C) be from (2.20). Then, prove that

E[f(|B.)] = / kel r) £ ()

where

2 2
]{t(rmr) = 2(2t)_%7~d—1 exp (_TO +r ) Fg_l <¥> , To, T € [0, OO)

Exercise 6.1.7 Let X = (X, : Q — R);>0 be a process such that ¢ — X;(w) is continuous for

all w € Q, and let v : [0,00) — [0, 00) be continuous, strictly increasing, with v(0) = 0. Then,
prove that the following condltlons (a) and (b) are equivalent. (a) There exists a Brownian
motion B such that X; — # (Vt > 0). (b) The process X is of independent increment

and X; — X, =~ N(O,v() ())fora110§s<t.

Exercise 6.1.8 Let B be a BMj and A : [0,00) — R be continuous, of bounded variation on
any bounded interval. Then, prove the following. (i) The process

t
X, = X,(B) ¥ Bih(t) — /Budh(u), t>0
0

is of independent 1ncrernents and that X; — Xy = N (0,v0(t) —v(s)) for all 0 < s < t,
where v( fo u)?du. Hint: Take a sequence of partitions of [0,t]: 0 = t,0 < t,1 <
< tmp(n) =t (n > 1) such that maxo<j<pm)—1(tnjt1 — tn,;) "2% 0 and let BV =
?i"l)_lB(tn’j)l(tn,j,tn,jm(s). Then, X;(B™) ™23 X, in L?(P). Moreover, by “summation
by parts”,
p(n)—1

B(tn,j-1))h(tn;)-

j=1
(ii) Suppose in addition that h vanishes on no open interval. Then, there exists a Brownian
motion 3 such that X; = £, (Vt > 0). Hint: Exercise 6.1.7.
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Exercise 6.1.9 Referring to Exercise 6.1.8, suppose in addition that h is strictly positive.
Prove that, for z € R, Y; = h(t)"! (h(0)z + X;), t > 0 is the unique solution to the following
integral equation.

(%) }Q:x—l—Bt—/OY;%S).

Remark Let A > 0. Then, with the choice h(t) = exp(At), the process Y = (Y;)i>0 above is
called the Ornstein-Uhlenbeck process, which is therefore defined by

t
Y: = By + exp(—At) <x — /\/ B, exp(/\s)ds) , t>0.
0

By Exercise 6.1.8 (ii), there exists a Brownian motion 5 such that

Y, = exp(—At) (x + 5 (%)) >0

In particular, for each ¢t > 0, Y; is a Gaussian r.v. with the mean exp(—At¢)z and the variance

1—exp(—2At)
2 :

equation.

By Exercise 6.1.9, Y = (Y})i>0 is the unique solution to the following integral
t
Yt:x—i-Bt—)\/ Y.ds.
0

Exercise 6.1.10 (Brownian bridge) Let a,b € RY, and s > 0. A process X = (X, : Q —

R%)g<i<s is called a Brownian bridge from a to b (BB, , for short) if

S

t t t
;&_Brnﬂy%c——)a+%,0§t§&
S S

where B is a BMZ. Prove the following. (i) If X is a BBfib’s7 then, (Xs_t)o<t<s is a BBZ’M.
Hint Exercise 6.1.3. (ii) Suppose that two processes X = (X; : Q — R%)g<i<, and B = (53; :
Q — RY);>¢ are related as

1

1
Xt:tﬁ(g—g>, 0<t§8,

1 1
=(t+-)X t>0.
615 (—I—S) (t—f—%)? el

Then, X is a BB&O’S if and only if £ is a BMg. Hint: Suppose that 3 is a BMg. Then, by
Corollary 6.1.11, there exists a BMY, say B, such that 8, = BH% — B%. Then, use Proposition
6.1.5 to prove that X is a BBS,QS. Suppose on the other hand that X is a BB&O,S. Then, there
exists a BMg, say B, such that X, = B, — ﬁBS. Then, use Proposition 6.1.5 to prove that [ is
a BM{.

or equivalently,

Exercise 6.1.11 (Markov porperty given the future) Let B be a BMg, s>0,be R
To=0(By; t>s) and X* = (X})oci<s = (Br — LB, + tb)o<i<s. Prove then the following.
i) (Xb (Biiss) ~ ((tBije — tBijs + tb)oci<s, (tBijt)e>s) - In particular, X° is independent
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of 7. [Hint:Proposition 6.1.5.]
ii) Suppose that F : (R9)(®s — R is bounded measurable and A € 7,. Then,

E[F((Boocres) : A] = / E[F(X")lo—p, () P(dw).

Therefore,
BIF((B)o<i<s)|Ts] = E[F(X")]ls=s,, as.

Hint: For 0 <t <s, B, = X} + éBS.

Exercise 6.1.12 ?° Let (S},.A;) and (53, A3) be measurable spaces and p € P(Ss, As). Then,
for ' : S; x Sy — R, bounded, A; ® As-measurable, prove that f(z) = sz F(z,y)u(dy) is
Aj-measurable. [Hint: It is enough to consider the case where F' = 1,4 for A € A; ® A3. When
A=A xAy (A € Aj), f =14 pu(Ay) is clearly A;-measurable. Finally, use Dynkin’s lemma.|

6.2 The Existence of the Brownian Motion

We present a construction of a BM(I) in this subsection. This is enough to prove the existence
of BM? for any d > 1 and z € R? (cf. Lemma 6.1.2, Corollary ??). We begin by introducing
Haar functions ¢, : [0,00) — R (n,k € N) as follows.

gn—1 - AR - R - R

1/2m 2/2m 3/2m 4/2m 5/2n

¥n,0 Pn,1 ©n,2

“or = Lkt
Onk = V2" W (grsan 2kt1)/20) — V2" M (2kg1)2n (20 42)/20), for n > 1.

Let X = (X, 4)nken, where X, are iid ~ N(0, 1), defined on a probability space (€2, F, P).
We will prove the existence of BMj in the following form;

20This exercise is associated with Lemma 6.1.14 below.

183



-

\
Theorem 6.2.1 a) The following series absolutely converges a.s.
t
Bi= Y Xn,k/ Ok, >0 (6.16)
n,k>0 0
More precisely, for any o € [0,1/2) and T > 0, there is an a.s. finite r.v. M =
M(a,T) > 0 such that
t
Z ka/ Ong| S M|t —s|* forall0<s<t<T. (6.17)
n,k>0 $
In particular,
|B; — Bs| < M|t —s|* forall0<s<t<T. (6.18)
b) (B:)i>o defined above is a BMj.
\_ J
Define o
(f9)= [ fo. fge o)
0
We also introduce X C L?([0, 00)) by:
X = finite linear combinations of 1oy (t > 0).
Therefore, a function h € X is expressed as
¢
h = ZCil(Q,m, ClyyCp ER, 2ty T € (O, OO) (619)

=1

for some ¢ > 1. We will prove Theorem 6.2.1 in the following generalized form:
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Lemma 6.2.2 Then the following hold;

a) For h € X, the following series absolutely converges a.s.

B(h> déf Z Xn,k( Pk, h > (620)

n,k>0

More precisely, there exists an a.s. finite r.v. Z > 0 for which the following holds
true. Suppose that h € X is of the form (6.19) with t1,...,t, € (0,T] for some
T > 0. Then, for any q > 2,

D Xk pups b)) < CLZ||R,, (6.21)
n,k>0
where C = C(q,T) € (0,00) is a constant and || - || = || - | ze[0,00)-

b) {B(h)}rex is a family of a mean-zero Gaussian r.v.’s such that

E[B(h1>B(h2)] = <h1, ho >, fO’f’ all hlv hy € X. (622)

c) If {h;}j—y C X and (hi,h;) =0 fori# j, then {B(h;)}}_, are independent.

Jj=1

J
Remark: Note that X is dense in L?*([0,00)). Thus, by (6.22), the map X > h — B(h)
extends to an isometry from L?([0,00)) to L*(2, F, P).

We now finish the proof of Theorem 6.2.1 assuming Lemma 6.2.2.

Proof of Theorem 6.2.1: We see from (6.16) and (6.20) that for 0 < s <t < oo,
1) By — By = B(1(54)-

Since |[1sqll, = [t — s|Y/9, the bound (6.17) follows from (6.21) and 1) with M(a,T) =
2C (a7, T)Z. Let next us check B0)-B2) (with d = 1 and z = 0) for {B;}s>0.
BO0): This is obvious by the definition (6.16).
Bl): If n>2and 0 =ty <t < ... <ty then for i # j, (1¢,_,¢, 1t,_1t;) ) = 0. Therefore,
By, — By, , = B(1(,;_,1;)) (j = 1,...n) are independent by Lemma 6.2.2 c).
B2): (1ig,1sg) =t —sfor 0 < s < t. Hence it follows from Lemma 6.2.2 b) that
By — By = B(1(s4) = N(0,t — s).
B2): This follows from (6.17).

\("a")/

We now turn to the proof of Lemma 6.2.2. We begin by proving the following
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Lemma 6.2.3 {¢,x}ni>0 @8 a complete orthnormal system of L*[0,00), i.e.,
1, if(n k) = (0 E)
{Pns P i ) = { 0, if otherwise. (6.23)
and
() {h € L[0,00) 5 (g, h) =0} = {h=0}. (6.24)
n,k>0
\_ /

Proof: The proof of (6.23) is easy and is left to the readers (cf. Exercise 6.2.1 below). To prove
(6.24), we take a function h from the set on the left-hand side of (6.24) and show that

H(t) = H(0) for all t >0, where H(t) " [!h.

Since diadic rationals are dense, it is enough to prove

1) H (%) = H(0) for all n,k > 0.

We will prove (1) by induction on n. We have
k+1

2) H(k+1)—H(k:):/ h={gorh)=0, k=0,1,...,
k

which proves 1) for n = 0. Suppose that 1) holds true with n replaced by n — 1. Then, for
j.k €N, H (%) = 0 () = H(0). Therefore,

H(52) —HO) = 1 (42 — 1 (3) — 41T (%2)
= (5~ 1 (3) - 3 (1 (%2) - H (%5)
i in
— 1 _1 _ lo—3 —
- 2/§InC h 2l’;j1 h_22 <<10n,kah> 0.

Lemma 6.2.4

7% sup | Xokl/V00g(2+n+ k) < oo, a.s.
n,k>0

Proof: We will in fact prove that for ¢ > 2,

P <|Xnk| < cy/log(2+n+k) except finitely many (n, k:)’s) =1
We first compute for any y > 0 that
P(Xosl >0) = V7 [ expl(—s/2)ds
Yoo
Y < \/Q/_W/y (z/y) exp(—2?/2)dz = \/2/7 exp(—y?/2) /y.
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We use this inequality as follows. (Note that 1/2/7 < 1. Note also that c\/log(2 +n + k) > 1,
since y/log2 = 0.83....)

E Z H|Xox| > e/log(2 +n +k)}

n,k>0
1) 2
= Z P(| X k| > c/log(2 +n + k) < Z exp (—% log(2 4+ n + k))
n,k>0 n,k>0
= Y (2+n+k)" Y < 0.
n,k>0

As a consequence, Y o 1{| Xkl > ¢y/log(2+ n +k)} < oo, P-a.s., which is equivalent to
what we wanted to prove. \("e™)/

Proof of Lemma 6.2.2: a): Let It is enough to prove (6.21). We take p € (1,2) such that

i def
%f% = 1 and define € = %—% > 0. We also introduce K,(h) = {k € N; (@nx h) #0}. We
verify that
1) ngn,k‘Hp = 2%_% — 2*(7171)5.
2) max Kn(h) < 2n—1T’
K0 Y 1<asTy
kEKn(h)

We also get 1) by a direct computation. To see 2), note that h = 0 outside (0,7 and that

@ns = 0 outside (26, CE2) Tf k> 2717 then (0, T)N(2E, ZE2)] — 0 and hence (@, 1, h) = 0.

The inequality 3) can be seen as follows. For any t > 0,

: Lon) £0 = k<t ifn=0
Pk Loy t € [2k/2", (2k +2)/2™), ifn > 1.
and hence,
14+t ifn=0
[ K (Lo,)] < { 1, itn>1 } =1+T

Therefore,

¢

Z DI<UL+T).

Let c,r & \/log(2 + n+ 2°-1T). Then, for k € K, (h),

Lemma 6.2.4 2)
4 | X | < Z\/log 2+n+k’) <chZ
) Holder
[CPnps )| < lnillpllAlly 2 2702 A,
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Therefore,

Z |Xn,k< ©n,k, h >‘

DD Xaxl@nn )

n,k>0 n>0 keKy (k)
4)
< Wz Yoz 3
n>0 keKn(h
3)
< hll,ZA+T)EY cn7T2’("’1)5.

n>0

The series in the third line converges and this proves (6.21).

b): Ingredients of the proof will be Lemma 6.2.3 and some basic properties of Gaussian r.v.’s
listed in Exercise 2.2.4-Exercise 2.4.7. For h € X, we define B(h) by (6.20) and By(h) by the

partial sum;
N
== Z Z Xn,k< Pn k> h >

n=0 k>0
Then,

e By(h) for each h € X' is a mean-zero Gaussian r.v.

In fact, By(h) is a finite summation of independent mean-zero Gaussian r.v.’s (cf. 3)) and
hence is a mean-zero Gaussian r.v. by Exercise 2.2.4.
Next, as a consequence of part (a),

o By(h) 3 B(h), P-as.
Moreover,

° E[BN(hl)BN(hg)] <h1,h2> for hl,hg cX.

This can be seen as follows;

N
E[Bx(hi)By(ha)] = > (s 1 Y o s B YE[ X X ]
n,n'=0k,k'>0
al N
= Z (g h1 ) g ha) ﬁzz<¢n,kyh1><<ﬂn,k,h2>

o

k

n=0 k>0 n>0 k>0
= ( 1, ho >, by Parseval’s identity.
These, together with Exercise 2.4.7, prove that B(h) for each h € X is a Gaussian r.v. and
that (6.22) holds for hy, hy € X.
c): By part b), Y77 ¢;B(h;) = B(3_._, ¢cjh;) is a Gaussian r.v. for (¢;)7_; € R". Hence it
follows from Exercise 2.2.5 that (B(h;))}—, is an R"-valued Gaussian r.v. By this, (6.22) and

Exercise 2.2.6, we see that {B(hj)}?zl are independent. \("a")/

Exercise 6.2.1 Prove (6.23).
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6.3 a-Holder continuity for oo < 1/2

We start by proving the following estimate, which shows that the Brownian motion is a-Holder
continuous for any a < 1/2.

Proposition 6.3.1 If B is a BM}, then for any o € [0,1/2) and T > 0,

|Bt _ BS|
sup ———

< 00, a.s.
o<s<t<T |t — 8| ’

To prove Proposition 6.3.1, we prepare the following

Lemma 6.3.2 For f € C([0,7] - R) and g € C((0,7] — (0,00)),

1f() = f(s)] |f(t) — f(s)]
OSSsli?ST glt—s) 0<;1;€%T gt —s)

Proof: We prove < only, since > is obvious. Let M be the right-hand side of the equality to
be proved. Then, we may assume that M < oco. Let 0 < s <t <T. We choose s,,t, € Q,
n € N such that 0 < s, <t, <T, s, — s and t, — t. We have that

|f(tn) = f(su)| < Mg(t, — sn).

Letting n — oo, we obtain that % < M, as desired. \("a™)/
Proof of Proposition 6.3.1: Let B be the Bl\/[(lJ on a probability space (Q,f , f’), constructed
by Theorem 6.2.1. Let

B; — By B
E:{ sup g<oo}, F= sup g<oo

0<s<t<T |t_5|a 0<.s<t<T |t— ’
s,t

Note that £ C F. Let also E and F be defined in the same way as above, with B replaced
by B Then, we know from Theorem 6.2.1 that E* Q). We want to conclude from this that
E*= Q. Unfortunately, as is in the proof of Proposition 6.1.5, we can not do so directly, since
E ¢ o[B], as well as E ¢ o[B]. We will go around this bother by noting that

1) Feo|B], F €o[B]and E* F.

Let us admit 1) for a moment to conclude the proof. By 1), it is enough to show that P(F') = 1.
Since B~ B, F € o|B], F € o[B], we have that P(F) = P(F) = 1.
We now see 1) as follows. First,

F=J N {'ﬁt_s|a Sm}EJ[B].

meN 0<s<t<T
s,t€Q

Similarly, Fe O'[E]. Now, recall that there exists an Q5 € F such that P(25) =1 and ¢t —
By (w) is continuous for all w € Qp. Thus, it follows from Lemma 6.3.2 that ENQp = FNQp,
and hence £ = F. \("a™)/
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As an immediate conseqgence of Proposition 6.3.1, we have the following

Corollary 6.3.3 If B is a BM, then for any o € [0,1/2) and T > 0,

. | Bisn, — By
im sup ————

=0, a.s.
h\O 0<t<T h 7

With Proposition 6.1.5 and Corollary 6.3.3, we obtain the following property of the Brow-
nian motion as t — 00.

Corollary 6.3.4 ( The law of large numbers for the Brownian motion) Let B be
a BMZ. Then, for any o > 1/2,

B/t %0, a.s.

Proof: Let B be as in Proposition 6.1.5. Then,
Bt* 2% 0 «— ¢ -0p 2%,
Since 1 — a < 1/2, we see from Corollary 6.3.3 that
t~(-pB, ity 0, a.s.
\("a™)/
Remarks: 1) By Proposition 6.3.1, t — B, is a-Holder continuous on any bounded interval

for o < 1/2. But this is no longer true for o = 1/2 (Exercise 6.5.1).
2) Proposition 6.3.1 can be improved in the following way.

sup |B: — Bl
o<s<t<T /|t — s|log(1/]t — s])

See, e.g., [MP10, p.14, Theorem 1.12]. Moreover, this improvement is optimal, as can be seen
from the following result, known as Lévy’s modulus of continuity (P. Lévy (1937)).

— By — B
lim sup ABon = Bl _ V2, as. (6.26)
N0 o<t<T y/hlog(1/h)

See, e.g. [KS91, p.114, Theorem 9.25], [MP10, p.16, Theorem 1.14].
3) The following refinement of Corollary 6.3.4 is known as the law of iterated logarithm (A.
Hincin (1933)).

< 00, a.s. (6.25)

= B
lim —— = V2, as. 6.27
00 Vtloglogt V2, as (6.27)

See, e.g. [Dur95, p.434, (9.1)], [KS91, p.112, Theorem 9.22], [MP10, p.119, Theorem 5.1].
This, together with Proposition 6.1.9 and Proposition 6.1.5, implies that for any ¢ > 0,

—  |Byp— B

fm | 2en = Bl V2, as. (6.28)

N0y /hloglog(1/h)
Although the results (6.26) and (6.28) are of the similar kind, the functions on the denominators
slightly differ, depending on whether the supremum of the time ¢ is taken over an interval as
in (6.26), or the time ¢ is fixed as in (6.28).
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Exercise 6.3.1 (x) Let B be a pre-BM,, U be a uniformly distributed r.v. on (0,1), and
¢ :[0,00) — (0,00) be a nondecreasing function. We define B = (B;)¢>0 by

B en+1) ift=n+U,
7 B if otherwise.

Prove the following. i) B is a pre-BMJ. ii) th_m |B;|/(t) > 1, which shows that the conclusion
—00

of Corollary 6.3.4 is no longer true for pre-Brownian motions.

6.4 Nowhere a-Hélder continuity for o > 1/2

One of the most striking property of the Brownian motion is the nowhere differentiablity®':
With probability one, t — B, is not differentiable at any ¢ > 0. (6.29)

Let us describe the above property in a more quantitative way. For a function f : [0,00) — R
and a exponent a € (0,1], we define the right (resp. left) Holder coefficients C ((¢), t > 0

(resp. C (t), t > 0) as follows. 7

CE () = Jim |f(tif;ll_ UGl (6.30)
If f is right (resp. left) differentiable at ¢, then, for all « € (0, 1],
Cof(t) < CY4(t) < 0o (resp. C (1) < C74(t) < 00).
Thus, (6.29) is a consequence of the following
Proposition 6.4.1 Let B be a BMj, and o € (1/2,1]. Then, a.s.,
Cp(t) = oo for allt > 0 and C_ x(t) = oo for all t > 0. (6.31)

Remark Davis, and independently, Perkins and Greenwood, proved in 1983 that

- + _
telf(l),fl] Clpt) =1, as.

This shows that (6.31) is no longer true for « = 1/2. See also Exercise 6.5.1 below.

We turn to the proof?? of (6.31). We start with the following lemma, which has nothing to
do with probability in itself. For f: [0,00) — R and « € (0, 00), we define

Sy 4(t) ' sup (4R - f<t>|. (6.32)
’ he(0,1] he

21Due to R.E.A.C.Paley, N. Wiener and A. Zygmund (1933)
22We follow the line of argument by A. Dvoretsky, P. Erdés, S. Kakutani (1961).
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Lemma 6.4.2 a) Suppose that

inf ST (t) < for some T, L € (0, 00).
t€[0,T] af

Then, for any 6 € (0,1), there exists i = 0,...,|T/d] such that

1F(( 45+ 1)8) — f((i 4 5)0)| < 20(j +1)%6* forall j=1,...,|1/6] — 1.

b) Suppose that f is bounded on [t,t + 1] for some t > 0. Then,

Sas(t) <oo = C7(t) < .
\_ /
Proof: a) Take t € [0, T] such that S} () < £ and 7 € N such that i <t < (i + 1)d. Then,
for k=0,1and j=1,. Lé‘J—lwehave

o G+k—1)0+0GE+1)5—t > (j+k—1)§ > 0,
(Z+]+k)5_t:{(§'+k)6+i5—t < (j+k)5 < 1
and hence,
f (45 +1)8) = f(G+7)8)] < D f((i+7+k)6) — f(t)
k=0,1
< SL) Y (45 + k)5 —1)

k=0,1

Sas® D (G +k)8)* < 20(j +1)%0".

k=0,1

IN

a) =: Obvious, since S;rf( ) > C+ (1)

« Since lim = lim sup , there eX1sts 0 < e <1 such that
h\0 e—0 he(0,e]
b [f(t+h) -
u€(0,e] he
On the other hand,
[f(t+h)— f{1)]

1) S0 < CF () +1 < o0

gi sup |f(t+h) — f(t)] < oo.

2 sup
) he(e,1] he e” he(e1]
It follows from 1) and 2) that S; () < 0. \("a™)/

Proof of Proposition 6.4.1 Step! 2: Referring to (6.32), we first prove that,
a.s., Sy p(t) = oo for all t > 0,

or equivalently that the following set F' is a null set.
1) r {S;“B < oo for some t > 0}.

It is enough to prove that each Fr, = {inf,ecp, S5 5(t) < £} (T,¢ € N\{0}) is a null set, since
F' = Urem (o) Frre- For this purpose, take m € N\{O} such that

23The continuity of the path is not used here, so that the result is valid for pre-Brownian motion.

192



2) (a—3)m>1
and fix it. It follows from Lemma 6.4.2 a) that, on the set Fr, for any § € (0,1), there exists
i=0,...,|T/é] such that

Xss E [B((i+5+1)8) = B((i +5)8)] < 20(j +1)0° forall j=1,...,[1/5] 1.

Suppose from here on that 6 € (0,1/(m + 2)) and hence m < [1/§] — 1. Then, the above
inequality applied for j = 1,..., m yields

Xsi; < Lé™ for j=1,...,m, where L def 20(m + 1)°.
From what we have dicussed so far, we obtain the following inclusion for any 6 € (0,1/(m+2)).

7/5) m
FrecGs® | () {Xsiy < L8}

i=0 j=1

Thus, it is enough to prove that P(Gg) 2280, To see this, let us fix ¢ and ¢ for a moment.
Then, ((i +7)6, (i + 7+ 1)d], j > 1 are disjoint intervals with the same length . Hence,

3) { X5}, are Lid.~ 67|V | with Y ~ N(0, 1),

4) P(X5;; < L6%) = P(03|Y| < L6%) = P(|Y| < L§°"2) < L6,

where we have used the inequality P(]Y| < x) < z, which is easy to verify. Therefore,

\T/8) fm m
P(G;5) < Z P (ﬂ {Xs5.; < Lo%} > " ((T/8) + 1) (L(S“*%)

= (T+6) L2128 (cf. 2)).
Step2: We prove (6.31). As for Cf 5(t), we have to prove that

5 F o {CF 5(t) < oo for some t > 0} is a null set.
To show this, recall that there exists Q5 € F with P(Qp) = 1 on which ¢ — B, is continuous,
and hence t — B, is locally bounded. Thus, Q N E C F (cf. 1)) by Lemma 6.4.2 b) and
hence

EC(QpnNE)UQy C FUQS.
Since F' is a null set by Step 1, obtain 5).
To treat C, p(t), fix T'> 0 and set 5(t) = B(T) — B(T —t) (t € [0,T]). Then, (B(t)):cjo,r is
a BM} and Cop(t) = Cy4(T —t) for t € (0,T]. Thus, the assertion for C; 5(t) follows from
that for CF 5(t). \("a”)/

6.5 The Right-Continuous Enlargement of the Canonical Filtration

Let B be a BM?. We define the right-continuous enlargement (F;)i>o of the canonical filtration
(FD)i>0 as follows;
F=0(B,; s<t), and F, = (| F. (6.33)
e>0

In particular, Fy is called the germ o-algebra. The technical advantage of introducing F; (“an
infinitesimal peeking in the future”) is to enlarge F? to get the right-continuity:

() Frve =Fi, V>0 (6.34)

e>0

193



Indeed,

N Fire = VN Feces = ) Flrers = Fo

e>0 e>06>0 €,0>0

Note that F; is strictly larger than F?. For example, the r.v. X = lim B'(t + %) is Fi-

n—00
measurable, but not FP-measurable. Here, X = B} a.s. and hence X is F-measurable up to

a null function. In fact, F; is larger than F? only by the null sets in the following sense. Let
N; denote the totality of F;-measurable null sets. Then, F; = o(F, UN;) (Proposition 6.5.3).

Remark To avoid being confused in the future, we find it helpful to clarify the dependence of
o-algebra F; on the value of By, particularly in the case of By = x. In this case, for any ¢t > 0,
the o-algebra F; does not depend on the starting point z. Indeed, F = o(B, ; 0 < s < 1),
since By = z, and hence neither F; or F; depends on z. However, an event A in F; may
depend on the value of z. For example, take A = {f(B;) > f(Bo)} for some Borel function
f:RY— R,

Proposition 6.5.1 Let B be a BM?, s > 0, and Bs = (Bstt — Bs)i>o (¢f. (6.8)). Then,
Fs and B® is independent.

Proof: We take arbitrary A € F,, m € N\{0}, 0 <t; < ... <t,, and verify that
A and (Es(tj));”:l are independent.

(cf. Lemma 1.6.5) To do so, we take arbitrary f € Cy,((R?)™) and write

~ ~ ~

F(B*) = (B (1), . B*(t).
It is enough to show that
1) E[F(B®): A = E[F(B*)|P(A).

For n € N\{0}, A € F; C F? ., and hence A and B*+% are independent by Proposition 6.1.9.
Thus, we have that ’

2) E[F(B*w): Al = E[F(B*"%)]P(A).
Since F(é”i) ey F(ES) a.s., we obtain 1) from 2) by letting n — oc. \("a")/

By Proposition 6.5.1 and the proof of Corollary 6.5.2, we obtain the following

Corollary 6.5.2 Let s >0, '€ F,, and G € T, o o(By; t>s). Then,

P(G|F,) = P(G|B,), as. (6.35)
P(FNG|B,) = P(F|B,)P(G|B,), as. (6.36)

Corollary 6.5.2 can be used to show that the right-continuous enlargement of F; is larger
than F by null sets:
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a N
Proposition 6.5.3 Let B be a BM%, t > 0. Then,

a) F; = o(FPUN,), where N; denotes the totality of F;-measurable null sets.

b) (germ triviality / Blumenthal zero-one law) If B is a BM? for some x € R and
A € Fy, then, P(A) € {0,1}.
\_ /
Proof: a) It is clear that F; D o(F2 UN;). We will show the opposite inclusion. Let

Gegtdéfﬂa(BHS; 0<s<e).

e>0
Since Gy C F; N Ty, we see from (6.35) that

(6.35

1o = P(GIF) “2) P(GIB), as.
Thus, 15 is a.s. equals to an o(B;)-measurable function. This implies that
G C o(By) Vo(Ny).

Hence
Fi=0(F UG) Co(F UN,).

b) Suppose in particular that B is a BM? for some x € R% Then F) = {0, Q}, and hence
Fo = o(Np), which consists only of events A with P(A) € {0,1}. \(o™)/

Remarks:

1) If B is a BM? for some z € R? and A € Fy, the value P(A) = 0,1 may differ depending
on the choice of the starting point z. For example, let A = {B(1/n) =3 0} € F,. Then,
P(A) = 0 .
2) The germ triviality is not true in gereral for pre-Brownian motions. In fact, let B be BMg,
and U be a r.v. uniformly distributed on (0,1), which is independent of B. Now, define
B = (Bi)izo by
B _{ B, ift#U/n for any n € N,

"7\ U ift=U/n for somen € N.

Since P(t = U/n for some n € N) = 0 for any fixed ¢ > 0, B and B have the same law, and
hence the latter is a pre-BM}. However, the germ o-algebra of B contains o(U).

\
Proposition 6.5.4 Let B be a BM', t > 0, and hy > hy > ... > h, — 0 as n — oo.

Then, a.s., B(t + h,) > B(t) for infinitely many n, and B(t + h,) < B(t) for infinitely
many n. In particular, the time t is an accumulation point of the set

{S>t,BS:Bt}

Proof: Let B! be defined as in Proposition 6.1.9. Then,

{B(t + hy,) > B(t)} = {B'(hy,) > 0}, {B(t+h,) < B(t)} = {B'(h,) < 0}.

195



Since Bt is a BMj by Proposition 6.1.9, it is enough to prove the proposition for BM% and for
t=0. Let
Ap = | J{B(hn) > 0} € Fp,,, and A= (] Ay € Fo.

n>m m>1

Then, Ay D A2 D ... and P(A,,) > P(B(h,,) > 0) = 1/2. Thus,

P(A) = lim P(A,) > 1/2.

m—0o0

Therefore, P(A) = 1 by Proposition 6.5.3, which implies that B(h,) > 0 for infinitely many
n. Similarly, B(h,) < 0 for infinitely many n. \("a™)/

-

Proposition 6.5.5 Let B be a BMY. The o-algebra T defined as follows is called the tail
o-algebra for the Brownian motion.

TYNo(B,; s> 1). (6.37)

>0
Let B be a BM? defined by

B . Bo+t(Bl/t—BQ), th>0,
L7 B, ift =0.

(cf. Proposition 6.1.5) Then, )
Fo=0a(By) VT, (6.38)

where Fy is the germ o-algebra for B. In particular, if B is a BMi for some x € R?, then,

Fo=T, (6.39)

which implies that P(A) € {0,1} for all A € T (Tail triviality).

Proof: Note that the Brownian motion B is reconstructed from B by

B _ By +t(Byy — By), ift >0,
t Bo, lft:(),

Thus,

0(Bs; s <t)=0(By,Bis; s <t)=0(Bo,Bs; s >1/t),

and hence

Fo={)o(Bo,Bs; s <t)=[)0(Bo,Bs; s> 1/t) =0(By) V T.

t>0 t>0

This proves (6.38), which implies (6.39) forvBMg. Finally, the tail triviality is a consequnce of
the germ triviality (Proposition 6.5.3) for B. \("a™)/

Remark: Referring to Proposition 6.5.5 in the case of BMY, the value of P(A) for A € T does
not depend on the starting point z. Moreover, the tail triviality is true for any BM? (not only
for BM? for some 2 € R?). See Example 6.7.3 below.
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Exercise 6.5.1 Let B be a BM'. Prove the following.

— B(t+ h,) — B(t
i) For t > 0, and a sequene hy > hy > ... > h,, — 0, lim (t+ ) ®)

n—00 vV hy,

considering B'in Proposition 6.1.9, we may assume that B is a BMg and ¢ = 0. Then, prove
B(hn)

n

= 00, a.s. Hint:By

that, for any ¢ > 0, the event lim

n—oo

> ¢ has positive probability.

— B(t,
ii) For a sequene t; < ty < ... <t, — 0o, lim (tn)

oo /i

=00, a.s.

6.6 The Strong Markov Property

Throughout this subsection, we assume that (£2, F, P) is a probability space. We start with
an abstract preparation. Let G be a sub c-algebra of F, (S,B) be a measurable space and
Qo C 2, without assuming that Qg € F. A map ¢ : 0y — S is said to be G/B-measurable on
Q if

BeB = JAecg, {weQ; ¢(w)e B}=Q,NA. (6.40)

If Qg € G, then, (6.40) is equivalent to that
BeB = {wey; pw) e B}eg. (6.41)

In this subsection, we always assume (6.4) for BM?, i.e. the map ¢ — B;(w) is continuous for
allw € Q. We will denote by (F;)i>o the right-continuous enlargement (6.33) of the canonical
filtration.

a N
Proposition 6.6.1 (Strong Markov property I) Let B be a BM? and T be a stopping

time. Then,

a) the r.v. Br is Fr-measurable on {T < oo}.
Suppose in addition that P(T < oo) > 0. Then, under P( - |T < c0),

b) the process BT defined as follows is a BMg,

éT = (E?)tzo = (BT+t - BT)tZO-

¢) Fr and BT are independent.

J

Proof: a) This follows from Lemma 6.6.10 below.
b) and ¢) Let m > 1,0 < t; < ... < t,, and f € CL((RY)™ — R) be arbitrary. Let B* for
s > 0 be defined by (6.8). We write

F(B°) = f(B*(ta). .. B (tm)
We will prove the following equality for an arbitrary A € Fr.
1) E[F(BT)14|T < ] = E[F(B)|P(A|T < o).
Let us admit 1) for a moment to finish the proof. Setting A = 2, we have

2) E[F(BT)|T < o] = E[F(BY)].
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Plugging 2) into 1), we also have that
3) E[F(BT)14|T < o] = E[F(BT)|T < 0o]P(A|T < o0).

We see b) and c) respectively from 2) and 3) (cf. Lemma 1.6.5).
The equality 1) can be seen as follows. Let T, n = 1,2, ... be a discrete approximation of T
from the right defined by

(6.42)

L 1f]1<T< Z for some j € N,
T,=4 n
0, 1fT 0.

If T < oo, then 0 < T, —T < 1 n>1, and hence T}, =5 T. Let C,; o Elor<iy
Since AN C, ; € F;/n, we have by the Markov property I (Proposition 6.1.9) that

4) E[F(BI/"): ANC, ;] = E[F(B°)P(ANC,;).

Therefore,

E[F(B™) : AN{T < cco}]
= Y E[F(B™):ANC,;]=> E[F(B/"): AnC,]

§>0 §>0
4)

2 ST E[F(BY)P(AN Cuy) = E[F(B)]P(AN T < oo}).

j=>0

Note that B (w) "=F BT (w) for all ¢ > 0 and w € {T < oco}. Thus, letting n — oo, and
dividing the both hands sides by P(T' < oo), we have 1). \("a™)/

Remark 7, defined by (6.42) is a stopping time. Indeed, for t > 0,
[Tw <1} = {T < |nt)/n} € Fiujn € o
Let B be a BM?, T be an a.s. finite stopping time for B. The strong Markov property

allows us to construct a new Brownian motion by replacing the path after the time 7" by an
another Brownian motion 8, which is independent of Fr. More precisely, we have

Corollary 6.6.2 (Concatenation of Brownian motions II) Let B be a BM?, T be an
a.s. ﬁmte stopping time for B, and (B be a BMd which s mdependent of Fr. Then the
process B = (Bt)t>0 defined as follows is a BM? such that BO By.

E _ Bt7 th S T7
e BT + ﬁt—Ta th Z T.

As a consequence, the Brownian motion 3 is expressed as

Bi = Brsy— Br, t>0.
\_ /
Proof: Let S = (R%)%>) and define F : [0,00) x S x S — S by

(), it t <s,
F(s,z,y)(t) = { x(s) +y(t—s), ift>s.
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Define also X : @ — S and BT : Q — S by

X = (Binr)z0, B" = (Bior — Br)iso.
Then,
1) B=F(T,X,B"), B=F(T,X,B).

By (4.34) and Lemma 6.6.10, (T, X) is Fr-measurable, and hence by assumption, 3 is a BM{
which is independent of (7', X). On the other hand, we see from Proposition 6.6.1 that BT is
a BMZ which is independent of (T, X). As a consequence,

2) (T,X,B") ~ (T, X, ).
This, together with 1), implies that B =~ B. \("a™)/
Let B be a BM! and
T,=inf{t >0; B,=a}, a€R. (6.43)

Recall that we assume (6.4). Thus, it follows from Lemma 6.6.11 below that 7}, is a stopping
time w.r.t. (F?)i>0, and hence w.r.t. (F;)s>o. Note also that

lim B; = o0, lim B; = —0c0 a.s.
t—00 t—o0

(cf. Exercise 6.5.1) Thus, T, < oo a.s. for any a € R.

The following lemma (reflection principle) is the source of a couple of useful consequences
(Proposition 6.6.4, Corollary 6.6.5). It will be useful to note in advance that for a € R, the
map

r—2a—z (R—R)

represents the reflection (mirror image) relative to the point a. The core of the reflection
principle (which can be seen from the proof below) is that for BM,

(Bt)e>t, = (2a — By)i>1,, -

/
Lemma 6.6.3 (Reflection principle). Suppose that B is a BMj, and that a € R\{0},
t>0,Je€B(R). Then,

P(T,<t,B,eJ)=P(T,<t,B €2a—J). (6.44)

Let JF = JNJa,00) and J; = J N (—00,a]. Then, for a >0,

P(T, <t,BieJ) = P(Bi€ J*) + P(B, € 2a— J.) = /ht(x V(20— 2))dz,  (6.45)
J

where hy(z) = \/2;? exp (—%) For a <0,

P(T,<t,B;eJ)=P(B;eJ,)+P(B;€2a—J})= /ht(a: A (2a — x))dz.  (6.46)
J

N /
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.- 2CL—Bt

N
VY

Proof: (6.44): Let
[y Bt7 if ¢ S Taa
QCL—Bt7 if ¢ ZTa'

We first verify that
1) (B)iso is a BM,.
To do so, we define 8 = (;)i>0 as follows. If T, < oo, then

B E a—B(t+T,) =—(B(t+T,) — B(L.)), Vt>0.

If T, = oo, then S, o 0, Vt > 0. Then, by the strong Markov property, 3 is a BMj which is

independent of Fr, Note that
t>T, = B(T,)+p(t—-T,) =a—(B;—a)=2a— B

Thus, 1) follows from Corollary 6.6.2.
On the other hand, we have

2) fa:inf{tZO;Et:a}:Ta,
T, <

Therefore,
P(T,<t,B,e N2 PT,<t,B,e N2 P(T, <t,B; €2a—J).

This proves (6.44).
(6.45), (6.46): Since the proofs for (6.45) and (6.46) are similar, we present the proof only for
(6.45). We have

(6.44)

3) P(T,<t,B e J,) P(T, <t,B,€2a—J,).

Moreover, for a > 0, J;- U (2a — J, ) C [a,0), and hence
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4) {B, e JFU(2a—J, )} C{T, <t}
Finally, note that

if z > a,

x?
5) :L‘\/(Za—x):{ 20 —z, ifz<a.

Therefore,
P(T,<t,B,€J) = P(T,<t,B,e€J)+P(T,<t, B €J))
= P(T,<t,B;eJ/)+P(T,<t,B;€2a—J,)
= P(BeJ)+P(B €2a—J,)
= /J+ hi(z)dzx + / hi(2a — z)dx 2 /Jht(x V (2a — z))dz.

\(*a")/

Remark: The equalities (6.45) and (6.46) can be used to prove the following. For a > 0 and
t >0,

P(Ta > t,Bt € J) = P(Bt € Ja_> — P(Bt € 2a — ‘]a_) = / (ht(llf) — ht(2a — x))dx (647)
J-
For a <0 and t > 0,

P(T,>t,B,eJ)=P(B, € J)— P(B, €2a—J) = / (he(2) — ho(2a — 2))dz.  (6.48)

Jd
Indeed, for a > 0,
PT,>t,BielJ) = Pl,>t,BielJ)=PBrelJ,)—PT,<t,B,elJ,)
D pB, e J) - P(B, €2a—J)

The proof for the case of a < 0 is similar.

For BMj, the distribution of 7}, can be computed as follows (See also Corollary 7.2.4).

Proposition 6.6.4 For BM; and a € R\{0},

T, ~ a2/ B* ~ ol p N (6.49)
¢ ! 2mt3 2t ' '

Proof: Since the proofs for the case of ¢ > 0 and of a < 0 are similar, we present the proof
only for the case a > 0.

(6.49): Let t > 0, For J =R, J =2a — J; = [a,00). Thus, it follows from (6.45) for J =R
that

(6.45) 2/ R2
P(T,<t) =" 2P(By>a)=P(a<|By|) = P(a"/Bi <t),

where we have used that B; ~ /1B, to see the third equality. We see from Example 1.2.6 that
B?/a* ~ v(a?/2,1/2). Thus, we know the density of the r.v. a?/B? from Exercise 1.2.8. This
proves the last equality of (6.49). \("a")/
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Remark: We have T, ~ a?/B? (Proposition 6.6.4) and B}/a®> ~ v(a?/2,1/2). Thus, by

Example 2.3.5, we obtain the Laplace transform of T,,.
Eexp(—AT,) = exp(—|a|V2\), A > 0.
See also Proposition 7.2.3 for an alternative proof of (6.50).

Let B be a BM! and
Sy =sup Bs, $ = 1r<1£ B, t>0.

s<t

(6.50)

(6.51)

Recall that we assume (6.4). Thus, S; and s; are F-measurable, since the supremum /infimum

over s <t can be replaced by that over s € Q N[0, ¢].

N

; N
Corollary 6.6.5 Let
Q+ ={(z,y) e Rx(0,00); z <y}, Q- ={(z,y) ER X (=00,0); ==y}
Suppose that B is a BM(I) and that t > 0. Then,
a) S; = |By|. Moreover,
2 (2y — x)?
(B, Si) = (2y — x) —3 XD <_T dxdy on Q.
b) s; ~ —|By|. Moreover,
/ 2 (v —2y)°
(B, s5¢) ~ (z — 2y) —3 OXP (_T dxdy on Q_.
J

Proof: a) Since S; > a <= T, < t, we have for all a > 0,

P(S; > a) = P(T, < t) °2) P(IB,| > a).

This proves that S; ~ |B;|. On the other hand, we have

1)H&eiﬁzwzmnga&eﬂ@9/°M@m+/;mm—@m.
Ja

Ja

On the other hand, let

V2mt3 2t
Then,
E / h@ﬂyIZ/ k(2y — 2)dy
2) T T

hi(2a — ) = 2/ k(2y — x)dy.
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Therefore,
P(B, € J,S; > a) 12 2/ dx/ ki(2y — x)dy + 2/ dx/ ki (2y — x)dy
J T o a

= Q/dx/ ke(2y — )1 < dy.
J a

This shows that the r.v. (B, S;) has the density 2k;(2y — =) on the set @, which proves a).
b) Similar to the above. ("ah)/

Our next objective is to prove

4 N
Proposition 6.6.6 Let B be a BM!, and

Z,={t>0; Bi=a}, acR.

Then, for any a € R, a.s., Z, is a closed set with Lebesque measure zero, without isolated
points. In particular, a.s., Z, has the cardinality of continuity. )

We prepare two lemmas. Thanks to Proposition 6.6.1, Proposition 6.5.4 can be generalized
in the following way.

/Lemma 6.6.7 Let B be a BM', T be a stopping time such that P(T < oo) > 0 and
hi > hy > ... > h, = 0 asn — oco. Then, P(:|T < o0)-a.s., B(T + h,) > B(T) for
infinitely many n, and B(T + h,) < B(T) for infinitely many n. In particular, the time T
is an accumulation point of the set

{s >T; Bs = Br}.
N _ y
Proof: Let BT be defined as in Proposition 6.6.1. Then,

{B(T + h,) > B(T)} = {B"(h,) > 0}, {B(T + h,) < B(T)} = {BT(h,) < 0}.

By Proposition 6.6.1, BT is a BM} under P(-|T < oo). Thus, it is enough to prove this

proposition by replacing BT (under P(-|T < o0)) by BMj. Therefore, we obtain the conclusion
from Proposition 6.5.4. \("a™)/

Lemma 6.6.8 A complete metric space S # () without isolated points has at least the
cardinality of continuity.

Proof: We construct an injection f : {0, 1} — S as follows. Choose an zy € S arbitrarily.
Since zg is not isolated, there exists 1 € S\{zp}. We then take disjoint closed balls By, B;
with radiuses < 1, centered, respectively at xg,z;. Next, for a = 0,1, we take two different
points x.0, Ta1 € B, and disjoint closed balls By, Ba1 C B, with radiuses < 1/2, centered,
respectively at z,0, Ta1. By repeating this procedure, we obtain for any a = ()52, € {0, 1}
and n e N

def
fn(a) = LTagau,...., Qan ) Bn(a) = Ba0a1 ...... Qn*
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The sequence f,(«) is a Cauchy sequence, since, if m < n, then, f,(«) € B,,(«), and hence,

dist(fm (@), fu(@)) < 1/m.

Consequently, the sequence f, () converges a limit f(«) as n — co. The map f: {0,1}N — S
is injective, as is easily seen as follows. If o, 3 € {0,1}, a # 3, then «,, # B, for some
m € N, and therefore,

Bn(a) N Bn(B) =0, f(e) € Bu(a), f(8) € Bu(B).
Hence f(a) # f(5). \("a")/

Proof of Proposition 6.6.6: Clearly Z, is closed, since it is the inverse image of a point a by
the continuous function ¢ — B;. Denote by | Z,| the Lebesgue measure of Z,. Since,

12| = / 1{B, — adt,
0
We have -
E|Z,| :/ P(B, = a)dt = 0,
0
which implies that |Z,| = 0 a.s. Let
Tor=inf{t >r; B;=a}, r>0.

Then, we see that Ty, is a stopping time, similarly as in Lemma 6.6.11. Therefore, by Lemma
6.6.7, and by the fact that B(1,,) = a a.s., for any r > 0, there exists an event A, € F of
probability one, on which 77, is an accumulation point of the set

{t>T,,;: Bi=a} C Z,.
Let Qp = QN [0,00) and A = ﬂre% A,. Then, P(A) =1, and
1) on the event A, all T, ,, r € Q, are accumulation points of Z,.
Thus, it is enough to prove that,
2) on the event A, all t € Z,\{T,, ; r € Q;} are accumulation points of Z,.

This can be seen as follows. For t € Z\{T,, ; r € Q.}, let r(n) € Q4 N[0,¢) be such that
r(n) /t. Then, r(n) <t and t € Z,. Thus, it follows from the definition of T, ) that

r(n) < Taﬂ«(n) <t,

and hence Z, > T}, ,n) sy
Since Z, is a closed set # () without isolated point, it has the cardinality of continuity by
Lemma 6.6.8. \("a™)/

Complement
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Example 6.6.9 (x) Let B be BM; and U be a uniformly distributed r.v. on (0,1). We define
B by

0, ift>0,teU+Qand B(t) #0,

B(t)=«¢ 1, if t >0 and B(t) =0,

B(t), if otherwise.
Then,
a) B is a pre-BMj,.
b) If w € Qp, then ¢ — B(t) is discontinuous for all ¢ > 0.

Proof: a) For any fixed ¢t > 0, P({t € (U +Q)}U{B; =0}) =0, and hence B(t) = B(t) as.
b) Let w € Qp andNtO >0.

Casel: ty = 0 (Then,B(ty) = B(0) = 0). Since there exists ¢, € (0,00) such that B(t,) = 0

and t, =5 0

)

B(t,) =1"=31+#0= B(0).

Thus B is discontinuous at 0.
Case2: to > 0, B(ty) = 0 (B(to) = 1 in this case). Since (U 4+ Q) N (0, c0) is dense in (0, 00),
there exists r, € Q such that (0,00) > U + 1, "% to. Then,

0=B(U+r,) =3 0+#1= B(t).

Thus B is discontinuous at to.
Case3: ty > 0, B(ty) # 0 and t, € U+Q (B(ty) = 0 in this case). Since (0, 00)\((U +Q) U Z,)
is dense in (0, 00), there exists ¢, € (0,00)\((U + Q) U Z;) such that ¢, =3 t,. Then,

E@ﬂ) = B(ty) = B(to) # 0 = E(to)-

Thus B is discontinuous at to.
Casej: to >0, B(to) # 0 and to & U + Q (B(ty) = B(t) in this case) Since (U 4+ Q) N (0, o0)
is dense in (0, 00), there exists r,, € Q such that (0,00) 3 U + r,, =3 to. Then,

0= B(U +r,) "3 0# Blty) = B(ty).
Thus B is discontinuous at fo. \("e™)/

Exercise 6.6.1 Suppose that B is a BM{. Then, prove that for a € R\{0} and ¢ > 0,
P(T,>t) =1/— — | —= .
( ) \/;RZ:O (2n 4 1)27n! (ﬂ

In particular, P(T, > t) = |a|\/2 + O(t™*/?) as t — co. [Hint: T, ~ a?/B}]

Exercise 6.6.2 Suppose that B is a BM(l). Then, use Corollary 6.6.5 to prove the following.
i) S; — By = | By|. i) 25, — B; ~ | X;|, where X is a BM.

Exercise 6.6.3 Suppose that B is a BM with # > 0 and that J € B([0,00)). Then, prove
that

P(By € J,Ty > 1) — / (haly — ) — haly + 2))dy.

[Hint: In terms of BMy, the LHS =P(x + B, € J,T_, > t).]
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Exercise 6.6.4 Suppose that B is a BMj, s > 0, and X is a r.v. with the Cauchy distribution
with paraameter 1. Then, prove the following. R
i) Let B® be from Proposition 6.1.9 and let T,(B*®) = inf{t > 0; B} = a}, a € R. Then,

~ ~\ 2
1w43ﬂz<BJBﬁ ~ X2,

[Hint: The first equality in law follows from Proposition 6.6.4, and the second from (1.70).]
i) Ts 0 of inf{t >s; B, =0}~ (1+ X?%)s. [Hint: Tyo = s+ T 5.(B*)]

iii) (First Arcsin Law) T, o sup{t < s ; By = 0} = s/(1 + X?) ~ sY, where Y is a
r.v. with the arcsin law. [Hint: The first equality in law follows from the relation T,, < t <
s < Ty, and the second from Exercise 1.2.14.]

(x) Complement to section 6.6

We prove Proposition 6.6.1a) in the following slightly generalized form.

Lemma 6.6.10 Let S be a metric space, and (X; : Q@ — S)i>0 be a process adapted to a
filtration (F;)i>0. Suppose that the function t — X,(w) is either right-continuous for all
w € Q, or left-continuous for all w € ). Then, for a stopping time T, the r.v. Xr is
Fr-measurable on {T < oo}.

Proof: Here, we assume that the function ¢ — X,(w) is left-continuous for all w € Q, since this
is enough for Proposition 6.6.1a). See Corollary 6.6.15 below for the right-continuous case.
Let T,,, n = 1,2, ... be a discrete approximation of T from the left defined by

0, ifT<,
T,=14 1, if L <T < for some j =12, ..,
oo, if T'= oo.

n—oo

If T < oo, then0 < T—T, <+, n>1,and hence T,, = T. Note that {T,, < co} = {T < oo}

for all n > 1. By the left-continuity, X (T},) "= X (T) on {T < oco}. Therefore, it is enough

to prove that X (7,,) is Fr-measurable on {1 < oo} for all n > 1. (We need to approximate T’
from the left, rather than the right, so that the following argument goes through.) Now, for
B € B(S), let

Coo={T<i XoeB}, Coy={i<T<% X;,eB}, j>1

Then,
{T < 00, X(T,)) € B} = | ] Cny.
jEN

Thus, in view of (6.41), it is enough to show that
]_) Cn,j S .FT for allj e N.
This can be seen as follows. For t > 0,

CooN{T <t} = {T<inAt Xo€B}ekF,

CoyN{T <t} = Coy={i<T<ENt X;,eB}eF, j>L1
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These imply 1). \("a”)/

Lemma 6.6.11 Let S be a metric space, X = (X; : Q — S)i>0 be a process, Ta, and
(F))i>0 be defined as Example 4.2.2. Suppose that the function t — X;(w) is continuous
for allw € Q and that A C S is closed. Then, T4 is a stopping time w.r.t. (F{)io-

Proof: We introduce a process Y; aof dist(X;, A), and observe that the following are equivalent.
1) Ty <t,

2) ds € [0,t], X5 € A.

3) ds € [0,¢], Y; =0.

4) inf Y, =0.

rel0,t])NQ
1) & 2): Since A is closed, the set {t > 0; X; € A} C [0,00) is also closed, and hence has a
minimum, which is 74. This explains 1) = 2), while the converse is obvious.
2) < 3): Since A is closed, X € A if and only if Y = 0.
3) = 4): Assume 3) and let r, € QN [0,t] be such that r,, — s. Then, by the continuity of
t—Y;, Y(r,) = Y(s) =0, and hence 4) holds.
3) < 4): Let r, € QN[0,¢] be such that Y(r,) — 0. Then, there exist s € [0,¢] and a
subsequence 7,y — s. By the continuity of t — Y, Y (rpg) — Y(s) = 0.
The equivalence of 1) and 4) implies that

{TAgt}:{ inf n:o}eff.

r€(0,t]NQ

Thus, T is a stopping time w.r.t. (Fp)s>o- \("a™)/

In what follows, we give a more complete account to Lemma 6.6.10 including the right-
continuous case. We assume that a filtration (F;):>o is given and that stopping times are
associated with this filtration.

Definition 6.6.12 (Adaptedness, progressive measurability) Suppose that (S, B) is a
measurable space and that X = (X})er is a process with values in S.

» X is said to be adapted if the map X; : Q — S is F;/B-measurable for all ¢ > 0.

» X is said to be progressively measurable if the following map is (B(T N [0,t]) ® F;)/B-
measurable for all ¢ > 0.

(5,0) > Xy(w) ((TN[0,4]) x Q — S)

Clearly, a progressively measurable process is adapted. In the following proposition, we
will see two basic conditions under which the converse is also true.

\
Proposition 6.6.13 Let the process X in Definition 6.6.12 be adapted. Then, under either
of the following conditions a),b), X is progressively measurable.

a) T is at most countable.

b) T = [0,00), S is a metric space, and that the function t — Xi(w) is right-continuous
for all w € Q, or left-continuous for all w € Q2. J
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Proof: a) Let ¢t > 0 and B € B. Since X is adapted, we have for s € T N[0, ¢],
{s} x{we; Xs(w)e B} € B(TN[0,t]) ® F.
Thus,

{(s,w) e TN[0,t] x Q; Xs(w) € B}
= U {s} x{weQ; Xs(w) € B} € B(TNI0,t]) ® F.

s€TN(0,t]

Thus, X is progressively measurable.
b) Suppose that the function ¢ — X;(w) is right-continuous for all w € © (The proof is similar
if we suppose the left-continuity). For n € N, let

X(s,w) = ZX((J' +1)/2% w){s € [j/2", (7 +1)/2")}, s =0

Then, for ¢ > 0 and B € B,

{(s,w) €[0,t] x Q; X"(s,w) € B}
= U b/2nG+1/2) x{we; X((j+1)/2"w) € B} € B([0,1]) @ Fi.
Dt

Thus, X is progressively measurable for all n € N. Moreover, by X (s,w) =3 X(s,w) by
the right-continuity. Therefore, X is progressively measurable. \("a™)/

Proposition 6.6.14 Let everything be as in Definition 6.6.12, and let T' be a stopping
time.

a) The process (Xiar)ier is adapted. <= The r.v. X is Fr-measurable on {T < oco}.

b) Suppose that the process (Xi)i>o is progressively measurable.  Then, the process
(Xiar)i>0 is again progressively measurable, hence is adapted. As a consequence,
Xr is Fr-measurable on {T < oco}.
N J
Proof: a) (=) Let B € Band t > 0. Then, {X;,r € B} € F; by the assumption. Therefore,

{Xr e B}n{T <t} ={Xinr € B}N{T <t} e F.
(<) Let B € Band t > 0. Then,
1) {Xpr € BY={t <T,X,e BYU{T <t,Xr € B}.
Clearly,
2) {t<T, X, € B} € F.
On the other hand, by the assumption, {T' < co, X7 € B} = AN{T < oo} for some A € Fr,

and hence
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3) {T<t,XreBY=An{T <t} e F.

It follows from 1)-3) that {X;\r € B} € F;.
b) For notational simplicity, we consider the case of T = [0,00). It is easy to see that the
function (s,w) — s AT is (B([0,t]) ® F)/B([0, t])-measurable. In fact, for any v € [0, ],

{(s,w); sNT <u} = {(s,w); s<ulU{(s,w); T <u}
= ([0,u) x Q) U ([0, 1] x{w; T < u}) € B([0,t]) @ F;.

Hence

1) the map (s,w) — (s AT, w) is (B([0,t]) ® F)/(B(]0,t]) ® F;)-measurable.
On the other hand, by assumption,

2) the map (s,w) — X (w) is (B([0,t]) ® F;)/B-measurable.

Since the map (s, w) — X ar(w) is the composition of those of 1) and 2), it is (B([0, ¢t]) @ F;) /B-
measurable. \("a™)/

Combinning Proposition 6.6.13 and Proposition 6.6.14, we obtain the following

Corollary 6.6.15 Let the process X in Definition 6.6.12 be adapted and T be a stop-
ping time. Then, under either of the conditions a),b) in Proposition 6.6.13, (Xiar)ier 1S
adapted, and Xp is Fp-measurable on {T < co}.

6.7 Alternative Formulations of Markov Properties

For the rest of section 6, we will work on a special measurable space (£2, F) defined by

Q = {w= (w0 € (RHYO® : ¢t w, is continuous.}, (6.52)
F = ofw; t>0]. (6.53)

For w = (wi)i>0 € 2, we write B; = By(w) = w;. Then, we consider the filtration (F;)i>o
defined by (6.33). For z € RY, we let P, denote a unique probability measure on (€, F) under
which (B;)s>0 is a BM?. (cf. Proposition 6.1.12). We denote by E, the expectation w.r.t. P,.

For z € R?, let

2+ BY (24 B)so € Q. (6.54)

For s > 0 and w € §2, we define

Osw = (Bsrt(w))e=0 (6.55)

[Lemma 6.7.1 The map (s,w) — Osw, ([0,00)xQ — Q) is B(|0, oo))@f/f—measumble.]

Proof: By Lemma 1.5.2, it is enough to verify that the map (s,w) — wsyy is B([0,00)) @
F/B(R%)-measurable for each fixed ¢ > 0. The map w + w,,; is clearly F/B(R?)-measurable.
This, together with the continuity of s +— wsy;, implies that the map (s,w) — wsyy is
B([0, 00)) ® F/B(R%)-measurable. \("a™)/
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Let p € P(RY) be arbitrary. For A € F, the function x + P,(A) is Borel measurable by
Lemma 6.1.14. Therefore, we can define

P(A) = /R Po(A)du(). (6.56)

It follows from the bounded convergence theorem that A — P(A) is a probability measure on
(2, F).

e For the rest of this section, P denotes the probability measure (6.56) on (€2, F), and the
associated expectation will be denoted by F.

Theorem 6.7.2 (Markov property II) Let F : Q — R be bounded, F-measurable, and
G : Q — R be bounded, Fs-measurable for s > 0. Then,

E[G - F o, = E[GEp«F). (6.57)

Remark: Since F' is F-measurable, and 6is F/F-measurable (Lemma 6.7.1), F' o 05 is F-
measurable. Thus, the left-hand side of (6.57) is well defined. On the other hand, the quantity

Ep(F on the right-hand side of (6.57) should be understood as the value of the function

f(z) © F,F evaluated at © = B,. Since f is Borel measurable (Lemma 6.1.14), f(B;) is

o[ Bs]-measurable.

Proof: We see from Proposition 6.1.9 that

1) F and (Bf)tzo are independent,

2) E[F((y+ B})0)] = Eol F((y + Br)ezo)] = E,F for y € R,

Let us consider the product space (2, F ® F, P ® P) and denote an element of Q% by (w,®).
Then, by 1),

3) the law of the r.v. G(w)F((Bs(w) + Ef(w))tzo) under P(dw) is the same as the law of
G(w)F((Bs(w) + Bf(@))t>0) under (P ® P)(dwd®).

Since B; o0, = B, + Ef, we have that

E[G - F((Bs + B)»0)]
(P ® P)(dwd@)G(w)F((By(w) + Bi(®@))0)

Fabini /Z G (w) P(dw) /Q P(d)F((B,(w) + B;(®)):20)

E[G - F o]

&

4)

On the other hand,

2)

5) / P(dD)F((Bs(w) + B2 (@))r50) 2 Epu F
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Putting 4) and 5) together, we obtain

E[G-Fof,) = / G(w) Ep,wF P(dw) = E[GEp)F].
Q

\("a")/
We present a couple of applications of Theorem 6.7.2.

Example 6.7.3 Let t >0, 7, = 0(By;s; s 2 0) and T =(),oo T (T is the tail o-algebra for
Brownian motion, cf. Proposition 6.5.5).

a) For any ¢t > 0, z,y € RY the measures P, and P, are mutually absolutely continuous on

T:.

b) P(A) = PBy(A) € {0,1} for any A € T and p € P(R?), where the measure P is defined by
(6.56).

Proof: a) Note that
Ti=0(Bsob,; s>0).
Thus, if A € T;, then, A = 6, 'C for some C € F. Therefore, for all x € R?,

1) Po(A) 2 B, [Py (C)] = /R uly — 1)P(C), cf. (614)

Suppose that P,(A) = 0 for some z € R%. Then, it follows from 1) that P,(C') = 0 for almost
all y € R, which implies again by 1), that P,(A) = 0 for all z € R<.

b) It follows from Proposition 6.5.5 and a) above that P,(A) = Py(A) € {0, 1} for all x € R%
Thus,

P(A4) = [ Pu(Adn(a) = Ro(4) € (0.1
\("a™)/

Example 6.7.4 Let A C R? be either closed or open, and let Ty = inf{t > 0 ; B; € A}.

Suppose that
M sup £, Ty < oo.
TEAC

Then, for any A\ € (0,1/M),

sup E,exp(AT4) < 1/(1 — AM) < 0.

rEAC

Proof: We write T' = T4 for simplicity. By the power series expansion of the exponential, it is
enough to show that

1) sup E,[T"] < n!M™" for all n € N\{0}.

TEAC
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We prove this by induction on n. By assumption, 1) is true for n = 1. Suppose that n > 2
and 1) is true for n — 1. For ¢t > 0, note that

t" = nl / ds,dsy - -+ ds,
0<s1<82<... <85 <t

and that T'=1t + T o 0; on the event {T" > t}. Hence

E.[T"] = n!Ex/ dsidsy - - - dsy,
0<s1<852<...<s5n,<T

= n!/ ds E, ll{T > sl}EB(sl)/ dSQ"‘dSn:|
0 §1<82<...<spn<s1+T

= n!/ ds1 E, {1{T > 81}EB(51)/ dsg---dsn}
0 0<s2<...<sp,<T

= n ds1E, [{T > s1}Epsy[T"71]]

S—
8

< n-(n-— 1)!M”_1/ P.(T > s1)dsy =n!M".
0

\("a™)/

Lemma 6.7.5 Let T' be a stopping time. Then, the map w — (Br)+i(w))eo s F/F-
measurable on {T < oo}, cf. (6.40).

Proof: By Lemma 1.5.2, it is enough to verify that the map w — Br,(w) is F/B(R?)-
measurable on {T' < oo} for each fixed t > 0. Since T' + t is a stopping time, it follows from
Lemma 6.6.10 that the map w + Brp)+(w) is Fri/B(R?)-measurable on {T" < oo}, and
hence is F/B(R?)-measurable on {T" < oo} \("a™)/

Let T be a stopping time. For an w € Q with T'(w) < oo, we define

Orw = (Brw)+t(w))i=o (6.58)
By Lemma 6.7.5, the map w +— frw is F/F-measurable on {T' < co}.

Theorem 6.7.6 (Strong Markov property II) Let T' be a stopping time. Suppose that
F:Q — R is a bounded, F-measurable, and that G : € — R s bounded, Fr-measurable.
Then,

ElG-Folbp:T <o) = E[GEpm)F : T < o). (6.59)

Remark: Since F' is F-measurable, and 6ris F/F-measurable on {T" < oo}, F o fr is F-
measurable on {T" < oo}. Thus, the left-hand sides of (6.59) is well defined. On the other

hand, the quantity EpF on the right-hand side of (6.59) should be understood as the value

of the function f(z) ' E,F evaluated at @ = Br. Since f is Borel measurable (Lemma

6.1.14), and By is Fp-measurable on {T" < oo} (Lemma 6.6.10), f(Br) is Fr-measurable on
{T < o0}.

Proof: We may assume that P(7T < oo) > 0. We write P’ = P(- |T'< o0) and F' = E[- |T <
oo]. Then, we see from Proposition 6.6.1 that
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1) Fr and (BY )t>0 are independent under P,
2) E'[F((y+ Bl )i=0)] = Eo[F((y + Bi)izo)] = B, F for y € RY.

Let us consider the product space (2%, F @ F, P’ ® P’) and denote an element of Q2 by (w,d).
Since Br is Fr-measurable on {7 < oo} (Lemma 6.6.10), it follows from 1) that

3) the law of the r.v. G(w)F((Br(w) + BY (w))is) under P'(dw) is the same as the law of
G(w)F((Br(w) + B (©))i>0) under (P’ @ P')(dwdw).

Since B; o 0y = Br + EtT on {7 < oo}, we have that
E(G-Fobr] = E[G-F((Br+B])z)
/Q(P' ® P')(dwd)G(w) F((Br(w) + BY (@))20)

Fubini /q G(w) P (dw) / P'(d@)F((Br(w) + B (@))e=0)

Q Q

[|&

1)

On the other hand,
~ fay —~ 2
w/PWWWWMﬂmme%WW
Q

Putting 4) and 5) together, we obtain
E/[G -Fo QT] = / G(U)) EBT(UJ)F Pl(d(JJ) = E/[GEB(T)F]
Q

Multiplying the both hands sides by P(T' < c0), we obtain (6.59). \("a™)/

Exercise 6.7.1 (Khasmin’skii’s lemma) Suppose that f : R? — [0, co) is Borel measurable,
0 <t < oo and that

dﬁfsupE/f )ds < 1.

z€R4

Then, prove that

sup E, exp (/Otf(Bs)ds> <1/(1- M) < .

zeRd

[Hint:Example 6.7.4 |

6.8 (%) The Second Arcsin Law

Throught this subsection, we denote by My, (R?) the set of bounded Borel measurable functions
on RY. For V € M, (R?), with inf V > 0, we define the resolvent operator Gy : M, (R%) —
M, (R?) by

Gy f(z)=E, /OOO exp (— /OtV(Bs)ds> f(Bydt, feMyRY), e R (6.60)

213



Lemma 6.8.1 ForU € My(R?), withinf U > 0, and V € M(R? — [0, 00)), the operators
Gy and Gy.y satisfy the resolvent equation:

Gy — Guyv = GuVGyyv.

Proof: To simplify the notation, we introduce AV & Jy U(B,)ds, and similarly, A} and AY*Y.
Note that

1) 1 expl=A}) = exp(-AV) exp(4}) ~ 1) = [ V(B exp(—(AY — AT
and that

(.| [T el - a7

2) = L { /Oooexp( (A% - ASU+V))f(Bs+t)dt‘fs]

- B [ | exp<—A?+V>f<Bt>dt] — Gy f(BY)

\

Therefore,

Guf(z) — Guiv f(2)
_—3 /O exp (—AV) (1 — exp (—AV)) (B,)dt
(—A7)

) E’x/ exp
0

_ /OodsE exp ( A;f)V(BS)/mexp(—(Ang—A5+V))f(Bt)dt
0 s

AV) dt / V(B.) exp(—(AY — AY)) f(By)ds

o0

= / dsE, [exp (—AY) V(B)Guiv f(Bs)] = Gu(VGuyv f)(x).

From here on, we focus on the case of d = 1.

Lemma 6.8.2 For V € M,(R) with inf V' > 0 and f € My(R),

w Gy f € Cy(R).

Suppose in addition that V and f are piecewise continuous, with the respective sets of
discontinuities Dy and Dy. Then, u € C*(R) N C*(R\(Dy U Dy)) and

W =Vu—f, onR\(Dy UDy). (6.61)
N /

Proof: Let A infV >0and VE V- ) e M, (R — [0,00)). We then have by the resolvent
equation that

1) u = G)\f - G)\("?U)
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Let hi(z) def ﬁ exp (—%), t >0,z € R. We see from Lemma 2.3.4 that

o 1
2) / e Mhy(x)dt = e vy,
0

V2\
Thus,
( oo [e'e) o0
Crflz) = / e NE, f(B,)dt = / et / bl — ) f(y)dy
0 0 —00
DI S BN N >y
3) VA e f(y)dy
N J oo
efm\/ﬁ T /X ew\/ﬁ S Vo
— v dy 4+ —— -y dy.
\ Nou f(y)dy Nou f(y)dy

We see from 3) that Gof € Cu(R). Similarly, G\(Vu) € Cy(R). Hence u € Cp(R) by 1).
We suppose from here on that V' and f are piecewise continuous. Then, we see from 3)
that Gyf € CY(R\Dy). Similarly, G5(Vu) € CYR\Dy) (Note that Dy, € Dy). Hence
u € CY(R\(Dy U Dy)) by 1). Moreover, for z € R\ Dy,

—zV2X x V2 0
, e e _
(Gaf) (&) = —— V2 f(y)dy + oAk W f(y)dy.

In particular, we have (G f)'(y—) = (GAf)'(y+) for each y € Dy. Therefore, we have G, f €
CY(R). Similarly, Gy(Vu) € C'(R). Hence u € C*(R) by 1). Moreover, we see from 3) that

4) L(Grf)" = AGsf — f on R\D.

Similarly,

5) 3(Gr(Vu))” = AGx(Vu) — Vu on R\ Dy

We see from 1),4),5) that u € C*(R\(Dy U Dy)) and (6.61). \("a™)/

4 N
Lemma 6.8.3 Let o, 8 > 0 and v € R. Suppose that u € C*(R)NC?*(R\{0}) is a bounded
solution to the following differerential equation.

1oy ) oau(z) =7, if z <0,
gu' (2) = { pu(x) —-, ifx>0.
Then,
\/5\/};/3 exp(zv2a) + 1) . ifr <O,

u(z) =

R /R

\/B\;a‘/a exp(—z+v/205) + 1> , if x> 0.

In particular, u(0) = v/v/ap.

Proof: The solution to the differerential equation in question must be of the form:

(2) = Ay exp(xv2a) + A_exp(—2v2a) + 1, if 2 <0,
u(z) = By exp(z+/28) + B_ exp(—z+/20) + 5. itz >0.
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Since u is bounded, we have A_ = B, = 0. Then,

u(0-) = Ay +(y/a), W/(0-)=V2a4,,
u(0+) = B_+(y/B), v (0+) =—/28B_.

S

These, together with u(0—) = u(0+), and v/(0—) = «/(0+) imply that A, = g\/a_ and
B_ = %\/B\;a\/& \("a")/
4 N
Proposition 6.8.4 (The Second Arcsin Law) Let B be a BM, t > 0, and
t
Ay :/ 1{Bs>0}al3-
0
Then, the r.v. A/t has the arcsin law, i.e., A/t = w\/jﬁ——x) on (0,1).
N /

Proof: Let a, 3 > 0 and V(z) = a + flz50}, © € R. Then, by Lemma 6.8.2,

def

uE Gyl e CYR) N C*R\{0}),
and () - 1 " 0
1~ oau(x) —1, <y
5U (x) = { (a+ Bu(z) — 1, if z > 0.

Thus, by Lemma 6.8.3, we have u(0) = 1/y/a(a + B), i.e.,
o0 1
1 / e MEexp(—pA) dt = ——nx.
) 0 ( % Vala+ B)
We have on the other hand that
> e Pyg 1
2) / e_atdt/ ¢ y__ )
0 o TVylt—y) ala+p)
To prove 2), we note that
3) /°° e dt [
0 Vit Vo

Then,

LHS of 2) =

VY Jy vt—y:;o Y 0 Vi

1/°° e Pdy [ edt 1 [ e @By [ eyt
m™Jo
1

ala+ P)

By 1),2) and the uniqueness of the Laplace transform (Example 1.8.3) in the variable «, we

have that

o Tyt —y)
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Eexp(—f4,) =



and hence

o m/y(l—y)

Then, by the uniqueness of the Laplace transform in the variable 3, we arrive at the conclusion.

\("0")/

Eexp (—pA/t) =

6.9 Filtrations and Stopping Times 11

Throughout this subsection, we assume that (€2, F, P) is a probability space.

Definition 6.9.1 Let (F;):>o be a filtration, and 7" : Q — [0, o0] be a r.v.
» (Fi)e>0 is said to be right-continuous if

() Free = Fio VE>0. (6.62)

e>0

» 7' is said to be an optional time if
{T <t} e Fforalt>D0. (6.63)

Lemma 6.9.2 Let everything be as in Definition 6.9.1.
a) Then, for allt >0 and A € F,
AnN{T <t} e F forallt >0 = AN{T <t} € F forallt > 0. (6.64)
In particular,

T is a stopping time =— T is an optional time. (6.65)

b) Suppose that (Fi)i>o is right-continuous. Then the converse to (6.64) and (6.65) are
also true.

N /

Proof: a) It is enough to show (6.64), which can be seen as follows.

An{T <t} =JAn{T<t-1} e F.

n>1

b) It is enough to show the converse to (6.64), which can be seen as follows.

An{T <ty = (AN{T <t+ 1) e Fur 2

n>1 n>1

\(*a")/

Proposition 6.9.3 Let S be a metric space, X = (X; : Q — S);>0 be a process, Ta, Ty
and (F?)i>o be defined as Example 4.2.2. Then, under the one of the following assumptions
a),b), Ty and T} are optional times w.r.t. (FQ)i>0. Moreover, under the assumption b),
Ta is a stopping time w.r.t. (F})i>o-

a) The function t — X;(w) is right-continuous for all w € Q and that A is open.

\b) The function t — Xi(w) is continuous for all w € Q@ and that A is closed.
/
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Proof: a) We concentrate on the case of the first entry time, since the proof for the the first
hitting time is similar. We start by observing that the following are equivalent.

]_) Ty <t,
2) ds € [0,t), X; € A.
3) Ire0,t))NQ, X, € A.

1) < 2): This follows from the definition of T, and is valid for any A C R%.

2) = 3): Since s — X is right-continuous and A is open, s < Ju < t such that X, € A for all
r € [s,u]. Thus, we can find r € [s,u] N Q such that X, € A, and hence 3) holds.

2) < 3): Obvious.

The equivalence of 1) and 3) implies that

{Ta<t}= |J {X, €A} €o[(Xo)repounal C F-

re[0,t)NQ

Thus, T4 is an optional time w.r.t. (F?)s>0-
By Lemma 6.6.11, T4 is a stopping time w.r.t. (F?);>o. Next, for r > 0, define

Ty, =inf{t >r; X, € A}

Then, by the same argument as above, we see that T4, is a stopping time w.r.t. (F?)io,
hence by Lemma 6.9.2,
4) {Ta, <t} e F.

Note also that
{t>0; X, e A} =J{t>r; X, € 4},

r>0
r€Q

and hence that T'f = inf >0 T'y,. Therefore,
re

4)
(T <t} = {Tur <t} € 7.
>0
reQ

Thus, T'{ is an optional time w.r.t. (F)io- \("a™)/

Lemma 6.9.2 can be used to prove

Corollary 6.9.4 In Proposition 6.9.3, suppose that X is adapted to a right-continuous
filtration (F;)i>0. Then, under the one of the following assumptions a),b), Ta and T are
stopping times w.r.t. (F)i>0-

a) The function t — Xy(w) is right-continuous for all w € Q0 and that A is open.

b) The function t — X;(w) is continuous for all w € 2 and that A is closed.
J

Proof Since X is adapted to (F)i>0, we have .7-"t0 C JF; for all t > 0. By Proposition 6.9.3,
Tx and T are optional times w.r.t. (F?)i>o and hence w.r.t. (F)i>o. This, together with
Lemma 6.9.2 and the right-continuity of (F;)¢>o, we see that T4 and T'{ are stopping times

w.r.t. (Fi)eso- \("a™)/
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Example 6.9.5 Referring to Proposition 6.9.3, we suppose that ¢ — X;(w) is continuous for
all w € Q. We show by an example that T4 and T’} for an open A may not be a stopping
time w.r.t. (F});>0. This, together with Proposition 6.9.3, shows that the filtration (F});> is
not right-continuous. Suppose that Xy = 0 and A = (1,00) x R4, Then, T4 = T. Let us
consider an event

E:{stsel, Vs € [0,1]} GF??

where e; = (1,0,...,0). Since all the coordinates X, s € [0, 1] are already fixed on F, the set
E does not contain any nonempty proper subset which belong to F7. On the other hand,

En{Ty<1} = {X,=se, Vs€[0,1],T4 =1} #£0,
E\{Tx <1} = {X,=se, Vs€[0,1], T4 > 1} # 0.

If we had that {T4 < 1} € F?, then, the above two sets would belong to F?, which is a
contradiction.

This example can also be used to construct a sequence of stopping times, whose infimum
is not a stopping time. Let A as above and let A, = [Z—j“j,oo) x R¥1 n € N, so that
A = U,en An- Then, we have Ty = inf ey T4, (Exercise 4.2.3). T4, are stopping times w.r.t.
(F?)i>0, since A, are closed (Proposition 6.9.3). However, T4 = inf,cy T4, is not a stopping

time w.r.t. (F?)i>0 as we have already seen.

Exercise 6.9.1 Prove that, if T,,, n € N are optional times, then, so is T’ def i1r1£I T,.
ne

Exercise 6.9.2 Suppose that a filtration (F;):>o is right-continuous. Prove the following.
i) For a stopping time 7', A € Fr <= AN{T <t} € F; for all t > 0. Hint: (6.64).
ii) If T,,, n € N are stopping times, then so is T def inIfN T,, and Fr = ﬂ Fr, .
ne
neN

Exercise 6.9.3 Suppose that a filtration (F);>¢ is right-continuous. Then, give an alternative
proof of Lemma 4.2.4 in the case of T = [0, 00), by approximating S + T by Sy + Ty, where
Sy and Ty are defined by (5.17).
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7 Brownian Motion and the Related Martingales

7.1 Martingales Related to the Brownian Motion

Definition 7.1.1 Suppose that (F;):>o is a filtration and that B is a continuous, adapted
process with values in R?. B is called a Brownian motion (or BM?) w.r.t. (F;)i>o if for any
0 < s <t, By — By is a mean-zero Gaussian r.v. with covaiance matrix (¢ — s)(éag)iﬁ:l, and
is independent of F,.

Remark Suppose that B is a BM? w.r.t. (F;);>0. Then, it follows from the above definition
that for any s > 0, the process (Byys — Bs)i>o is independent of Fs.

The notion of “Brownian motion w.r.t. a filtration” introduced above gives to a Brownian
motion a certain amount of flexibility for the choice of the filtration to be associated with.
Suppose that B is a BM? and that a filtration (Gi)i>o satisfies FP C G, C F, for all t > 0,
where (F});>o is the canonical filtration, and (F;)s>o is its right-continuous enlargement, cf.
(6.33). Then, by Proposition 6.5.1, B is a BM? w.r.t. (G;)i=0. Moreover, for any a = 1,...,d,
the a-th coordinate process B* is a BM' w.r.t. (G)i>o

We first present the following simple, but useful characteriztion of the Brownian motion.
This proposition is applied later to Proposition 7.1.3, Proposition 7.9.6 and Theorem 7.8.1.

-

Proposition 7.1.2 Suppose that X = (X;)i>o s a continuous process with values in RY,
adapted to a filtration (Fy)i>0, such that Xo = 0. Then, the following conditions are
equivalent.
a) X is a BM¢ w.r.t. (F)iso;
b) exp(if - X; + t|0|%/2), t > 0 is a martingale for all 0 € RY;
c) exp(f - X; — t|0|>/2), t > 0 is a martingale for all 0 € R%.
N J
Proof: a) < b): a) is equivalent to that
Elexp (i0 - (X; — X,)) | Fs] = exp (—=(t — 8)|0|?/2) a.s. for all § € R%.
Multiplying the both-hand sides by exp(if - X, + t|0|>/2), we see that this is equivalent to
Elexp(if - X; + t|0]%/2)|F,] = exp(i0 - X, + s]0|?/2), a.s. for all § € R,
which is equivalent to b). The equivalence of a) < ¢) is obtained in the same way.  \("o")/

We define the Hermite polynomials H,, : R? x R — R, n € N inductively by
0H,

Ho(x,t) =1, Hppe, (2,t) = 2o Hy(x,t) — 158 (z,t), n €N (7.1)
‘,L‘O(
where e, = (04 g)%zl. For example,
He (2,1) = 2o, Hepyey(2,1) = 2025 — tda 5. (7.2)
On the other hand, we define, for § € R? and (z,t) € R? x R,
o t|6]?
go(z, 1) © exp (0 ST — %) : (7.3)

d o (DT o \" o \"™ :
For n = (ny)2_;, we write (%)" = <a_91> (%> . Then, the functions gy and H, are

related as

(%)n go(x,t) = Hy(x — t0,1)go(x, 1) (7.4)
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for all # € R? and (z,t) € R? x R. In particular,

(%)nge(%f)

Let B be a BM{ w.r.t. a right-continuous filtration (F;);so.

— H,(z,1). (7.5)

0=0

Proposition 7.1.3 Let B be a BMY w.r.t. a filtration (F;)i=0 Then, referring to (7.3) and
(7.1), the following processes are martingales w.r.t. (Fy)io for any 0 € R® and n € N%.

(Hn(By — 0t,t)go( By, t))i>0, (90(Bt,1))iz0, (Hn(Bi,1))i0 (7.6)

Proof: Among the three processes in question, the second and the third one are special cases of
the first one (n = 0 and # = 0). Therefore, we may forcus on the first one. In what follows, we
consider the case of d = 1 for notational simplicity. Let 0 < s <t < co. Then, by Proposition
7.1.2,

Elexp (0 - (B, — By)) |Fs] = FEexp(0-(B;,— Bs)), a.s.
= exp ((t—s)]0]%/2).
Multiplying the both-hand sides by exp(6 - B, — t|0|*/2), we see that
1) E[99<Bt7t)|]:s] = g@(st 8)7 a.s.

We see from 1), (7.4) and the dominated convergence theorem for the conditional expectation
(Proposition 4.1.12) that

B [(%)ng9(Bt=t>|fS] = (%)nE[ge(Bt,tﬂfs] a.s.
This, together with 1), implies that

E[(Z)" 9o(By, t)|Fs] = ()" g96(Bs. s), as.

By (7.4), this proves the desired martingale property. \("a™)/

Remark See Example 7.6.2 for a representation of the martingales in Proposition 7.1.3 in
terms of the stochastic integral.

Example 7.1.4 (Exit time from a bounded set) Let B be BM?. We adopt the notation
introduced at the beginning of section 6.7. Suppose that A C R? is bounded, either closed or

open, and let
T =Ty =inf{t >0; B, € A°}.

Then, there is A > 0 such that
sup E, exp (AT') < oo. (7.7)

€A
Proof: By Example 6.7.4, it is enough to prove that
1) sup E,T < o0

T€EA
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Since (B} — x')? —t is a martingale by Proposition 7.1.3, we have by Theorem 5.3.1 that

Ex{t A T} =Lk, [(Btl/\T - 731>2] < sup ’y - $’27
yEA

from which we obtain 1) by letting t * co. \("a™)/

Exercise 7.1.1 Let g : R* > R (A € R) and H,, : R? - R (n € N) be from Proposition
7.1.3. Then, prove the following. i) ga(z,t) = > o0 ) 2 Hp(x,t). [Hint: (7.5).] ii) 2 H,(z,t) =
nH,_1(x,t). [Hint: 22 (2, t) = Aga(z,t)] iii) Za(z,t) + 128 (2 ) = 0. [Hint: %A(x,t) +

e Oz ot 2 Oz2

7.2 Hitting Times for One-dimensional Brownian Motions with Drift

Let B be BMj. We will denote by (F;);>o the right-continuous enlargement of the canonical
filtration defined by (6.33). For ¢ > 0, we define (X;);>o by

Xt = Bt — ct.

Let also
g\ p) = p? —2cpu —2), for A\, u € R. (7.8)

For any fixed A > —c?/2, the equation g(\, u) = 0 has real solutions p = fi(\), and p =
—f-(X), where

)Y VeET N +e. (7.9)
In particular, for A > 0, we have
J+(A) > f(0) = 2¢, f-(A) > f-(0) = 0. (7.10)

Lemma 7.2.1 Let A > —c*/2, p € {f+(\),—f-(N)}, and M; = exp(uX; — \t), t > 0
Then, M = (M, Fi)i>o0 is a martingale.

Proof: Since
pXy — M = By — (cpn+ A\t = uBy — pi?t /2.

Therefore, M is a martigale by Proposition 7.1.3. \("e™)/

Corollary 7.2.2 Let ¢ : R — R be defined by o(x) = = if c = 0 and ¢(x) = exp(2cx) if
¢ # 0. Then, (p(Xy), Fi)i>o0 is a martingale.

Proof: If ¢ = 0, then ¢(X;) = B; is a martingale by Proposition 7.1.3. If ¢ > 0, then
o(X;) = exp(2¢X;) = exp(f4(0)X;) is a martingale by Lemma 7.2.1. \("a™)/

For a € R, let
T, =inf{t > 0; X; = a}.
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Proposition 7.2.3 Fora >0 and A\ > 0,

Eexp(—)\T,a) = exp(—af,()\)), Eexp<_/\Ta> = exp(—af+()\)), 7.11
P(T_, <o) =1, P(T, <o) = exp(—2ac). 7.12
with the convention that exp(—oc) = 0. Moreover, if ¢ > 0, then
ET_, = E[T,|T, < 0c] = a/c. (7.13)
On the other hand, if c =0, then
ET_, = ET, = oc. (7.14)
J

-

Proof: Let M be as in Lemma 7.2.1. By Theorem 5.3.1, we have for any stopping time 7" and

t > 0 that,

1= My "2 EM, ..

(7.1

5)

(7.11): To prove the equality for T_,, we apply (7.15) for p = —f_(\) <0 and T'=T_,. Note

that —a < X (¢t AT_,), and hence

1) 0SS MEAANT- ) =exp(uX(EANT_o) = MAT_,) <exp(—pa— MAT_,) < exp(—pa).

On the other hand, we have
2) M(tAT-o) =5 exp(—pa — ANT_y).
t—00

Indeed, if T, < oo, then, X(t ANT_,) — X(T_,) = —a, and hence,

MEAT o) =exp(uX(t AT o) = MAT-o) == exp(—pa — AT_y).

1)
If T_, = o0, then, 0 < M; < exp(—pa — At), Vt > 0, and hence
MEAT ) =M, =30 = exp(—pa — M\T_,).
By 1) and 2), we can use BCT in the limit ¢ — oo to conclude from (7.15) that

1 = exp(—pa)E exp(—AT_,)

This proves the equality for T__,. The other equality is obtained in the same way.

(7.12): We have for any r.v. T: Q — [0, 00| that

lim E exp(=AT) = P(T" < o).

A>0

Thus, we see (7.12) from (7.10) and (7.11).
(7.13), (7.14): By Exercise 1.1.6, we have for any r.v. T : Q — [0, co] that

. d
3) E[T:T <oo] = —lim aE exp(—AT")

A>0
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On the other hand, the function fy is differentiable on (—c?/2, 00) and
i) =1/ +2)\, A > —c2/2.
Thus,

1/c, if ¢>0,

, def ;. /
4) fi(0+) = 1;3} fi(y) = { 0. ife=0.

A>0

Then, it follows from (7.11) and that

: ) o d iy .. d
E[T,:T, <oo] = —lim aE exp(—AT.,) =" —lim Y exp(—afi(N))
A>0 A>0
7.10), 4
= aexp(—af (0)£,(0+) "2 Y (a/c) exp(—2ac).
Since P(T, < o0) = exp(—2ac) by (7.12), we obtain the second equality of (7.13). The other
equalities can be obtained in the same way. \("a™)/

Remark 1) If ¢ > 0, then, Y = sup;s X; < 00 a.s. Moreover, we see from the equality (7.12)
that the r.v. Y is exponentialy distributed.

P(Y >a) = P(T, < o0) "2 exp(—2ac). (7.16)

2) If ¢ > 0 again, the validity of the first identity of (7.11) extends to all A > —c?/2. To see
this, we note that exp(cX;+c%*t/2) is a martingale by Lemma 7.2.1. Thus E exp(c*T_,/2) < e
by Corollary 5.3.3. This implies that Eexp(—\T_,) for A € C, Re X > —c?/2 is holomorphic.
Therefore, by the unicity theorem, the first identity of (7.11) extends to all A\ > —c?/2. Finally,
the case of A = —c?/2 is obtained by the monotone convergence theorem.

By (7.11) and the uniqueness of the Laplace transform (Example 1.8.3), we can identify
the density of the r.v. T, for all a € R\{0} (See also Proposition 6.6.4 for the case of ¢ = 0).

Corollary 7.2.4 For ¢ >0 and a € R\{0}, T, = k(a, c)dt, where

o) = Ly (LY,

Proof: By (7.11) and the uniqueness of the Laplace transform (Example 1.8.3), it is enough
to verify for all A > 0 that

w [T _ { exp(=afi (V). a>0,
1) I = /0 exp(—At)k;(a, c)dt = { eplaf (), a<0.
We first consider the case of @ > 0. Note that

(a+ ct)? A +2\,  a?
2) M+ —F = t+ —.
) M+ ety

We also recall from Lemma 2.3.4 with n = 1 that
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bt a?

a oo
3 t73/% ex (————) dt = exp(—ab), a,b> 0.
) = [ e (<G -5 ) dt = expl-ab)
Therefore,
o] 2 2
2) a 372 +2\, a >
I = exp(—ac t exp | — t—— | dt
p(—ac) o /O p ( 5 5
2 exp(—ac) exp (—a\/ 2+ 2>\> =exp(—afi(}N)),
which proves 1). The proof for the case of a < 0 is similar. \("o™)/

Remark Corollary 7.2.4 can also be derived as an application of the Cameron-Martin formula
[LeG16, pp. 140-141].

~
Proposition 7.2.5 For a,b> 0 and \ > 0,
“ginh(bv/c? + 2\
Elexp(—A\T_y) : T_y < T)] esinh(bve +2)) (7.17)
sinh((a + b)Vc% 4 2X)
~be sinh(av/c® + 2
Blexp(cATy) i Ty < T, = < smblaver+2) (7.18)
sinh((a 4+ b)Vc® + 2X)
with the convention that exp(—oo) = 0. Moreover, if ¢ > 0, then
ech -1 1 — 672(10
P(T,a < Tb) - m, P(Tb < T,a) = m. (719)
On the other hand, if ¢ =0, then
P(T<T) =2 PT<T.,) =2 (7.20)
L eI Ty A ' )

Proof: (7.17), (7.18): Let M be as in Lemma 7.2.1. We write M = M, if p = f()\), and
M=M_if p=—f_(\). We take T'=T_, ANT,. Then, we see from (7.15) that

1) 1=EML(tAT).

On the other hand,

2) 0< M, (tAT)<exp(ub), 0 < M_(tANT) < exp(—pa).
We now note that

3) T, # 1T, as.

This can be seen as follows. If T, = T, < oo, then, —a = X(T_,) = X(T}) = b, which is
impossible. Hence, {T_, = T, < oo} = (). On the other hand, T, < co a.s. by (7.12). Thus,
P(T_,=1T,=00)=0.

It follows from 3) that almost surely,

{ Mi(t VAN T) = Mi(t N T,a)]_{T,a < Tb} + Mi(t VAN Tb)l{Tb < T,a}

4 2% exp(Fafe(N) = \T_)UHTo, < T} + exp(2bfe(N) — \T)UT, < T},
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Let E) and Es be the LHS’s of (7.17) and (7.18), respectively. Then, by 2) and 4), we can
apply BCT for 1) in the limit ¢ — oo to conclude that

1 = exp(Fafe(\)Er + exp(Ebfi(X)Ey.

By solving the above equation, we have

b exp(bfy(\)) — exp(—bf_(\))
P exp(bf(A) +af- (V) —exp(—afi (A) — bf- (V)

B exp(af_(\) — exp(—afi())
exp(bfi(A) + af-(\)) — exp(—afi(\) —bf-(N)’

from which we obtain (7.17) and (7.18).
(7.19),(7.20): These follow from (7.17) and (7.18) by letting A \, 0, cf. (7.10). \("a™)/

Remark Using the function ¢, introduced in Corollary 7.2.2; the equalities (7.19) and (7.20)
can be written at the same time as:
b) — (0 0) —p(—
P(T., <T,) p(b) — ¢(0) P, <T.) = p(0) = p(=a)
p(b) — (—a) p(b) — p(—a)
The equalities (7.19) and (7.20) tell us the distribution of the r.v. Z o sup,<7_, X (Note that
T_, < oo as. by (7.12)).

_ p,—2ac 2bc __ ,—2ac :
P(Z>b) = P(T) < T.,) (7.19),(7.20) { (1—e2</(e e 21) if ¢ > 0, (7.21)

a/(a+0b) if c=0.

In particular,
< oo ife>0,
=0 ifec=0.

EZ:/OOOP(ZZb)db{

Exercise 7.2.1 Prove that
(a + b)(e*/c) sinh(ac)/sinh((a + b)c) if ¢ > 0,

E[T-a NTh) = { ab ife=0.

[Hint: For ¢ > 0, use the martingale X; + ¢t = B, , and for ¢ = 0,use the martingale B? — t.|

Remark If we consider BM., instead of BMj. Then, for ¢ = 0, it follows from Exercise 7.2.1
that m, < ET . AT)=(a+x)(b—2x) < (a+0b)?/4if x € [—a,b], and m, =0 if = & [—a,].
Thus, we have by Example 6.7.4 that Fexp(A(T_, A T)) < oo for any A € (—o00,4/(a + b)?).

Exercise 7.2.2 For ¢ = 0, prove that
cosh ((a —b) /\/2>
cosh ((a +b) )\/2> .

Eexp(~A(T_, AT})) =

[Hint: For z,y € R, sinh z+sinhy = 2sinh (%ﬂ’) cosh (%), sinh(z+y) = 2 cosh (gﬂ) sinh (%ﬂ)}

Remark By the remark after Exercise 7.2.1, we see from Exercise 7.2.2 and the analytic
continuation that for any A € (—oo,4/(a + b)?),

cos ((a —b) )\/2>
cos ((a +b) )\/2> .

Bexp(\(T_o ATy)) =
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Exercise 7.2.3 Let k;(z) = —— exp (—%), x € R, t > 0. Then, for ¢ = 0, prove that
T o NTy = k(a, b)dt, where

+(a,b) i I(ki(a+ (a+b)j) + ki(b+ (a+Db)j)).

J=0

[Hint: Compute the Laplace transform [;* exp(—At)ki(a,b)dt, A > 0 and compare it with
Exercise 7.2.2.

7.3 Stochastic Integrals

Let B be BM' w.r.t. a filtration (F;)s>o, cf. Definition 7.1.1. For a suitable class of processes
H = (H;)t>0, we will define the integral of the form

t
/HSdBS, t>0, (7.22)
0

which is called the stochasic integral with respect to the Brownian motion. The function
s + By is not of bounded variation in any interval. Therefore, the above integral cannot be
defined as a Lebesgue-Stieltjes integral.

We start by introducing some classes of integrands for the stochastic integral.

Definition 7.3.1 (Integrands for stochastic integral)

» We denote by L the totality of progressive real processes w.r.t. (F:)i>o (cf. Definition
6.6.12).

» We define

L2 = {HEE;E/ Hfds<oo},
0
t

L2 = {HGE;E/ Hfds<ooforallt€(0,oo)},
0

i
L2 = {H €L; / H2%ds < oo, P-a.s. for all t > O}.
0

» A process H € L is said to be elementary, if it is a finite linear combimations of the
processes of the following form

(Lo © W)u(w) = h(@) Ly (1), (1) € [0,00) x 2. (7.23)

for some 0 < a < b < oo and h € L*(2, F,, P). The totality of elementary processes is denoted
by £.

Remark: Clearly, &€ C L2 C L2 C L2, C L.

a.s.

Definition 7.3.2 (Spaces of continuous (local) martingales)
» We denote by M. the totality of martingales M = (M, F;)i>o such that My = 0 and ¢t — M,
is a.s. continuous.

» We define
M, = {M € M ; sup E[M?] < oo}.
>0

M2 = {MeM; E[M}] <ooforallte(0,00)}.
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» An adapted process M = (M, F;)i>o is called a local martingale, if there exists a nonde-
creasing sequence of finite stopping times (7},),>1 such that 7T, =% 50 a.s. and for any n > 1,
(Miat, )0 is uniformly integrable martingale. The above sequence (7},),>1 of stopping times
is then called a reduction sequence.

» We denote by M. the totality of local martingales M = (M, F;)1>o such that My = 0

and t — M, is a.s. continuous, and there exists reduction a sequence (7},),>1 such that

Mg, € M2 for all n > 1. We identify two elements M, M in MZ ., if M, = M, a.s. for all
t>0.

Remark: If M € M?

2 so» then (M)y>o is uniformly integrable. Indeed, by L*-maximal in-
equality (5.23),

E {sup(Mt)Q} <A4sup E [(M;)?] < .

t>0 t>0

Theorem 7.3.3 There exists a unique map H — H-B from L2, to MZ,,. which satisfies
the following properties.
a) Forall H K € L2, o, € L™(Q, Fy, P), and t > 0,

((aH + BK)-B); =a(H - B);+ B(K - B);. (7.24)
b) Referring to (7.29), for all0 < a <b < oo and h € L*(Q, F,, P),
(Lo ® h) - B)(w) = h(w)(Bias(w) — Bina(w)), (t,w) € [0,00) x . (7.25)

c) For all H, K € L?, the following processes are martingales w.r.t. (F;)i>o-
t
(H-B), and Q,(H,K)% (H-B),(K - B), —/ H,K,ds, t>0. (7.26)
0

d) For all H € L2 and stopping time T,

(Hxr-B): = (H - B)ir,, t>0. (7.27)
where XT(taw) = 1[0,T(w)}<t)7 (t7w> € [07 OO) x Q.
N /
The process H - B € Mgloc stated in Theorem 7.3.3 is called the stochastic integral of

H € L2, w.r.t. the Brownian motion B and is also denoted also by the integral notation
(7.22). Tt follows from Theorem 7.3.3 b) that, for H € £ and ¢t > 0,

E[(H-B), =0, E[(H B)}] = E/Ot H?2ds. (7.28)

The second equality of (7.28) is called Ité’s isometry. We now prove Theorem 7.3.3 in three
successive steps.

Stepl (The case of H € £) We first consider the stochastic integral of an elementary process.
Suppose that H € £ is expressed as

T

H = ]—(Cj,CjH} X hj (729)

.
Il
o
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with a strictly increasing sequence (c;)%
Then, we define H - B by

o= 0and h; € L*(Q,F,,,P) (0<j<N-1).

Jj=0

i

(H-B) = hj(Bine,s, — Bine,), t>0. (7.30)
J

Il
=)

Lemma 7.3.4 a) The definition (7.30) is well defined, i.e., it does not depend on the way
in which H is expressed as on the right-hand side of (7.29).

b) The properties (7.24) and (7.27) hold for H K € &

Proof: Let H, K € £ be such that

Hy = 1(% agt1] ® hf> Ky = Z 1 (b sbm+1] ® km,
=0
M_  are strictly increasing sequence, ag = by = 0 and hy € L*(Q, F,,, P),

P) (0<{<L,0<m< M). We define a sequence (c;)}y by

where (ag)l_, and (b,,)
k, € L? (Q Fp

'm )

{e1 <...<ceny} = {(lg}é LU {bm}m 1, o =0.

As a consequence, there exist 0 = p(0) < p(1) < ... < p(L) < N and 0 =¢(0) < p(l) < .. <
q(M) < N such that

ar = cpey (1 <€ <L), and by, = cqmy (1 <m < M).
We then define r.v.’s {h L {Ej}jvzl b

Ej = hy for p({) < j <p(l +1) and Ej =k, for g(m) <j <qg(m+1).

Then,
N-1 N
1) H=> 1. ®hj, K= Z ey ei01] @ K,
7=0
On the other band B
2) It = It and Jt = Jt,
where
- M-1
I = Z he(Binaes = Bina)s It = D kn(Benvycs = Bunv,,);
Z h Bt/\CJ Bt/\cj-,l)a Jt = k] (Bt/\Cj - Bt/\cj-,l)-
Jj=1 j=1
Indeed,
_ N-1 L—1
It — Z h’] (Bt/\C]+1 Bt/\Cj) = Z hl Z (Bt/\Cj+1 - Bt/\Cj>
J=0 =0 k(O)<j<k(t+1)
L—1

= hZ(Bt/\angl - Bt/\a[) = [t'
0

~
I
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Similarly J; = j; o

a): To ses (7.24), suppose that H = K. Then, it follows from 1) that h; = k; forall j =1,..., N
and hence I, = J,. Thus, we have I, = J, by 2). Therefore, the definition (7.30) does not
depend on the way in which H is expressed as on the right-hand side of (7.29).

b): Let H, K € £ be as at the beginning of the proof and «, 8 € L>*(Q2, Fy, P), then,

o + BK 2 leﬁl]@(ah + k)

7=0
Hence
(130) ~—, ~ ~
(0 +5K) - B), "2 3" (ah; + 5k) Buney, — Bine,)
=0
’ N—1~ -t
= (6% Z hj(Bt/\Cj-t,-l — Bt/\cj) + /6 Z kj (Bt/\cj+1 - Bt/\Cj)
=0 =0
2)

a(H - B), + B(K - B),.
To see (7.27), suppose that H is expressed as (7.29) and that T is a stopping time. Then,
N

HXT - Z 1 CJ CJ+1 h]XT

It follows from (4. 41) that hjxr is F.,-measurable, and hence

N
(HXT : B)t = Z 1(Cj,c]'+1]thT<Bt/\Cj+1 - Bt/\Cj)

1

<.
I

WE

1(cjvcj+1}hj (Bt/\T/\Cj+1 - Bt/\T/\Cj) = (H - B)inr.
1

<.
Il

\("a")/

Next, in order to verify that the processes (7.26) are martingales, we prepare the following
lemma.
a N
Lemma 7.3.5 a) Let 0 < a < b < oo, h € L(P) be F,-measurable. Then, the following
processes are martingales.

Ui = h(Bipy — Bipa), Vi=h ((Bt/\b — Bt/\a>2 —(tAb—tA a)) .

b) Let 0 < a3 < by < ay < by < oo, h; € L*(P) be Fa,-measurable, j = 1,2. Then, the
following process is a martingale.

Wi = hiha(Binb, — Binay ) (Biab, — Bina

\ ( Aby 1)( Nb2 2) j
Proof: a) We first check that U;,V; € L'(P) for all t > 0. Let L; = By, — Biag- Then, for
t <a, Ly =0 and hence U; = 0. For t > a, h € L'(P) and L, € L*(P) are independent, and
hence U; = hL; € L*(P). Similarly, V; € L'(P). We next prove that U, V; are martingales.
Since h is F,-measurable and L; is a martingale such that L, = 0 if ¢ < a, it follows from
Exercise 4.3.3 that U; = hL, is a martingale. On the other hand, it is not difficult to see that
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the process
def

M; = (Bipy — Bina)> — tAb—tAa), t>0

is a martingale such that M; = 0 if ¢t < a. Thus, it follows from Exercise 4.3.3 that V;, = hM,
is a martingale.

b) We first check that W, € L'(P) for all t > 0. N; = Biap, — Bina, and Z; def hiha(Bine, —
Bing,)- Then, W, = Z;N,. For t < ay, Ny = 0, and hence W, = 0. Thus, we suppose that
t > ay. Since hy € L?*(P) and By, — B,, € L*(P) are independent, hy(By, — B,,) € L*(P), and
hence hihy(By, — B,,) € L'(P). Moreover, hihy(By, — B,,) € L'(P) and Ny = Byap, — Ba, €
L'(P) are independent, and hence W; € L'(P). Next, we prove that W, is a martingale. Since
N; is a martingale such that N, = 0 if ¢t < ag, and Z; = Zir,, is Fu,-mmeasurable for all ¢t > 0,
it follows from Exercise 4.3.3 that W; = Z;N; is a martingale. \("e™)/

Now, it is easy to prove

Lemma 7.3.6 Suppose that H, K € £. Then, H - B € M? and the processes (7.26) are
martingales.

Proof: It is clear that the process H - B defined by (7.30) is a.s. continuous and that E[(H -
B)?] < oo for all t > 0. Moreover,

N
QuH,K) = Z hik; ((Bt/\ci — Binei_1)(Bine; — Bine;_1) — 0ij (A ei) — (A Cz?l))) .
ij=1
We see from Lemma 7.3.5, that all the terms on the RHS of (7.30) and that of the above
display are martingales. Hence H - B € M? and the process Q;(H, K) is a martingale. \("c")/

Step2: (The case of H € L£2)) It is convenient to organize the construction in the abstract
framework, concerning the isometry between two Hilbert spaces. For H, K € L2, we define
their inner product by

(HK ) :E/ H.K.ds. (7.31)
0

We identify two elements H, H in £2, if Hy(w) = Hy(w), dt ® P(dw)-a.s. on [0,00) x . Then,
it is easy to show that £2 is a Hilbert space. We have the following lemma.

[Lemma 7.3.7 & is dense in L2, ]

Proof: It is enough to show that the ortogonal complement £ contains only of the null
function. For this purpose, suppose that H € £+. Then, considering Ly ® 14 € &, with
0<a<b<ooand A € F,, we have

b
E[/ Hsds:Al—O.

This implies that the process M, aof tHsds, t > 0 is a continuous martingale, and hence

M =0, as., since M is at the same time of bounded variation (cf. Lemma 7.3.12 below).
Consequently, H = 0, a.s. \("a™)/
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we define two norms

For M € M2

1/2
() = sup ELXZ), y00) = B [sup 2| (7:32)
£>0 >0
By L2-maximal inequality (5.23),
pa(M) < po(M) < 2p2(M) for M € M?

Cc,007

and hence the norms p, and p, are equivalent on M? __

[Lemma 7.3.8 (M?_..p2) is a Hilbert space. ]

Proof: It is enough to show that (Mg, 5,) is a Hilbert space. Suppose that (M®),en is a
Cauchy sequence in (M?_,5,). To prove that (M®),cy converges in M2 __, it is enough to
find a subsequence which converges in Mg’oo. Then, by taking a subsequence we may assume
that p,(M*+D M*)) < 27F 50 that the following series converges w.r.t. py:

0 k+1 k
)+Z(Mt( +1) _Mt( )).
k=0

Moreover, we have

pMM(k ZQJk—wo

j=k+1
In particular, for each n > 1
sup | M, — M®|"2% 0 in L2(P).

>0
By taking subsequence again, we may assume that the above convergence takes place a.s., and
hence a.s., Mt(k) converges to M; uniformly in £ > 0. This implies that M € Mz,oo‘ \("a™)/

\
Lemma 7.3.9 The map H — H - B (£ — Mgoo) defined by Stepl is uniquely extended
to a linear isometry

Hw H-B (L3, llez) — (MZ . p2)- (7.33)

Moreover for H € L2, the process H - B defined this way satisfies the equality (7.27) for
all stopping time T'. )

Proof: The map H — H - B (£ — MZ ) defined by Stepl is a linear operator by (7.24).
Moreover, it follows from the It6’s isometry (7.28) for £ that

po(H - B) = [H| oo, HEFE.
Therefore, by Lemma 7.3.7, the map H — H - B (€ — MZ ) can uniquely be extended to
a linear isometry from L2, to MZ
To show the equality (7.27) for H € £2, take a sequence H™ € £ which converges in £2 to
H. Then, H™yp converges in £2 to H X7- These imply via Lemma 7.3.4 that
1) H® . B3 H-Band H™xy - B3 Hyr- B in M.
2) (H™xr - B)y = (H™ - B)iar
Therefore,
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1 . [ n
E|sup |(H - B)or — (Hxr - B).?| 2 lim E |sup|(H - B)ixr — (H' )XT-B)tP}
>0 n—=oo >0
2 . n
2 Yim E |sup |(H - B)orr — (H' )-B)MT|Q]
n—oo :tZO
< lim E sup|(H-B)t—(H(”)-B)t|2} Yy,
n—oo _tZO

Step3: (The case of H € L2 )

Lemma 7.3.10 The linear map H — H - B from L2, — M defined in Lemma 7.3.9 is
uniquely extended to a linear map from L7, — M2\ . for which the equality (7.27) holds
for all H € L%, and all stopping time T.

Proof: Let H € £2_. To define a process H - B, We introduce the stopping times

t
S, = S,(H) =n Ainf {t >0 / H2ds > n} : (7.34)
0
Then, (S,),>1 is a nondecreasing sequence of finite stopping times such that S,, ,* oo and
0o Sn
/ (Hxs, )?ds = H%ds <nforall n > 1.
0 0

Hence Hys, € L% . Consequently, Hxg, - B € ./\/liOo by Step2. We define the process H - B
by
1) (H-B);=(Hyxs, - B); fort<5,.
The process is well defined, since if m < n and t < S,,,, then, for s < ¢, xg, (s) = xg,(s) =1
and hence (Hys,,)s = (Hxs, )s- Consequently, (Hys,, - B): = (Hxs, - B):.

We next prove that H - B € M2, .. By Lemma 7.3.9, the equality (7.27) holds if H is

replaced by Hys, € £2,. Thus, if a stopping time S satisfies S < S,,, then,

1
2)  (H-Bins 2 (Hys, - Blins = (Hxs - B); for all t > 0.
In particular,
3) (H - B)ips, = (Hxs, - B); for all t > 0.

Since Hys, - B € M2, the equality 3) implies that H - B € M2 .
We next prove the equality (7.27). We note that the equality 3) determines the values of
of H - B on the set {S,, /* co}. Therefore the property 3) characterizes the process H - B (up
to the identification in the class M. oc). Referring to (7.34), we set U,, = S,,(Hxr). Then, the
process Hxr - B is characterized by the equality
4) (Hx1 - B)inv, = (HxTAU, - B):-
Therefore, to prove (7.27), it is enough to verify that
(H - B)inrav, = (Hxrau, - B
Since S,, — oo a.s., the above equality follows from the equality with ¢ replaced by t A S,,,
namely (Note that S, < U,.),
5) (H : B)t/\Sn/\T = (HXT/\Un : B)t/\Sn-
It follows from 2) that
the LHS of 5) = (Hxs,ar - B):.
On the other hand, noting that Hxray, € £2 and applying Lemma 7.3.9,
the RHS of 5) = (Hxs, a7 - B):.
Thus, we have proved (7.27).
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Finally prove the linearity (7.24). Let H, K € L2, a, 8 € L®(Q, Fo, P) and L = aH+ K.
Referring to (7.34), we set T,, = S, (H) A S,,(K). Then, Hxr,, Hxr, € L%, and hence by
linearity of the stochastic integral for £2, (Lemma 7.3.9), we have

(Lxt, - B)y = a(Hx, - B): + B(Kx7, - B):.-

Therefore,
7.27
(L- Bz, "= (Lxz, - B)i = a(Hxz, - B+ B(Kxt, - B),
7.27
20 (H - B)onz, + BUK - B)onr,.
Letting n — oo, we obtain (7.24). \("a")/
[Lemma 7.3.11 For H, K € L?, the processes (7.26) are martingales. ]

Proof: It is enough to show that the processes (H - B)insg, Qinto(H, K), t > 0 are martingale
for any fixed to > 0. Moreover, if H € £? then Hy,, € L2, and

(H - B)irty = (Hxto - B)e and Quaee (H, K) = Qu(H X1y, K Xto)-
Therefore, it is enough to assume that H, K € L£2. The process H - B for H € L2 is a
continuous martingale by Lemma 7.3.9. It only remains to prove that Q;(H, K) is a martingale.

Since & is dense in £2, (Lemma 7.3.7), there exists H™ K™ € &£ such that H™ "3 H and
K™ "% K in £2,. Since the map (7.33) is continuous, we have that (H™ - B), =% (H - B),

n—oo

and (K™ - B), =% (K - B); in L?(P), which implies that
1) (H™ . B)y(K™ . B),"=% (H - B),(K - B); in L'(P).

On the other hand, it is easy to see that
t t
2) / HWKMds 2% / H,K,ds in L*(P).
0 0

By 1) and 2), we have that
3) QuH™, K™M) "% Q,(H, K) in L} (P).

Since Q;(H™,, K™) is a martingale by Lemma 7.3.6, we see from 3) that Q,(H, K) is also a
martingale. \("a™)/

Complement

Lemma 7.3.12 If M is a continuous local martingale with My = 0, which is of bounded
variation on any finite interval. Then, My = 0 a.s. for allt > 0.

Proof: We set
T, =inf{t > 0;V; > k},

where V; denotes the total variation of M on the interval [0,t]. T} is a stopping time, since V;

is continuous in ¢. Thus, Mt(k) def M;a7, is a local martingale. Note also that

1) |Mt/\Tk| S ‘/t/\Tk S k
Therefore, M*) is a bounded martingale (Exercise 7.3.1). On the other hand, we have T} i

00, since V; < oo for any t > 0. Therefore, it is enough to to prove that Mt(k) =0 a.s. for all
fixed k> 1and ¢t > 0. Let £ > 1 and ¢ > 0 be fixed. Since M® is a bounded martingale, its
differences

AMED MW (Gt /) — MB((G = V)t/n), j=1,...,n
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are orthognal. Thus,

2) E[|MPP| = ZE[]AM’” )|~k

Moreover,

ZyAM’” ]

S AME? < Vinr, max [AM)].

7=1
By 1), the RHS of the above display is bounded from above by the constant 2k? while it
converges to zero as n — 00, since M is uniformly continuous on the interval [0, ¢]. Therefore,
by the bounded convergence theorem, the RHS of the display 2) converges to zero as n — oo,

which shows that ]\/[t(k) =0, a.s. \("a™)/

Exercise 7.3.1 Prove the following. i) Suppose that M is a continuous local martingale and
that sup,<,, |M;| € L'(P) for some tg > 0. Then, (M;)icjo4,] is a martingale. Hint: Let (77, ),>1
be the stopping times in Definition 7.3.2. Then, E [M(t ANT),) : Al = E[M(s ANT,) : A] for all
s <t <tyand A € F,. ii) Suppose that H € L, and that sup,.,, |(H - B),| € L'(P) for
some tg > 0. Then, ((H - B)¢)iejo) is a martingale.

Exercise 7.3.2 Prove the following for H € £2_. i) [} H2ds = 0 a.s. for all t > 0 <=
fot H,dB; = 0 a.s. for all ¢ > 0. Hint: Referring to (7.26) and (7.34), apply the optional
stopping theorem to the uniformly integrable martingale Qys, (H). ii) Suppose that S and T’
are stopping times such that S < T < oo a.s. Then, fST H2ds =0 a.s. < fST H, B, =0 a.s.
Hint: Apply i) to H1(s7(s)

Exercise 7.3.3 Let M = fo HYdB?, (a = 1,2), where (B},B?), t > 0 is a BM?, and
H',H? € £% Then, prove that the process M} M2, ¢t > 0 is a martingale. Hint: It is enough to
assume that H', H? € L2 (cf. proof of Lemma 7.3.11). Then, reduce the case of H', H*> € L2,
to that of H', H? € £, by considering sequences H*(™ € & such that H*M™ "= H* in £2_.

7.4 Itd’s Formula 1

In this subsection, we will explain It0’s formula for the Brownian motion and its applications.
In what follows, B; = (B#)2_,, t > 0 denotes a BM? w.r.t. a filtration (F;)s>0, cf. Definition
7.1.1. We first state the 1to’s formula in its simplest form.

Theorem 7.4.1 (It6’s formula I) Suppose that f € C?(R?). Then, P-a.s., for allt > 0,

d t

1) - 150 =3 [ L mass + 1 [ asas (739

where Af =S¢ axg
N J

Example 7.4.2 (The Dirichlet problem) Let D C R? be a domain, f € C(dD), and
g € C(D) be given. A classical problem in ‘the theory of partial differential equations is to
show the existence and uniqueness of u € C'(D) N C?(D) such that

a) 3Au=—g inD,

b) u’aD = f
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A special case where g = 0 is especially celebrated as Dirichlet problem. Here, we suppose for
simplicity that D is bounded. We will prove the uniqueness of the solution to a) and b) by
running a Brownian motion. We adopt the notation introduced at the beginning of section
6.7. We will represent the solution as follows. Let B be a BM%, x € D and

T =Tpe =inf{t >0; B, € D}.

By Proposition 6.9.3, T' is a stopping time. Moreover, by Example 7.1.4, there exists A > 0
such that

sup E, exp(AT) < 0.
zeD

We will then prove that a solution u to a) and b) is represented as

1) (@)= E.f(Br)+E, / 4(B.)ds,

hence is unique. -
Proof: Suppose that 2 € D and u € C(D) N C?(D) satisfies a) and b). Let

D, = {ye D; dist(y,G) > 1/n},
T, = inf{t>0; B, € D;}.

Then, there exists u,, € C?(R?) such that u,, = u on D,, ;. Take n large enough so that z € D,
and fix it. Then, for each a = 1,...,d, the process (Oyu,(Bi))i>0 is bounded, progressively
measurable. Thus, by Theorem 7.3.3, the following process is a martingale:

d t
Aﬁ”:}j/émm@@wﬁ,tzo
a=1 0

Thus, (Mt(/T\LC)Fn)tZO is also a martingale by Lemma 5.3.5. In particular,

2) EM")

tA\Ty

=0, Vt>0.
On the other hand, we have by It6’s formula applied to u, that,

w(Bur,) —u(r) — MU = un(Buag,) — tn(x) — M)

tA\Ty,
1 tATy, 1 tA\Ty
= —/ Au,(Bs)ds = —/ Au(By)ds
2 Jo 2.Jo

2 tAT
= — / g(Bs)ds.
0

We then take expectation and use 2) to see that
tATn
E,u(Biar,) —u(x) = —Ex/ g(Bs)ds.
0

Since T, =3 T by Exercise 4.2.4, we have by the bounded convergence theorem in the limit
n — oo that

E,u(Biar) — u(z) = —Ex/o g(Bs)ds.
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Finally by the assumption, we can use the bounded convergence theorem in the limit ¢ — oo
to conclude 1) from the above displayed identity. \("a™)/

It is also possible to show the existence of the solution u by Brownian moiton. In fact, it
turns out that the function u defined by 1) gives a solution to a) and b). To do so, however,
one has to assume the following regularity condition on 9D to show the continuity of u at the
boundary:

P.(T'=0)=1for all x € 9D.

See [Dur84, Sections 8.5,8.6], [KS91, Section 4.2] for the proofs and details.

Remark Of course, the existence and uniqueness of u discussed in Example 7.4.2 can be shown
without using Brownian motion.

e Uniqueness is a consequence of the maximal principle for harmonic functions [Fol76,page
93].

e Existence can also be established via the existence of the Green function for the domain
D assuming that D has a smooth boundary [Fol76,pages 112, 343].

Exercise 7.4.1 Let B be a BMZ and h € C'([0,00) — R%). Then, prove the following. (i)(

Integration by parts formula)
t

t
/h() dB, = h(t) - B, — /h’() B,ds.
(ii) Use i) and Theorem 7.6.1 to show that

Dy(h) ¥ exp (/ . dB, ——/ |h(s |ds) /D -dB,.

Then, use Exercise 7.3.1 that D;(h) is a martingale. (iii) Suppose that h( ) >0, Vt > 0. Then,
the process Y; discussed in Exercise 6.1.9 (Y} is the Ornstein-Uhlenbeck process if hA(t) = exp(At)
with A > 0) can alternatively be written in terms of the stochastic integral as follows.

X, =h(t)! (h(O):c + /Ot h(s)st> ;

which, together with (7.28), implies that EY; = h(t)"'h(0)x and that E[Y;?] = h(t)~2 [}

h(s)%ds.

Exercise 7.4.2 Let ¢ € C*(R? — R) and suppose that there exists C' € [0, c0) such that
p(z) < C(1+z]), Ap(r) > —C(1+ |z]).

1 t
for all x € R%. For a BM{ denoted by B, we set A, = 5/ (]V@(Bs)\z + A(p(BS)) ds.
Use Theorem 7.4.1 and Theorentl 7.6.1 to show that

Do) e ([ Vol an. ——/ VolB)Ps )

= exp(p(B) —p(Boy) — Ay) = / Ds(9)V(Bs) - dBs.
Then, use Exercise 7.3.1 that D;(¢) is a martingale.

Exercise 7.4.3 Let Z, = X, +1iY;, where (X,,Y;) is a BM?. For U,V € £2_. We define
t t t t t
/(Us—l—iVs)dZs :/ UsdXs — VdeS+i/ Udes+i/ Vsd X,
0 0 0 0 0
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Then, prove the following identity for a holomorphic function f : C — C.

1(20) — f(Z0) = /0 (20

Exercise 7.4.4 (A uniformly integral local martingale which is not a martingale)
Let B be BM? (d > 3, ¢ # 0) and ¢(z) = |z|~¢2, 2 € R% Prove the following. i) ¢(B,) is
a local martingale. Hint: Let 7, = inf{t > 0; |B| < 1/n}. Then, o(B(t ANT,)) — ¢(c) =
—(d—2) Zi:l JAT" |Bs|"1B2dB¢. ii) ¢(B;) is not a martingale. Hint: By Exercise 1.2.10,
E[p(B;)] is strictly decreasing in ¢. iii) For 1 < p < d/(d—2) and € > 0, sup,~.. Flp(B:)*] < co.
In particular, p(B;) (t > €) is uniformly integrable. -

7.5 Semimartingales Generated by a Brownian Motion

Throughout this subsection, we let B denote a BM? w.r.t. a filtration (F;);>o. Recall the
definition of the class of processes L2, from Definition 7.3.1. We now define

(ﬁi.s.)d = {(Htl, coey th)tZO > (Hta)tz() € L:i.s. fOl" all o = 1, e ,d}

For H € (L£2,)% we write

t d t
/ H,-dB, _Z/ HYdB°.
0 a1 /0

Definition 7.5.1 (Local martingales generated by a Brownian motion)
» A process M is called a local martingale generated by B, if there exists a process
o = (01)>0 € (L£2,)? such that

t
Mt:/ oo dB,, t>0. (7.36)
0

» Let M be a local martingale generated by B expressed in the form (7.36), and let H be a
continuous, adapted process. We use the following notation.

¢ t d t
/ H,dM, = / Hyo,-dB =Y | HodBS. (7.37)
0 0

a=1"70

» Suppose that M} = fot ol -dBs, p=1,2 are local martingales generated by B. Then, we
define the process ( M', M?) by

t
<M1,M2>t:/ oL -o2ds, t>0. (7.38)
0

The above process is called the quadratic variation of M* (1 = 1,2). When M' = M? = M,
we often write ( M ), instead of { M, M ).

Lemma 7.5.2 Suppose that M*, M? are local martingales generated by B. Then, the
quadratic variation ( M', M? ) is characterized as the unique process Q = (Q)i>o with the
following properties.

Q1) Q is locally of bounded variation.

Q2) Qo =0 and M!M? — Qy, t > 0 is a local martingale.
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Proof: Suppose that Q = ( M, M?). We then verify properties Q1) and Q2). Q1) is obvious.

To see Q2), we observe that
d

¢ ¢ t
M!M? —Q; = Z <(/0 asl’adB?) (/0 a?’%le) - 5a,g/0 ai’o‘ag’ﬂds)

a,f=1
By applying Theorem 7.3.3 b) and Exercise 7.3.3 respectively to the diagonal, and the off
digonal terms of the summation on the RHS of the above display, we obtain the property Q2).
Suppose that a process ) satisfies the properties Q1) and Q2). Since
(MY, M2 ), — Q= (M!M? — Q) — (MIM? — { MY, M2 ),),
it follows that the process ( M, M? ), — Q; is a local martingale and is at the same time of
bounded variation. Therefore, by Lemma 7.3.12, { M* M ), = Q. \("a™)/

Definition 7.5.3 (Semimartingales generated by a Brownian motion)
» A process X is called a semimartingale generated by B, if

Xt — XO + Mt + At7 t 2 O7 (739)

where M is a local martingale generated by B (Definition 7.5.1), and A is an adapted process
with Ap = 0 which is continuous and locally of bounded variation. The processes M and A
are called respectively the local martingale part and bounded variantion part of X, cf.
the remark after the definition.

» Let X be a semimartingale generated by B, decomposed in the form (7.39), and let H be a
continuous, adapted process. Then, referring to (7.37), we use the following notation.

t t t
/ HydX, = / H,dM, + / H,dA,. (7.40)
0 0 0

» Let X# (u = 1,2) be semimartingales generated by B and M* (u = 1,2) be their respective
martingale parts. Then, referring to (7.38), we define their quadratic variation ( X!, X?)
by ( X1, X?%) = (MY, M?).

Remark: Given a semimartingale generated by B, its local martingale part and bounded
variantion part are uniquely determined (Lemma 7.3.12).
7.6 Ito’s Formula II

Although Theorem 7.4.1 is already very useful, the scope of application can considerably be
broadened by generalizing it in the following way.

Theorem 7.6.1 (It6’s formula IT) Let X* (u=1,...,m) be semimartingales generated
by B (Definition 7.5.3) and f € C*(R™). Then, P-a.s., for allt >0,

f(Xt) - f()fo) t
e of " m o2 f - (7.41)
— ;/0 o (Xs)d X, ++3 “;1/0 Sy (Xa)d(X*, X7 ),

N /

We will prove Theorem 7.6.1 in section 7.7. For the rest of this section, we present appli-
cations of Theorem 7.4.1 and Theorem 7.6.1.
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As an application of Theorem 7.6.1, the martingales in Proposition 7.1.3 are expressed in

terms of the stochastic integral as follows.

Example 7.6.2 Let gy : R? - R (A € R) and H, : R*> - R (n € N) be from Proposition

7.1.3. Then,
Hn(Bg - )‘tvt)g)\(Bgvt)
t
H,(Bg§,0)g:\(Bg,0) + / (AH, +nH,—1) (B — As, s)gx(BY, s)dBy.
0
In particular,
t
(Bt = (B304 A [ on(B2s)dED,
0
t
H,(By t) = H,(B§,0)+ n/ H, (B, s)dBy.
0
Proof: We have by Exercise 7.1.1 that
0H,
1
) Ox

On the other hand, it is easy to see that

(z,t) = nH,_1(x,t).

g 1 P gx _
2) Y (w,t) + 5 D2 (x,t) =0.
Let f(.f,t) = Hn(x - At,t)g)\(l’,t> = (%)ngk(‘x7t> Then7
of  (0H,

D (AH, +nH,_y) (x — M, )ga(, 1),

af 1 an a\" 39A 1 829/\ 2)
4y (L 197 _ (2N (99, 2,
) (8t tagee @ =1gy) (o T2ge )@t =0

Hence (7.42) follows from (7.41) as follows:

s - s = [ L o gape + / t (% ﬂ) (B2, 5)ds

Ox ot | 20g2

t
3).4) / (AH,, +nH, 1) (BS — As, s)gx(Bg, s)d By
0

(7.42)

Lemma 7.6.3 Let ¢ € C([0,00) — R) with 1(t) = sup¢(s). Then,

s<t

/Gdz/) =0, where G = {t € (0,00) ; p(t) < ¥(t)}.
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Proof: Let S C [0,00) be the support of the measure 1(A) o [ dip, A e B([0,00)) ([0,00)\S
is the union of all open subsets of [0,00) on which p vanishes.) Then, it is enough to prove
that GNS = (). To do so, we take an arbitrary ¢t € G. Since ¢(t) < ¥(t), there exists ¢, € (0, 1)
such that ¥ (t) = ¢(t.). Then, by the continuity of ¢, there exists ¢ > 0 such that ¢, <t —¢
and that ¢(s) < ¢(t) for all s € [t —e,t 4+ €]. This implies that ¢ (t + &) = 1(t), and hence
that f( jdp = 0. Therefore, t & 5. \(*a™)/

t—e,t+e

Example 7.6.4 (Position of the first decrease by length /) Let B be BM}), S; = sup B,,

u<t
and

Then, the r.v. Sp(= Br + ¢) is exponentially distributed with parameter 1/¢.
Proof: We start with a general consideration. Let f € C*(R) and F(z) = f[f f. Then,

1) F(S) (5 BIS(S) = [ (548,

To see this, note first that

2) F(5,) = / £(5.)dS...

which follows from Theorem 7.6.1 without Brownian motion. On the other hand, let g(x,y) =
(y —)f(y). Then,

9o(2,y) = =f (W), Gua(2,y) =0, gy(2,y) = fly) +(y—2)f (y).
Thus, by Theorem 7.6.1,

t
0

3) (S, — B)f(S) = — / ' F(S)dB. + / ' F(S,)dS. + / (Su — B.)f'(S.)dS..

By Lemma 7.6.3, the third term on the right-hand side of 3) vanishes. Therefore, 1) follows
from 2) and 3). By applying 1) for f(z) = —aexp(—ax) with a > 0, we see that the following
process is a bounded martingale:

X, € (1+ a(S, — By)) exp(—asS)).

Hence by the optional stopping theorem,

1
14+ ol

EXr =1, ie., Fexp(—aSr) =

Then, the result follows from the uniqueness of the Laplace transform (Example 1.8.3). \("5")/

Remark: See Exercise 4.5.3 for an analogy in the case of the random walk.

Example 7.6.5 (The heat equation in a domain) Let D C R be a domain. Following the
convention in physics, we denote a point in D x [0, 00) by (z,t) (z € D, t > 0). Accordingly, for
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u: Dx(0,00) = R, we write d,u = Jgy1u. Suppose that u € C,(D x [0,00))NC%(D x (0, 00))
is such that

a) O =31Au on D x (0,00),
b)  u=0 ondD x [0,0c0).

We adopt the notation introduced at the beginning of section 6.7. We will represent the
solution of a) and b) as follows. Let B be a BM?, z € D and

T:TDC :lnf{t>0, Bt GDC}

By Proposition 6.9.3, T is a stopping time. We will then prove that a solution u to a) and b)
is represented as

1) u(z,t) = B, [u(B,0) 1 t < T1.
Proof: Let

D, = {yeD; |y—z|l <n, dist(y, D) > 1/n},
T, = nAinf{t >0; B, € D;}.

Let t > 0 be fixed. Then, for ¢ € (0,t), there exists u, € C>'(R*!) such that u, = u on
Dy 11 % [e,n+1]. Take n large enough so that z € D,, and fix it. Then, for each a =1, ...,d, the
process (Oqtn(Bs,t — s))s>0 is bounded, progressively measurable. Thus, by Theorem 7.3.3,
the following process is a martingale:

d s
Ms(t’n) = Z/ 8O<Un(BT7t - T’)dB;}, s> 0.
a=1 0

Thus, (Ms(f\’;i)szo is also a martingale by Lemma 5.3.5. In particular,
2) EMY2) =0, Vs> 0.
On the other hand, we have by It6’s formula applied to the function
RS (2, 8) = up(2,t — 5)
for 0 < s < (t—e) AT, that,
U(B—eyar,, t — (t —€) N T,) —u(z, t) — M((ttfe))/\Tn
— Un(Byopnr, t — (t— &) ATy) — tup(, 1) — M

(t—e)AT,

(t—e)AT,
= / (%Aun(Bs,t — 8) — Oguy(Bs, t — s)) ds
O(t—e)/\Tn
= / (2Au(By,t — s) — Qyu(Bs,t — s)) ds 4,
0

We then take expectation and use 2) to see that

u(x,t) = Eyu(Bu—oar,.t — (t — ) NT).
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Since T, =3 T by Exercise 4.2.4, we have by the bounded convergence theorem in the limit
n — oo that

w(z,t) = Bau(Byopng t — (t— ) AT) 2 Ey[u(By_c,e) it — e < T,
Finally, by taking the limit &€ — 0, we conclude 1) from the above displayed identity. \("c")/

Example 7.6.6 (The heat equation in a finite interval) Let hi(z) = ﬁexp <—§>
(reR,t>0),{=b—a,and
het(x,y) = Z(ht(:p —y—20n) — h(x+y—2a—20n)), z,y€eR.
nez
Then, for f € C([a,b]) with f(a) = f(b) =0,

b
1) E[f(B):t <Tu ATy = | bz, ) f(y)dy, x € [a,b], t > 0.

a

Proof: We denote the RHS of 1) by u(x,t). We will verify that
a) O =102u on (a,b) x (0,00),
b)  wu(a,t) =u(b,t) =0 fort >0,
o) ulz,t) =3 f(x) for z € [a,b).
Then, by the result of Example 7.6.5, the function u(x,t) is identified with the expectation on

the LHS of 1). It is easy to see that h"’(z,y) = 0 if x = a, b, which implies b). Now, we define
a continuous extention f : R — R of f by

~ [ f@) if x € [a,b] and n € Z,
flz+20n) = { —f(2a —z) if z € [2a —b,a] and n € Z.

Since f € C([a,b]) and f(a) = f(b) = 0, f is indeed a continuous extention of f. Note also
that f has the period 2¢. We will show that

2) u(w.0) = | " e — o) )y,

—00

which implies a) and c). 2) can be seen as follows.

/ ) fwdy = / (halar — y — 20n) — hy(e +y — 20— 2n)) f(y)dy

nez

- % ([ e —y—2mswrr s [ e~y —20m) 5120y
_ Z (/ ey 2mfy+ [ ey~ 2607 0) )

_ Z ([, mte=fdns [ e fi)

= [ hta=nFwy

\("a™)/
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Exercise 7.6.1 Suppose that f € C?([0,00) — (0,00)) is nondecreaing, convex, f(0) = 1,
and f'(0) = 0. We set

=f'/f, 92 =f"/[ and h(t,x) = f(t)" exp (=501 (t)[2]*), (t,z) € [0,00) x R7.
0
ah(t,x) = 1A.h(t,z) + Lz|Pga(t)h(t, ). ii) With ¢ > 0 and § € R
fixed, we define the process (Hy)o<s<t by Hs = h(t — s, By), where B is a BMg. Then,

s 1
H, = f(t)"¥? - / Hyg1(t —u)B, - dB, + 5/ H,go(t — u)|By*du, 0<s<t.
0

0
iii) Let Y; = exp (=3 [ g2(t — u)|Bu|?du). Then, the process (H,Ys)o<s<: is a martingale,
which implies that EY; = f( )~%2 In particular, taking f(t) = cosh(6t) (6 € R),

E exp (——/ | Bs| ds) — cosh(At)~%? (Cameron-Martin formula I).

Prove the following. i)

vi) Let Z, = exp( fo go(t —u)oy - dBu) where o is a continuous process with values in R¢
such that |o5| = |Bs| and o4 - B; = 0 a.s. for all s € [0,¢]. Then, the process (H;Zs)o<s<t is a
martingale, which implies that £Z, = f(¢)~%2. In particular, if d = 2 and A, = [, BldB? —
3 B2dBY, then, taking f(t) = cosh(6t) (9 € R),

Eexp (i0A;) = cosh(t)~! (Lévy’s area formula I).
Remark For d = 2, it follows from Cameron-Martin formula I and Exercise 7.2.2 that the r.v.
Jo |Bs|?ds (a > 0) has the same law as the exit time from the interval (—a, a) for a BMg. On

the other hand, By it follows from Lévy’s area formula I and Exercise 2.2.7 that A; ~ tcosiﬁ.

7.7 (%) Proof of Theorem 7.6.1

We start by stating a proposition, which the proof of Theorem 7.6.1 is based on. Let ¢t > 0 be

fixed. We divide the interval (0,¢] into I, ; = (tnj-1,tn;] (j =1,...,n) in such a way that
0=tno < tps <..<tpn=1t my, %2 max |I,;] =30, (7.43)
1<j<n

where |I,, j| = t,; — t, ;-1 Let H = (H;);>0 be a continuous process adapted to (F;);>o such
that,
sup |Hy(w)| < C < 0. (7.44)
(5,0)€[0,1] X2

To simplify the notation, we abbreviate

XH(tny), H(tnj), - ete. as X', Hy j,. .. etc. (7.45)
We also abbreviate
X = Xp 0, AL — AL, ete. as AX S AAD L ete. (7.46)

Then,
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Proposition 7.7.1 Referring to (7.45) and (7.46), The following convergences take place
in probability.
ZHn,j_lAX“ = / H,dX*", (7.47)
ZHW (AXE AXY ’H‘X’/ Hy,d( X", XV),, (7.48)
7j=1
\_ J

Proof of (7.47): Since

i H,j 1 AXY Z Z Hy / o dBS + i Hyj 1 AAL

j=1 a=1 j=1 n,j j=1

It is enough to prove that for each fixed p=1,...,m and a =1,...,d that
n t
1) > Hjo / o dBY "% / H,o™*dB% in probability.

g
and

n t
2) ZHn,j_lAAgvj"*—(’f / H,dA" as.

We erte oy = 0" B, = B* and A, = A" in what follows. we define H™ € £2 by
Hén) = ZHmj—l]‘[n,j (S), S € [O,t}

Then,

t t
the LHS of 1) = / H"o,dB,, the LHS of 2) = / HMdA,.
0 0
Therefore, the convergence 2) is a simple consequence of the uniform continuity of H, on the

interval [0,¢]. To see the convergence 1), we introduce, for m > 1, the stopping time

Tm:inf{szo /aiduZm}.
0

Then, for m fixed, the process o™ = oslis<r,y (s > 0) belongs to £, hence, by Itd’s isometry

(7.28) and the dominated convergence theorem,
t 2 '
/ (Hén) — Hs)agm)st =F {/ (Hﬁn) _ HS)Q(Ugm))2d8 s
0 0

Note on the other hand that, on the event {t < T,,}, o™ =g, for s € [0,¢]. Thus, for
arbitrary € > 0,
)

p(|[ore

< P (‘/ (H™ — Hs)agm)st' > g) + P(T,, > t).

3) E

t
/ (H™ — H,)o,dB,| >
0

0
By 3), the first probability on the RHS of the above display converges to zero as n — oo, while
the second probability converges to zero as m — oo. This proves 1). \("a™)/

To prove (7.48), we prepare the following lemma.
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Lemma 7.7.2 Suppose that (S;)7_, (So = 0) is a martingale w.r.t. a filtration (G;)7_,
and XJ’ = Sj — ijl-

a) If {S;}1_y C L*(P), then E[(Sy — 8;-1)°|Gj1] = > | E[X}|Gja] for j=1,...,n

k=j

b) If {S;}7_o C L=(P), then E (Z X2> <12 max ||S;]|%.

0<5<n

N J
Proof: a) We observe that if 1 < j <k < ¢ < n, then,

E[XpXi|Gj1] = E[X,E[X|Gr]|Gj-1] = 0

Therefore,

E[(Sn = 8j-1)*1Gj-1) = Y E[XpX0|Gj1] = ZE[Xszgjfl]-

k,e=j
b)
n 2 n
1) E (ZXJ?) =Y E[XIX]] ZE (X +2 > E[X}X]]
Jj=1 J,k=1 1<j<k<n

Let C,, = maxo<j<y ||Sj]|cc. Then, the first summatlon on the RHS of 1) is bounded from
above as follows.

DEG] = X B8 -8-1)°X]]
j=1 j=1

< 42y E[X?2] 24C?E (52 < CL.
As for the second summation on %}:16 RHS of 1),

> lux] - Sen Y x-S

1<j<k<n k=j+1

3y X2

k=j+1

2
X2E

|

\("a™)/
Proof of (7.48): For notational simplicity, we assume d = m = 1 and write accordingly
X, =M, + A, with M, = /t osdBs.
We will then prove that "
1) def ZH"J 1(AX,, ;) )2 THOO/ H,o2ds in probability.

7=1
After 1) is established, it is routine to obtain (7.48) in the case where d > 2 and/or m > 2.

Casel: We ﬁrst consider the case of A; = 0. It is clear from the dininition of ( M ) that

t
et N
= ZH”J 1AM ”—°>°/ H,o2ds a.s..
0

Therefore, 1t is enough to prove that

n—1

S B[S - 16,] <4023 B [X]

e

&

4C2E Sk ] <4C;,.
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2) I, — J, =30 in probability.
To do so, we introduce the stopping times

t
T, = inf{t >0 ; |Mt|+/ o2ds >}, (> 1.
0

Then,

t
MY M@EAT) = / 1(s<1y05dBs,
0

tA\Ty
(MO, — / o2ds < (.
0

Since T} 2% a.s., it is enough to prove 2), with M replaced by M with large enough .
For this reason, we may and will assume that both sup,., [M;| and ( M ), are bounded by a
constant ¢. Then, by applying Lemma 7.7.2 b) to the martingale (M, x)}_,, we have

3) E <i(AMn,j)2) <,

j=1
where C' € (0,00) is a constant independent of n. On the other hand, let

Xnj = (AMn;)* = A(M )i (j=1,...,n).
We then define

k
S0 =0, Spr = Huj1Xpj k=1,...,n.
j=1
It is easy to verify that (S, x)r_, is a martingale w.r.t. the filtration (F, x)}_,, and hence it
follows from Lemma 7.7.2 a) that

EL =[] = E[S;,]=) E[(Hij1X.,)*] <CY B[X7],
4) . j=1 ; j=1
< 20E |) (AM,;)*| +2CE Z(A<M>n,j)2].

Therefore, it is enough to show that two expectations on the RHS of 4) converge to zero as

n — 0o. The first one is bounded from above as follows.

E Z(AMM)‘*] < E[lgbaé(AMn,j)2Z(AMn,j)Q]
= = 57 1/2

< E [max (AMn,jf] " E (i(AMn,jV)

1<j<n .
Jj=1

3) 1/3
CY2F | max (AM,, ;)*

1<j<n
By the continuity of M and the bounded convergence theorem, the expectation on the RHS
of the above display vanishes as n — co. As for the second expectation on the RHS of 4),

D (A(M ),,)?
j=1

By the continuity of ( M ) and the bounded convergence theorem, the expectation on the RHS
of the above display vanishes as n — oo. This finishes the proof of Casel.

Case2: We treat the case of A; Z 0. We decompose

IN

E SE[max A<M>,m-<M>t].

1<j<n
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> Huj1(AX,)® = Y Huja(AM,,)?
5) J=1 Jj=1 . .
+2)  Hoj o (AM ) (AAw ) + Y Hog 1 (AA,)°.

j=1 j=1
By Casel, the first term on the RHS of the above display converges in probability to fot Hyd(X)s.
Therefore, it is enough to show that the other terms converge in probability to zero. Since the
process H is bounded on [0,¢] and the process A is of bounded variation on [0, ], the third
term on the RHS of 5) converges a.s. to zero. The second term on the RHS of 5) is bounded
by a constant multiple of

N n 2 o, 1/2
D IAM ) (AAL)| < (Z IAMnJIQ) (Z IAAn,jlz) :
j=1

j=1 j=1
The first summation on the RHS of the above display converges in probability to ( X );, while
the second summation converges a.s. to zero. Getting things together, we obtain 1). \("z")/

Proof of Theorem 7.6.1: Since all the terms in (7.41) is a.s. continuous in ¢, it is enough
to prove the formula a.s. for any fixed t. For x,xq € R™, let

F(x,xzg) = Fi(x,z0) + Fo(z, x0),
where

mof 02 f

Fiz,20) = ) 5 (w0)(a¥ —25), Falw,wo) = 5 ), 5 (wo) (! — ) (2" — ).

oz
p=1 pv=

For §, M > 0, let

p2(0, M) = 3 i SUP{

=1

L O S B
oxtox? x oxHtOx? o

sz — x| <0, \x|\/|x0\§M}.

By Taylor’s theorem, there exists a point x; on the line segment between x and z( such that,

f<x> - f(l’o) = 13 xo + 5 Z axﬂﬁxV - LL’g)(LL’V . IS)
= F(x, a:o)
a2f K Iz v v
i u; (8x“8x” ™) 3x”8mV(x0>> (" — zg)(z” — xp).

Therefore, if |z — x| < 0, and |z| V |zo| < M, then,
1) [f(z) = flwo) = F(z,20)| < pa(6, M)]a — o]

For t > 0 fixed, let
O0=tho<tp1<..<tpn=t

n—oo

be such that maxi<j<,(t,; —tn;—1) — 0. We write

Op,x = max |AX, ;|, Mx = sup | X

1<j<n <s<t

Then, it follows from 1) that
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n

F(X0) = F(Xo) = > F(Xpjo1, X))
2) n g n
D 1 (Xng) = F(Xnjo1) = F(Xn o1, Xo )| < pa(Gnx, Mx) Y [AX %

j=1

Since s — X is uniformly continuous on [0,¢], we have 6, x % 0, a.s. Then, since the
derivatives of f, which appear in the definition of py(d, M) are uniformly continuous inside the
closed ball with radius My, we have

3) p2(5n7X, Mx) 7H—O>o 0 a.s.
Let us assume for a moment that
4) all the first and second derivatives of f and are bounded.

Then, it follows from (7.47) that

ZFl(Xn,j—len,j) = ZZ%( n,j— 1)(AXM)

5) 7=l p=1 j=1
Py
= Z / Dt (Xs)dX! in probability.
=170 9T

n l n
*f v
ZFz(Xn,jA?Xn,j) = 3 Z W(Xﬂ,j*ﬁ(AXg,j)(AXn,j)
6) { ! pv=1 j=
s ol (Xs)d{ X!, X? )¢ in probabilit
2 IUIV:1 0 8]}“81’” S S S S p y7
and that
¢
7) Z\AXMP ZZ (AXE )P ™3> (X" X"), in probability.
pu=1 j=1 p=1

We can take a subsequence, along which the convergences 5),6) and 7) take place a.s. Thus,
by letting n — oo in 2) along the subsequence, we have (7.41) a.s.
We now get rid of the assumption 4). Let f, € C?(R™) be such that f,(z) = f(z) if
lz| <n+ 1. 1;hen, fort >0 ﬁxed
dif afn m 8f
I 8 (Xs)dXs - a (
In fact, since {sup5<t | X, <n} C {gﬁz( s) = gﬂ—{t(Xs) for all s <t},
P(I,#0)< P(Sup | Xs| >n) — 0.

,)dX" "% 0 in probability.
n—oo

Similarly,

. def ! ann (X )d(X“ XV> _/taQ—f(X )d(X“ X”> "% (0 in probabilit
o Oxrdzv ™ ° ’ * o Jo Oxrdzr ’ P "

We can take a subsequence, along which I, and J, converge to zero a.s. Thus, by applying
(7.41) for f,, and then by letting n — oo, we have (7.41) a.s. \("a?)/
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7.8 Girsanov’s Theorem and its Applications

Let B be a BM{ w.r.t. a filtration (F;);>0, (cf. Definition 7.1.1). Recall that the definition of
the class of processes £ and £2, from Definition 7.3.1. We now define

(L2 ) ={(H}, ..., Hs0; (H)s0 € L2, foralla=1,...,d}.

For H € (£2,)% we define (Dy(H))>o by

t 1 t
D,(H) = exp (/ H,-dB, — 5/ \HS\QdS) : (7.49)
0 0

where
t d t
/Hs.dBS:Z/ H*dB®.
0 a1 /0

a N
Theorem 7.8.1 (Girsanov’s theorem) Suppose that H € (£2_)?. Then,

a) The following two conditions are equivalent.
al) D.(H) is a martingale.
a2) There exists a measure Q) € P(, Fs) such that

Q(G) = ED{(H) : G] forallt >0 and G € F;. (7.50)

b) Assuming a2) above, the following two conditions are equivalent.
bl) D.(H + 0) is a martingale for each constant vector 6 € RY.
b2) Under the measure @, the process B satisfies the following integral equation,
t
B, =W, +/ Hds for allt > 0,
0
d

where W is a BMg and [, Hyds = (f(f H?ds) 1
- = J
Proof: a) al) = a2): Let I C [0,00) be a nonempty finite set, and let F; = {(B;)"*(H) ; H €
B(R!)}, where the map B; : Q — R’ is defined by B; = (By)er. Let also Q; be the measure
on (2, Fy) defined by Q;(G) = E[Dy(H) : G], G € Fr, where t > max[. Since D.(H) is
a martingale, the measure (); is independent of the choice of ¢ and it is indeed a probability
measure. Moreover, by the construction, the family {Q;} of all such measures are consistent

in the following sense. If I and J are nonempty finite sets of [0,00) and [ C J, then for all
H € B(RY),

Q((By) ' (H x RN)) = Q((B;) ' (H)).

Then, by the Kolmogorov’s extension theorem, there exists a uniquue measure Q) € P(£2, Fo)

such that for all nonempty finite set I C [0,00), Q(G) = Q/(G), G € F;. The measure @
satisfies (7.50), since F; C Fp,, for any ¢ > 0, and F,, is generated by F;’s with I C [0,¢+1].
a2) = al): This follows from Example 4.3.2.

b) Let

t
W, g, / Hods, go(w,t) = exp(f-x —t|02/2) (6,2 € RY, ¢ > 0).
0
Then,
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t 1 t t t|9|2
Dy(H+0) = exp(/H-dB —|—9-Bt——/ |H,|*ds — /0 H5d3—7>

1 e

= Dt(H)Qe(Wm )
Thus bl) is equivalent to
1) E[Di(H)ge(Ws,t) : Gl = E[Ds(H)gg(Ws,s) : G] for all 0 < s <t and G € F.
By (7.50), 1) is equivalent to
2) E9gg(Wy,t) : G] = E9gg(Ws,s) : G] for all 0 < s < t and G € F,.
By Proposition 7.1.2; 2) is equivalent to that W, is a BMg under the measure @), and this is
equivalent to b2). \("a™)/

As a special case of Theorem 7.8.1, where the process H is nonrandom, we obtain the
following

\
Corollary 7.8.2 Let h € C'(|0, oo) — R%). For a BM? denoted by B, we set
Dt(h):exp</ B——/|h |ds)
Then,
a) There exists a measure Q) € P(), Fo) such that
Q(G) = E[Dy(h) : G] for allt >0 and G € F;. (7.51)
b) Under the measure @,
¢
B, =W, +/ h(s)ds for allt >0, (7.52)
0

where W is a BM and fo s)ds = (fo h*(s ) N
N - Y,

Proof: Let # € R? be arbitrary constant vector. Then, by applying Exercise 7.4.1 to h + 6,
we see that D.(h+0) is a martingale. Then, this corollary follows from Theorem 7.8.1. \("c")/
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Corollary 7.8.3 Let p € C?*(R? — R) and suppose that there exists C € [0,00) such that
p(x) < C(L+z]), Ap(z) = —C(1+ |z]).
for all x € RY. For a BMg denoted by B, we set

Dute) = | o) s [ V(B ds )

Then,
a) There exist a measure @ € P(Q), Fo) such that
Q(G) = E[Di(¢) : G] forallt >0 and G € F;.

b) Under the measure Q, the process B satisfies the following integral equation.
B, =W, + /t V(Bs)ds forallt >0,
where W is a BM{. '
c) Fort > 0, set Ay = %/Ot (IVe(Bs)|? + Ap(B,)) ds.  Then, for all measurable F
(RO — [0, 00),

Elexp (9(B,) — ¢(0) = A) F(B)] = EY[F(B)], (7.53)

L Elexp (—=A) F(B)] = E?exp (9(0) — ¢(By)) F(B)] . (7-54)j
Proof: a),b): By applying Exercise 7.4.2 to the function ¢(x) + 6 - x, we see that the process
H; = Vp(B;), t > 0 satisfies the condition bl) of Theorem 7.8.1. Thus the assertions a) and
b) of this corollary follows from Theorem 7.8.1.

c) It follows from (7.50) that

Elexp (p(By) — 9(0) — A) F(B)] = E [Dil¢) F(B)] = E2[F(B)]
Replacing F(B) by exp (¢(0) — ¢(By)) F'(B), we obtain (7.54). \("a™)/

Example 7.8.4 Let B be a BMS. Then, for any ¢t > 0, tht € R and measurable function
f iR = [0, 00),

E {exp <—%2 /0 t|BS|2ds) f(Bt)} — cosh(0) B [f(r(t) 2 X)]

(Cameron-Martin formula IT),
where X is a r.v. with d-dimensional standard normal distribution and 7(¢) = tanh(6t)/6.

Proof: Since the both-hand sides of the equality to be shown are even in 6, it is enough to
prove it when 6 > 0. Let ¢(z) = —£[z|*> < 0 (z € R?). Then, Vi(z) = —0z, Ap(z) = —0d.
Thus, by applying (7.54),

E [exp (-%2 /Ot |By|*ds + dT(%) f(Bt)] = EY [GXP <§|Bt\2> f(Bt)]>

and hence

) E {exp (—%2/0t|35|2d5> f(Bt)} ~ exp (—%) o {exp @Bﬁ) f(Bt)}

The process B under the measure () satisfies the following integral equation.
B, = Wt+9/tBsds,

where W is a BM(I).OThis integral equation can be solved w.r.t.X, which gives
By = W, — O exp(—0t) /t exp(0s)Wds.

0
Then, it follows from the above expression and Exercise 6.1.5 that B, is a mean-zero Gaussian
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r.v. such that

cov®(BY, BY) = 0(t)84,5 with o(t) =
Note that

1/(c(t)™" — 6) = tanh(6t) /0 = 7(t) and o(t)/7(t) = exp(—0t) cosh(6t).
Therefore,

ok [exp (Gm2) 10| = @ro)y [ e (-5 (o0 ~0) |a:|2) f(a)ds
s

— (o)) enr () [ e (355 ) Sy

= exp (dTHt) cosh(6t)"4?E [f(T(t)l/zX)}.

1 — exp(—26t)
20 '

Plugging this into 1), we obtain the desired equality. \("a™)/

7.9 The DDS Representation Theorem

In what follows, we let B denotes a BM{ w.r.t. a filtration (F;)s>0, cf. Definition 7.1.1.

4 , N
Proposition 7.9.1 Let M, = fo os - dB be a local martingale generated by B (Definition
7.5.1), where o € (L2,)%. Then,

t
D, ¥ exp(Mt—§<M>t)=1+/ D,0, - dB,,
0

a) ¢
& ¥ exp(th+%(M>t):1+i/ .0, - dB,.
0

In particular, Dy and &, are local martingales.
b) Suppose that there exists tg > 0 such that
Eexp ( sup |MS|) < 00
0<s<tg
Then, (Dy)o<t<t, s a martingale.
c) Suppose that there exists to > 0 such that

1
Eexp (5( M >t0) < oo (Novikov’s condition).

Then, (E)o<t<t, 1S a martingale.

\_ J
Proof: a) To prove the first equality, we apply 1to’s formula II to a function f(x,y) = exp(z —
2y) of (z,y) € R?, and the process (M, ( M );). Then,

D, - 1+/0 %(Ms,<M>s>cuws+/0 %<M5,<M>s>d<M>s
>s

+ /a£2(M (M ),)d( M

t
= 1+/DdM——/Dd +%/Dsd<M
0

= D,o, - dB,.

0
The proof of the second equality is similar.

b) Since D, is a local martingale, it is enough to verify the condition of Exercise 7.3.1. Note
that ( M ), > 0, and hence
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D; < exp ( sup |MS|> c L*(P).

0<s<tg
Therefore, by Exercise 7.3.1, (D;(M))o<t<t, is a martingale.
c) Since & is a local martingale, it is enough to verify the condition of Exercise 7.3.1. For
t S tOJ
1 1
= e (30000 <o (301, ) € L1(P)
Therefore, by Exercise 7.3.1, (&)o<t<t, i a martingale. \("a?)/

Remark: It is known that Novikov’s condition also implies that (;(M))o<i<s, is a martingale.

Setting 7.9.2 Let M/ = fot o -dB (p = 1,...,m) be local martingales generated by B
(Definition 7.5.1), where o* € (£2,)* (u=1,...,m). We consider the process My = (M}')}_,,
t > 0 with values in R™.

Let M be defined in Setting 7.9.2. Then, for § € R™, the inner product 6 - M, is again a
local martingales generated by B. Applying Proposition 7.9.1 to 6- M;, we obtain the following

Corollary 7.9.3 Let M be defined in Setting 7.9.2 and 6 € R™. Then, the following
processes are local martingales generated by B.

exp (0-My—3(0-M),), exp(if-My+3(0-M),).

By combining Proposition 7.1.2, Proposition 7.1.3, and Corollary 7.9.3, we obtain

-
Corollary 7.9.4 (Lévy’s chracterization of the Brownian motion) Let M be defined

in Setting 7.9.2. Then, the following conditions are equivalent.

a) M is a BM{';

b) (M{M} — §,.t)t>0 is a local martingale for all v =1,...,m;

c) {of'}jL, are a.s. orthonormal (o} - of = 0,,, pr,v =1,...,m) for all t > 0.

/

Proof: Hint: a) = b):This follows from Proposition 7.1.3.

b) = c):Suppose b). Then, it follows from Lemma 7.5.2 that ( M*, M" ), = ¢,,t, for all
w,v =1,...,m, which implies c).

c) = a): It follows from the condition c¢) that ( M*, M" ), = 6,,t, and hence by Corollary

7.9.3, exp (i@ - M, + @) is a martingale. Thus, a) follows from Proposition 7.1.2.  \("z")/

Example 7.9.5 (Bessel process) For a BMZ, denoted by B, the following process is a BM.
t
B = / |Bs|™'B, - dB,, t > 0.
0
Moreover, for d > 2, p > 0, and t > 0,

t d o 2 t
IB,JP = p / |B,|P~2B, - dB, + % / | B,|P~2ds, (7.55)
0 0

o(|Bs|; s <t)=0(Bl; s<t). (7.56)

s

Proof: Since the process (|By| ™' By)i>0 € (£2,)? cosists of unit vectors, it follows from Corollary
7.9.4 that BY is a BMj. We next turn to (7.55). We first verify that two integrals on the
RHS are well-defined. Indeed, it follows from Exercise 6.1.4 that |B.[P72B* € L*([0,t] x Q)
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(@ = 1,2) and [B.[""% € L'([0,#] x Q). Therefore, the stochastic integral [} |B,[?~2B; - dB,
and the integral f(f | Bs|P~2ds exists. We would like to apply It6’s formula to conclude (7.55).
However, for p < 2, the function |z|? fails to be twice differentiable at x = 0. To circumvent
this obstacle, we fix 0 < b < a < oo and define
Se =1nf{t > 0; |B| > a}, T,p=inf{t >0; |B(t+S,)| < b}.

Then, (Fs,..) is a filtration w.r.t which B(S, +-) is a BM?, and T, is a stopping time. Note
that, outside the closed ball |x| < b, the function |z|? is smooth. We apply 1t6’s formula
(Theorem 7.4.1) to this function and the stopped Brownian motion (B(S, +t A Typ))e>0 to

obtain
|B(Sq +t ANTop)|?

Sa+tAT, b d -9 Sa+tATyp
1) = |af? +p/ |Bs[P 2B, - dB, + %/ |Bu|P2du, t>0.
S, Sa

Then, we see from 1) with p =1 and Lemma 7.9.8 that
2) o(|B(Sa+sATop)|; s <t)=0 (BT (Sa+sATup) — B (S.); s <t).

We now let b tend to zero. then, T, ' 0 as. Consequently, it follows from 1) and 2) that
Sa+t Satt

d —2
|B(Sy + )P = |al? +p/ |Bs|P 2B, - dB, + %/ |Bu|P"2du, t >0,
Sa Sa
o(|B(Sa+s)|; s<t)=0(B"(S.+s)—B(S,); s <t).
Then, by letting a tend to zero, and noting that S, 229 0 a.s., we obtain (7.55) and (7.56).
\("a™)/

Finally, we present the following representation theorem due to Dambis, Dubins, Schwartz
(for m = 1) and Knight (m > 2).

~
Proposition 7.9.6 (The DDS Representation Theorem) Referring to Setting 7.9.2,
suppose that for all u,v=1,...,m,

of ~of =0 a.s. fort>0, (7.57)
/ |o¥|2ds = oo a.s. (7.58)
0

Then, there exist m independdent BM(I) 's denoted by WH, (u=1,...,m) such that for all
p=1....mandt >0,

¢
Ml =WH((M"),), where ( M*), = / ot 2ds. (7.59)
0

More precisely, W#, (n=1,...,m) are defined as follows.

Wi = M#H(t), where TH(t) =inf{s > 0; (M")s > t}. (7.60)
\_ J
Proof: Stepl: We first prove that the process W* defined by (7.60) is continuous and satisfies
(7.59). The coordinate p is fixed throughtout Stepl and hence is dropped from the notation.
We write A; = ( M ); for simplify the notation. Define
S(t)=inf{s >0; (M), >t} and T(t) =inf{s >0; (M ), > t}.
Then, they have the following properties.
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1) S(-) (resp. T(+)) is left-continuous (resp. right-continuous).
2) Forallt >0, S(t) <T(t), (M)swy = (M )re =t, S(t) =T(t—). Moreover, S(( M );) =
T((M );) =t, since ( M ). is continuous.
3) For all t > 0, S(t) and T'(t) are stopping times.
We have Wiy, = My my,) = M; by 2). Thus, it only remains to prove that W is continuous.
W is right-continuous, because of the right-continuity of T'. Its left-continuity can be seen as
follows. Let ¢ > 0. Then, (M )gu@) = (M )@ =t by 2). This implies, via Exercise 7.3.2 that
Mgy = M@, and hence
Wi = Mrpq—y = Msyy = Mry = Wi
Step2: We next prove that W#* (u = 1,...,m) are mdependent BMYs. By Stepl, the
process W is continuous each p = 1,...,m. Therefore, it is enough to show that for each
fixed 1 < p < v < m, the process (W*, W") is a BMj. Thus we assume henceforce that m = 2
and set A, = ( M'); V ( M?);. Then, it is not difficult to see that
4) T) < T v T2(t) = inf{s > 0; A, > t}.
Then, W = (W', W?) is continuous and adapted to the filtration (Fr(.)). Therefore, by Propo-
sition 7.1.2, it is enough to prove that, for all § € R?,
5) &£(0) def exp (0 W, + —|9|2t), t > 0 is an (Fp())-martingale.
For s > 0, A, is an (Fr()-stopping time. Moreover, it follows from 4) that T'(t A A(s)) =
T(t) A s. Therefore, for = 1 2,

(t)As
WH(t A A(s Z / ot dBY = Z / {u<r@ ol ®dB.
0

The above display shows that with ¢ > 0 fixed, the process N‘” W“(t N A(s)), s > 01is an
(F.)-local martingale generated by B with the quadratic variation

<N“t,NVt>S = / 1{u<T(t) - 0 du-éuy/ 1{u<T }|O‘M| du
0
= 5u,uA(T(t)/\8) = O (t N A(s)).
Hence,
2
1
; _ ty N2
i0 - W(t A A(s)) + |ey t A Als 129 N §ZQM9V<NM NV,

pn=1
It follows from the above display and Corollary 7. 9 3 that

6) Einas(0), s >0
is an (F.)-local martingale. Moreover, since |Eaacs)(0)| < exp(|0]*t/2), the process 5) is a
bounded (F.)-martingale. Therefore, by applying the optional stopping theorem to the mar-
tingale 6) and the pair T'(s) < T'(t) of stopping times, we obtain

E[E(0)|Fr(s)) = ElEinaw)(0)|Fre)] = Enawres) (0) = E(0),
which proves 5). \("0™)/

Example 7.9.7 (Stochastic area, revisited) Let B be a BM3 and
t
AP = / |BIP~2(B2dB! — BldB?), p> 0.
0
In particular, A® is the stochastic area (Exercise 7.6.1). Then, there exists a BM(l), denoted

by X such that
t
AP = X (/ |BS|2”‘2ds), t>0.
0
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Moreover, for 0 € R,

B [exp (1049) 177] = g
p (104" ) | F; = exp |~ | Bs|*P™ds |, (7.61)
0

E [exp (iQ.AgQ))] = cosh(0t)™ 1, (7.62)

where Fj?l = o(|Bs|; s <t).
Proof: Let B} = [} |B,|~"(BdB! + B2dB2), t > 0. Then,
(AP, = /t |B,|*~2ds, ( Bt ), = t, and { A® Bt), =0.
Therefore, by Proposition 7.9?6, there exist independent BM}, denoted by X and Y such that
AP = x (/t ]BS|2p2ds> and B =Y, ¢t > 0.
0

In particular, X is independent of BT. On the other hand, we know from Example 7.9.5 that
o(Bf : s<t)=F"
Therefore X is independent of |B|. As a consequence,

t
E[exp (imgm) |ft‘B‘] — E{exp (iGX ( / Ilezp‘st))lﬂ'B}
0

92 t 2y
= oxpl| -3 | Bs|P7%ds ).
0

This proves (7.61). For p = 2, by taking the expectation of both-hand sides of the above
display and recalling Example 7.8.4, we obtain (7.62). \("o?)/

Remark See Exercise 7.9.1 for a generalization of (7.62).

Complement
a _ N
Lemma 7.9.8 Suppose that X and Y are continuous process with values in R?, that b :

R? — R? is a bounded Lipchitz continuous function such that
t

(%) Y, = X, +/ b(Ys)ds for all t > 0.

0
Then, FX =o(X,; s <t) and FY = o(Ys; s <t) are the same for all t > 0.

N J

Proof: Since X; =Y, + f(f b(Y,)ds, it is obvious that F;¥ C F}. The opposite inclusion can be

shown by express the process Y as a limit of Picard approximation as follows. Let Y;(O) = X,

t >0, and for n > 1,

t

Yt(")—XmL/ b(Y " DYds, t>0.

s

0
Then, by induction, it is easy to see that there exists a constant C' such that

ct)n
sup |ys(n) — ys(n—l)| < #7
s<t n:

which implies that the processes y () converge locally uniformly, and hence that the limit, say
Y, solves the equation (x). Then, Y =Y, since the soltion to the equation (*) is unique, as

can easily be seen from the Gronwall inequality. Since .7-?7 C FX by the way Y is obtained, it
follows that FY = FY c F~. \("a™)/
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Exercise 7.9.1 Let f : R?> — R be bounded and Borel measurable. Prove the following. i)
Suppose that a function F : (R?)(?>) — R satisfies the following properties. F'(B) € L'(P)
for each BM? denoted by B, and that F(R(a)B) = F(B) as. for all a € R, where R(a) =
(cqsa fsina)' Then,

sSin @ COS &

E[F(B)(B)] = E |E[F(B >| F T8,

where FJPl = =0(|B,|; s <t) and f(z) = + 7 f(R(a)z)da. Hint: For all o € R,
E[F(B)f(B)] = E [F(R(~a)B )( )]—E[F(@f(R( a)By)] .
Hence, E [F(B)f(B;)] = [ (B) f(Bt)} Moreover, f o R(a) = f. ii) The formula (7.62) can

be generalized as follows.
E [exp <i9,4§2)> f(Bt)] = cosh(0t)"LE [f(r(£)/2X)],

where X is a r.v. with 2-dimensional standard normal distribution and 7(¢) = tanh(6t)/6.
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8 Appendix to Section 1

8.1 Some Fundamental Inequalities

~
Proposition 8.1.1 (Hoélder’s inequality) Suppose that (S, A, ) is a measure space, and

that p,q € (1,00), %—f— % = 1. Then, for f € L*(u) and g € LY (p),

[ 1salan < ([ 1svan) " (/ tlean) " (5.1)
J

Proof: We recall that for s,t > 0,

sP e
1) st < — 4 —.
p q

Thus, for € > 0,

|fy] 1) | fIP lg|?
2 .
) T el w9 = 5 =27 aligl, 9
Therefore,
| S Il
d
T Tl +2) /g'f gl < i, + o7 T allglly + e =

Multiplying the both hands sides of the above inequality by (||f|l, + €)(|lg|l; + €), and letting
e — 0, we get (8.1). \("a™)/

Proposition 8.1.2 (Jensen’s inequality) Let [ C R be an open interval and ¢ : I — R
be conver. Suppose that X be a r.v. with values in I such that X, p(X) € L*(P). Then,

p (EX) < E[p(X)]. (8.2)

Proof: Let m = EX. As is well known, for y € I, the limit

aef 1o oy +h) —oy)
h—0 h

h>0

¢ (y)

exists and is non decreasing in y. Moreover,

o(x) > o(y) + ¢\ (y)(x—y), forallz,y e I

Thus,
p(X) =2 e(m) + ¢y (m)(X —m), as.

By taking the expectation, we have that
Elp(X)] = p(m) + ¢ (m)(EX —m) = p(m).
\("a")/
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8.2 Polar Decomposition of a Matrix
Notation:
e S, denotes the totality of symmetric, non-negative definite d x d real matrices.
e (O, denotes the totality of d x d real orthogonal matrices.
e For a real matrix A, A* denotes its transposition.
We recall that for a symmetric, d x d real matrix S, there exists a U € O, such that
SU=UD(s1,...,84), (8.3)

where s; > ... > s4 are eigenvalues of S and D(sy,...,84) = (saéa,ﬁ)ﬁﬂzl. Let uq,...,uq be
column vectors of U, so that U = (uy,...,uq). Then, (8.3) reads

Stg = Salleq, a=1,...,d. (8.4)

Lemma 8.2.1 For S € S, there exists a unique R € S such that S = R*. The matriz
R is called the square root of S and is denoted by V/S.

Proof: We take U € O, so that (8.3), or equivalently (8.4) holds. Note that s, > 0 («
1,...,d).

Existence of R: R aof UD(\/51,...,+/5a)U" satisfies the desired property.

Uniqueness of R: Let R € 8] be such that S = R%. We will show that

1) Ruy = /Sala, (@ =1,...,d),
which implies that R = UD(\/s1,...,/5q)U*. If 5, = 0, then Ru, = 0, since
|Rug|? = Rug - Rug = Stg - Uq = Sq|tia]® = 0.
Suppose on the other hand that s, > 0. Then,
(R+ /5a)(R — \/5aI) = R? — 5,0 = S — 5,1,

and hence
2) (R4 /sal)(R — \/5al)uq = 0.
R+ /541 is strictly positive definite and hence invertible. Thus, 2) implies 1). \("a™)/

For d, k € N\{0}, we define a subset O, of d x k real matrices as follows.

The colomn vectors of V' are orthonormal, if d > k,
Ve (9(171C <~

The raw vectors of V' are orthonormal, if d <k.
4 N
Lemma 8.2.2 Let V € Oyy.
d>k — V'V = Ik, (VV* — Id)|RanV = 0, (85)
d<k = Ran(V'V —I) C KerV, VV* =1,
UeO, = VUe€ Oyy.
\_ J
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Proof: (8.5): The first identity is equivalent to the definition of Oy for d > k. Using the first
identity, we have
(VVIV =V(V*V) =V, = 1,V,
which implies the second identity.
(8.6): The second identity is equivalent to the definition of Oy for d < k. Using the second

identity, we have
V(V*V)=(VVHV = [,V = VI,

which implies the first identity.
(8.7): Let uy, ..., u, € R* be the column vectors of U and vy, ...,vg € R¥ be the raw vectors of
V*. Then,

VU =V (uy,...,ur) = Vuy, ..., Vug), (VU =UV*=U"(v],...,v5) = (U vy, ..., U"0}).
For d > k, we have V*V = I and hence for o, =1, ..., k,
Vg - Vug =V Vuy - ug =g - ug = o 3.
Thus, the column vectors of VU are orthonormal. For d < k, we have v}, - v = 04, for

a,B=1,...d,
Utv, - Utvy = UU v, - v = v, - vy = g -

Thus, the column vectors of (VU)* are orthonormal, i.e., the raw vectors of VU are orthonor-

mal. \("o™)/

Lemma 8.2.3 Let A be a d x d real matrix, sy > ... > s be the eigenvalues of A*A, and
D = D(\/51,...,+/5k). Then, there exist U € Oy and V € Oqy, such that

AU = VD, (8.8)

. I 0 .

VVo= (61 0) if d < k. (8.9)
_ J

Proof: Let S = A*A, and we take U € Oy so that (8.3), or equivalently (8.4) holds. We then
note that for a, 5 =1,...,d,

1) Au, - Aug = Sty - ug = Sala.p-

Let m & max{a ; s, > 0} =rank S < d A k. Then, we see from 1) that

def
Vo = Aug/\/5a ERY, a=1,....m

are orthonormal and that Au, = 0 for « > m. If m = dAk, then, vy, ..., vgr, are orthonormal.
If m < dA k, then, we add orthonormal vectors U1, ..,V € R? so that v, ..., va
are orthonormal. In particular, if d < k, we define v4.; = ... = v = 0. Finally, we set

V = (v1,...,v). Then, V € Oy and Aug = /5,40, for all a = 1,..., k. Therefore,

AU = (A, ..., Aug) = (5101, - .., v/5i00) = VD,
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Remark: Referring to Lemma 8.2.3 and its proof, we see that rankA*A = m and RanA =
D", Ru,, and hence rankA* A = rankA. By interchanging the role of A and A*, and recalling
that rankA* = rankA, we have rankAA* = rankA* = rankA = rankA*A. Combinning
this with obvious inclusions RanAA* C RanA, RanA*A C RanA*, we obtain also RanA =
RanAA*, RanA* = RanA*A.

\
Proposition 8.2.4 Let A be a d x k real matriz, Q € S, and \/Q be the square root of

Q) (Lemma 8.2.1). If d < k, then
Q= AA* <= There exists T € Oy such that A = /QT.

If d > k, then

Q= AA" < There exists T € Oqy, such that A =+/QT and Ran@) C RanT.
)

Proof: We treat the two cases (d < k and d > k) at the same time.
(=) For A, we take U € Ok, V € Oy and D as in Lemma 8.2.3. Then,

1) A=VDU* and A* =UDV™,
and hence

2) Q= AA* =V DV~

We verify that

3) D =DV*V.

This is obvious if d > k, since V*V @2 I,. If d < k, then, as is mentioned in the proof of
Lemma 8.2.3, s, = 0 for a > d, and hence by denoting Dy = (\/3050675);1’5:1,

prv S (D050 )= (0 0)=»
We use 3) to prove that

4) /@ =V*DV.

Note that VDV* € 8. Thus, by the uniqueness of the square root (Lemma 8.2.1), it is
enough to show that Q = (VDV*)2,

(VvDV*)2=vDVvDvrLvpr 2.

Finally, with T aof

(8.7)
VU* € Od,ka
A2 vpu-2vpvve 2 \/Qr.

_aAr 1
Moreover, if d > k, then Ran() Q=AY RanA C RanV = RanT.
(<) We verify that
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5) VO = TT*\/Q.
(8.6)

This is obvious if d < k, since TT* "=" I;. Suppose that d > k. Then, Ran) C RanT by

the assumption. Moreover, Rany/Q = Ran(), as can be seen from the proof of Lemma 8.2.1.

Thus, Ran/Q C RanT. Since (TT* — I)|Rrant %2 0, we have (T'T* — 13)|ranyg = 0, which

implies 5). Using 5) we conclude that

AX = QTTVQ 2 (VO = Q.
\(*s)/

8.3 Uniform Distribution and an Existence Theorem for Independent Random
Variables

To define a random walk (cf. Definition 3.1.1 below), we will need countably many independent
r.v’s. A question?® then arises: “Do such independent r.v’s exist?” This subsection is devoted
to answer this question. Throughout this subsection, we fix a probability sapce (€2, F, P) and
r.v. U with the uniform distribution on [0,1), i. e., P{U € B} = [, dt for all B € B([0,1)).
The simplest example is provided by 2 = [0,1), F = B([0,1)) and U(w) = w. We will prove
the following existence theorem for independent r.v.’s;

Proposition 8.3.1 Consider a sequence of probability spaces {(Spn, Bn, ttn) }n>1 where for
each n, S, is a complete separable metric space and B, is the Borel o-algebra. Then, there
is a sequence of independent r.v.’s {X,, : @ — S, }n>1 such that p,(B) = P(X,, € B) for
alln>1 and B € B,,.

Remark: Proposition 8.3.1 can be considered as a special case of Kolmogorov’s extension
theorem (See e.g., [Dur95, page 26 (4.9)] for the case S, = R?). Kolmogorov’s extension
theorem is so powerful that it allows us to construct not only independent r.v.’s but also any
r.v.’s which exsit at all. However, the proof usually requires another extention theorem in
measure theory (e.g., Carathéodory’s extention theorem). Here, to make the exposition more
self-contained, we restrict our attention only to independent cases and give an elementary
proof of Proposition 8.3.1 without relying on any big theorem from measure theory.

We begin with examples:

Example 8.3.2 Let us now construct an i.i.d. sequence {U, },>1 of [0, 1)-valued r.v.’s with the
uniform distribution. By Example 1.9.4, there is an i.i.d. sequence {X,, s }nr>1 of {0, 1}-valued
r.v.’s with P{X, , = 1} = 1/2. We define {U, },>1 by

Up =Y 27" X4

k>1

Then, each U, is uniformly distributed by Lemma 8.5.1. Moreover, {U,},>1 are independent
by Exercise 1.6.9.

24This may be a question which a physicist would not care about. Those who do not worry about this
question can skip this subsection.

263



To prove Proposition 8.3.1, we will use Example 1.9.4, Example 8.3.2 and the following
lemma.

Lemma 8.3.3 Suppose that (S, B, i) is a probability space where S is a complete separable
metric space and B is the Borel o-algebra. Then, there is a measurable map ¢ : [0,1) — S
such that

P{o(U) € B} = u(B), forall B € B, (8.10)

where U : Q — [0,1) is a uniformly distributed r.v.

\_ /
Lemma 8.3.3 is quite surprising in the sense that it claims any r.v. with values in a complete
separable metric space can be constructed just by using a single uniformly distributed r.v. The
proof of Lemma 8.3.3 will be presented in subsection 8.4.
We now prove Proposition 8.3.1.

Proof of Proposition 8.3.1: Let {U, },>1 be [0, 1)-valued r.v.’s with the uniform distribution
constructed in Example 8.3.2. For each p, € P(S,,B,), we can find a measurable map
¢y 2 [0,1) = S, such that P{p,(U,) € -} = u, by Lemma 8.3.3. We also see that {¢,(U,)}n>1
are independent since {U,},>1 are. Therefore the r.v.’s X,, = ¢,(U,) (n > 1) have desired
properties claimed in Proposition 8.3.1. \("a")/

Exercise 8.3.1 For i € P(R, B(R)), define

f(S) - ,u(—oo,s], s €eR,
1) = inf{seR |t < f(s)}
= sup{seR| f(s)<t}, teR.

Prove the following; (i) f(s) is right-continuous at any s € R. (ii) f~*(¢) is left-continuous at
all t € (0,1). (iii) For s e Rand t € (0,1), f='(t) < s <=t < f(s)

Exercise 8.3.2 Let pu, € P(R,B(R)) (n =1,...) be a sequence of probability measures. Use
Example 8.3.2 and Exercise 8.3.1 to construct a sequence of independent r.v.’s X,, : 2 — R such
that P(X, € -) = p, for all n > 1. Hint: Define f,(s) = p,(—00,s] and ¢,(0) = (f.)=*(0).
Then, for all s € R,

P{pn(Un) < s} = P{Un < fu(s)} = fu(s).

Then, recall Exercise 1.3.2.

8.4 Proof of Lemma 8.3.3

The proof of Lemma 8.3.3 is not very difficult and the argument involved there is a rather
standard way to take advantage of the completeness and the separability of the metric space
S. However, the proof may look a little complicated at first sight. We therefore present also
a proof for the case of S = R?, which is less abstract and which is the only case we need in
this course. The proof for this special case might be useful to understand the idea behind the
proof of general case.

Those who are interested only in the case S = R? can skip the proof for the general case.
On the other hand, it is also possible to skip the proof for the case S = R? to proceed directly
to that in general case.
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Proof of Lemma 8.3.3 in the case S = R%:
Step 1: We begin by constructing a sequence of intervals (in R?)

Qs D Qsysy DD Qspovsyy D -y

inductively, where the running indices s1, S, . .. are diadic rational points. As the first step of
the induction, we find a subset C' C 27!Z% and disjoint intervals {Q, }s,ec such that

Qs, > s forall sy eC,

W(N) = 0, where N S\ Uycc Qs (8.11)

w(Qs,) > 0, forall s €C.
In fact, this can be done just by setting
Qu = TIlsl, sl +271), forsi = (s}, € 2712,

J=1

C = {s5€27'Z%; u(Q,,) > 0}. (8.12)

The second step of the induction is as follows. For each s; € C', we repeat the same argument
as in the first step of the induction to find a subset C(s;) C Q,, N272Z% and disjoint intervals
{Qs, 52 }suec(sr) with the side-length 272 such that

Qs;, DO Qgs, D5y forall sy € C(sy),

def.
,U(NSJ = 07 where NS1 = Qsl\USQEC(sl) Qshsga

w(Qsys,) > 0 forall s € C(s1).

Suppose as the n'' step of the induction that we have an interval Qs,..,, with non-zero pu-
measure and the side-length 27" for s, € C, ..., s, € C(s1-+-8,_1). Then, we can find
C(s1+++8n) C Qgyosy, N2 MHVZd and intervals Qy,..s,,, for s,41 € C(s1+--s,) such that

Qsrosp D Qsisnyy D Sng1 for all s,40 € C(s1,...,8,). (8.13)

def.
p(Nsy.s,) = 0, where Ny sy = Qsoos,\ Us,i1€0(s1,.05m) @sresmpn s (8.14)

P(Qsyesnyy) > 0 forall s,11 € C(sq,...,8,).
Step 2: We next construct a sequence
I, D1y, Do D g, Deey

of sub-intervals of [0, 1) with positive lengths, where I, .., corresponds to Qs, ..., in a way as is
explained below. We first split [0, 1) into disjoint intervals {Ig, }s,ec with length | I, | = u(Qs,)
for each s; € C. Then, for each s; € C, we split I, into disjoint intervals {/, s, }s,cc(s;) With
length |[;, s,| = 11(Qs, s,) for each so € C(s1). We then inductively iterate this procedure to
get {I,..s, } such that

[07 1) = Usleclé:‘l’ (815)
[51“‘577.—1 - Usnec(sl7~--’3n—1)[51“‘5n7 (8'16)
Lopsn] = 1(Qsyos,) (8.17)
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Step 3: We now define ¢, : [0,1) — S by
on(0)=s, if0el. .
Let us check the following;

n[0,1) — S is well defined and measurable for all n > 1. (8.18)
( n(0))n>1 is a Cauchy sequence for for all 6 € [0, 1). (8.19)

By (8.15) and (8.16), any 6 € [0,1) belongs to a unique interval I, .., . Therefore, ¢, is well
defined. The measurability is obvious, since ¢,, is a constant s,, on each measurable set I, .., .
To see (8.19), just observe that

Pmtn(0) € Qo1 (0),.omin(6) C Qipr(0),...0n(0)

and hence that

|90m+n(€) - @n(9)| < 2_n\/c_l.

Step 4: By, (8.19) and (8.19), we can define a measurable map ¢ : [0,1) — R? by ¢(0) =
lim,, 00 n (@) for all @ € [0,1). Let us see that ¢ satisfies (8.10). To do so, define a set

Ny = Un>1 Us,ec USQEC(Sl) .. UsnGC(s1 ..... $n_1) NU N51 U N5132 J...uU Nsl._,sn

which is p-measure zero by (8.11) and (8. 14) Moreover, for each z € RN\ Ny and n > 1,
there is a unique Q,, ., such that r € Q,, . Therefore, for any f € C,(R?) we can define
function f, : R\ Ny — R by

=D D > [z e )

51€C s2€C(s1) sn€C(81,..-,8n-1)

,,,,,

We see that
lim f,(x) = f(x) for all x € S\ Ny, (8.20)

n—oo
since |x — s,| < 27"Vd if x € Qy, s, . Therefore,
Ef(e(U)) = lim Ef(pn(U)) by definition of ¢,
n—o0

= TLILHOIO Z Z Z f(su)|1sy...s,| by definition of ¢,

51€C s9eC(s1) Sn€C(81,..s8n—1)

- nhféoz oY fs)m@Qe..s,) by (8:27),

51€C s9eC(s1) sn€C(81,..-s8n—1)

= hm / fadp by definition of f,,
= /fdp by (8.20).

This proves (8.10) (cf. Lemma 1.3.2). \("")/

Proof of Lemma 8.3.3 in general case: Most of the arguments presented below are repetitions
of the ones in the case of S = R?. However, we do repeat the every detail, so that this proof
for the general case can be read independently.
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Step 1: We begin by constructing a sequence of measurable subsets

Qs; D Qsysy Do D Qspisy, D ey

inductively, where the running indices si, So,... are elements in S. The first step of the
induction is as follows. Since S is separable, we can find a countable subset C' C S and
disjoint measurable subsets {Qs, }s,cc such that

Qs, > s forall sy e,

uw(N) = 0, where N o S\ Us,ec Qs (8.21)
diam(Q,,) < 271,
N’(Qsl) > 07

In fact, let {B,},>1 be a covering of S by balls (open or closed) with the diameter 27! and
define {B,,},>1 by B; = By and
B,=B,\UZ{ B; n=12,....

n

Then, {B, }n>1 are covering of S by disjoint measurable sets and diam(B,,) < 27'. Now let
{@n}n>1 be a subsequence of {B, },>1 which is obtained by throwing away all B,’s which
have p-measure zero. Finally, we take s, € @, for each n > 1 and define @);, = @, and
C = {sn}n>1-

The second step of the induction is as follows. Since any subset in S is separable, we
can find a countable subset C(s;) C Qs, for each s; € C, and disjoint measurable subsets

{ Q51,50 }socc(sy) such that

Qs;, DO Qss, D 5o forall sy € Clsy).

def.
,U(Nsl) = O, where N51 = Qsl\USQEC(S1) Qsl,szv

diam(Qs,s,) < 2772,
,U( 8182) > 0.

Suppose as the n'-step of the induction that we have a measurable set Q,..,, with non-
zero p-measure and the diameter < 27" for s; € C, ..., s, € C(s1---5,-1). Then, we can
find a countable subset C(s;---s,) C Qs..s, and disjoint measurable sets {Qs,..s, ,} for
Spi1 € C(s1-+-8y,) such that

Qsrsn D Qspsniy D Snp1 for all s,40 € C(s1,...,8,). (8.22)
def.
p(Nsy.s,) = 0,  where Ny sy = Qo5 \ Us, i 1€0(s1,.05m) @srsmgn s (8.23)
diam(Q,,..,,) < 27, (8.24)
P(Qsyesnyy) > 0 forall 5,11 € C(sq,...,8,).

Step 2: We next construct a sequence
I, D1y, D ... 15, D.ny

of sub-intervals of [0, 1) with positive lengths, where I, .., corresponds to Q, ..., in a way as is
explained below. We first split [0, 1) into disjoint intervals {I, }s,cc with length |, | = u(Qs,)
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for each s; € C. Then, for each s; € C, we split I, into disjoint intervals {I, s, }s,ec(s;) With
length |/;, s,| = 1(Qs, s,) for each so € C(s1). We then inductively iterate this procedure to
get {Ig,..s, } such that

[07 1) = U81€C[S17 (825)
[51“‘577.—1 = Usn60(81 ,,,,, sn—l)ISr--Sm (8'26)
s s,] = 1(Qsys,)- (8.27)

Step 3: We now define ¢, : [0,1) — S by
on(0) =s, ifOel. .
Let us check the following;

©n 2 [0,1) = S is well defined and measurable for all n > 1. (8.28)
(©n(0))n>1 is a Cauchy sequence for for all € [0,1). (8.29)

By (8.25) and (8.26), any 6 € [0,1) belongs to a unique interval I, .., . Therefore, ¢, is well
defined. The measurability is obvious, since ¢,, is a constant s,, on each measurable set I, .., .
To see (8.29), just observe that

and hence by (8.24) that
dist. (pm+n(0), pn(0)) < 27"
Step 4: By, (8.29) and (8.29), we can define a measurable map ¢ : [0,1) — S by ¢(0) =
lim,, 00 n(0) for all @ € [0,1). Let us see that ¢ satisfies (8.10). To do so, take f € C}(S)
and define a set

NO = UnZl US1EC’ U32€C(31) cee USnGC(sl ..... Sn—1) NU Nsl U N8152 u...uU Nsl...sn

which is g-measure zero, and function f, : S\Ny — R by

folz) = Z Z Z f(sn)l{z € Qsy...5. 1,

51€C s9€C(s1) Sn€C(81,..38n—1)
which is well defined, by (8.21) and (8.23). Moreover, we see from (8.24) that
lim f,(z) = f(x) for all x € S\Np. (8.30)
n—oo

Therefore,

Ef(p(U)) = lim Ef(pu(U)) by defintion of o,

— Jgﬂloz Z Z F(su)|Lsy...s,| by definition of o,

51€C s2eC(s1) Sn€C(81yevySn—1)

- V}LHSO Z Z T Z f(Sn):u(Q& ..... sn) by (827),

51€C s2eC(s1) Sn€C(81,eySn—1)

= lim | f,du by definition of f,,
n—o0
= /fdu by (8.30).
This proves (8.10) (cf. Lemma 1.3.2). \("g")/
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8.5 Complement to Section 1.9
[

Lemma 8.5.1 Suppose that ¢ > 2 is an integer and that V =}, ., q "y, where {Yi b1
are {0,1,...,q—1}-valued r.v. and 'V is a [0, 1)-valued r.v. Then, the following conditions
are related as “ (al) & (a2) <= (b)”;

al) {Yi}i>1 are iid.

a2) Y, is uniformly distributed, i.e., P{Y, = s} =q ! foranys=1,...,q— 1.

b) V' is uniformly distributed on [0, 1).
/

Proof: (al) & (a2) = (b) : Suppose that (al) & (a2) holds. Then, (X, ),>1 in Example
1.9.1 and (Y},)n>1 have the same distribution. Therefore, U and V' have the same distribution,
which proves (b).

(b) = (al) & (a2) : Suppose that (b) holds. Then, outside an event

Un>1 Up<s<qn—1 {V = sq7 "},

and therefore for P-almost all w € €, Y} (w) is uniquely determied as the k' digit of the g-adic
expansion of the number V(w). We therefore see from (1.75) that (X,,),>1 in Example 1.9.1
and (Y},)n>1 have the same distribution, which proves (al) & (a2). \("z")/

Exercise 8.5.1 Check an alternative proof of Lemma 8.5.1, (al) & (a2) = (b) presented
below. It is enough to prove that for any t € [0, 1)

PV <t}=t (8.31)

(cf. Exercise 1.3.2). Let us expand ¢ € [0,1) as t = > o~ ¢ "sx (s € {0,...,¢— 1}) and
denote the left-hand side of (8.31) by f(s1, s2,...). We will prove that

f(s1,80,...) =q 's1+q " f(s2,83,...). (8.32)

We have that

U<ty = {i<si}pu {YI = $1, Zq_kYk < Zq_ksk}
k=2 =2

= {1 <s1}U {Yl = s1, Zq_kYkH < Zq_ksk—i-l} : (8.33)

k=1 k=1
We are now going to use the two facts;
i) Y7 and (Yj41)72, are independent,
ii) (Yis1)52,; and (Yi)52,; have the same distribution.

Facts (i),(ii) and (8.33) imply that

P{V <t} = P <si}+P{Y1=s1}P {Z q "V < qu5k+l} by (i)

k=1 k=1
= sig ' +q P {Z ¢ Y < Zq‘kskH} by (ii)
k=1 k=1
= 5197 ¢ f(s2, 83, ), (8.34)
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which proves (8.32).
With (8.32) in hand, proof of (8.31) is easy. In fact, we have for any n = 1,2,...

Fls1,82, )= q " sk +q " f(Sut1, Snsa, .- ) (8.35)

k=1

by induction. Then (8.32) follows by letting n * co. \("5")/

8.6 Convolution

Definition 8.6.1 For Borel finite measures {s;}7_, on R?, their convolution puy * - - - * i, is a
Borel finite measure defined by

(o % -+ % ) (B) = (@) { ()i € RN 21+ ...+, € B}, BeB(R?Y. (8.36)

Suppose that R%valued r.v.’s {X;}_, are independent and P{X; € -} = ;. We then have
by Proposition 1.6.1 that

PXi+4 ...+ X, €)= %% iy, (8.37)

a N

Lemma 8.6.2 (a) For Borel finite measures juy, pa on R?,

(p1 * po)™(0) = 11(0)12(0)  for all 6 € R (8.38)

(b) Suppose that p; (j = 1,2) are Borel finite measures on R? with density f; with respect
to the Lebesgue measure (7 = 1,2). Then py * pe has a density

(fr# fo) () = / fi(e — ) foly)dy (8.39)

with respect to the Lebesgue measure.

(c) Suppose that p; (j = 1,2) are Borel finite measures on R? such that p;j(B) =
> wezing fi(x) for some f; : Z¢ — [0,00) for all B € B(RY). Then, pi * po(B) =
> vezing (f1 % f2)(z) for all B € B(R?), where

(fi=fo)(@) =D filz —y)faly)dy. (8.40)

N J
Proof: It is easy to see (8.38). (8.39) can be seen as follows;

ik n(B) = /m ® pa(dzdy)p(z +y)
_ / Fu(2) foly)dzdyls(z +y)
— [ hle = Ay dsdyia()
- /B(fl % fo)(z)dz. (8.41)
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The proof of (8.40) is similar to that of (8.39). \("c")/

Example 8.6.3 Let x; and xo be independent Gaussian r.v.’s such that P(y; € -) = wy,
( = 1,2). Then, by Exercise 2.2.4,

P(Xl +X2 € ) =Dy X Vyy, = Vyi4v,- (842)

Example 8.6.4 Let X and Y be independent real r.v.’s such that P((X,Y) € -) = 7,4 @ Yrp.
Then, by Example 1.7.5,
P(X +Y € ) = Yra * Yrb = Vra+b- (843>

Example 8.6.5 Then, by (1.65),
P(Ny+ Ny € 2) = Ty % Ty = Ty 1y (8.44)

Exercise 8.6.1 Suppose that r.v.’s U; (j = 1,2) are independent and have the uniform dis-
tribution on an interval [a, 0], i. e., P{U; € B} = [, u(t)dt for all B € B(R) (j = 1,2), where
u(t) = (b — a) 'l (t). Prove then that the r.v.U; + U, has the triangular distribution on
2a,20], i. e.,

P{U, + Uy € BY = / o(t)dt. (8.45)
B
where F o ob _ ¢
R a p—
v(t) = (uxu)(t) = mlpa,wb] (t) + ml[a+b,2b] (t).
Then, conclude from (2.7) and (8.45) that
i0b) —exp(ifa 2
5(0) = 0(0)? = (%) . (8.46)

Exercise 8.6.2 Suppose that X; (j > 1) are r.v.’s with P{X; € -} = p; € P(R?, B(R?)) and
that NV is a r.v. with (r)-Poisson distribution (cf. (1.18)). Suppose also that {N, X1, Xo,...}
are independent. Prove then that

P{X;+...+Xy€ -}zZe_TT”(ul*---*Mn)/n! (8.47)

n>1

The distribution on the right-hand side of (8.47) is called the compound Poisson distribution.
Poisson distribution is a compound Poisson distribution with X; = 1.

8.7 Independent Families of Random Variables

Definition 8.7.1 a) Independent events: Suppose that A C F. Then, A said to be inde-
pendent, if
P (Naca,A) = H P(A) for any finite subset Ag in A. (8.48)
AcAp

b) Independence for families of events: Suppose that A, C F for each A € A. Then, the
families {Ay}ren are said to be quasi-independent, if

{A\}rea C F is independent in the sense of (a) for any Ay € Ay (A€ A).  (8.49)

The families {A)},ca are said to be independent if the o-algebras {o[A,]}rea are quasi-
independent.
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Remark: 1) The condition (8.49) does not imply that {o[Ay]} ea are independent o-algebras
(cf. Exercise 8.7.2). This is the reason we do not define it as the “independence” for the families
{Ax}rea. If {A)\}aen are o-algebras, then the notion of independence and quasi-indpendence
coincide.

2) The terminology “quasi independence” does not appear in standard text books in prob-
ability theory. It is introduced by the author of this notes for the convenience.

Exercise 8.7.1 Prove the following: (i) o[{A}] = {0,9Q, A, A°} for aset A. (ii) For A C F, the
following conditions (a)—(c) are equivalent. (a):A is independent. (b):{14}4c4 are independent
r.v.’s. (¢):{o[{A}]}1exa are independent o-algebras.

Exercise 8.7.2 In the setting of Definition 8.7.1(a), events in A C F are (or A is) said to be
pairwise independent, if any two events in A are independent. Consider a probability space
(Q, F, P) defined by Q = {0,1,2,3}, F =29 and P({i}) = 1/4 for i € Q. Check the following
statements for events A; = {1,2}, Ay = {2,3} and A3 = {3,1}.

i) {A;}2_, are pairwise independent, but not independent in the sense of Definition 8.7.1 (a).

i) A; = {A;} and Az = {As, A3} are quasi-independent in the sense of Definition 8.7.1 (b).

iii) o(Ay) = {0,9, Ay, AT} and o(Ag;) = F. In particular, 0(A;) and o(As3) are not indepen-
dent while A; and As3 are quasi-independent.

Remark: In Exercise 8.7.2, P(B|A,) = P(B) for all B € A3, but not for all B € o(Ag3). In
particlar, {B € F; P(B|A;) = P(B)} is not a o-algebra. cf. Lemma 1.3.1.

Throughout this subsection, we consider the following items;
e A probability space (2, F, P),

e Measurable spaces {(Sy, B))}aea indexed by a set A,

e Rv. X, : Q2 — S, for each \ € A.

Definition 8.7.2 A s-algebra:

o [X5'(By); Br€ By, AeA] (8.50)
is called the o-algebra generated by maps {X,}.ca and is denoted by

o [{Xatrea] or o[Xy; A€ A].

The o-algebra o [{X)}aea] (cf. (8.50)) is all the information needed to know how the values
of {X\}xea for all X are distributed at the same time.
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Proposition 8.7.3 For a disjoint decomposition A = U,erA(7y) of the index set A, the
following conditions are equivalent:

a) The o-algebras
olXx; AeA(y)], vel

are independent (cf. Definition 8.7.1(b)).

b) R.v.’s {)?}’yer defined by

5(:7 W (X)\ )\EA H S)\, ve I (851)
AEA(y

are independent.

- J

Definition 8.7.4 Families of r.v.’s
{Xa; Ae ()}, yel (8.52)

in Proposition 8.7.3 are said to be independent if they satisfy one of (therefore all of) conditions
in the corollary.

Proof of Proposition 8.7.3: The equivalence is a consequence of Proposition 1.6.1 and an
identity o[X,] = o[X, ; A € A(v)], which can be seen from Lemma 1.5.2. \("5")/

Remarks:
1) The independence of the families of r.v.’s (Definition 8.7.4) can be considered as is a special

case of the independence of r.v.’s (Proposition 1.6.1), if we consider r.v.’s { X}, er defined by
(8.51).

2) In the setting of Proposition 8.7.3, let us consider the following condition:
{X\(y) }yer are independent r.v.’s for any choice of A(y) € A(y) (y € T). (8.53)

This condition follows from the independence of the families (8.52). However, the converse is
not true. A counterexample is again provided by Exercise 8.7.2. Consider {14, } and {14,,14,}
there. Since, {4;}?_, are pairwise independent, we have (8.53) by Exercise 8.7.1. However,
{14,} and {1A2, 14,} are not independent, since o[{A;, Ay}] = 2%

Exercise 8.7.3 Suppose that (X,,),>; are R%valued independent r.v.’s and let S, = X; +
-+ + X,,. Prove then that, for each fixed m > 1, two families of r.v.’s

{Sn}zlzlv {Sn+m - Sm}nzl

are independent. Hint: Note that o({S,}i~,) = c({X,}1,) and that o({Sntm — Sm}n>1) =
0({Xntm}tn>1). Then, use Exercise 1.6.9.
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8.8 (%) Order Statistics

Example 8.8.1 X;,..., X, be real i.i.d. such that F(t) = P(X; < t) is continuous in t €
R. Define X, to be the k-th smallest number in {X;,...,X,} (k = 1,...n). Then the
distribution of X, can be computed as:

P{X,x€ A} =n ( Z: } ) E [F(Xl)k_l (1-F(X0)""1{X, € A}] A € B(R).

Proof: An rough explanation can be given as follows. First of all, there are n ways to choose
Xk form Xy, ..., X, and the probability of all such selections are the same (This explains the

kE—1
numbers from X5, ..., X,, which are smaller than X; and again by symmetry, these selections

first factor n). Now, suppose that X; = X,, ;. Then, there are ( ways to choose k —1

b 1 ). Finally, once such k£ — 1 numbers

are choosen, say, X, ..., Xy, then, the probability that

have equal probability (This explains the factor < e

Xo, ., Xp < X1 < Xk+1, ey Xy and X; € A

is E[F(X)"1(1—F(X)" " : X, € A
We now present a less intuitive, but mathematically clearer proof. Let S,, denote the set
of all permutation of {1,2,...,n}. Then,

P{ka S A}
= Z P{Xg(l) < XO—(Q) < ... < Xg(k) <. < Xg(n), Xg(k) c A}

g€Sy

= Z / P{X ) € dCL’}P{X y < X o2) < Xa(k—l) <rT < Xg(k_H) <. < Xo(n)}

geSy,

= Z / P{X ) € dl’}P{X ) < X @2 < < X o(k—1) < I}P{I <X olk+1) < ... < Xg(n)}

gESy
) Pl@)*! (1= F(a)"*
‘%/P{X R e s
()1 (1= Fa))*
= /P{Xled}( S (= k)

— 7 ( Zj ) E [F(Xl)’“’l (1—F(X)" " 1{X, € A}|.

\("e?)/

Exercise 8.8.1 Let Uy,...,U, be ii.d. with uniform distribution on [0,1] and X1,..., X,
be iid. with P(X; € ) = .1, cf. (1.27). Define U, to be the k th smallest number in

{Uy,...,U,} (k =1,...n). Prove then that (U,x)}_; and (Z] L X /Z"HX )7_; have the
same distribution on R". In particular, P(U,; € ) = Brnt1-k DY Example 1.7.5.
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8.9 Proof of the Law of Large Numbers: L' Case

We may and will assume that X,, > 0. In fact, X,/ = max{X,,0} and X, = max{—X,,0}
satisfy the assumption of the theorem and X,, = X;t — X . Therefore, it is enough to prove
the theorem for X;—L separately. Define r.v.’s Y,, and T}, by :

YV, =X, {X,<n}, T,=Y1+...+Y,.
We first observe that

1) Z HX, #Y,} <ooas.

n>1

This can be seen as follows;

EY X, # Y.} "2 N P{X, £V,

n>1 n>1
< ) P{X,>n}=> P{X;>n}
n>1 n>1
< Z/ dtP{X, >t}:/ dtP{X, >t}
n>1 n—1 0
Y X, < oo,

which in particular implies (1).
We see from (1) that Theorem 1.10.2 follows from:

2) lim — = E[X;] a.s.

We first prove (2) along the subsequence l(n) = |¢"|, where ¢ > 1:

3) lim ZT(ZS)) = E[X)] as.
Since
EY, = EX,1{X, <n}=EX;1{X; <n} = EXy,
we have BT,
lim =FX,

Thus, (3) follows from:

Ty — E[Tir,
1) ) [Ty

lim i) = E[X] a.s.

To show (4), we prepare the following estimate:

5) var (T},) < nE[X?1{X, < n}]

275



Indeed,

— zn:E[Xfl{Xl < jY < nE[X?1{X; < n}].

Jj=1

We next observe that

1 2q
6 < f > 0.
)Y S e

In fact, let M be the smallest n € N such that [(n) > x. Then, g™ > x. Note also that
l(n) > ¢"/2 for all n € N. Thus,

1 -M -n
2 (_SQZQ 2 <q—1)

n:l(n)>x n>M n>0

With (5) and (6), we proceed as follows:

Tyin (5)
By | Tl _ > l(n)var (Sywy) < E X7 1(n)T'1{X) < n}
n>1 n>1 nzl
(6) 2
< 2L px) < .
qg—1

2
This implies that > W);(—f)mwﬂ

Finally, we get rid of the subsequence in (3). For any n, there is a unique integer k such
that

n>1 < 00, P-a.s. and therefore (4).

(k) <n<lIl(k+1).
We have by the positivity of {X,,} that

l(k‘ + 1)_1Tl(k) < n_lTn < l(k)_lTl(kJrl).
By letting n 7 0o, we see from (3) that

_IEXl < lim n 7T, < lim n~ Tn,ngXl,
n /oo n /oo

which conclude the proof, since ¢ > 1 is arbitrary. \("a™)/
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9 Appendix to Sections 2

We prepare
1) hyx f — fin LY(R?) as t — 0, where hy(z) = (27t) =2 exp(—|z|?/2t)

We have that
o £ = @) < [ m)lrte =)~ f@ldy = [ 1)l Vi) - f(o)ldy
R R
and hence
[ s S < [ oty where ) = [ 18- Vig) - fo)ld.
R i R
We have for any y € R? that
lingy) =0 and 0< () <2 [ |f@)ds
t—0 Rd
Thus, by (2) and the dominated convergence theorem,
lim/ |hy x f— fl(x)dx = 0.
t—0 R4

We set fY(z) = (2n)~¢f(—z) (z € RY). We will next show that:

3) f*he = (f )Y, where hy(x) = (2mt) Y2 exp(—|z|?/2t) (z € RY, t > 0).
By (2.10),
9 H6) = ep(—1loP /),

Using (2.10) again, we see that h; = h}*Y. Therefore,

feh(a) = fahV()
— (2n) / f(z— y)dy / exp(—i0-y)  h)(0)d6

=exp(—if-z) exp(i(6-(z—y)))

PR (g / exp(—i0 - )y (6)d0 / f(x = y)exp(i(6 - (z —y)))dy

J/

e
= (f"h))Y(x).

We see from (4) and the dominated convergence theorem that
Pn(l)(fAhf)v(a:) = fM(x) for all x € RY,
4>

Combining this, (1) and (3), we arrive at f*Y = f a.e., which is (2.37). \("a?)/
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9.1 Weak Convergence of Finite Measures on a Metric Space

Theorem 9.1.1 Let S is a metric space with the metric p, and let p, (n = 0,1,..) be
finite Borel measures on S. Then, the following conditions are equivalent.

al)
/fdun’H—of/fduo (9.1)
for any bounded Borel f : S — R for which the set of discontinuities is a po-null set.
a2) (9.1) holds for all f € Cy(5).
a3) (9.1) holds for all bounded, Lipschitz continuous f : S — R.
b1) o -
po(B°) < lim 11, (B) < lim 11 (B) < pio(B)  for any Borel B C S. (92)

n—oo

b2) 1n(B) =3 1o(B) for any Borel B C S such that j1o(0B) = 0.

Proof: al) = a2) = a3), and bl) = b2) are obvious.
a3) = bl): We see from the proof of Lemma 1.3.2 that

1) for any closed F' C S, there is a sequence of Lipschitz continuous f,, : S — [0, 1] such that

and hence that

2) for any open G C S, there is a sequence of Lipschitz continuous g,, : S — [0, 1] such that
Im /‘ 1G .

By taking F = B in 1), we have that

po(B) 2 lim [ fruduo 2 lim lim / fndptn > lim g1, (B) > Tim gu,(B).
m—00 N—00 n—oo n—r00

m—ro0

Similarly, by taking G = B° in 2), we have that

1o(B°) 2 lim /gmd,U/Oa—S) lim lim | gndp, < lim ju,(B°) < lim 4, (B).

m—o0 m—00 n—00 n—00 n—00

b2) = al): Let Dy = {x € S'; f is discontinuous at =}, which is a po-null set. We first verify
that

3) Of Y(A) Cc Dy U f~1(0A) for any A C R.

Let us show 3) in the form 9f~'(A)\D; C f~1(0A). Indeed, if x € df 1 (A)\Dy, there are
sequences z,, — ¥, Y, — « such that f(z,) € A and f(y,) € A. Since f is continuous at x, we
have

fe) = Tim f(e) €A, flz) = lim f(y) & A°

n—o0
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hence f(x) € 0A.
We next note that the set

By={teR; u(f7\(t) > 0}

is at most countable, since E; is exactly the set of discontinuities of the bounded monotone
function ¢t — u(f7([0,t])). We see from this observation that, for any e > 0 there are
c1, ..., cx € R\Ey such that

f(S) C [Cl,Ck>, O<Cj+1—Cj <eg, jzl,,]{?—l

Let f. : S — R be defined by
fs = ZCj].f—l(Ij), with [j = [Cj,Cj+1).

Then, supg |f — f:| < e. Note also that

—1 3) —1
of ~(I;) C Dy U f({cj,¢j41}),

and hence that po(0f~1(I;)) = 0. Therefore, as n — oo,

k—1
< el (FNI)) = mo(F 7)) 2 0.

Jj=1

def
ne —

< [ i~ [

Finally, we write

’/MM—/WM

By letting n — oo first, and then £ \ 0, we get (9.1). \("e™)/

S/’f_f5|dﬂn+An,e+/’f_fs|dM0 SATL,E—i_z‘S'

9.2 Some Results from Fourier Transform

Theorem 9.2.1 (Lévy’s convergence theorem) Let i, € P(R?) (n € N) and f : R —
C. Suppose that lim u’(0) = f(0) for all € RY and that the convergence is uniform in
n—oo

0] <& for some § > 0. Then, there exists a u € P(R?) such that f = p.
J

Theorem 9.2.2 (Bochner’s theorem) Let f € C,(RY — C). Then, the following are
equivalent:

a) There exists a finite measure u on RY such that f = p”.

b) For any N € N\{0} and z1,...,xy € R?, the N x N matriz (f(x; — ;) is non-
negative definite.

v
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10 Appendix to Section 3

10.1 True d-dimensionality and Aperiodicity
Definition 10.1.1 A random walk in R? is said to be truly d-dimensional if

0, L {heR?; - X, =0, P-as.} = {0}. (10.1)

Condition (10.1) says that the random walk is not confined in a subspace with positive codi-
mension.

~

Lemma 10.1.2 Consider a random walk such that E[|X1]?] < oo, and denote its mean
vector by m and the covariance matriz by V.

a)

0, ¥ {heRr’; 0.Vo=0}
= {#eR?; 0- (X1 —m)=0, P-a.s.}
= {0eR?; 0-(X;— X5) =0, P-as.}.

b) IfdetV > 0, then the random walk is truly d-dimensional.

c) If the random walk is truly d-dimensional and m = 0, then detV > 0.

Proof: a): It is easy to see that for § € R?
0-Vo—E[(X,—m)-0P] = LE[|(X, - Xz) - 0]

from which the equalities follow.

b): det V' > 0 is equivalent to that ©, = {0}. Hence, it is enough to prove that ©; C ©,. But
this is clear from a).

c): If m =0, then a) shows that ©; = O,. \("a™)/

Example 10.1.3 Suppose that P(X; € {0, %ey,...,+eq}) = 1 and set p(x) = P(X; = z)
(x € Z%). Then, the random walk is truely d-dimensional iff

plea) Vp(—eq) >0 foral a=1,..,d. (10.2)
(See also Example 3.2.3.)

Proof: Suppose (10.2) and define, for o = 1, ..., d,

s _ [ ca if p(eq) > 0,
“ | —eo ifples) =0 and p(—e,) > 0.

Then, {€,}¢_, is a basis of R?. Now, take any 6§ € ©,. Then, 6-¢, =0 for all a = 1,...,d,
since p(é,) > 0. Hence 6 = 0.

Suppose on the contrary that (10.2) fails. Then, there is an o« = 1, ..., d such that p(+e,) = 0.
Then, e, € 5. \("a")/
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Proposition 10.1.4 Let (S,)n>0 be a truly d-dimensional random walk with v = P{X; €
-}. Then,

a) There exist 6; > 0, i = 1,2 such that

1 — Rev(0) > 6,10 if |0] < 0s. (10.3)

b) The random walk is transient if d > 3.
J

Proof: a) The proof is based on the observation that the expectation E [|o - X1|?] (can be
+00, but) can never be zero for o # 0. Recall that

1 —cost = 2sin*(t/2) <t?/2, tER, (10.4)
2 s

int| > =tf, |t <= 10.5

[sint| > —t], [t| <3 (10.5)

We now use (10.4) and (10.5) as follows;

1—Rev(0) = E[1—cos(d-X1)]
= 2E[sin®*(0 - X,/2)]
410X,

22E2
m™ 4

|0 X <7

i
2

|
£(10],6/10)),
T
where on the last line, we have introduced
F(,0) = Ello-X1]* : |o- Xy| <7/d],
§>0, 08" ={ycR?; |y =1}

Hence it is enough to show that there exists d, > 0 such that

inf{F(8,0); § < dy,0 € S} > 0. (10.6)
Since F'(§,0) is decreasing in 4, (10.6) is equivalent to;

inf{F(6,0); o € S} >0 for some § > 0. (10.7)

We prove (10.7) by contradiction. Suppose that (10.7) is false. Then, there is §,, \, 0 and
{op}n>1 C S471 such that lim F(d,,0,) =0. By the compactness of S¢~1 and by taking a

n—oo

subsequence, we may assume that lim o, = o for some o € S9!, Then, by Fatou’s lemma,
n—oo

lim F(6,,0,) > E [|o- X1]*] #0,
n—oo

which is a contradiction.

b) This follows from (10.3) and Proposition 3.4.1 with o = 2. \("a™)/
Definition 10.1.5 e For Z%valued random walk, we define
Rn={z€Z; P{S, =z} >0}. (10.8)
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e A Z%valued random walk is said to be aperiodic if
{r—y; 2,y € Up1 Ry} = Z°% (10.9)
If otherwise, the random walk is called periodic.

Remark 1) The left-hand side of (10.9) is nothing but the Abelian subgroup of Z¢ generated
by Rl.

2) The definition of aperiodicity is the same as that in [Spi76, page 20]. However, the aperiodic-
ity defined here is weaker notion than the “aperiodicity” as a Markov chain. The “aperiodicity”
as a Markov chain is called “strong aperiodicity” in [Spi76, page 42].

Lemma 10.1.6 Let (S,,),>0 be a Z%-valued random walk. h
(a)

Ro=A{x1+ ...+ x,; x; € Ri}. (10.10)
(b) (Sp)nso is truly d-dimensional if and only if Ry contains a linear basis of RY.
(c) Aperiodicity implies true d-dimensionality. )

Proof: (a) & (b): Obvious from the definitions.
(c): This follows from (a),(b) and simple linear algebra. \("z")/

Example 10.1.7 If {e, ...,eq} C Ry, where ¢; = (8;;)L, € Z¢, we then see from (10.10) that
the random walk is aperiodic. In particular, the simple random walk is aperiodic.

Proposition 10.1.8 Let (S,,),>0 be an aperiodic random walk with with v = P{X; € -}.
Then,

a)
{0 € RY; D(0) =1} = {2nm ; m € Z}. (10.11)

b) There exists 6 > 0 such that

1 — Rev(0) > 010)* if 0 € [—m,7|% (10.12)

c) The random walk is transient if d > 3.
N J
Proof: a) Let (S!,),>0 be an independent copy of (S,,),>0. We first observe that

Unnsole € Z%; P{S, — S, =z} >0} = Z°. (10.13)

This can be seen as follows. For any = € Z¢, there are n,n’ > 0 and y € R,, v € R, such
that x =y — /. Then,

P{Sn—S;/:x} > P{Sn:y7 :’L/:y/}
= P{S,=y}P{S, =9y} >0.
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We also observe that for t € R and a real r.v. X,
Eexp(iX) =exp(it) <= Ecos(X —t) =1 < X € {t+ 2mm}nez, P-as.  (10.14)

Let S;, = X| + ... + X]. We then have that

v(0) =1 <= Fexp(if- X;) = Fexp(if- X]) =1
<= Fexp(if-S,) = Fexp(if-S),) =1, foraln,n >1,
= FEexp(if-(S,—S5,,)) =1, foraln,n >1,
<~ 0-(S,—8) € {2rm}mez, P-as. foralln,n’ > 1, by (10.14)
< 0-z€{2tm}nez, forall z € Z9, by (10.13)
— 0 {2mm},cpa

b) We see from (10.3) that (10.12) is valid for |#] < do. We next prove (10.3) for the case
0] > 6o. By (10.11), {# € 7l ; v(0) =1 } = {0}. Therefore, if we set K = {0 € nl ; |0] > o},
then § € K — 1 — Rev(f) attains a positive minimum =: d3 > 0. Hence for 0| > &,

c¢) This follows from (10.12) and Proposition 3.4.1 with a = 2.

10.2 Strong Markov Property for IID Sequence

~
Lemma 10.2.1 (Strong Markov Property) Let (S, B) be a measurable space and X, :

Q — S, n e N\{0} be i.i.d. Suppose that T is a stopping time such that P(T < oo) > 0.
Then, under the measure P(-|T < c0),

a) Fr and (Xgpin)n>1 are independent,

b) (XT—l—n)nzl s an i.9.d. ~ Xl.

J
Proof: It is enough to prove that
1) P(AAN{(Xr4k)i—y € B} [T <00) = P(A| T < 00)P((Xi)i—, € B)
for all A € Fp, n>1and B € B(S™"). This can be seen as follows,
P{{T < oo} NAN{(Xrsi)i—s € B})
= Y PUT = m} N AN (X € BY)
m>1
= > P{T =m} N A)P(Xpir)ies € B)
m>1
— P({T < 00} N A)P((X,)}_, € B).
which is equivalent to 1). \("a™)/
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Exercise 10.2.1 The purpose of this exercise is to illustrate that property (a) in Lemma
10.2.1 is not true in general if we assume {X,},>1 just to be independent (not necessarily
identically distributed). Consider S, = X; + ...+ X,, where {X,,},>1 are {1,2}-valued in-
dependent r.v.’s such that P(X; = 1) = 1/2, (j < 2) P(Xy, = 1) = p (k > 3). We set
t =inf{n > 1S, > 2 }. Prove then that two events {T" = 1} and {Xp,; = 1} are indepen-
dent if and only if p = 1/2.

10.3 Green Function and Hitting Times

Exercise 10.3.1 Prove that for any z,y € R,
L= A+ ) > mas{P{T, < T} (1 - h(y), PAT, < Torg}(1— b)) (1015)

Hint: Let us prove that 1 — h(z +y) > P{T, < T,1,}(1 — h(y)). To do so, we may assume
that h(x) > 0 (P{T, < Ty4+,} = 0 if otherwise). Since h(z) = P{T, < oo}, we have

1—h(z+y) = P{Tiy = o0}
> P{T, < Ty, T, = o0},

where N

Therefore, by Lemma 10.2.1,

P{T, < o0, T, =00} = P{T, < Tpy, }P{T, = oo | T, < oo}
= P{T, < T, ,}P{T, = o0}
= P{Ta: < Tm—l—y}(l - h(y)).

By exchanging the role of z and y, we also see that 1 — h(zx +y) > P{T, < T4, }(1 — h(x)).
Exercise 10.3.2 Use a similar argument in the proof (10.15) to show that
h(z +y) > h(z)h(y) for any z,y € R%. (10.16)
Exercise 10.3.3 Generalize (3.13) by showing
he(2) = s(1 — he(0))P{X, = 2} + sPhy(z — X1), z€R% 0<s< 1. (10.17)

Exercise 10.3.4 Consider a symmetric, Z%-valued, aperiodic random walk such that E[| X, |*] <
0.

i) Use (3.29) to prove that
P{S, =z} = (27T)d/ df cos(8 - x)v(6)" (10.18)
ol

Hint: P{S, = 2} = 3 P{S, = z} + 3 P{S, = —z} by symmetry.
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ii) Use (10.18) to show that the following for any d > 1;

a(z) < lim > {P(S = 0) - P(S; = )} (10.19)
B 7d_ 1 —cos(f - x)
= (2m) /ﬂ d)——— 50 (10.20)

The function a(x) is called the potential kernel of the random walk. Hint: Use (10.12) and an
inequality 1 — cos(6 - ) < (0 - x)?/2 to prove

/ df sup
nl  0<s<1
Then, use (10.18), (10.22) and the dominated convergence theorem to prove (10.20) and
(10.21).

1 —cos(f - x)

@) | <> (10.22)

Remark 10.3.1 i) We will see in (10.24) that a(z) has the following probabilistic meaning;

T.—1

> (S, =0}

n=0

a(z)=FE /(14 h(z)).

ii) The symmetry we have assumed to prove the existence of the limit (10.19) is not essential,
but to simplify the discussion for d = 1. In fact, for d > 2, we can prove the existence of
the limit (10.19) and (10.21) without symmetry by (3.29), since |1 —exp(if - z)| < |0 - z|.
Even for d = 1, it is known that the limit (10.19) exists without symmetry [Spi76, page
352].

Exercise 10.3.5 Consider a Z-valued random walk such that P{X; = 0} = r and P{X; =
+1} = 15-. Use Exercise 3.4.3 and (10.21) to compute a(z) in Exercise 10.3.4 explicitly;

ale) = Jal/(1 7).

Exercise 10.3.6 Consider a symmetric, Z-valued, aperiodic random walk such that E[| X, |?] <
oo. Use (10.21) and (3.43) to prove that

glzd\{z}(x, y)=a(z—z)+ h(z —x)aly — 2) — a(y — z). (10.23)
and in particular (z =y = 0 # z) that
a(z) = g H0,0)/(1 + h(2)). (10.24)

Exercise 10.3.7 Consider a symmetric, Z?-valued, aperiodic random walk such that E[|X;|?] <
co. Use (10.21) and (3.43) to prove that, if A C Z? is finite, then

aly —z) = —giMx,y) + Z HMNz, 2)a(y — 2), x,y € A. (10.25)
2€Z\ A

cf. [Law91, Proposition 1.6.3] for the simple random walk case.
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Fejér kernel, 40
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