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0 Introduction

The purpose of this course is to provide a quick and self-contained exposition of some basic

notions and theorems in the probability theory. We try to get the feeling of “real world”

probabilistic phenomena, rather than to learn a rigorous framework of “measure theoretical

probability theory” (though we do use the measure theory as a convenient tool to describe the

“real world” ).

We start by introducing the notion of independent random variables. Then, without too

much preparations, we proceed to random walks, which will be the central topic of this course.

Some interesting properties of random walks will be explained and proved. Classical theorems

in the probability theory, like the law of large numbers and the central limit theorem, are

presented in the context of random walks. We first show as an application of the law of large

numbers, that the random walk travels along a constant velocity motion (including the case

of zero velocity). We then see from the central limit theorem that the fluctuation around the

constant velocity motion, if properly scaled in space and time, looks like a normally distributed

random variable. Finally, we investigate a question whether or not the random walk comes

back to its starting point with probability one, the answer to which depends on the dimension

of the space.

If we have enough time, then we will also discuss Brownian motion.
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0.1 Overview

To start with, we outline the content of this course.

• Random variables

Imagine a game such that its outcome is determined by chance, e.g., tossing a coin and
seeing if it falls head or tail. Suppose that you play the game and that you record the outcome
as follows;

X =

{
+1 if the coin falls head,
−1 if the coin falls tail.

(0.1)

The value X is not always the same (may be −1 for the first toss and +1 for the second)
and hence is considered as a function X : Ω → {−1,+1} on a suitable set Ω. Since one
cannot predict the value X for sure, you may be interested in how large is the “probability”
P (X = ±1) of the “event” {ω ∈ Ω;X(ω) = ±1}. In this overview, we temporarily adopt the
following convention3:

� There is a set Ω and number P (A) ∈ [0, 1] for each “measurable” A ⊂ Ω. P (A) is called
the probability of the event A.

� A random quantity is described by a function

X : Ω → Rd (ω 7→ X(ω)) (0.2)

such that
{ω ∈ Ω ; X(ω) ∈ I} is measurable for all interval I ⊂ Rd. (0.3)

A function with the above property is called a random variable (abbreviated as ”r.v.”).
The above set {ω ∈ Ω ; X(ω) ∈ I} and its probability P ({ω ∈ Ω ; X(ω) ∈ I}) are often
denoted simply as {X ∈ I} and P (X ∈ I), respectively.

� For a r.v. X : Ω → S, where S is a finite subset and a function f : S → R, we define the
expectation of f(X) as:

Ef(X) = E[f(X)] =
∑
s∈S

f(s)P (X = s). (0.4)

• Random walk

Imagine that you walk “randomly” on Zd, the d-dimensional integer lattice. Let:

Xn = the displacement made at n-th step,

Sn = X1 + ...+Xn = the position at the n-th step (0.5)

3Here, to keep the presentation as elementary as possible, we leave the notion of measurability ambiguous.
We will discuss it in section 1.
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We now describe how the random vectors X1, X2, ... is determined. Let e1, ...., ed be the canon-
ical basis of Rd, that is, eα = (δα,β)

d
β=1. We introduce

E =
d⋃

α=1

{eα,−eα} ⊂ Zd,

p : E → [0, 1),
∑
e∈E

p(e) = 1.

That is, E is the set of all nearest neighbors of the origin, and p is a probability distribution
on E . A typical example p : E → [0, 1) is given by:

p(e) ≡ 1

2d
, ∀e ∈ E . (0.6)

We suppose that X1, X2, ... are determined by the following rule:

P

(
n⋂

j=1

{Xj = xj}

)
=

n∏
j=1

p(xj) for any n ≥ 1 and x1, ..., xn ∈ E . (0.7)

In particular,
P (Xn = x) = p(x), for any n ≥ 1 and x ∈ E . (0.8)

Recall the standard notation of conditional probability:

P (A|B) =
P (A ∩B)

P (B)
.

Then, it follows from (0.7) that:

P

(
Xn = xn

∣∣∣∣∣
n−1⋂
j=1

{Xj = xj}

)
= P (Xn = xn) for any n ≥ 1 and x1, ..., xn ∈ E . (0.9)

We see from (0.9) that the values ofX1, .., Xn−1 have no influence on howXn is determined. For
this reason, X1, ..., Xn are said to be independent. For the moment, we call the sequence (Sn)n≥1

defined by (0.5) a random walk (More general definition will be given later, cf. Definition 3.1.1.).
In particular, the special case (0.6) will be called the simple random walk.

• The law of large numbers

We are interested in the behavior of the random walk Sn when n ↗ ∞. Here is the first
question we ask:

Is there a particular direction in which the random walk prefers to travel? (0.10)

To investigate it, we introduce the following vector:

m = (mα)
d
α=1 ∈ Rd, mα = p(eα)− p(−eα). (0.11)

If we write Xn = (Xn,α)
d
α=1, we have

E[Xn,α] = mα. (0.12)
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To see this, note that

Xn,α =

{
±1 if Xn = ±eα,
0 if otherwise.

(0.13)

Therefore,

E[Xn,α]
(0.4)
= 1 · P (Xn = eα) + (−1)P (Xn = −eα)

(0.8)
= p(eα)− p(−eα).

An answer to the question (0.10) is provided by:� �
Theorem 0.1.1 (Law of Large Numbers)

P

(
Sn

n

n→∞−→ m

)
= 1.

� �
Let us decompose Sn in a silly expression:

Sn = nm+ (Sn − nm).

Then Theorem 0.1.1 says that Sn − nm is of order o(n). In this sense, one can conclude that,
if n→ ∞, then

Sn is close to nm up to the random correction: Sn − nm = o(n). (0.14)

• The central limit theorem

Having understood (0.14), we proceed to address a further question.

How does the correction term Sn − nm look like? (0.15)

To investigate this question, we introduce the following d× d matrix:

V = (vα,β)
d
α,β=1, vα,β = δα,β(p(eα) + p(−eα))−mαmβ. (0.16)

The component vα,β stands for the covariance of Xn,α and Xn,β. Indeed, it follows from (0.13)
that

Xn,αXn,β =

{
1 if α = β and Xn = ±eα,
0 if otherwise.

This implies that
E[Xn,αXn,β] = δα,β(p(eα) + p(−eα)). (0.17)

Therefore,

cov(Xn,αXn,β)
def
= E[Xn,αXn,β]− E[Xn,α]E[Xn,β]

(0.12),(0.17)
= δα,β(p(eα) + p(−eα))−mαmβ. (0.18)

From here on, we will assume for simplicity that

p(±eα) > 0, ∀α = 1, ..., d. (0.19)
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Now, we list two facts, whose proofs are omitted here4:

detV > 0, (0.20)∫
Rd

ρV = 1, where ρV (x) =
1√

det(2πV )
exp

(
−1

2
x · V −1x

)
. (0.21)

The function ρV is the density of mean-zero Gaussian distrubution with the covariance matrix
V (See Example 1.2.4 for more details).

We are now in position to state:� �
Theorem 0.1.2 (Central Limit Theorem)
For every interval I ⊂ Rd,

P

(
Sn − nm√

n
∈ I

)
n→∞−→

∫
I

ρV . (0.22)

� �
To answer the question (0.15), we introduce a random variable Y with values in Rd such

that

P (Y ∈ I) =

∫
I

ρV for every interval I ⊂ Rd.

By (0.22), for every interval I ⊂ Rd,

P

(
Sn − nm√

n
∈ I

)
is close to P (Y ∈ I) if n is large enough. (0.23)

If we are allowed to replace I above by I/
√
n, we would be able to answer the question (0.15)

in the following form:

P (Sn − nm ∈ I) is close to P (
√
nY ∈ I) if n is large enough. (0.24)

Although, the replacement of I by I/
√
n suggested above is not rigorous, the approximation

(0.24) is known to be good enough for some applications, and is used in statistics.

• Transience and recurrence

Here, we take up a question whether a simple random walk (Sn)n≥1 (cf. (3.3)) comes back
to its starting point with probability one. Note that the simple random walk satisfies m = 0
(cf. (0.11)) and (0.19). We will prove the following� �
Theorem 0.1.3 Suppose that m = 0 (cf. (0.11)) and (0.19), then,

P (Sn = 0 for some n ≥ 1)

{
= 1 d ≤ 2,
< 1 d ≥ 3.� �

Theorem 0.1.3 is often explained with a joke:

“ A drunk man will find his way home but a drunk bird may get lost forever”.

4See Example 3.2.3 for a proof of (0.20).
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0.2 Notations

For a set S,

2S: the colloection of all subsets of S,
σ(A): the σ-algebra generated by A ⊂ 2S, i.e., the smallest σ-algebra which contains A.

For x and y in R,

x ∨ y = max{x, y},
x ∧ y = min{x, y}.

For x = (xi)
d
i=1 and y = (yi)

d
i=1 in Rd,

x · y =
∑d

i=1 xiyi,
|x| = (x · x)1/2,
ex(y) = ey(x) = exp

(√
−1x · y

)
,

For a topological space S,

C(S): the set of continuous functions on S
Cb(S): the set of bounded continuous functions on S
Cc(S): the set of continuous functions on S, which vanish outside a compact subset.
B(S): the Borel σ-algebra of S, i.e., the σ-algebra generated by all open subsets of S.
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1 Independent Random Variables

1.1 Random Variables

The reader is supposed to be familiar with basics of the measure theory such as Lebesgue’s
monotone convergence theorem, Fatou’s lemma, Lebesgue’s dominated convergence theorem
and Fubini’s theorem. Nevertheless, we start by reviewing some basic terminology.

Definition 1.1.1 (Measurability)

▶ A couple (S,B) is called a measurable space when S is a set and B ⊂ 2S is a σ-algebra, i.e.,

S1) S ∈ B.

S2) If B ∈ B, then Bc ∈ B, where Bc denotes the complement of the set B.

S3) If B1, B2, . . . ∈ B, then ∪n≥1Bn ∈ B.

Let (Ω,F) and (S,B) be measurable spaces.

▶ A map X : Ω → S is said to be measurable if

σ[X]
def
= {X−1(B) ; B ∈ B} ⊂ F . (1.1)

The σ-algebra σ[X] is called the σ-algebra generated by X.

Example 1.1.2 ( The Borel σ-algebra) When S is a topological space, we let B(S) denote
the Borel σ-algebra of S, i.e., the smallest σ-algebra that contains all open subsets of S. In
this course, S will usually be Rd or its Borel subset.

Definition 1.1.3 (Probability) Let (S,B) a mesurable space and µ : B → [0,∞] be a
function.

▶ The function µ is called a measure when it satisfies

M1) 0 = µ(∅) ≤ µ(B) for all B ∈ B,

M2) If B1, B2, . . . ∈ B are disjoint, then µ (∪n≥1Bn) =
∑

n≥1 µ(Bn).

▶ A measure µ is called a probability measure when it satisfies

M3) µ(S) = 1.

We introduce the following notation:

P(S,B) = {µ ; µ is a probability measure on (S,B)}. (1.2)

We abbreviate P(S,B) by P(S) when the choice of the σ-algebra B is obvious from the context.

▶ A triple (S,B, µ) is called a a measure space if (S,B) is a measurable space and µ is a
measure on (S,B).
▶ A measure space (S,B, µ) is called a probability space if µ ∈ P(S,B).

We already have a rough idea of the notion of random variable cf. (0.2)–(0.3). We now put
it in more solid mathematical framework.
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� For the rest of this subsection, let (Ω,F , P ) be a probability space, (S,B) be a measurable
space (cf. Definition 1.1.1, Definition 1.1.3), and X : Ω → S be a map.

Definition 1.1.4 (Events and random variables)

▶ A set A ⊂ Ω is called an event if A ∈ F .

▶ X : Ω → S is called a random variable (“r.v.” for short) if it is measurable (cf. Definition
1.1.1). The set S in this case is called the state space for the r.v. X.

▶ The law (or the distribution) of the r.v. X is a measure µ ∈ P(S,B) defined by

µ(B) = P ({ω ∈ Ω ; X(ω) ∈ B}), B ∈ B. (1.3)

We abbreviate the above relation of X and µ by

X
law
= µ or X ≈ µ (1.4)

For another r.v. X ′ : Ω′ → S defined on a probability space (Ω′, P ′), we write

X
law
= X ′ or X ≈ X ′, (1.5)

when X and X ′ share the same law.

Remark: Here are some remarks on the use of notation.

1) The set {ω ∈ Ω ; X(ω) ∈ B} will often be abbreviated by {X ∈ B}, and the right-hand
side of (1.3) by P (X ∈ B).

2) The law of a r.v. X, i.e., the measure defined by the right-hand side of (1.3) will often be
denoted by P (X ∈ ·).

Let a measurable space (S,B) and a µ ∈ P(S,B) be given. We look at a couple of examples
in which a probability space (Ω,F , P ) and a r.v. X → S with X ≈ µ are given.

Example 1.1.5 (Identity map on the state space) Let:

• (Ω,F , P ) = (S,B, µ), X(ω) = ω.
Then σ[X] = F , and hence X is measurable. Moreover, X ≈ µ, since

P (X ∈ B) = µ(ω ; ω ∈ B) = µ(B) for any B ∈ B.

Example 1.1.6 (Unit interval as a probability space) Let:

• S=an at most countable set, B = 2S, µ ∈ P(S,B).
We split (0, 1] into disjoint intervals {Is}s∈S with length |Is| = µ(s) for each s ∈ S.

• Ω = (0, 1], F = B((0, 1]), P=the Lebesgue measure on (0, 1],
• X(ω) = s if ω ∈ Is.
Then, X is measurable. In fact, for any B ∈ B,

X−1(B) =
⋃
s∈B

Is ∈ F .

11



Moreover, we see that X ≈ µ as follows. First, for for any s ∈ S,

P (X = s) = P (ω ∈ Is) = |Is| = µ(s).

Then, for any B ∈ B,

P (X ∈ B) =
∑
s∈B

P (X = s) =
∑
s∈B

µ(s) = µ(B).

Definition 1.1.7 (Expectation and (co)variance)

▶ For an R-valued r.v. X, the integral
∫
XdP is called the expectation or mean and is usually

denoted by
EX, E(X) or E[X]. (1.6)

▶ For X,Y ∈ L1(P ) such that XY ∈ L1(P ), we define their covariance or correlation by

cov(X,Y ) = E ((X − EX) (Y − EY ))

= E(XY )− E(X)E(Y ). (1.7)

In particular, cov(X,X) is called the variance of X and is denoted by

var X or var (X). (1.8)

Remark: Notations (1.6) are also used to denote the expectations for complex or vector
valued r.v.� �
Proposition 1.1.8 Suppose that X : Ω → S is a r.v. and that µ ∈ P(S,B). Then, the
following are equivalent:

a) X ≈ µ.

b) For a measurable function f : S → [0,∞],

Ef(X) =

∫
S

fdµ. (1.9)

� �
Proof: a)⇒ b): By (1.3), the equality (1.9) is true for f = 1B with B ∈ B. Thus, (1.9) is also
true when f is a simple function 5. Finally, for a measurable function f : S → [0,∞], there
is a sequence of simple functions fn such that fn ↗ f . Thus, by the monotone convergence
theorem,

Ef(X) = lim
n→∞

Efn(X) = lim
n→∞

∫
S

fndµ =

∫
S

fdµ.

b)⇒ a): By setting f = 1B with B ∈ B in (1.9), we get (1.3). \(∧2
∧)/

Remark: Suppose that X ≈ µ in the setting of Proposition 1.1.8. Then, it follows from (1.9)
that

f(X) ∈ L1(P ) ⇐⇒ f ∈ L1(µ)

and that (1.9) holds true for f ∈ L1(µ).

5A function of the form
∑n

i=1 ci1Bi (ci ∈ R, Bi ∈ B) is called a simple function.
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� �
Proposition 1.1.9 (Chebyshev’s inequality)

P (X ≥ a) ≤ EX

a
for a r.v. X : Ω → [0,∞) and a > 0. (1.10)� �

Proof: It is obvious that

1{X≥a} ≤
X

a
.

By taking the expectation of the both hand sides, we get the desired inequality. \(∧2
∧)/

Exercise 1.1.1 Prove that σ[X] (cf (1.1)) is indeed a σ-algebra.

Exercise 1.1.2 Let −∞ < a < b < ∞ and suppose that X ∈ L1(P ) satisfies X ≤ b a.s.
Prove then that

P (X ≤ a) ≤ b− EX

b− a
.

Exercise 1.1.3 Suppose that f ∈ C1([0,∞) → R) is non-decreasing. Use f(x) − f(0) =∫ x

0
f ′(t)dt and Fubini’s theorem to prove;∫

(f(x)− f(0))µ(dx) =

∫ ∞

0

f ′(t)µ(x : x ≥ t)dt

for a Borel measure µ on [0,∞). In particular, for a non-negative r.v. X,

Ef(X) = f(0) +

∫ ∞

0

f ′(t)P (X ≥ t)dt. (1.11)

Exercise 1.1.4 Suppose that f : N → R is non-decreasing. Use f(n)− f(0) =
∑n

j=1(f(j)−
f(j − 1)) and Fubini’s theorem to prove that∑

n≥1

(f(n)− f(0))µ(n) =
∑
n≥1

(f(n)− f(n− 1))µ(x : x ≥ n)

for a measure µ on N. In particular, for an N-valued r.v. X,

Ef(X) = f(0) +
∑
n≥1

(f(n)− f(n− 1))P (X ≥ n). (1.12)

Exercise 1.1.5 Suppose that X ∈ L1(P ). Prove then that for any ε > 0, there exists δ > 0
such that |E[X : A]| < ε for all A ∈ F with P (A) < δ. Hint: Suppose the contrary. Then,
for some ε > 0, there exist An ∈ F , n ∈ N\{0} such that P (An) < 1/n and |E[X : An]| ≥ ε.]

Exercise 1.1.6 Suppose thatX is a r.v. with values in N∪{∞} and set f(s) = E[sX : X <∞]

for s ∈ (0, 1). (i) Show that f ′(s)
s→1−→ E[X : X < ∞], including the possibility that the limit

diverges. Hint: The monotone convergence theorem. (ii) Generalize (i) to the case where X
takes values in (Z ∩ [−m,∞)) ∪ {∞} for some m ∈ N.
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Exercise 1.1.7 (Inclusion-exclusion formula) Let A1, ..., An be events. Prove then that

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

P (Ai1 ∩ ... ∩ Aik) . (1.13)

Hint: Let A0 =
⋃n

k=1Ak, χj = 1Aj
(j = 0, 1, ..., n) and σn,k =

∑
1≤i1<...<ik≤n χi1 · · ·χik

(k = 1, ..., n). Then,

χ0 = 1−
n∏

k=1

(1− χk) =
n∑

k=1

(−1)k−1σn,k. (1.14)

Exercise 1.1.8 (Bonferroni inequalities) Let 1 ≤ m ≤ n− 1. Then, the following variants
of (1.13) hold:

P

(
n⋃

k=1

Ak

){
≤
≥

} m∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

P (Ai1 ∩ ... ∩ Aik)

{
if m is odd,
if m is even.

Prove these inequalities by going through the following steps (i)–(ii).

(i)
∑n

k=m+1(−1)k−1
(
n
k

)
=
∑m

k=0(−1)k
(
n
k

){ ≤ 0 if m is odd,
≥ 0 if m is even.

. Hint: The first equality is

nothing but (1−1)n = 0. To prove the inequality for m ≤ n/2, note that k 7→
(
n
k

)
is increasing

for k ≤ n/2. Then, use (1− 1)n = 0 again and the symmetry
(

n
n−k

)
=
(
n
k

)
to take care of the

case m ≥ n/2.

(ii) The following variant of (1.14) holds: χ0

{
≤
≥

}∑m
k=1(−1)k−1σn,k

{
if m is odd,
if m is even.

Hint:

Let ℓ =
∑n

k=1 χk. Then, σn,k =
(
ℓ
k

)
1k≤ℓ. Combine (1.14) with this observation and (i) to see

that χ0 −
∑m

k=1(−1)k−1σn,k =
∑ℓ

k=m+1(−1)k−1
(
ℓ
k

){ ≤ 0 if m is odd,
≥ 0 if m is even.

.

Exercise 1.1.9 (Payley-Zygumund inequality) Let X ∈ L2(P ), m
def
= EX > 0. Prove

then that P (X > cm) ≥ (1−c)2m2

varX+(1−c)2m2 for c ∈ [0, 1). Hint: Let Y = X/EX. Then, 1 − c =

E[Y − c] ≤ E[(Y − c)1{Y >c}], and hence (1− c)2 ≤ E[(Y − c)2]P (Y > c).

Exercise 1.1.10 Let S be a real d-dimenisonal vector space equipped with an inner product
x · y, (x, y ∈ S), and let {uα}dα=1 ⊂ S and {vα}dα=1 ⊂ S be respectively orthonormal systems.
Prove then the following. (i) (uα · vβ)dα,β=1 ∈ Od, where Od denotes the totality of d × d real

orthogonal matrices. (ii) Let X = (Xα)
d
α=1 be an Rd valued r.v. such that UX ≈ X for all

U ∈ Od. Then,
∑d

α=1Xαuα ≈
∑d

α=1Xαvα.

Definition 1.1.10 (Conditional probability) Let (Ω,F , P ) be a probability space. If B ∈
F and P (B) > 0, then the conditional probability given B is defined by

P (A|B) = P (A ∩B)/P (B), A ∈ F . (1.15)

Exercise 1.1.11 Suppose that B =
∑n

i=1Bi, where Bi ∈ F and P (Bi) > 0. Prove then that
P (A|B) =

∑n
i=1 P (A|Bi)P (Bi|B) for any A ∈ F .

14



1.2 Examples

Example 1.2.1 (Uniform distribution) Let −∞ < a < b <∞ and I = (a, b) ⊂ R.
▶ A r.v. U : Ω → I is said to be a uniform r.v. on I if

P (U ∈ B) = 1
b−a

∫
B
dt for all B ∈ B(I). (1.16)

The law of U is called the uniform distribution on I. One can easily verify (Exercise 1.2.1)
that

EU = (a+ b)/2, var U = (b− a)2/12. (1.17)

Example 1.2.2 (Poisson distribution) Let c ≥ 0.
▶ A r.v. N : Ω → N is called a c-Poisson r.v. if

P (N ∈ B) = πc(B)
def.
=
∑
n∈B

e−ccn

n!
, B ⊂ N. (1.18)

A probability measure πc defined above is called c-Poisson distribution. It is not hard to see
(Exercise 1.2.2) that

EN = varN = c. (1.19)

Here are some pictures of how the function e−ccn

n!
(n = 0, 1, 2, ...) looks like.

0 1 2 3 4 5 6 7 8 9 10

c = 3

0 1 2 3 4 5

c = 1

0 1 2 3 4

0.607 0.368 0.224

c = 0.5

0 1 2 3 4 5 6 7 8

0.271

c = 2

14 273

0.106

c = 14

Example 1.2.3 (Gaussian distribution; one dimension) Let m ∈ R and v > 0.
▶ A r.v. X : Ω → R is called a (m, v)-Gaussian (or normal) r.v. if

P (X ∈ B) =
1√
2πv

∫
B

exp

(
−(x−m)2

2v

)
dx for B ∈ B(R). (1.20)
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mm−

√

v m+
√

v

1/
√

2πv

The law of an (m, v)-Gaussian r.v. is denoted by N(m, v). In particular, N(0, 1) is called
the standard Gaussian (or standard normal) distribution. N(m, v) and N(0, 1) is related as
follows.

Y ≈ N(0, 1) ⇐⇒ X
def
= m+

√
vY ≈ N(m, v). (1.21)

To prove (⇒), we take a measurable f : R → [0,∞) and compute:

Ef(X)
(1.9)
=

1√
2π

∫
R
f(m+

√
vy) exp

(
−1

2
y2
)
dy

x=m+
√
vy

=
1√
2πv

∫
R
f(x) exp

(
−(x−m)2

2v

)
dx.

This proves (⇒) of (1.21). The converse can be proved similarly.
Next, let us verify that

X ≈ N(m, v) =⇒ EX = m, varX = v. (1.22)

By (1.21), this boils down to the case of (m, v) = (0, 1), where we have that:

EX
(1.9)
=

1√
2π

∫ ∞

−∞
x exp

(
−1

2
x2
)
dx = 0,

varX
(1.9)
=

1√
2π

∫ ∞

−∞
x2 exp

(
−1

2
x2
)
dx =

2√
2π

∫ ∞

0

x2 exp
(
−1

2
x2
)
dx

x=
√
2y

=
2√
2π

∫ ∞

0

2y exp (−y)
√
2

2
y−1/2dy =

2√
π
Γ(3/2).

Here, we have introdued the Gamma function as usual:

Γ(a) =

∫ ∞

0

xa−1e−xdx, a ∈ C, Re(a) > 0. (1.23)

Recall that Γ(a+ 1) = aΓ(a) and that Γ(1/2) =
√
π. Hence,

varX =
2√
π
Γ(3/2) =

1√
π
Γ(1/2) = 1.

\(∧2
∧)/

Example 1.2.4 (Gaussian distribution; higher dimensions) Let m ∈ Rd, and V be a
symmetric, strictly positive definite d× d-matrix.
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▶ A r.v. X : Ω → Rd is called a (m,V )-Gaussian (or normal) r.v. if

P (X ∈ B) =
1√

det(2πV )

∫
B

exp
(
−1

2
(x−m) · V −1(x−m)

)
dx for B ∈ B(Rd). (1.24)

The law of an (m,V )-Gaussian r.v. is denoted by N(m,V ). (See also Example 2.2.4 for the
case where the matrix V may degenerate.) When m = 0 and V is the identity matrix Id,
N(0, Id) is called the standard normal (or standard Gaussian) distribution.

Let A be a d× d matrix, not necessarily symmetric, such that V = AA∗. See Proposition
8.2.4 for a characterization of such A for a given V . Now, N(m,V ) and N(0, Id) is related as:

Y ≈ N(0, Id) ⇐⇒ X
def
= m+ AY ≈ N(m,V ). (1.25)

The proof goes similarly as that of (1.21). To prove (⇒), we take a measurable f : Rd → [0,∞)
and write

1) Ef(X) = Ef(m+ AY )
(1.9)
=

1

(2π)d/2

∫
Rd

f(m+ Ay) exp
(
−1

2
|y|2
)
dy.

We rewrite the integral on the right-hand side of 1) in terms of the new variable x
def
= m+Ay.

We first compute the Jacobian of the transformation x→ y. Since

y = A−1(x−m) and (detA)2 = detA detA∗ = detV,

we have

2)

∣∣∣∣∣det
(
∂yα
∂xβ

)d

α,β=1

∣∣∣∣∣ = | det(A−1)| = 1

| detA|
=

1√
detV

.

Next, we express |y|2 in terms of the variable x. We have

|y|2 = |A−1(x−m)|2 = A−1(x−m) · A−1(x−m) = (x−m) · (A−1)∗A−1(x−m)

and
(A−1)∗A−1 = (A∗)−1A−1 = (AA∗)−1 = V −1.

Therefore,

3) |y|2 = (x−m) · V −1(x−m).

By 1),2) and 3), we obtain

Ef(X) =
1√

det(2πV )

∫
Rd

f(x) exp
(
−1

2
(x−m) · V −1(x−m)

)
dx.

This proves (⇒) of (1.25). The converse can be proved similarly.
The relation (1.25) can be used to verify (Exercise 1.2.5) that

m = (EXα)
d
α=1, V = (cov(Xα, Xβ))

d
α,β=1. (1.26)
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Example 1.2.5 (Gamma, exponential, and χ2 distributions) Let a, c > 0.

▶ We define (c, a)-gamma distribution γc,a ∈ P((0,∞)) by

γc,a(B) =
ca

Γ(a)

∫
B

xa−1e−cxdx, for B ∈ B((0,∞)), (1.27)

γc,a is also denoted by γ(c, a). There are two important special cases of γc,a:

▶ γc,1 is called the c-exponential distribution.

▶ γ1/2,d/2 (d ∈ N\{0}) is called the χ2
d-distribution.

For a r.v. X ≈ γc,a, we easily see that

E[Xp] = c−pΓ(p+ a)

Γ(a)
, p > −a. (1.28)

Indeed, since
cp+a

Γ(p+ a)

∫ ∞

0

xp+a−1e−cxdx = 1,

we have

E[Xp] =
ca

Γ(a)

∫ ∞

0

xp+a−1e−cxdx =
ca

Γ(a)

Γ(p+ a)

cp+a
= c−pΓ(p+ a)

Γ(a)
.

It follows from (1.28) that
EX = a/c, varX = a/c2. (1.29)

Example 1.2.6 (Square of a Gaussian r.v.) Let v > 0. Then,

X ≈ N(0, vId) =⇒ |X|2 ≈ γ
(

1
2v
, d
2

)
. (1.30)

In particular,

� v = 1 ⇒ |X|2 ≈ χ2
d;

� d = 2 ⇒ |X|2 ≈ 1
2v
-exponentail distribution.

To prove (1.30), let f : [0,∞) → [0,∞) be measurable. We compute by the polar coordinate

transformation. Let Ad = 2π
d
2 /Γ(d

2
) (the area of the unit sphere in Rd). Then,

Ef(|X|2) (1.9)
=

1

(2πv)d/2

∫
Rd

f(|x|2) exp
(
− |x|2

2v

)
dx

=
Ad

(2πv)d/2

∫ ∞

0

f(r2)rd−1 exp
(
− r2

2v

)
dr

s=r2
=

(
1
2v

) d
2

1

Γ(d
2
)

∫ ∞

0

f(s)s
d
2
−1 exp

(
− s

2v

)
ds =

∫ ∞

0

fdγ 1
2v

, d
2
.

This proves the relation (1.30). This relation can be combined with (1.28) to verify that

E[|X|p] = (2v)p/2
Γ(p+d

2
)

Γ(d
2
)
. (1.31)

Indeed,

E[|X|p] = E[(|X|2)p/2] (1.28), (1.30)
=

(
1

2v

)−p/2 Γ(p+d
2
)

Γ(d
2
)

= (2v)p/2
Γ(p+d

2
)

Γ(d
2
)
.
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Example 1.2.7 (Beta distribution) We define the Beta function as usual:

B(a, b) =

∫
(0,1)

xa−1(1− x)b−1dx, a, b > 0. (1.32)

We define (a, b)-beta distribution βa,b ∈ P((0, 1)) by

βa,b(B) =
1

B(a, b)

∫
B

xa−1(1− x)b−1dx for B ∈ B((0, 1)) (1.33)

βa,b are also denoted by β(a, b). For a r.v.Y ≈ βa,b, we have that

EY =
a

a+ b
, var Y =

ab

(a+ b)2(a+ b+ 1)
, cf. Exercise 1.2.11. (1.34)

There are two important special cases:

▶ β1,1 is the uniform distribution on (0, 1).
▶ β1/2,1/2 is called the arcsin law. Since B(1

2
, 1
2
) = π, the arcsin law has the density 1

π
1√

x(1−x)

on (0, 1). To explain why β1/2,1/2 is called the arcsin law, let Y be a r.v. with values in (−1, 1)
such that for −1 ≤ a ≤ b ≤ 1,

P (a < Y ≤ b) =
2

π

∫ b

a

dx√
1− x2

=
2

π
(Arcsin b− Arcsin a).

Then, Y 2 ≈ β(1
2
, 1
2
) as is easily verified. In this respect, it would be more correct to call β(1

2
, 1
2
)

the “squared arcsin law” rather than the arcsin law.

Example 1.2.8 (Cauchy distribution, Tn-distribution)
▶ Let a, c > 0. We define the generalized Cauchy distribution µc,a ∈ P(Rd) by:

µc,a(B) =
c2aΓ(d

2
+ a)

πd/2Γ(a)

∫
B

dx

(c2 + |x|2)
d
2
+a
, B ∈ B(Rd). (1.35)

We will see in Exercise 1.2.13 below that

c2aΓ(d
2
+ a)

πd/2Γ(a)

∫
Rd

dx

(c2 + |x|2)
d
2
+a

= 1. (1.36)

There are two important special cases:

▶ µc,1/2 is called the (c)-Cauchy distribution. For d = 1 and B = [a, b], one can compute:

µc,1/2([a, b]) =
c

π

∫ b

a

dx

c2 + x2
=

1

π

(
Arctan

b

c
− Arctan

a

c

)
.

▶ For d = 1 and n ∈ N, µn/2,n/2 is called the Tn-distribution and used in statistics.

Exercise 1.2.1 Verify (1.17).

Exercise 1.2.2 Verify (1.19).

19



Exercise 1.2.3 Let X : Ω → N be a (c)-Poisson r.v. Prove then that for n ∈ N,

P (X = 2n|X is even) =
1

cosh c

c2n

(2n)!
, P (X = 2n+ 1|X is odd) =

1

sinh c

c2n+1

(2n+ 1)!
.

Exercise 1.2.4 Let X be a r.v. ≈ N(0, 1) and x > 0. Then, prove that

1√
2π

(
1

x
− 1

x3

)
exp(−x2/2) ≤ P (X > x) ≤ 1√

2π

1

x
exp(−x2/2). (1.37)

Hint:
∫∞
x

exp(−y2/2)dy = x−1 exp(−x2/2)−
∫∞
x
y−2 exp(−y2/2)dy.

Exercise 1.2.5 Verify (1.26). Hint: First, consider the case of for N(0, Id), where (1.22) and
Fubini’s theorem can be used. Then, use (1.25) to settle the general case.

Exercise 1.2.6 Let X be a positive r.v. Prove then that the following conditions are equiv-
alent. (a) ∃c ∈ (0,∞), X ≈ γc,1. (b) P (X > t + s|X > s) = P (X > t) > 0 for any t, s ≥ 0.
(The property (b) is referred to as the “memoryless property”.)

Exercise 1.2.7 Suppose that two positive r.v’s X,U are related as U = exp(−cX) (c > 0).
Prove then that U is uniformly distributed on (0, 1) if and only if X ≈ γ(c, 1).

Exercise 1.2.8 Let X ≈ γc,a. Prove then that (i) X/r ≈ γrc,a for r > 0.

(ii) Xp ≈ ca

|p|Γ(a)
x

a
p
−1 exp(−cx

1
p )dx for p ∈ R\{0}.

Exercise 1.2.9 (⋆) (Preparation for Exercise 1.2.10) Let h2(r) = log r (r > 0), hd(r) = r2−d

(d ≥ 3, r > 0), and e1 = (1, 0, . . . , 0) ∈ Rd. Let also σd be the surface measure on Sd−1, so that

Ad
def
= σ(Sd−1) = 2πd/2/Γ(d/2). Prove the following. (i) The fnction, u 7→ supr>0 hd(|e1 + ru|)

is integrable on Sd−1 with respect to σd. Hint: |e1 + ru|2 ≥ (1 ∧ r2)|e1 + u|2 + (r − 1)2 for
u ∈ Sd−1. (ii)

∫
Sd−1 hd(|e1 + ru|)dσd(u) = Adhd(r ∨ 1). Hint: Start with the case of r ∈ (0, 1),

noting that hd is harmonic on Rd\{0}.

Exercise 1.2.10 (⋆) Let d ≥ 2 be an integer and g : [0,∞) → [0,∞) be locally bounded,

measurable, such that γd
def
=
∫∞
0
rd−1g(r)dr < ∞. We consider an Rd-valued r.v. X ≈

1
γdAd

g(|x|)dx, where Ad = 2πd/2/Γ(d/2), the area of the unit sphere in Rd. Using the polar

coordinate transform and Exercise 1.2.9, prove the following identities for m ∈ Rd, c > 0. For
d = 2,

E log |m+ cX| =

{
log c+ 1

γ2

∫∞
0
r log r exp

(
− r2

2

)
dr, (m = 0),

log |m|+ 1
γ2

∫∞
|m|/c γ2(r)r

−1dr, (m 6= 0).

where γ2(r) =
∫∞
r
ug(u)du (r ≥ 0). For d ≥ 3,

E[|m+ cX|2−d] =

{
c2−dγ2/γd, (m = 0),

c2−d(d− 2) 1
γd

∫ |m|/c
0

γ2(r)r
d−3dr, (m 6= 0).

Remark: The special case g(r) = exp(−r2/2) is of particular interest, where X ≈ N(0, Id),

γd = 2
d
2
−1Γ(d

2
) and γ2(r) = g(r) = exp(−r2/2).
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Exercise 1.2.11 Verify (1.34).

Exercise 1.2.12 (⋆) Prove that βk,n−k+1((0, p]) =
∑n

r=k

(
n
r

)
pr(1 − p)n−r for p ∈ [0, 1] and

1 ≤ k ≤ n. Hint: Induction on k.

Exercise 1.2.13 Prove that
∫∞
0

ra−1dr
(1+rc)b

=
Γ(b−a

c
)Γ(a

c
)

cΓ(b)
for a, b, c > 0 such that bc > a. Then,

use this to see (1.36).

Exercise 1.2.14 Let X be a r.v. with (c)-Cauchy distribution. Then, prove that c2

c2+X2 ≈
β(1

2
, 1
2
), the arcsin law.

Exercise 1.2.15 Let U be a r.v. with uniform distribution on (−π
2
, π
2
). Then, prove the

following. (i) P (sinU ∈ B) = 2
π

∫
B

dx√
1−x2 for B ∈ B((−1, 1)). (ii) sin2 U ≈ cos2 U ≈ β(1

2
, 1
2
),

the arcsin law. (iii) c tanU ≈ (c)-Cauchy distribution on R (c > 0).

Exercise 1.2.16 Suppose that Y is a r.v. with (1)-Cauchy distribution. Prove the following.

(i) For c > 0, X
def
= c log |Y | ≈ 2

cπ
cosh(x/c)−1dx. (ii) E[|X|s−1] = 4cs−1

π
Γ(s)

∑∞
n=0

(−1)n

(2n+1)s

(∀s ∈ (1,∞)).

1.3 When Do Two Measures Coincide?

In this subsection, we take up a question as follows; Let µ1 and µ2 be probability measures on
a measurable space (S,B), A ⊂ B and

σ[A] = the smallest σ-algebra that contains A. (1.38)

Then, is the following true?

µ1(A) = µ2(A) for all A ∈ A =⇒ µ1(A) = µ2(A) for all A ∈ σ[A]. (1.39)

Unfortunately, this is not true in general, see e.g. Example 1.5.3 below. On the other hand, a
positive answer is provided by the following:� �
Lemma 1.3.1 (Dynkin’s lemma) Let µ be a signed measures on a measurable space
(S,B) and that µ(S) = 0. Suppose that A ⊂ B is a π-system (i.e., A1, A2 ∈ A ⇒
A1 ∩ A2 ∈ A). Then,

µ(A) = 0 for all A ∈ A =⇒ µ(A) = 0 for all A ∈ σ[A]. (1.40)

In particular, (1.39) is true for µ1, µ2 ∈ P(S,B), as can be seen by applying (1.40) to
µ = µ1 − µ2.� �
The proof of this lemma is presented in Section 1.4. It is more important to know how to

apply Lemma 1.3.1 than to know how to prove it. Here is an example of such application.� �
Lemma 1.3.2 Let S be a metric space with the metric ρ, and B the Borel σ-algebra. Then,
the following conditions for a signed measure µ on (S,B) are equivalent:

a) µ = 0

b)
∫
fdµ = 0 for all bounded, Lipschiz continuous f : S → [0,∞).

c) µ (G) = 0 for any open subset G ⊂ S.� �
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Remark f : S → R is said to be Lipschiz continuous, if there is a constant L such that
|f(x)− f(y)| ≤ Lρ(x, y) for all x, y ∈ S.

Proof: a) ⇒ b): Obvious.
b) ⇒ c): It is enough to prove that µ (F ) = 0 for any closed subset F ⊂ S. For x ∈ S and a
closed set F , let

fn(x) = (1− nρ(x, F ))+ ∈ [0, 1]. (1.41)

Then,
|fn(x)− fn(y)| ≤ nρ(x, y) for all x, y ∈ S (1.42)

(cf. Exercise 1.3.1) and hence fn is bounded, Lipschiz continuous. Moreover, fn ↘ 1F , as
n↗ ∞. Thus, by the bounded convergence theorem,

µ (F ) = lim
n→∞

∫
fndµ = 0.

c) ⇒ a): Let O be the totality of open subsets in S. Then, O is a π-system and B = σ[O].
Moreover, µ(S) = 0, since S ∈ O. Thus, a) follows from c) by Lemma 1.3.1. \(∧2

∧)/

Exercise 1.3.1 Prove (1.42).

Exercise 1.3.2 Suppose that µ is a signed measure on (Rd,B(Rd)). Use Lemma 1.3.1 to prove
that µ = 0 if and only if

µ
(∏d

j=1(−∞, bj]
)
= 0 for any (bj)

d
j=1 ∈ Rd. (1.43)

1.4 (⋆) Proof of Lemma 1.3.1

Let µ be a signed measures on a measurable space (S,B) and that µ(S) = 0. Let us consider

Dµ
def.
= {B ∈ B ; µ(B) = 0}. (1.44)

If the class Dµ defined by (1.44) happens to be a π-system, it is then not difficult to prove that
Dµ is a σ-algebra6 and hence that σ[A] ⊂ Dµ. Unfortunately, Dµ is not a π-system in general.
In fact, we see in Exercise 8.7.2 an example where

� the family Dµ in (1.44) is not a σ-algebra and hence is not a π-system (Exercise 1.4.1).

� “µ(A) = 0 for all A ∈ A” does not imply “µ(A) = 0 for all A ∈ σ(A)”.

This difficulty can be circumvented as follows. We begin by introducing the abstract termi-
nology.

Definition 1.4.1 Suppose that S is a set.

▶ A subset D of 2S is called a δ-system or a Dynkin class if the following conditions are
satisfied;

D1) S ∈ D.

6Use inclusion and exclusion formula to prove that Dµ is closed under finite union.
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D2) {An}n≥1 ⊂ D, An ⊂ An+1 (n ≥ 1) ⇒ An+1\An ∈ D (n ≥ 1), ∪n≥1An ∈ D.

▶ For, A ⊂ 2S we define:

δ[A] =
⋂

D, (1.45)

where the intersection is taken over all δ-system D that contains A.� �
Lemma 1.4.2 Suppose that S is a set and that A ⊂ 2S. Then, the following are equivalent:

a) δ[A] = σ[A].

b) A ∩B ∈ δ[A] for all A,B ∈ A.

c) δ[A] is a π-system.� �
Before proving Lemma 1.4.2, we first finish the proof of Lemma 1.3.1.

Proof of Lemma 1.3.1: It is easy so see that Dµ defined by (1.44) is a δ-system (Here, we use
the assumption µ(S) = 0). Since A ⊂ Dµ and A is a π-system (and thus, satisfies condidtion
b) of Lemma 1.4.2), we see by Lemma 1.4.2 that σ[A] = δ[A] ⊂ Dµ. \(∧2

∧)/

Proof of Lemma 1.4.2: a) ⇒ b): Obvious.
b) ⇒ c): Step1: We first show that A ∈ A, B ∈ δ[A] ⇒ A∩B ∈ δ[A]. To do so, we introduce

D1 =
⋂
A∈A

{B ∈ 2S ; A ∩B ∈ δ[A]}.

Then, the claim of Step1 can be paraphrased as δ[A] ⊂ D1. We have A ⊂ D1 by b). On the
other hand, it is easy to verify that D1 is a δ-system (Exercise 1.4.2). Since δ[A] is the smallest
δ-system that contains A, we have δ[A] ⊂ D1.

Step2: We now show that A,B ∈ δ[A] ⇒ A ∩ B ∈ δ[A], which implies c). To do so, we
introduce

D2 =
⋂

A∈δ[A]

{B ∈ 2S ; A ∩B ∈ δ[A]}.

Then, the claim of Step2 can be paraphrased as δ[A] ⊂ D2. We have A ⊂ D2 by Step1. On
the other hand, it is easy to verify that D2 is a δ-system (Exercise 1.4.2). Since δ[A] is the
smallest δ-system that contains A, we have δ[A] ⊂ D2.
c) ⇒ a): δ[A] ⊂ σ[A]: σ[A] is one of the δ-system which contains A, while δ[A] is the smallest
among them.
δ[A] ⊃ σ[A]: By b), δ[A] is a π-system, which implies that δ[A] is a σ-algebra which contains
A (Exercise 1.4.1). Since σ[A] is the smallest σ-algebra that contains A, we have δ[A] ⊃ σ[A].
\(∧2

∧)/

Exercise 1.4.1 Prove that a δ-system D is a σ-algebra if and only if D is a π-system.

Exercise 1.4.2 Prove the following: (i) Let Dλ (λ ∈ Λ) be δ-systems on a set S. Then⋂
λ∈ΛDλ is a δ-system. (ii) Let D be a δ-system on a set S and A ∈ D be fixed. Then,

D(A)
def
= {B ∈ 2S ; A ∩B ∈ D} is a δ-system. (iii) Conclude from (i) and (ii) that D1 and D2

in the proof of Lemma 1.4.2 are δ-systems.
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1.5 Product Measures

Thoughout sections 1.5 and 1.6, we will use the following notation. Let Λ be a set and
{(Sλ,Bλ)}λ∈Λ be measurable spaces. For Γ ⊂ Λ, let SΓ =

∏
λ∈Γ Sλ be the direct product,

S = SΛ, and πΓ : S → SΓ be the canonical projection, πλ = π{λ} for λ ∈ Λ. Recall that for
A ⊂ 2S, σ[A] denotes the smallest σ-algebra that contains A, cf. (1.38).

Definition 1.5.1 (The direct product of measurable spaces)

▶ A subset of S of the form π−1
λ (Bλ) for some λ ∈ Λ and Bλ ∈ Bλ is called a simple cylinder

set. We define C0(S) ⊂ 2S by

C0(S) = all the simple cylinder sets of S. (1.46)

▶ The following σ-algebra is called the product σ-algebra on S:

B(S) =
⊗
λ∈Λ

Bλ
def.
= σ[C0(S)]. (1.47)

▶ The measurable space (S,B(S)) is called the direct product of {(Sλ,Bλ)}λ∈Λ.

Remark: The σ-algebra B(S) can also be characterized as follows.

B(S) = {π−1
Γ (A) ; Γ ⊂ Λ is at most countable, A ∈ B(SΓ)}.

See Proposition 1.5.6 below.

The following lemma characterizes the measurable maps with values in (S,B(S)) in Defi-
nition 1.5.1.� �
Lemma 1.5.2 Let (Ω,F) be a measurable space, (S,B(S)) be as in Definition 1.5.1 and
X(ω) = (Xλ(ω))λ∈Λ be a map from Ω to S. Then, the following are equivalent.

a) X : (Ω,F) → (S,B(S)) is measurable.

b) Xλ : (Ω,F) → (Sλ,Bλ) is measurable for all λ ∈ Λ.� �
Proof: a) ⇒ b): πλ : (S,B(S)) → (Sλ,Bλ) is measurable for all λ ∈ Λ. Thus, by assumption,
Xλ = πλ ◦Xis measurable for all λ ∈ Λ.
a) ⇐ b): We have to prove that

1) ∀B ∈ B(S), X−1(B) ∈ F .

But this amounts to saying that

2) B(S) ⊂ X(F)
def
= {B ∈ 2S ; X−1(B) ∈ F}.

To prove 2), it is enough to verify that X(F) is a σ-algebra which contains C0(S), since
B(S) = σ[C0(S)]. It is obvious that X(F) is a σ-algebra. On the other hand, we have for any
λ ∈ Λ and Bλ ∈ Bλ that

X−1(π−1
λ (Bλ)) = (πλ ◦X)−1(Bλ) = X−1

λ (Bλ) ∈ F .
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This implies that C0(S) ⊂ F . \(∧2
∧)/

Let (S,B(S)) be as in Definition 1.5.1, and µ, ν ∈ P(S,B(S)). Although B(S) = σ[C0(S)],
it is not true that

µ(B) = ν(B) for all B ∈ C0(S) =⇒ µ = ν. (1.48)

Let us now look at a simple, but enlightening example.

Example 1.5.3 (Simple cylinder sets do not determine the measure) Let S1 = S2 =
{0, 1}, S = S1 × S2 and µλ ∈ P(Sλ), λ = 1, 2.

We define νθ ∈ P(S) by

1)

(
νθ(0, 0) νθ(0, 1)
νθ(1, 0) νθ(1, 1)

)
=

(
θ µ1(0)− θ

µ2(0)− θ 1 + θ − µ1(0)− µ2(0)

)
,

where, for νθ to be a probability measure, we suppose that θ ∈ [θ0, θ1] with

θ0 = (µ1(0) + µ2(0)− 1)+ and θ1 = µ1(0) ∧ µ2(0).

(We easily see that θ0 ≤ θ1, with equality iff µ1(0) ∈ {0, 1} or µ2(0) ∈ {0, 1}.) We will show
that for µ ∈ P(S) and θ ∈ [θ0, θ1],

2) µ = νθ ⇐⇒ µ ◦ π−1
λ = µλ (λ = 1, 2) and µ(0, 0) = θ.

Note that θ0 < θ1 iff 0 < µλ(0) < 1 (λ = 1, 2). Thus, the above simple example already shows
that (infinitely) many different probability measures on a product space can take the same
values on C0(S) = {π−1

λ (Bλ) ; λ = 1, 2, Bλ ⊂ Sλ}.
To prove ⇒ of 2), we check that νθ ◦ π−1

λ = µλ, λ = 1, 2 for all θ ∈ [θ0, θ1]. Since

π−1
1 (0) = {(0, 0), (0, 1)}, π−1

1 (1) = {(1, 0), (1, 1)},

we have that

νθ ◦ π−1
1 (0) = νθ(0, 0) + νθ(0, 1)

1)
= µ1(0),

νθ ◦ π−1
1 (1) = νθ(1, 0) + νθ(1, 1)

1)
= 1− µ1(0) = µ1(1).

Similarly,

νθ ◦ π−1
2 (0) = νθ(0, 0) + νθ(1, 0)

1)
= µ2(0),

νθ ◦ π−1
2 (1) = νθ(0, 1) + νθ(1, 1)

1)
= 1− µ2(0) = µ2(1).

To prove ⇐ of 2), let µ ∈ P(S) be such that µ ◦ π−1
λ = µλ (λ = 1, 2) and θ = µ(0, 0). Then, it

is clear from the above computation that µ(s1, s2) = νθ(s1, s2) for all (s1, s2) ∈ S. \(∧2
∧)/

Instead of (1.48) which is not true, we have the following
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� �
Lemma 1.5.4 (Cylinder sets determin the measure) Let everything be as in Defini-
tion 1.5.1.

▶ A finite intersection of simple cylinder sets is called a cylinder set. We define C(S) ⊂
2S by :

C(S) = all the cylinder sets of S. (1.49)

a) B(S) = σ[C(S)].

b) The set C(S) is a π-system.

c) µ, ν ∈ P(S,B(S)), µ(B) = ν(B) for all B ∈ C(S) =⇒ µ = ν.� �
Proof: a) It is clear that C0(S) ⊂ C(S) ⊂ σ[C0(S)], and hence σ[C0(S)] = σ[C(S)].
b) Let B1, B2 ∈ C(S). Then, there exist finite sets C1, C2 ⊂ C0(S) such that

Bi =
⋂
B∈Ci

B, i = 1, 2.

Thus,

B1 ∩B2 =
⋂

B∈C1∪C2

B ∈ C(S).

c) This follows from a), b), and Lemma 1.3.1. \(∧2
∧)/� �

Theorem 1.5.5 (Product measures) Let everything be as in Definition 1.5.1. Suppose
that µλ ∈ P(Sλ,Bλ) for each λ ∈ Λ. Then, there exists a unique µ ∈ P(S,B(S)) such that

µ

( ⋂
λ∈Λ0

π−1
λ (Bλ)

)
=
∏
λ∈Λ0

µλ (Bλ)

for any finite Λ0 ⊂ Λ and Bλ ∈ Bλ (λ ∈ Λ0).

(1.50)

▶ The measure µ defined by (1.50) is called the product measure of {µλ}λ∈Λ and is
denoted by ⊗λ∈Λµλ.� �

Proof: The uniqueness follows from Lemma 1.5.4. For the existence7, we refer the reader to
[Dud89, page 201, Theorem 8.2.2]. A self-contained exposition is given by Proposition 8.3.1 in
a special case that Λ is a countable set and each (Sλ,Bλ) is a complete separable metric space
with the Borel σ-algebra. \(∧2

∧)/

Remark: Concerning Theorem 1.5.5, note that:

µ = ⊗λ∈Λµλ =⇒ µ ◦ π−1
λ = µλ, for all λ ∈ Λ. (1.51)

This can be seen from (1.50) by taking Λ0 = {λ}. Note also that the converse is not true. A
counterexample is provided by Example 1.5.3, where νθ ◦π−1

j = µj (j = 1, 2) for all θ ∈ [θ0, θ1],
but νθ = µ1 ⊗ µ2 only when θ = µ1(0)µ2(0).

7If each (Sλ,Bλ) is a complete separable metric space with the Borel σ-algebra, then one can also apply
Kolmogorov’s extension theorem [Dur95, page 26 (4.9)].
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Exercise 1.5.1 Let everything be as in Lemma 1.5.4. Prove then that the following conditions
for a set B ⊂ S are equivalent:
a) B ∈ C(S).
b) B =

∏
λ∈Λ πλ(B) with πλ(B) ∈ Bλ for all λ, and πλ(B) = Sλ except for finitely many λ.

c) B =
∏

λ∈ΛBλ, with Bλ ∈ Bλ for all λ, and Bλ = Sλ except for finitely many λ.

Exercise 1.5.2 Let S1 = S2 = {0, 1}. Find cylinder sets A,B ⊂ S1 × S2 such that A ∪ B is
not a cylinder set. This in particular shows that the set C is not closed under union in general.

Exercise 1.5.3 Let everything be as in Theorem 1.5.5.
(i) Suppose that Λ = {1, 2, ...}. Prove then that (1.50) is equivalent to that

µ

(
n⋂

j=1

π−1
j (Bj)

)
=

n∏
j=1

µj (Bj)

for any n ≥ 1 and Bj ∈ Bj (1 ≤ j ≤ n).

(ii) Suppose that each Sλ is at most countable. Prove then that (1.50) is equivalent to that

µ

( ⋂
λ∈Λ0

π−1
λ (xλ)

)
=
∏
λ∈Λ0

µλ (xλ)

for any finite Λ0 ⊂ Λ and xλ ∈ Sλ (λ ∈ Λ0).

(⋆) Complement to section 1.5� �
Proposition 1.5.6 Referring to Definition 1.5.1,

B(S) = {π−1
Γ (A) ; Γ ⊂ Λ is at most countable, A ∈ B(SΓ)}.� �

Proof: We first show that

1) B(S) ⊃ D(S)
def
= {π−1

Γ (A) ; Γ ⊂ Λ is at most countable, A ∈ B(SΓ)}.

To this end, we fix a Γ ⊂ Λ, at most countable, and verify that

2) B(SΓ) ⊂ A(SΓ)
def
= {A ⊂ SΓ ; π−1

Γ (A) ∈ B(S)}.

It is clear that A(SΓ) is a σ-algebra on SΓ. We will check that A
def
= π−1

λ,Γ(Bλ) ⊂ A(SΓ) for any
Bλ ∈ Bλ, where πλ,Γ denotes the canonical projection from SΓ to Sλ. Indeed,

π−1
Γ (A) = (πλ,Γ ◦ πΓ)−1(Bλ) = π−1

λ (Bλ) ∈ B(S).

Hence, we have 2). Next, we show that

3) B(S) ⊂ D(S).
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It is clear that π−1
λ (Bλ) ⊂ D(S) for any Bλ ∈ Bλ. Thus, it is enough to verify that D(S)

is a σ-algebra. It is easy to see that S ∈ D(S) and that D ∈ D(S) ⇒ Dc ∈ D(S). To
check that D(S) is closed under countable union, let Γn ⊂ Λ be at most countable, An ∈
B(SΓn), Γ =

⋃
n≥1 Γn. Also, let πΓn,Γ denotes the canonical projection from SΓ to SΓn and

A =
⋃

n≥1 π
−1
Γn,Γ

(An). By 1) (appplied to SΓ, instead of S), we see that π−1
Γn,Γ

(An) ∈ B(SΓ) for
all n ≥ 1, so that A ∈ B(SΓ). Note that

π−1
Γn
(An) = (πΓn,Γ ◦ πΓ)−1(An) = π−1

Γ (π−1
Γn,Γ

(An)).

Therefore, ⋃
n≥1

π−1
Γn
(An) = π−1

Γ (A) ∈ D(S),

which concludes the proof of 3). \(∧2
∧)/� �

Corollary 1.5.7 Referring to Definition 1.5.1, suppose that U ∈ B(S). Then, there exists
an at most countable set Γ ⊂ Λ with the following propoerty.

x ∈ S, y ∈ U, πΓ(x) = πΓ(y) =⇒ x ∈ U.� �
Proof: By Proposition 1.5.6, there exist an at most countable set Γ ⊂ Λ and A ∈ B(SΓ) such
that U = π−1

Γ (A). Since y ∈ U , we have that πΓ(y) ∈ A and hence that πΓ(x) = πΓ(y) ∈ A.
This implies that x ∈ U . \(∧2

∧)/

We present a following variant of Lemma 1.5.2, which applies to a subset U of S, rather
than S itself. The proof is almost the same as that of Lemma 1.5.2, hence is omitted.� �
Lemma 1.5.8 Let (Ω,F) be a measurable space, (S,B(S)) be as in Definition 1.5.1, U ⊂ S

and B(U) def
= {B ∩ U ; B ∈ B(S)}. Let also X(ω) = (Xλ(ω))λ∈Λ be a map from Ω to U .

Then, the following are equivalent.

a) X : (Ω,F) → (U,B(U)) is measurable.

b) Xλ : (Ω,F) → (Sλ,Bλ) is measurable for all λ ∈ Λ.� �
We present a following variant of Lemma 1.5.4, which applies to a subset U of S, rather

than S itself.� �
Lemma 1.5.9 Let everything be as in Lemma 1.5.4, U ⊂ S and

C(U) def
= {C ∩ U ; C ∈ C(S)}.

A set in C(U) is called a cylinder set in U .

a) B(U) def
= {B ∩ U ; B ∈ B(S)} = σ[C(U)].

b) The set C(U) is a π-system.

c) µ, ν ∈ P(U,B(U)), µ(C) = ν(C) for all C ∈ C(U) =⇒ µ = ν.� �
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Proof: a) Obviously, B(U) ⊃ C(U), and hence B(U) ⊃ σ[C(U)]. On the other hand, let
A = {B ⊂ S ; B ∩ U ∈ σ[C(U)]}. Then, A is a σ-algebra on S, which contains C(S), and
hence A ⊃ σ[C(S)] = B(S) (Lemma 1.5.4). This implies that B(U) ⊂ C(U).
b) Let C1, C2 ∈ C(S). Then C1 ∩ C2 ∈ C(S) (Lemma 1.5.4), and hence (C1 ∩ U) ∩ (C2 ∩ U) =
(C1 ∩ C2) ∩ U ∈ C(U).
c) This follows from a), b) and Lemma 1.3.1. \(∧2

∧)/

1.6 Independent Random Variables

Let us now come back to our informal description (0.1) of playing a game. If you play two
games with outcomes Xi : Ω → {−1,+1} (i = 1, 2) in such a way that the outcome of one
game does not affect that of the other, e.g., tossing two coins on different tables. We then
should have

P (X2 = ε2|X1 = ε1) = P (X2 = ε2) for all εk = ±1.

The above expression of “independence” is equivalent to that

P (X1 = ε1, X2 = ε2) = P (X1 = ε1)P (X2 = ε2) for all εk = ±1.

We now come to the definition of independent r.v.’s. In what follows, (Ω,F , P ) denotes a
probability space.
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� �
Proposition 1.6.1 (Independent r.v.’s) Suppose that {(Sλ,Bλ, µλ)}λ∈Λ are probability
spaces indexed by a set Λ and that Xλ : Ω → Sλ is a r.v. such that Xλ ≈ µλ for each
λ ∈ Λ. Then the following conditions a)–c) are equivalent:

a) For any finite Λ0 ⊂ Λ and for any Bλ ∈ Bλ (λ ∈ Λ0),

P

( ⋂
λ∈Λ0

{Xλ ∈ Bλ}

)
=
∏
λ∈Λ0

P (Xλ ∈ Bλ). (1.52)

b1) (Xλ)λ∈Λ ≈
⊗
λ∈Λ

µλ .

b2) (Xλ)λ∈Λ1 ≈
⊗
λ∈Λ1

µλ for any Λ1 ⊂ Λ.

b3) (Xλ)λ∈Λ0 ≈
⊗
λ∈Λ0

µλ for any finite Λ0 ⊂ Λ.

c) For any finite Λ0 ⊂ Λ and for any fλ ∈ L1(µλ) (λ ∈ Λ0),

E

[∏
λ∈Λ0

fλ(Xλ)

]
=
∏
λ∈Λ0

E [fλ(Xλ)] . (1.53)

▶ R.v.’s {Xλ}λ∈Λ are said to be independent if they satisfy one of (therefore all of)
conditions in the proposition.

▶ Let {Xλ}λ∈Λ be independent. If (Sλ,Bλ, µλ) are identical for all λ ∈ Λ, then the r.v.’s
are called iid (independent and identically distributed) r.v.’s.� �

Proof: Let µ be the law of X
def
= (Xλ)λ∈Λ : Ω →

∏
λ∈Λ Sλ. For any finite Λ0 ⊂ Λ and for any

Bλ ∈ Bλ (λ ∈ Λ0),

1) P

( ⋂
λ∈Λ0

{Xλ ∈ Bλ}

)
= P

(
X ∈

⋂
λ∈Λ0

π−1
λ (Bλ)

)
(1.3)
= µ

( ⋂
λ∈Λ0

π−1
λ (Bλ)

)
,

2)
∏
λ∈Λ0

P (Xλ ∈ Bλ)
(1.3)
=

∏
λ∈Λ0

µλ(Bλ).

a) ⇔ b1):

a)
(1.52)⇐⇒ LHS 1) =LHS 2), ∀ finite Λ0 ⊂ Λ

⇐⇒ RHS 1) =RHS 2), ∀ finite Λ0 ⊂ Λ
(1.50)⇐⇒ µ =

⊗
λ∈Λ

µλ ⇐⇒ b1).

a) ⇒ b2): a) implies that (1.52) holds in particular for all finite Λ0 ⊂ Λ1. Then, by letting Λ1

play the role of Λ in the proof of “a) ⇒ b1)” above, we get b2).
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b2) ⇒ b3): Obvious.
b3) ⇒ c): Let SΛ0 =

∏
λ∈Λ0

Sλ and µΛ0 = ⊗λ∈Λ0µλ. Then,

LHS of (1.53)
b3), (1.9)

=

∫
SΛ0

∏
λ∈Λ0

fλdµΛ0

Fubini
=

∏
λ∈Λ0

∫
Sλ

fλdµλ
(1.9)
= RHS of (1.53).

c) ⇒ a): This can be seen by plugging fλ = 1Bλ
into (1.53). \(∧2

∧)/

Remarks:
1) The condition a) in Proposition 1.6.1 amounts to saying that the σ-algebras {σ(Xλ)}λ∈Λ
(cf. (1.1)) are independent in the sense of Definition 8.7.1 b).

2) Let µλ ∈ P(Sλ,Bλ) for each λ ∈ Λ be given. Then, of course, there can be r.v.’s {Xλ}λ∈Λ
with

Xλ ≈ µλ for all λ ∈ Λ,

which are not independent. For example, consider the measure νθ in Example 1.5.3 and {0, 1}-
valued r.v.’s X1, X2 such that (X1, X2) ≈ νθ with θ 6= µ1(0)µ2(0).� �
Corollary 1.6.2 Let {(Sλ,Bλ)}λ∈Λ be measurable spaces indexed by a set Λ. Suppose that

a) Xλ, Yλ : Ω → Sλ are a r.v.’s such that Xλ ≈ Yλ for each λ ∈ Λ,

b) {Xλ}λ∈Λ are independent,

c) {Yλ}λ∈Λ are independent.

Then, (Xλ)λ∈Λ ≈ (Yλ)λ∈Λ.� �
Proof: Let µλ ∈ P(Sλ,Bλ) be the common law of Xλ and Yλ. Then, by Proposition 1.6.1,
(Xλ)λ∈Λ ≈ ⊗λ∈Λµλ and (Yλ)λ∈Λ ≈ ⊗λ∈Λµλ. \(∧2

∧)/� �
Proposition 1.6.3 Suppose that Xi, Yi, XiYi ∈ L1(P ) for all i ≥ 1. Then, conditions
a)–c) listed below are related as a) ⇒ b) ⇒ c);

a) Xi and Yj for i 6= j are independent.

b) Xi and Yj for i 6= j are uncorrelated , i.e., cov(Xi, Yj) = 0 if i 6= j.

c)

cov(
m∑
i=1

Xi,

n∑
j=1

Yj) =
m∑
i=1

cov(Xi, Yi) if m ≤ n. (1.54)

� �
Remark: (1.54) is most commonly applied to the special case: Xi ≡ Yi, where it becomes:

var (
m∑
i=1

Xi) =
m∑
i=1

varXi. (1.55)

Proof: a) ⇒ b): Since Xi and Yj for i 6= j are independent,

cov(Xi, Yj) = E[XiYj]− EXiEYj
(1.53)
= 0
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b) ⇒ c):

cov(
m∑
i=1

Xi,

n∑
j=1

Yj) =
m∑
i=1

n∑
j=1

cov(Xi, Yj)
b)
=

m∑
i=1

cov(Xi, Yi).

\(∧2
∧)/

(⋆) Complement to section 1.6� �
Lemma 1.6.4 (Kolmogorov’s 0-1 law) Referring to Proposition 1.6.1, suppose that
{Xλ}λ∈Λ are independent. Then, P (B) = 0 or 1 for all B ∈ T , where T is the tail
σ-algebra defined by

T =
⋂
Γ⊂Λ

Γ is finite

σ
[
(Xλ)λ∈Λ\Γ

]
. (1.56)

� �
Proof: Let G = σ [(Xλ)λ∈Λ], GΓ = σ [(Xλ)λ∈Γ] for Γ ⊂ Λ, and A =

⋃
Γ⊂Λ

Γ is finite
GΓ. Fix B ∈ T

and consider the following two measures on (Ω,G),

µ1(A) = P (A ∩B), µ2(A) = P (A)P (B), (A ∈ G).

Then,

1) µ1 = µ2 on A ∪ {Ω}.

Indeed, it is clear that µ1(Ω) = µ2(Ω) = P (B). Moreover, If A ∈ A, then A ∈ GΓ for some
finite set Γ ∈ Λ. Since T =

⋂
Γ⊂Λ

Γ is finite
GΛ\Γ, we have B ∈ GΛ\Γ. Therefore, A and B are

independent, which implies that µ1(A) = µ2(A).
Since A is a π-system and G = σ[A], it follows from 1) and Lemma 1.3.1 that µ1 = µ2 on

G. In particular, we have P (B) = µ1(B) = µ2(B) = P (B)2, which implies that P (B) = 0 or 1.
\(∧2

∧)/

Let (Ω,F , P ) be a probability space and A be a finite set. We consider the following setting.

� For each α ∈ A, (Sα,λ,Bα,λ), λ ∈ Λα are measurable spaces indexed by a set Λα and

(Sα,B(Sα)) =

(∏
λ∈Λα

Sα,λ,
⊗
λ∈Λα

Bα,λ

)
.

(cf. Definition 1.5.1).

� For each α ∈ A, Xα : Ω → Sα is a r.v.� �
Lemma 1.6.5 Referring to the above setting, the following conditions are equivalent.

a) Xα, α ∈ A are independent.

b) πΓα(Xα), α ∈ A are independent for arbitrarily choosen finite subset Γα ⊂ Λα, where
πΓα : Sα →

∏
λ∈Γα

Sα,λ denotes the canonical projection.� �
32



Proof: It is enough to prove that b) implies a). The r.v. (Xα)α∈A takes values in the product
space

S
def
=
∏
α∈A

Sα =
∏
α∈A

∏
λ∈Λα

Sα,λ.

Let µα ∈ P(Sα,B(Sα)). We prove that

1) (Xα)α∈A ≈
⊗
α∈A

µα.

If C is a cylinder set in S, then,

C =
⋂
α∈A

π−1
Γα

(∏
λ∈Γα

Bα,λ

)

for some finite set Γα ⊂ Λα and Bα,λ ∈ B(Sα,λ). Therefore, by setting Bα =
∏

λ∈Γα
Bα,λ, we

have that

P ((Xα)α∈A ∈ C) = P

(⋂
α∈A

{Xα ∈ π−1
Γα
(Bα)}

)
= P

(⋂
α∈A

{πΓα(Xα) ∈ Bα}

)
b)
=

∏
α∈A

P (πΓα(Xα) ∈ Bα) =
∏
α∈A

P
(
Xα ∈ π−1

Γα
(Bα)

)
=

(⊗
α∈A

µα

)
(C),

which proves 1) by Lemma 1.5.4. \(∧2
∧)/

Exercise 1.6.1 Let a r.v. U be uniformly distributed on (0, 2π). Prove then that X = cosU
and Y = sinU are not independent and that cov(X,Y ) = 0.

Exercise 1.6.2 8 Let X,Y be r.v.’s with values in {0, 1}. Prove then that X,Y are indepen-
dent if and only if cov(X,Y ) = 0. Hint:Example 1.5.3.

Exercise 1.6.3 Suppose that a r.v.X is independent of itself. Prove then that there exists
c ∈ R such that X = c, a.s.

Exercise 1.6.4 Suppose that Xj j = 1, ..., n are independent r.v.’s and that X1+ ...+Xn = C
a.s., where C is a constant. Prove then that there are c1, ..., cn ∈ R such that Xj = cj, a.s.
(j = 1, .., n). Hint: Xn = C −

∑n−1
j=1 Xj. Therefore, Xn is independent of itself.

Exercise 1.6.5 Let Sn = U1 + ...+ Un, where U1, U2, . . . , are i.i.d. with uniform distribution
on (0, T ). For a measurable function φ : R → R with period T , prove that (φ (Sj))

n
j=1 and

(φ (Uj))
n
j=1 have the same law for any n ∈ N\{0}.

8cf. T. Ohira:”On Statistical Independence and No-Correlation for a Pair of Random Variables Taking Two
Values: Classical and Quantum” Progress of Theoretical and Experimental Physics, Volume 2018, Issue 8, 1
August 2018, 083A02
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Exercise 1.6.6 Let (Xk)k≥1 be i.i.d. with values in a measurable space (S,B), and let (Nk)k≥1

be N\{0} valued r.v.’s such that N1 < N2 < ... a.s. Assuming that (Xk)k≥1 and (Nk)k≥1 are
independent, prove that (Xk)k≥1 and (XNk

)k=1 have the same law.

Exercise 1.6.7 (⋆) Let (Xk)k=0,1 be indpendent r.v.’s with values in a measurable space (S,B),
and let N be {0, 1}-valued r.v. independent of (Xk)k=0,1. Then prove that XN and X1−N are
independent if and only if (i): (Xk)k=0,1 is i.i.d., or (ii): N is constant a.s. Hint: Take bounded
measurable fk : S → R (k = 0, 1) and compute cov(f0(XN), f1(X1−N)).

Exercise 1.6.8 (⋆) Let (S,A) and (T,B) are measurable spaces. Let also X1, .., Xn be inde-
pendent r.v.’s with values in S, and φj : Sj → T (j = 1, .., n) be measurable functions such
that φj(s1, ..., sj−1, Xj) has the same law as φ1(Xj) for all j = 1, .., n and s1, ..., sj−1 ∈ S.
Prove then that

(φj(X1, ..., Xj−1, Xj))
n
j=1 and (φ1(Xj))

n
j=1

have the same law. This generalizes Exercise 1.6.5.

Exercise 1.6.9 (⋆) Let everything be as in Proposition 1.6.1. For a disjoint decomposition

Λ = ∪γ∈ΓΛ(γ) of the index set Λ, consider r.v.’s {X̃}γ∈Γ defined by

X̃γ : ω 7→ (Xλ(ω))λ∈Λ(γ) ∈
∏

λ∈Λ(γ)

Sλ, γ ∈ Γ.

Prove that r.v.’s {X̃γ}γ∈Γ are independent if {Xλ}λ∈Λ are. Hint: Condition b) of Proposition
1.6.1.

1.7 Some Functions of Independent Random Variables

Let X1, X2, ... be independent r.v.’s for which the distributions are known. Then, one can
compute the distribution of a r.v. of the form f(X1, X2, ...). Let us look at some examples.

Definition 1.7.1 For a r.v. X : Ω → N with X ≈ µ ∈ P(N), we define its generating function
by the following expectation, or the absolutely convergent power series:

G(µ; s)
def
= EsX =

∞∑
n=0

µ(n)sn, s ∈ C, |s| ≤ 1, (1.57)

where µ(n) = µ({n}).� �
Lemma 1.7.2 For j = 1, 2, let µj ∈ P(N) and let Xj : Ω → N be independent r.v.’s with
Xj ≈ µj. Then, for µ ∈ P(N), the following conditions are equivalent.

a) X1 +X2 ≈ µ.

b) µ(n) =
∑
k,ℓ∈N
k+ℓ=n

µ1(k)µ2(ℓ).

c) G(µ; s) = G(µ1; s)G(µ2; s), ∀s ∈ C, |s| ≤ 1.� �
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Proof: a) ⇔ b): The equivalence can be seen by the following identity. For any n ∈ N,

P (X1 +X2 = n) =
∑
k,ℓ∈N
k+ℓ=n

P (X1 = k)P (X2 = ℓ) =
∑
k,ℓ∈N
k+ℓ=n

µ1(k)µ2(ℓ).

b) ⇔ c): The equivalence can be seen by comparing the following two identities.

G(µ; s) =
∞∑
n=0

µ(n)sn,

G(µ1; s)G(µ2; s) =

(
∞∑
k=0

µ1(k)s
k

)(
∞∑
ℓ=0

µ2(ℓ)s
ℓ

)
=

∞∑
n=0

∑
k,ℓ∈N
k+ℓ=n

µ1(k)µ2(ℓ)

 sn.

\(∧2
∧)/

Remark Let µ be a complex measure on N. Then, the series
∑∞

n=0 |µ({n})| converges (and
equals to the total variation of µ). Thus, we can define its generating function G(µ; s) (s ∈ C,
|s| ≤ 1) by the right-hand side of (1.57). Moreover, the equivalence between b) and c) of
Lemma 1.7.2 remains valid in the case where µ, µ1 and µ2 are complex measures on N.

Example 1.7.3 (Bin(n,p) and its independent summation) Let p ∈ [0, 1] and n =
1, 2, ... A probability measure µn,p on {0, 1, .., n} defined as follows is called the (n, p)-binomial
distribution, and will henceforth be denoted by Bin(n, p):

µn,p(k) =
(n
k

)
pk(1− p)n−k, k = 0, 1, ..., n. (1.58)

Here are histograms of k 7→ µn,p(k) for (n, p) = (20, 1/2) and (n, p) = (24, 1/8).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(n, p) = (20, 1/2)

0 1 2 3 4 5 6 7 8 9

(n, p) = (24, 1/8)

0.176 0.239

Note in particular that Bin(1, p) is given by:

µ1,p(k) =

{
p if k = 1,
1− p if k = 0.

(1.59)

Suppose that Z1, Z2 are independent r.v.’s, and that n, n(1), n(2) ∈ N. We show that

Zj ≈ Bin(n(j), p) (j = 1, 2), =⇒ Z1 + Z2 ≈ Bin(n, p). (1.60)

where n
def
= n(1) + n(2). Since the generating function (1.57) for µn,p is given by:

G(µn,p; s) =
n∑

k=0

(n
k

)
(ps)k(1− p)n−k = (ps+ 1− p)n, (1.61)
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we have
G(µn,p; s) = G(µn(1),p; s)G(µn(2),p; s),

which implies (1.60) via Lemma 1.7.2.
Let {Xj}nj=1 be i.i.d. with Xj ≈ Bin(1, p) Then, by applying (1.60) repeatedly, we have

Sn
def
= X1 + . . .+Xn ≈ Bin(n, p). (1.62)

The relation (1.62) can also be used to compute the expectation and variance of Bin(n, p).
Note that X2

j = Xj = 1{Xj = 1}. Thus,

E[X2
j ] = EXj = P (Xj = 1) = p,

varXj = E[X2
j ]− (EXj)

2 = p(1− p),

ESn =
n∑

j=1

EXj = np. (1.63)

Since X1, ..., Xn are independent,

var Sn
(1.55)
=

n∑
j=1

varXj = np(1− p). (1.64)

\(∧2
∧)/

Example 1.7.4 (Summation of independent Poisson r.v.’s) Suppose that N1 and N2

are independent r.v.’s. and that c(1), c(2) > 0. We prove that

Nj ≈ πc(j) (j = 1, 2) =⇒ N1 +N2 ≈ πc, (1.65)

where c = c(1) + c(2). Since the generating function (1.57) for πc is given by:

G(πc; s) = exp(−c)
∞∑
n=0

(cs)n

n!
= exp(c(s− 1))), (1.66)

we have
G(πc; s) = G(πc(1); s)G(πc(2); s),

which implies (1.65) by Lemma 1.7.2. \(∧2
∧)/

Example 1.7.5 (Relation between gamma and beta distributions) Let a, b, c > 0 and
suppose that X,Y, S, T are r.v.’s such that X,Y, S ∈ (0,∞), T ∈ (0, 1) and

(S, T ) =
(
X + Y, X

X+Y

)
, i.e., (X,Y ) = (ST, S(1− T )).

Then, the following are equivalent:

a) X and Y are independent, X ≈ γc,a and Y ≈ γc,b;

b) S and T are independent, S ≈ γc,a+b and T ≈ βa,b.
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Remark: The following well-known formula will also be reproduced in the course of the proof
of a) ⇒ b):

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(1.67)

a) ⇒ b): It is enough to show that

1) P ((S, T ) ∈ I × J) = γc,a+b(I)βa,b(J) for all intervals I ⊂ (0,∞), J ⊂ (0, 1).

We first show that

2) P ((S, T ) ∈ I × J) =
B(a, b)Γ(a+ b)

Γ(a)Γ(b)
γc,a+b(I)βa,b(J).

Note the following simple equality for s > 0:

3)

∫
sJ

xa−1(s− x)b−1dx
x=st
= sa+b−1

∫
J

ta−1(1− t)b−1dt = sa+b−1B(a, b)βa,b(J),

where sJ = {sx, ; x ∈ J}. Let us write D = {(x, y) ∈ (0,∞)2 ; (x+ y, x
x+y

) ∈ I × J}. Then,

P ((S, T ) ∈ I × J) = P ((X,Y ) ∈ D) = (γc,a ⊗ γc,b)(D)

(1.27)
=

ca+b

Γ(a)Γ(b)

∫
D

xa−1yb−1e−c(x+y)dxdy

s=x+y
=

ca+b

Γ(a)Γ(b)

∫
I

e−csds

∫
sJ

xa−1(s− x)b−1dx

3)
=

B(a, b)ca+b

Γ(a)Γ(b)

∫
I

sa+b−1e−csdsβa,b(J)

(1.27)
=

B(a, b)Γ(a+ b)

Γ(a)Γ(b)
γc,a+b(I)βa,b(J).

This proves 2). Letting I = (0,∞) and J = (0, 1) in 2), we get

1 =
B(a, b)Γ(a+ b)

Γ(a)Γ(b)
, i.e., (1.67).

Finally, plugging this back in 2), we arrive at 1).
a) ⇐ b): Let X ′ and Y ′ be independent r.v.’s such that X ′ ≈ γc,a and Y ′ ≈ γc,b. Then, we
know that

S ′ def
= X ′ + Y ′ and T ′ def

= X′

X′+Y ′ are independent, S ′ ≈ γc,a+b and T
′ ≈ βa,b.

This implies that (S, T ) ≈ (S ′, T ′). Therefore,

(X,Y ) = (ST, S(1− T )) ≈ (S ′T ′, S ′(1− T ′)) = (X ′, Y ′),

which implies a). \(∧2
∧)/

Example 1.7.6 (Poisson process) Let Xj (j ≥ 1) be iid ≈ γc,1 (cf. (1.27)) and Sn =
X1 + ...+Xn. Then, for t ≥ 0,

Nt
def
= sup {n ∈ N ; Sn ≤ t} ≈ πct, (cf. (1.18)). (1.68)

(Nt)t≥0 is called the Poisson process with the parameter c. Nt has, for example, the following
interpretation; Sn is the time when the n-th customer arrives at the COOP cafeteria in a day
and Nt is the number of customers who visited the cafeteria up to time t.
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Proof: It is enough to prove that

1) P (Nt ≥ n) = e−ct

∞∑
m=n

(ct)m

m!
.

We start by computing:

P (Nt ≥ n)
(1.68)
= P (Sn ≤ t)

Example 1.7.5
= γc,n((0, t])

(1.27)
=

cn

(n− 1)!

∫ t

0

xn−1e−xcdx
x=y/c
=

1

(n− 1)!

∫ ct

0

yn−1e−ydy.

Thus, we can conclude 1) from:

2)
1

(n− 1)!

∫ s

0

yn−1e−ydy = e−s

∞∑
m=n

sm

m!
, s ≥ 0.

We prove 2) in the following generalized form:

3)
1

Γ(a)

∫ s

0

ya−1e−ydy = e−s

∞∑
m=0

sa+m

Γ(a+m+ 1)
, a > 0, s ≥ 0.

In fact,

LHS 3)
y=s−x
=

e−s

Γ(a)

∫ s

0

(s− x)a−1exdx =
e−s

Γ(a)

∞∑
m=0

1

m!

∫ s

0

(s− x)a−1xmdx

x=sz
=

e−s

Γ(a)

∞∑
m=0

sa+m

m!
B(a,m+ 1)

(1.67)
= RHS 3)

\(∧2
∧)/

Example 1.7.7 (⋆) Let X ≈ N(0, vId) (d ≥ 1, v > 0) and Y ≈ γc,a (c, a > 0) be independent.
Then,

X/
√
Y ≈

(2cv)aΓ(a+ d
2
)

πd/2Γ(a)

dx

(2cv + |x|2)a+
d
2

. (1.69)

The right-hand side is the generalized Cauchy distribution, cf. Example 1.2.8. There are two
important special cases:

• Let Z ≈ N(0, w) (w > 0) be independent of X. Then, we see from (1.30) that Y
def
= Z2 ≈

γ( 1
2w
, 1
2
) Thus, applying (1.69) with (c, a) = ( 1

2w
, 1
2
), we have that

X/|Z| ≈ (
√
v/w)-Cauchy distribution. (1.70)

• If d = 1,X ≈ N(0, 1), Z ≈ χ2
n = γ(1/2, n/2) (n ≥ 1) (cf. Example 1.2.5), and X and Z are

independent. Then, Z/n ≈ γ(n/2, n/2). Thus, by (1.69) with d = 1, v = 1, c = a = n/2,

X/
√
Z/n ≈ Tn cf. Example 1.2.8. (1.71)

In statistics, the r.v. on the left-hand saide of (1.71) is used to estimate the population mean,
when n (the number of samples) is relatively small.
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The proof of (1.69) goes as follows. Let f : Rd → [0,∞) be measurable. Then,

Ef(X/
√
Y ) =

∫ ∞

0

P (Y ∈ dy)

∫
Rd

P (X ∈ dx)f(x/
√
y)

=
ca

Γ(a)(2πv)d/2

∫ ∞

0

ya−1e−cydy

∫
Rd

exp
(
− |x|2

2v

)
f(x/

√
y)dx

=
ca

Γ(a)(2πv)d/2

∫ ∞

0

ya+
d
2
−1e−cydy

∫
Rd

exp
(
−y|z|2

2v

)
f(z)dz

=
ca

Γ(a)(2πv)d/2

∫
Rd

f(z)dz

∫ ∞

0

ya+
d
2
−1 exp

(
−y
(
c+ |z|2

2v

))
dy.

We easily see from the definition of the Gamma-function that∫ ∞

0

ya+
d
2
−1 exp

(
−y
(
c+ |z|2

2v

))
dy =

Γ
(
a+ d

2

)(
c+ |z|2

2v

)a+ d
2

.

Thus, we conclude that

Ef(X/
√
Y ) =

(2cv)aΓ
(
a+ d

2

)
πd/2Γ(a)

∫
Rd

f(z)dz

(2cv + |z|2)a+
d
2

.

\(∧2
∧)/

Exercise 1.7.1 Let Z be a r.v. defined on a probability space (Ω,F , P ) such that Z ≈
Bin(n, p). Is it always true that there exist iid Xj ≈ Bin(1, p) (j = 1, ..., n) defined on
(Ω,F , P ) such that Z = X1 + ...+Xn?

Exercise 1.7.2 Let X = (Xj)
n
j=1 and Sn = X1 + . . . + Xn, where X1, ..., Xn are iid, Xj ≈

Bin(1, p) (j = 1, ..., n). Prove the following:

i) P (X = x|Sn = m) =
(
n
m

)−1
, regardless of the value of p, for any m = 0, 1, ..., n and

x = (xj)
n
j=1 ∈ {0, 1}n with x1 + ...+ xn = m.

ii) d
dp
Ef(X) = 1

p(1−p)
cov(f(X), Sn) for any f : {0, 1}n → R.

Exercise 1.7.3 Let X,Y and Z be r.v.’s with (X,Y ) ≈ γr,a ⊗ γs,b. and Z ≈ βa,b. Prove then
that

X

Y
≈ s

r

Z

1− Z
≈ (r/s)a

B(a, b)

xa−1dx

(1 + rx/s)a+b
.

When r = a = m/2 and s = b = n/2 (m,n ∈ N), the above distribution is called the Fm
n

distribution and is used in statistics.

Hint: Let (X1, Y1) ≈ γ1,a ⊗ γ1,b. Then, (X,Y ) ≈ (X1/r, Y1/s) and
X1

Y1
=

X1
X1+Y1

1− X1
X1+Y1

. Then use

Example 1.7.5.

Exercise 1.7.4 Prove the following extension of Example 1.7.5. Let Xj ≈ γc,aj , j = 1, .., n+1

be independent r.v.’s and S
def
= X1 + .. + Xn+1. Then, S and T

def
= (

Xj

S
)nj=1 are independent

r.v.’s such that S ≈ γc,a1+..+an+1 and

T ≈ Γ(a1 + ..+ an+1)

Γ(a1) · · ·Γ(an+1)
xa1−1
1 · · ·xan−1

n

(
1−

n∑
j=1

xj

)an+1−1

dx1 · · · dxn.
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Exercise 1.7.5 Let e and U are independent r.v. such that e ≈ γ1,1 and U is uniformly
distributed on (0, 2π). Prove then that

√
2e(cosU, sinU) ≈ N(0, 1)⊗N(0, 1).

Exercise 1.7.6 LetXi ≈ γci,1 (i = 1, ..., n cf. (1.27)) be independent r.v.’s andMn = min
i=1,...,n

Xi.

Prove then that for any j = 1, . . . , n and x ≥ 0,

P (Mn = Xj and Xj > x) =
cj∑n
i=1 ci

exp

(
−x

n∑
i=1

ci

)
.

In particular, Mn ≈ γc1+...+cn,1

Exercise 1.7.7 (Thinning of a Poisson r.v.) Let N be a r.v. with N ≈ πc and let (Xn)n≥0

be i.i.d. with values in a finite set S. We suppose that N and (Xn)n≥0 are independent.
Prove then that Ns =

∑N
j=0 1{Xj = s} (s ∈ S) are independent and that Ns ≈ πp(s)c, where

p(s) = P (X0 = s).

Exercise 1.7.8 (Geometric distribution) LetG = inf{n ≥ 1 ; Xn = 1}, where (Xn)n≥1 are
{0, 1}-valued i.i.d. with P (Xn = 1) = p. Then, show that P (G = n) = p(1−p)n−1, EG = 1/p,
and var G = (1 − p)/p. The distribution of G is called the p-geometric distribution.The
geometric distribution can be thought of as a discrete analogue of the exponential distribution.

Exercise 1.7.9 (n-th success in a Bernoulli trial) Let (Xk)k≥1 be as in Exercise 1.7.8,
Sk = X1 + ...+Xk, and

T0 ≡ 0, Tn = inf{k ≥ 1 ; Sk = n}, n = 1, 2, ...

Then, prove the following:
i) Tn − Tn−1, n = 1, 2, ... are iid with p-geometric distribution.
ii) P (Tn = m) =

(
m−1
n−1

)
pn(1− p)m−n, 1 ≤ n ≤ m.

iii) Sk = n for Tn ≤ k < Tn+1, n = 0, 1, ...
In the Bernoulli trial (Xk)k≥1, Tn is the time of n-th success, and Tn−n is the number of failures
before it. The distribution of the latter is called the (n, p)-negative binomial distribution. It
follows from ii) above that

P (Tn − n = k) =

(
n+ k − 1

k

)
pn(1− p)k, k ∈ N.

On the other hand, the description of (Sk)k≥1 in iii) above can be thought of as a discrete-time
analogue of Poisson process (Example 1.7.6). This also shows that (Sk)k≥1 (and hence (Xk)k≥1)
can be recoverd from (Tn)n≥0.

Exercise 1.7.10 Let G, τ1, τ2, ... be independent r.v.’s such that P (G = n) = p(1 − p)n−1

(n = 1, 2, ...) and P (τj ∈ ·) = γc,1 (cf. (1.27)). Prove then that P (τ1 + ...+ τG ∈ ·) = γcp,1.

40



1.8 Applications to analysis

The following lemma is a weaker version of the law of large numbers (Theorem 1.10.2). This
lemma will be applied to Example 1.8.2 and Example 1.8.3.� �
Lemma 1.8.1 Let I ⊂ R be an interval, Xn : Ω → I (n ≥ 1) be such that Xn ∈ L2(P ),
cov(Xℓ, Xn) = vδℓ,n, EXn = m for all ℓ, n ≥ 1. Then, for Sn = X1 + ...+Xn, f : I → R,
and δ > 0,

P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ≥ δ

)
≤ v

δ2n
, (1.72)

E

∣∣∣∣f (Sn

n

)
− f(m)

∣∣∣∣ ≤ 2‖f‖v
δ2n

+ sup
x∈I

|x−m|<δ

|f(x)− f(m)|, (1.73)

where ‖f‖ = sup
x∈I

|f(x)|.

� �
Proof: (1.72):

P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ≥ δ

)
= P

(
|Sn −mn|2 ≥ δ2n2

)
Chebyshev

≤ var (Sn)

δ2n2

(1.55)
=

v

δ2n
.

(1.73): We first observe that

1) E

[∣∣∣∣f (Sn

n

)
− f(m)

∣∣∣∣ : ∣∣∣∣Sn

n
−m

∣∣∣∣ ≥ δ

]
≤ 2‖f‖P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ≥ δ

)
(1.72)

≤ 2‖f‖v
δ2n

.

On the other hand, it is clear that

2) E

[∣∣∣∣f (Sn

n

)
− f(m)

∣∣∣∣ : ∣∣∣∣Sn

n
−m

∣∣∣∣ < δ

]
≤ sup

x∈I
|x−m|<δ

|f(x)− f(m)|.

By 1) and 2), we get (1.73). \(∧2
∧)/

Example 1.8.2 (Weierstrass’ approximation theorem) Let I = [0, 1], f ∈ C(I → R)
and

fn(p)
def.
=

n∑
k=0

f

(
k

n

)(n
k

)
pk(1− p)n−k.

Then,

1) fn
n→∞−→ f uniformly on I.

To prove this, we apply Lemma 1.8.1 for Xn ≈ Bin(1, p). Then Sn ≈ Bin(n, p) (Example 1.7.3)
and hence

fn(p) = Ef(Sn

n
).

Since
EXn = p, and varXn = p(1− p) ≤ 1/4,
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we see from (1.73) with δ = n−1/3 that

|fn(p)− f(p)| ≤ E

∣∣∣∣f (Sn

n

)
− f(p)

∣∣∣∣ ≤ ‖f‖
2n1/3

+ sup
x∈I

|x−p|<n−1/3

|f(x)− f(p)|.

Since f is uniformly continuous on I, the right-hand side of the above inequality converges to
zero uniformly in p, as n→ ∞, which proves 1). \(∧2

∧)/

Example 1.8.3 (Injectivity of the Laplace transform) Let µ be a Borel signed measure
on [0,∞). Then, the following are equivalent.

a) µ = 0.

b)

∫
[0,∞)

e−λxdµ(x) = 0 for all λ ≥ 0.

c)

∫
[0,∞)

xke−nxdµ(x) = 0 for all k ∈ N and n ∈ N\{0}.

Proof: a) ⇒ b): Obvious.
b) ⇒ c): By differentiating the identity b) k times in λ, and then setting λ = n ∈ N, we have
c).
c) ⇒ a): By Lemma 1.3.2, it is enough to prove that

1)

∫
[0,∞)

fdµ = 0 for f ∈ Cb([0,∞)),

Let f ∈ Cb([0,∞)) be arbitrary. We define fn : [0,∞) → R (n ∈ N) by

fn(x) = e−nx

∞∑
k=0

(nx)k

k!
f

(
k

n

)
, x ≥ 0.

We prove the following approximation:

2) fn(x)
n→∞−→ f(x) for any x ∈ [0,∞),

(As is explained in the remark after this proof, the convergence 2) is uniform in x ∈ [0,M ] for
any M > 0. But, we do not need this fact to prove 1).) To prove 2), we fix x ≥ 0 and apply
Lemma 1.8.1 to Xn ≈ πx (cf. (1.18)). Then Sn ≈ πnx (Example 1.7.4) and hence

fn(x) = Ef(Sn

n
).

Since
EXn = varXn = x,

we see from (1.73) with δ = n−1/3 that

|fn(x)− f(x)| ≤ E

∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ ≤ 2‖f‖x
n1/3

+ sup
y≥0

|y−x|<n−1/3

|f(y)− f(x)|.

Since f is continuous, the right-hand side of the above inequality converges to zero as n→ ∞,
which proves 2).

We now use 2) to prove 1). By multiplying both hands-sides of the identity c) by nk

k!
f
(
k
n

)
, and

adding over k ∈ N, we arrive at:
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3)

∫
[0,∞)

fndµ = 0.

We obtain 1) from 2) and 3) via the bounded convergence theorem. \(∧2
∧)/

Remark: The convergence 2) in the proof of Example 1.8.3 is uniform in x ∈ [0,M ] for any
M > 0. In fact, if x ∈ [0,M ], we see from the above proof that

|fn(x)− f(x)| ≤ E

∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ ≤ 2‖f‖M
n1/3

+ sup
y∈[0,M+1]

|y−x|<n−1/3

|f(y)− f(x)|.

Since f is uniformly continuous on [0,M + 1], the right-hand side of the above inequality
converges to zero uniformly in x ∈ [0,M ] as n → ∞. Note also that the function fn can
naturally be extended as a holomorhic function on C. These prove that, for any f ∈ Cb([0,∞)),
there exists a sequnece of holomorphic functions fn : C → C (n ∈ N) which converges uniformly
to f on any bounded subset of [0,∞).

Exercise 1.8.1 (Weierstrass’ approximation theorem in higher dimensions) Let I =
[0, 1]d and f ∈ C(I → R). Prove that there exist polynomials fn : Rd → R (n ≥ 1) such that
lim
n→∞

max
p∈I

|fn(p)− f(p)| = 0. Hint: Fix p = (pν)
d
ν=1 ∈ I and n ∈ N\{0} for a moment. Let

Sn = (Sn,ν)
d
ν=1, where S

1
n, ..., S

d
n are independent r.v.’s with P (Sν

n = r) =
(
n
r

)
(pν)

r(1− pν)
n−r

(0 ≤ r ≤ n, 1 ≤ ν ≤ d). Then, P (Sn = x) =
∏d

ν=1

(
n
xν

)
(pν)

xν
(1− pν)

n−xν
.

Exercise 1.8.2 (⋆) Show the following: (i) For any n ∈ N\{0} and z ∈ C\{0},

Qn(z)
def.
=

1

n

2− zn − z−n

2− z − z−1
= 1 +

1

n

∑
1≤ℓ,m<n

ℓ̸=m

zℓ−µ. (1.74)

where we define Qn(1) = n. Hint: Let sn(z) = 1 + z + ...+ zn−1. Then,

2− zn − z−n = (1− zn)(1− z−n) = (1− z)(1− z−1)sn(z)sn(z
−1).

(ii) Fn(θ)
def.
= Qn(e

2πiθ) ≥ 0 for all θ ∈ R,
∫ 1

0

Fn(θ)dθ = 1.

These show that Fn is a density of a probability measure on [0, 1] with respect to the Lebesgue
measure. Fn is called the Fejér kernel.

Exercise 1.8.3 (⋆) (Uniform approximation by trigonometric polynomials) A func-
tion Q : R → C is called a trigonometric polynomial, if it is a finite linear combination of
{θ 7→ e2πinθ}n∈Z. Let f ∈ C(R → C) be of the period 1 and

fn(θ) =

∫ 1

0

f(θ − φ)Fn(φ)dφ,

where Fn is the Fejér kernel (Exercise 1.8.2). Prove then that fn is a trigonometric polynomial
and that

lim
n→∞

sup
0≤θ≤1

|fn(θ)− f(θ)| = 0.

Hint: fn(θ) =
∫ 1

0
f(φ)Fn(θ − φ)dφ by the periodicity. Then, use (1.74) to see that fn is a

trigonometric polynomial.
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1.9 Decimal Fractions

We begin by introducing the notation we use in this subsection. Let q ≥ 2 be an integer.
Recall that, for each t ∈ (0, 1], there exists a unique sequence dn(t) ∈ {0, . . . , q − 1} (n ≥ 1)
such that

t =
∑
n≥1

dn(t)

qn
and

∑
n≥1

dn(t) = ∞. (1.75)

Thus, dn(t) stands for the n-th digit in the q-adic expansion of the number t, where the
expansion is unique, thanks to the second condition of (1.75). As we describe below, the
functions d1, . . . , dn are in correspondence to the partition {Is1,...,sn}

q−1
s1,...,sn=0 of the interval

(0, 1] into qn smaller intervals of length q−n. For each s = 0, . . . , q − 1,

Is
def
= {t ∈ (0, 1] ; d1(t) = s} =

s

q
+

(
0,

1

q

]
.

Similarly, for each n ≥ 1 and s1, ..., sn ∈ {0, . . . , q − 1},

Is1,...,sn
def
= {t ∈ (0, 1] ; dj(t) = sj, 1 ≤ ∀j ≤ n} =

n∑
j=1

sj
qj

+

(
0,

1

qn

]
. (1.76)

Example 1.9.1 (Decimal fractions are i.i.d.) Suppose that (Ω,F , P ) is a probability
space and that U : Ω → (0, 1) is a r.v. with the uniform distribution on (0, 1). Then,

{dn(U)}n≥1 are i.i.d. with P (dn(U) = s) = q−1, s ∈ {0, . . . , q − 1}. (1.77)

Proof: We see from the definition above that for all s1, ..., sn ∈ {0, . . . , q − 1},
n⋂

j=1

{dj(U) = sj}
(1.76)
= {U ∈ Is1···sn}

and hence that

1) P

(
n⋂

j=1

{dj(U) = sj}

)
= P (U ∈ Is1···sn) = |Is1···sn| = q−n.

In particular, for any n ≥ 1,

2) P (dn(U) = sn) =

q−1∑
s1,...,sn−1=0

P

(
n⋂

j=1

{dj(U) = sj}

)
1)
=

q−1∑
s1,...,sn−1=0

q−n = q−1.

We conclude (1.77) from 1) and 2). \(∧2
∧)/

Example 1.9.2 (Cantor function) We give an example of nondecreasing continuous func-
tion from [0, 1] onto [0, 1], whose associated Stieltjes measure is singular with respect to the
Lebesgue measure. Let q > q0 ≥ 2 be integers, and S0 be a subset of {0, . . . , q − 1} with q0
elements. We define

X =
∑
n≥1

Xn

qn
, F (t) = P (X ≤ t) (0 ≤ t ≤ 1),

where Xn : Ω → S0 (n ≥ 1) are i.i.d. with P (Xn = s) = 1/q0 (s ∈ S0). Note then that the law
µ ∈ P([0, 1]) of the r.v. X is the Stieltjes measure associated to the function F . We prove the
following
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a) F is nondecreasing, continuous, F (0) = 0, F (1) = 1.

b) The measue µ is singular with respect to the Lebesgue measure λ, as can be described
more precisely as follows. Let

C =
⋂
n≥1

⋃
s1,...,sn∈S0

Is1,...,sn ,

where {Is1,...,sn}
q−1
s1,...,sn=0 (n ≥ 1) are the partition of (0, 1] defined by (1.76). Then,

µ(C) = 1 and λ(C) = 0.

Proof: a) We only need to prove the continuity, since the other properties can easily be seen
from the definition. It is also not difficult to see that

F (t+) = F (t) for t ∈ [0, 1),

F (t)− F (t−) = P (X = t) for t ∈ (0, 1].

Thus, it is enough to verify that
1) P (X = t) = 0 for all t ∈ (0, 1].
To do so, let us note the following.
2) P

(⋂
n≥1{Xn = dn(X)}

)
= 1.

Indeed, D
def
= {

∑∞
n=1Xn = ∞} ⊂

⋂
n≥1{Xn = dn(X)}, thanks to the uniqueness of the digits

in q-adic expansion (1.75). Moreover, P (D) = 1, since

P (Dc) = P

(
∞⋃

m=1

∞⋂
n=m

{Xn = 0}

)
= 0.

This proves 2). We conclude 1) from 2) as follows. By the uniqueness of the digits in q-adic
expansion (1.75), X = t if and only if dn(X) = dn(t) for all n ≥ 1. Therefore,

P (X = t) = P

(⋂
n≥1

{dn(X) = dn(t)}

)
2)
= P

(⋂
n≥1

{Xn = dn(t)}

)
= 0.

b) Since Cn
def
=
⋃

s1,...,sn∈S0
Is1,...,sn ↘ C as n→ ∞, it is enough to show that µ(Cn) = 1 for all

n ≥ 1 and λ(Cn)
n→∞−→ 0.

1 ≥ µ(Cn) ≥ µ

( ⋃
s1,...,sn∈S0

Is1,...,sn

)
(1.3)
= P

(
X ∈

⋃
s1,...,sn∈S0

Is1,...,sn

)
(1.76)
= P

(
n⋂

j=1

{dj(X) ∈ S0}

)
2)
= P

(
n⋂

j=1

{Xj ∈ S0}

)
(definition of Xn)

= 1.

On the other hand,

λ(Cn) ≤
∑

s1,...,sn∈S0

λ(Is1,...,sn) =
∑

s1,...,sn∈S0

λ(Is1,...,sn) = qn0 · 1

qn
n→∞−→ 0.

\(∧2
∧)/
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Remark See Example 1.9.3 a) for an alternative expression of the function F . Also, under an
additional assumption that 0 ∈ S0, the set C is identified with the support of the measure µ
(cf. Remark after Example 1.9.3). For q = 3 and S0 = {0, 2}, the set C is the Cantor’s middle
thirds set, and the function F is the Cantor function.

Example 1.9.3 (⋆) We retain the setting of Example 1.9.2. We prove the following addtional
properties.

a) For t ∈ (0, 1], F (t) =
∑
n≥1

d0,n(t)

qn0
, where d0,n(t) = |S0 ∩ [0, dn(t))|.

Suppose in addition that S0 3 0. Then,

b) The set C has no isolated point. To put it more precisely, let

C0 =
⋂
n≥1

⋃
s1,...,sn∈S0

Is1,...,sn .

Then, ∀t ∈ C, ∃{tN}N≥1 ⊂ C0\{t}, tN
N→∞−→ t.

c) For any t ∈ C, either t is a point of strict increase of F to the right (∃ t1 ∈ (t, 1], ∀s ∈ (t, t1],
F (t) < F (s)), or t is a point of strict increase of F from the left (∃ t1 ∈ [0, t) ∀ s ∈ [t1, t),
F (s) < F (t)).

Proof: a) Note that

{X < t} =
⋃
n≥1

{Xj = dj(t) for j < n and Xn < dn(t)}.

Since P (X = t) = 0 as is shown in the proof of Example 1.9.2 a), we have

F (t) = P (X < t) =
∑
n≥1

P (Xj = dj(t) for j < n and Xn < dn(t))

=
∑
n≥1

P (Xj = dj(t) for j < n)P (Xn < dn(t))

=
∑
n≥1

1

qn−1
0

· d0,n(t)
q0

=
∑
n≥1

d0,n(t)

qn0
.

b) Case 1, t ∈ C0: By (1.76), t =
∑

n≥1
sn
qn
, where sn ∈ S0 for all n ≥ 1 and

∑
n≥1 sn = ∞. For

each N ≥ 1, we choose s′N ∈ S0\{sN} (6= ∅ since q0 ≥ 2) define tN =
∑

j≥1 s
(N)
j /qj (N ≥ 1),

where

s
(N)
j =

{
sj (j 6= N),
s′N (j = N).

Then, {s(N)
j }j≥1 ⊂ S0,

∑
j≥1 s

(N)
j = ∞, and hence {tN}N≥1 ⊂ C0\{t}. Finally it is clear that

tN
N→∞−→ t.

Case 2, t ∈ C\C0: In this case, t =
∑n

j=1
sj
qj

for some {sj}nj=1 ⊂ S0. We choose s ∈ S0\{0}
(6= ∅, since q0 ≥ 2), and define tN =

∑
j≥1 s

(N)
j /qj (N ≥ 1), where

s
(N)
j =


sj (1 ≤ j ≤ n),
0 (n < j < n+N),
s (j ≥ n+N).
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Then, {s(N)
j }j≥1 ⊂ S0, since 0 ∈ S0. Moreover,

∑
j≥1 s

(N)
j = ∞, and hence {tN}N≥1 ⊂ C0\{t}.

Finally it is clear that tN
N→∞−→ t.

c) We start by observing that

3)
∑
n≥1

d0,n(t) = ∞ for all t ∈ (0, 1].

Indeed, dn(t) ≥ 1 implies that S0 ∩ [0, dn(t)) 3 0 (since S0 3 0), and hence that d0,n(t) ≥ 1.
Therefore, 1) follows from that

∑
n≥1 dn(t) = ∞.

We first prove that
4) F is strictly increasing on C0.
Since F is nondecreasing, it is enough to prove that F is injective on the set C0. To do so,
suppose that s, t ∈ C0 and F (s) = F (t). Then, it follows from a) and 4) that d0,n(s) = d0,n(t)
for all n ≥ 1. By the definition of d0,n, this implies that for all n ≥ 1,

S0 ∩ [dn(s) ∧ dn(t), dn(s) ∨ dn(t)) = ∅.

However, since dn(s)∧dn(t) ∈ S0, the above is possible only when dn(s)∧dn(t) = dn(s)∨dn(t),
i. e., dn(s) = dn(t). Therefore we have s = t.

Suppose that t ∈ C. Then, by b1) and b2), either there exists a decreasing sequence
t1 > t2 > . . . in C0 which converges to t, or there exists an increasing sequence t1 < t2 < . . .
in C0 which converges to t. In the former case, it follows from 4) that F (t) < F (s) for all
s ∈ (t, t1]. Similarly, it follows in the latter case as well that F (s) < F (t) for all s ∈ [t1, t).
\(∧2

∧)/

Remark If 0 ∈ S0, then, supp(µ) = C. Indeed, it follows from Example 1.9.2 b) that
supp(µ) ⊂ C, whereas the opposite inclusion follows from Example 1.9.3 c).

Example 1.9.4 (⋆) Construction of a sequence of independent random variables
with discrete state spaces: Let µn ∈ P(Sn,Bn) (n ≥ 1) be a sequence of probability
measures, where for each n ≥ 1, Sn is a countable set and Bn is the collection of all subsets
in Sn. We will construct a sequence Xn : (Ω,F) → (Sn,Bn) of independent r.v.’s such that
Xn ≈ µn for all n ≥ 1.

The construction is just a slight extension of Example 1.9.1. We first construct a sequence
Is1···sn of sub-intervals of [0, 1) inductively as follows, where n = 1, · · · and (s1, . . . , sn) ∈ S1 ×
· · ·×Sn. We split [0, 1) into disjoint intervals {Is}s∈S1 with length |Is| = µ1(s) for each s ∈ S1.
Suppose that we have disjoint intervals Is1···sn−1 such that |Is1···sn−1| = µ1(s1) · · ·µn−1(sn−1)
for (s1, . . . , sn−1) ∈ S1 × · · · × Sn−1. We then split each Is1···sn−1 into disjoint intervals
{Is1···sn−1sn}sn∈Sn so that |Is1···sn−1sn| = µ1(s1) · · ·µn−1(sn−1)µn(sn) for each sn ∈ Sn. We now
define

Xn(ω) = s if X(ω) ∈
⋃

s1,...,sn−1
Is1···sn−1s.

We see from the definition that

n⋂
j=1

{ω ; Xj(ω) = sj} = {ω ; X(ω) ∈ Is1···sn}.

and hence that

1) P

(
n⋂

j=1

{Xj = sj}

)
= |Is1···sn| = µ1(s1) · · ·µn(sn).
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We conclude from 1) that (Xn)n≥1 are independent and that Xn ≈ µn (cf. Exercise 1.5.3).
\(∧2

∧)/

Exercise 1.9.1 Referring to Example 1.9.2 with S0 = 0, q − 1, show the following.
(i) F (t) =

∑
n≥1

dn(t)∧1
2n

for t ∈ (0, 1]. Hint: {X < t} =
⋃

n≥1{Xj = dj(t) for j < n and Xn < dn(t)}.
(ii) F is strictly increasing on the set C.

1.10 The Law of Large Numbers

Let {Xn}n≥1 be the outcome of independent coin tossings;

Xn =

{
1 if the coin falls head by n-th toss,
0 if the coin falls tail by n-th toss.

Then, Sn = X1+ . . .+Xn is the number of tosses by which the coin falls head. For this reason,
one would vaguely expect that

Sn

n
−→1

2
(= EX1), as n↗ ∞. (1.78)

The law of large numbers we will discuss in this section gives a mathematical justification for
this intuition. However, here is one thing we should be careful about; there do exist exceptional
events on which (1.78) fails, for example,⋂

n≥1

{Xn = 0} or
⋂
n≥1

{Xn = 1}.

We first formulate a notion which is used to exclude such exceptions.

� Let (Ω,F , P ) be a probability space in what follows.

Definition 1.10.1 Let A = {ω ∈ Ω ; .....} ⊂ Ω.

▶ We say “..... almost surely” (“..... a.s.” for short) if Ac is a null set.
Therefore, “almost surely” (“a.s.”) just synonymizes “almost everywhere” (“a.e.”) in measure
theory.

� �
Theorem 1.10.2 (The Law of Large Numbers) Let Sn = X1+...+Xn, where {Xn}n≥1

are i.i.d. with E|Xn| <∞. Then,

Sn

n

n→∞−→ EX1, P -a.s. (1.79)� �
Before proving Theorem 1.10.2, let us make a small (and useful) detour:� �

Lemma 1.10.3 (the first Borel-Cantelli lemma) Let Xn ≥ 0, n ≥ 1 be r.v.’s∑
n≥1

EXn <∞ =⇒
∑
n≥1

Xn <∞, a.s. =⇒ Xn
n↗∞−→ 0, a.s. (1.80)

� �
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Proof: a) Let X =
∑

n≥1Xn. Then,

EX
Fubini
=

∑
n≥1

EXn <∞.

Therefore X <∞, a.s., which implies that Xn
n↗∞−→ 0, a.s. \(∧2

∧)/

Here, we give a proof of Theorem 1.10.2 in a special case Xi ∈ L4(P ), which is much simpler
to prove and is enough in many applications. The proof for the general case is presented in
Section 8.9. See also Exercise 1.10.6 below to see what happens if we do not assume E|Xn| <∞.

Proof of Theorem 1.10.2 in a special case Xi ∈ L4(P ) : By considering Xn − EXn

instead of Xn, we may assume that EXn ≡ 0. Then, by (1.80), it is enough to prove that

1)
∑
n≥1

E
[
S4
n

]
/n4 <∞.

We have

2) E[S4
n] =

n∑
i,j,k,ℓ=1

E[XiXjXkXℓ] =
n∑

i=1

E[X4
i ] + 6

∑
1≤r<s≤n

E[X2
r ]E[X

2
s ].

Here is an explanation for the second equality of 2). The only terms in
∑n

i,j,k,ℓ=1 that do not
vanish are those of the form either

� E[X4
i ] (i = 1, . . . n), or

� E[X2
rX

2
s ] = E[X2

r ]E[X
2
s ] (1 ≤ r < s ≤ n). For given r and s, there are

(
4
2

)
= 6 possibility

for (i, j, k, ℓ) such that two among them are r and the other are s.

Note also that there is a constant C such that

3) E[X2
m]

2 ≤ E[X4
m] ≤ C, m = 1, 2, ...

Now, 1) follows from 2)–3), since

E[S4
n]

2–3)

≤ Cn+3Cn(n−1) ≤ 4Cn2. \(∧2
∧)/

Example 1.10.4 (Almost all numbers are normal.) Let U be a r.v. with uniform distri-
bution on (0, 1) and q ≥ 2 be integer. Let also dn(U) ∈ {0, ..., q − 1} (n ≥ 1) be the digits of
U in its q-adic expansion defined by (1.75). Then, Borel’s theorem asserts that,

1) Almost surely, each number s = 1, . . . , q − 1 appears in (dn(U))n≥1 with equal frequency.

This will be formulated and proved as follows. We know from Example 1.9.1 that the digits
dn(U) (n ≥ 1) are i.i.d. with P (Xn = s) = 1/q, s = 0, . . . , q − 1. We now fix any s and set
Xn = 1{dn(U) = s}. Then, Xn (n ≥ 1) are i.i.d. ≈ Bin(1, 1/q) and hence EXn = 1/q. Thus,
by Theorem 1.10.2,

(the number of k = 1, . . . , n with dk(U) = s)

n
=
X1 + ...+Xn

n

n→∞−→ 1

q
, P -a.s.

\(∧2
∧)/
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Example 1.10.5 (Laws of distinct i.i.d’s are mutually singular.) Let (S,B) be a mea-
surable space, µ1, µ2 ∈ P(S,B), and µ1 6= µ2. Then, for any infinite set Λ, the product
measures Pj = ⊗λ∈Λµj (j = 1, 2) are mutually singular.
Proof: Since µ1 6= µ2, there exists B ∈ B such that µ1(B) 6= µ2(B). Since Λ is an infinite set,
we can choose an sequence Λ1 ⊂ Λ2 ⊂ . . . ⊂ Λ such that |Λn| = n (n ≥ 1). We consider the
following set.

Cj =

{
x = (xλ)λ∈Λ ∈

∏
λ∈Λ

S ;
1

n

∑
λ∈Λn

1B(xλ)
n→∞−→ µj(B)

}
, (j = 1, 2).

Under the measure Pj, {1B(xλ)}λ∈Λ are i.i.d. with mean µj(B). Thus, it follows from Theorem
1.10.2 that Pj(Cj) = 1. Since C1 ∩ C2 = ∅, P1 and P2 are mutually singular. \(∧2

∧)/

Complement to section 1.10� �
Proposition 1.10.6 (⋆)(the second Borel-Cantelli lemma) Suppose that Xn ≥ 0,
n ≥ 1 are independent r.v.’s and that there exists a constant M such that

sup
n≥1

Xn ≤M, a.s.

Then, ∑
n≥1

EXn = ∞ =⇒
∑
n≥1

Xn = ∞, a.s. (1.81)

� �
Proof: We may assume that M = 1/2 (Consider Xn/(2M), if necessary). We note that

1) 1− x ≤ e−x for x ≥ 0,

2) e−2x ≤ 1− x for x ∈ [0, 1/2].

We have

3) E

[
n∏

j=1

(1−Xj)

]
(1.53)
=

n∏
j=1

(1− EXj)
1)

≤ exp

(
−

n∑
j=1

EXj

)
.

Letting n→ ∞ in 3), and applying the bounded convergence to the left-hand side,

E

[
∞∏
j=1

(1−Xj)

]
3)

≤ exp

(
−

∞∑
j=1

EXj

)
= 0,

hence

4)
∞∏
j=1

(1−Xj) = 0, a.s.

On the other hand,

5) exp

(
−2

∞∑
j=1

Xj

)
=

∞∏
j=1

exp (−2Xj)
2)

≤
∞∏
j=1

(1−Xj).
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We conclude from 4) and 5) that
∑∞

j=1Xj = ∞, a.s. \(∧2
∧)/

Exercise 1.10.1 Let X,Y,Xn, Yn ∈ L1(P ) (n ∈ N) be such that Xn ≤ Yn a.s. (∀n ∈ N) and
that Xn → X, Yn → Y in probability. Prove then that X ≤ Y a.s.

Exercise 1.10.2 (Shannon’s theorem) Let S be a finite set and µ ∈ P(S) be such that
0 < µ(s) < 1 for all s ∈ S, we define the entropy H(µ) of µ by

H(µ) = −
∑
s∈S

µ(s) log µ(s) > 0.

Let {Xn}n≥1 be S-valued i.i.d. ≈ µ. Prove that(
n∏

j=1

µ(Xj)

)1/n

n→∞−→ e−H(µ), P -a.s.

Let us interpret S as the set of letters. Then, the above result says that the probability∏n
j=1 µ(Xj) of almost all randomly generated sentence X1X2....Xn decays like e−nH(µ) as n↗

∞.

Exercise 1.10.3 (LLN for renewal processes) LetNt = sup {n ∈ N ; Tn ≤ t}, where {Tn−
Tn−1}n≥1 are positive r.v.’s with T0 ≡ 0 and ETn <∞ for all n (cf. Example 1.7.6 for a special
case). Prove then the following.

i) N∞
def.
= lim

t↗∞
Nt = ∞, P -a.s.

Hint: P (N∞ <∞) = P (∪ℓ≥1 ∩m≥1 {Nm < ℓ}) and {Nm < ℓ} ⊂ {m < Tℓ+1}.
ii) If {Tn − Tn−1}n≥1 are i.i.d., then lim

t↗∞
Nt/t = 1/ET1, P -a.s.

Hint: TNt ≤ t < TNt+1 and lim
t↗∞

TNt/Nt = ET1 by Theorem 1.10.2.

Exercise 1.10.4 (⋆) Let q ≥ 2 be an integer and {p(s)}q−1
s=0 ⊂ [0, 1) be such that

∑q−1
s=0 p(s) =

1. For an i.i.d. Xn ∈ {0, . . . , q − 1} (n ≥ 1), with P (X1 = s) = p(s) (0 ≤ s ≤ q − 1), we
denote by µ the law of the r.v.X =

∑
n≥1

Xn

qn
. Then, prove the following. i) If p(s) ≡ 1/q,

then µ is the Lebesgue measure on [0, 1], ii) If p(s) 6≡ 1/q, then µ is singular with respect to
the Lebesgue measure. Hint Look at the set

C =

{
t ∈ (0, 1] ;

1

n

n∑
k=1

1{dk(t) = s} n→∞−→ p(s), 0 ≤ ∀s ≤ q − 1

}
,

where, for each t ∈ (0, 1], dn(t) ∈ {0, 1, . . . , q − 1} (n ≥ 1) is the unique sequence such that

t =
∑

n≥1
dn(t)
qn

and
∑

n≥1 dn(t) = ∞.

Remark Exercise 1.10.4 ii) shows that the function F (t) = µ([0, t]) (0 ≤ t ≤ 1) is singular
with respect to the Lebesgue measure. If q = 3 and p(0) = p(2) = 1/2, then, F is the Cantor
function (cf. Example 1.9.2). On the other hand, if q = 2 and p(0) 6= p(1), then, F is called
the de Rham’s singular function.
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Exercise 1.10.5 (⋆) (functional equation which characterizes the generalized Cantor
functions) Referring to Exercise 1.10.4,consider the following functional equation for f :
[0, 1] → R.

f(1) = 1, f

(
s+ t

q

)
=

{
p(0)f(t), (s = 0),
p(0) + · · ·+ p(s− 1) + p(s)f(t), (s = 1, . . . , q − 1)

t ∈ [0, 1].

Prove that F is the unique right-continuous solution to the above functional equation. Hint: To
show that F is a solution, note that {X ≤ s+t

q
} = {X1 < s}∪{X1 = s,

∑
n≥1

Xn+1

qn
≤ t}, s ∈ S.

Exercise 1.10.6 (⋆) Let Sn = X1 + ...+Xn, where {Xn}n≥1 are i.i.d.

i) (Infinite mean) Suppose that E[X+
n ] = ∞ and E[X−

n ] < ∞. Prove then that Sn

n

n→∞−→ ∞
a.s. Hint: Xn ∧m ∈ L1(P ) for any fixed m ∈ (0,∞).
ii) (Indefinite mean) Suppose that E[X±

n ] = ∞. Prove then that P (Sn/n converges) = 0.
Hint: Use Proposition 1.10.6 to show that

∑
n≥1 1{Xn > n} = ∞, a.s. Then, note that

Sn+1

n+1
− Sn

n
= Xn+1

n+1
− Sn

n(n+1)
.

1.11 (⋆) Ergodic theorems

The presentation of this subsection is based on [Dur95] and [Wal82].

Definition 1.11.1 Let (Ω,F , P ) be a probability space, and T : Ω → Ω be a measurable
map.

▶ A r.v. X : Ω → R is said to be T -invariant if X ◦ T = X, a.s. A event A ∈ F is said to
be T -invariant if 1A is T -invariant. The totality of T -invariant events is denoted by I.
▶ The map T is said to be P -preserving if P ◦ T−1 = P , meaning that P (T−1A) = P (A) for
all A ∈ F .

▶ The map T is said to be P -ergodic if it is P -preserving and

X ∈ L∞(P ), X ◦ T = X, a.s. =⇒ X = EX a.s. (1.82)

The main purpose of this subsection is to prove:� �
Theorem 1.11.2 (Birkhoff Ergodic Theorem) Let T : Ω → Ω be P -preserving, X ∈
L1(P ), and

Sn =
n−1∑
j=0

X ◦ T j, n ≥ 1.

Then, the following hold:

a) There exists a T -invariant r.v. X∗ such that

Sn

n

n→∞−→ X∗, a.s. (1.83)

b) For p ∈ [1,∞], ‖Sn‖p ≤ n‖X‖p for all n ≥ 1, and ‖X∗‖p ≤ ‖X‖p.

c) E[X∗ : A] = E[X : A] for all A ∈ I. In particular, if T is ergodic, then X∗ = EX, a.s.� �
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Remark: By part c) of Theorem 1.11.2, X∗ = E[X|I] (cf. Proposition 4.1.3).

From Theorem 1.11.2, we easily deduce:� �
Corollary 1.11.3 (von Neumann Ergodic Theorem) Let T : Ω → Ω be P -preserving,
X ∈ Lp(P ) (p ∈ [1,∞)), Sn, n ≥ 1 and X∗ be as in Theorem 1.11.2. Then,

Sn

n

n→∞−→ X∗, in Lp(P ). (1.84)� �
Proof: Suppose first that X ∈ L∞(P ). Since ‖Sn/n‖∞ ≤ ‖X‖∞, (1.84) for p ∈ [1,∞) follows
from the bounded convergence theorem. Note next that L∞(P ) is dense in Lp(P ). Combinning
the observations made above, it is easy to prove that Sn/n is a Cauchy sequence in Lp(P ),
via standard ε/3-argument. Since the convergence Sn/n −→ X∗ takes place a.s. by Theorem
1.11.2, this proves (1.84). \(∧2

∧)/

Remark: Corollary 1.11.3 does not extend to the case of p = ∞. See the remark at the end
of Example 1.11.4.

Example 1.11.4 (Shift of an i.i.d.) Let (Sn,Bn, µn) = (S,B, µ) (n ∈ N) be copies of a
probability space and let (Ω,F , P ) be their product:

Ω =
∏
n∈N

Sn, F =
⊗
n∈N

Bn, P =
⊗
n∈N

µn.

We define T : Ω → Ω by
Tω = (ωj+1)j∈N for ω = (ωj)j∈N.

Then,

1) T is P -preserving,

since ω and Tω have the same law P . Moreover

2) T is P -ergodic.

To see this suppose that X ∈ L∞(P ) is T -invariant. Since T nω = (ωn+j)j∈N and X ◦ T n = X,
a.s., X is measurable by the σ-algebra σ[Tn,N ], where N is the totality of P -null sets and

Tn
def
= σ[ωn+j ; j ∈ N].

Since n is arbitrary, X is measurable by the σ-algebra σ[T ,N ], where T is the tail σ-algebra:

T def
=
⋂
n≥1

Tn.

The σ-algebra T is trivial by Kolmogorov 0-1 law, hence so is σ[T ,N ]. This implies that
X = EX, a.s.
Finally, we apply Birkhoff ergodic theorem (Theorem 1.11.2) to give a proof of law of large num-
bers (Theorem 1.10.2). Let (S,B, µ) = (R,B(R), µ), where the measure µ satisfies

∫
|x|dµ(x) <

∞. We write m =
∫
xdµ(x). For X(ω)

def
= ω0, X(T nω) = ωn, (n ∈ N) are i.i.d. ≈ µ and
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Sn =
∑n−1

j=0 ωj. Moreover, X∗ = EX = m by 2). Thus, it follows from Birkhoff ergodic
theorem that

1

n

n−1∑
j=0

ωj
n→∞−→ m, a.s. (1.85)

Remark: By von Neumann ergodic theorem (Corollary 1.11.3), the convergence (1.85) takes
place in Lp(P ) if p ∈ [1,∞) and |x| ∈ Lp(µ). However, this is no longer true for p = ∞.
Indeed, take µ = (δ−1 + δ1)/2. Then, m = 0 and ‖Sn/n‖∞ = 1 for all n ≥ 1.

Example 1.11.5 (Rotation of the circle) Let Ω = R/Z, which is identified with the interval
[0, 1), F = B([0, 1)) (the Borel σ-algebra), P = the Lebesgue measure on [0, 1). For α ∈ (0, 1),
we define Tα : Ω → Ω by:

Tαθ = θ + α− bθ + αc.

Then,

1) Tα is P -preserving.

To see this, we start by a simple observation. For a function f : Ω → R, its periodic extension
is defined as a unique function F : R → R, such that F |[0,1) = f and F (θ) = F (θ+1) (∀θ ∈ R).
Then, for f : Ω → R, its periodic extention F , and θ ∈ [0, 1),

2) f(Tαθ) = F (Tαθ) = F (θ + α− bθ + αc) = F (θ + α),

Therefore, for f ∈ L1([0, 1)),∫ 1

0

f ◦ Tα =

∫ 1

0

F (·+ α)
F (·+1)=F

=

∫ 1

0

F =

∫ 1

0

f.

This implies 1).
We next prove that

3) Tα is P -ergodic ⇐⇒ α 6∈ Q.

(⇒) Suppose that α = p/q (p, q ∈ N, 1 ≤ p < q). Take a bounded measurable function
f : [0, 1) → R of period 1/q, which is not a.s. constant. Then, f is T1/q-invariant, and hence
is Tα-invariant, since Tα = (T1/q)

p.
(⇐) Suppose that f ∈ L∞(P ) is Tα-invariant. Then, F = F (·+α), a.s. by 2). We look at the

Fourier coefficient F̂ ∈ ℓ∞(Z):

F̂ (n) =

∫ 1

0

F (θ) exp(−2πinθ)dθ.

On the other hand, let Fα
def
= F (·+ α). Then,

F̂ (n) = F̂α(n) =

∫ 1

0

F (θ + α) exp(−2πinθ)dθ

=

∫ 1

0

F (θ) exp(−2πin(θ − α))dθ = exp(2πinα)F̂ (n).
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Since α 6∈ Q, exp(2πinα) 6= 1 for all n 6= 0, and hence F̂ (n) = 0 for all n 6= 0. This implies
that F is a.s. constant, and therefore f is a.s. constant.
As a consequence of Birkhoff ergodic theorem, we observe the equidistribution of the irrational
rotation in the following form. Let F : R → R be measurable, of period 1, and

∫ 1

0
|F | < ∞.

Then, for α ∈ R\Q, and for alomst all θ ∈ [0, 1),

1

n

n−1∑
j=0

F (θ + jα)
n→∞−→

∫ 1

0

F.

See also Exercise 2.4.12.

We now turn to the proof of Theorem 1.11.2, which is based on ths following:� �
Lemma 1.11.6 For α ∈ R, let

B+
α =

⋃
n≥1

{Sn > αn} , B−
α =

⋃
n≥1

{Sn < αn} .

Then, for any A ∈ I,

E[X − α : A ∩B+
α ] ≥ 0 ≥ E[X − α : A ∩B−

α ].

The above inequalities remain true if B±
α are replaced respectively by B+

α,n =
⋃n

j=1 {Sj > αj}
and B−

α,n =
⋃n

j=1 {Sj < αj} (n ∈ N\{0}).� �
Proof: Since B±

α,n ↗ B±
α as n ↗ ∞, it is enough to consider the case of B±

α,n instead of B±
α .

Then, by replacing X by X − α, we may assume that α = 0. Finally, we may concentrate
on the first inequality, since the second one follows from the first, by replacing X by −X.
Therefore, it is enough to prove that

1) E[X : A ∩B+
0,n] ≥ 0, for n ∈ N\{0}.

The inequality 1) is obvious for n = 1, since S1 = X and hence B+
0,1 = {X > 0}. For n ≥ 2,

the inequality 1) is a consequnce of the following equality.

2) (Mn−1 ◦ T )+ =Mn −X, where Mn = max1≤j≤n Sj.

Indeed, 2) implies 1) as follows. Note that B+
0,n = {Mn > 0} and hence Mn1B+

0,n
= M+

n .

Therefore,

3) (Mn−1 ◦ T )+ ≥ (Mn−1 ◦ T )+1B+
0,n

2)
= (Mn −X)1Bn =M+

n −X1B+
0,n
.

On the othr hand, E[(Mn−1 ◦ T )+ : A] = E[M+
n−1 : A], since A ∈ I. Hence,

E[X : A ∩B+
0,n]

3)

≥ E[M+
n : A]− E[(Mn−1 ◦ T )+ : A]

= E[M+
n : A]− E[M+

n−1 : A] ≥ 0.

Let us turn to the proof of 2). Since Sj ◦ T = Sj+1 −X (∀j ≥ 1), we have

4) Mn−1 ◦ T = max
1≤j≤n−1

Sj ◦ T = max
1≤j≤n−1

Sj+1 −X.
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Takig a trivial equality 0 = S1 −X into account, we obtain 2) as follows.

(Mn−1 ◦ T )+ = (Mn−1 ◦ T ) ∨ 0 = (Mn−1 ◦ T ) ∨ (S1 −X)
4)
= max

0≤j≤n−1
Sj+1 −X =Mn −X.

\(∧2
∧)/

Proof of Theorem 1.11.2: a) Let

X = lim
n→∞

Sn

n
, X = lim

n→∞

Sn

n
.

Then,

1) X ◦ T = X, and X ◦ T = X.

Indeed, since Sn ◦ T = Sn+1 −X, we have,

Sn ◦ T
n

=
n+ 1

n

Sn+1

n+ 1
− X

n
.

By taking the upper and the lower limits, we obtain 1).
On the other hand, we have

{X < X} =
⋃

α,β∈Q
α<β

Aα,β, with Aα,β = {X < α} ∩ {β < X}.

Thus, to prove that the limit X∗ exists a.s., it is enough to show that

2) P (Aα,β) = 0 if α < β.

By 1), we see that Aα,β ∈ I. Moreover, Aα,β ⊂ B−
α ∩ B+

β and hence Aα,β = Aα,β ∩ B−
α =

Aα,β ∩B+
β . Thus, by Lemma 1.11.6,

βP (Aα,β) ≤ E[X : Aα,β] ≤ αP (Aα,β),

which implies 2).
b) The first inequality follows from the triangle inequalty for Lp-norm. The second inequality
follows from the first one via the Fatou’s lemma (Note that Fatou’s lemma is valid for L∞-
norm).
c) We next prove that E[X∗ : A] = E[X : A] for all A ∈ I. Let

An,k = A ∩
{
X∗ ∈

(
k

n
,
k + 1

n

]}
∈ I.

We observe that

2)
k

n
P (An,k) ≤ E[X : An,k].
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Indeed, An,k ⊂ B+
k/n and hence An,k = An,k ∩B+

k/n. Thus, by Lemma 1.11.6, we obtain 2).

It follows from 2) that

E[X∗ : An,k] ≤
k + 1

n
P (An,k)

2)

≤ E[X : An,k] +
P (An,k)

n
.

Thus, by summing over k ∈ Z,

E[X∗ : A] ≤ E[X : A] +
1

n
.

Letting n→ ∞, we obtain E[X∗ : A] ≤ E[X : A]. Then, by replacing X by −X,

E[X : A] = −E[(−X) : A] ≤ −E[(−X)∗ : A] = E[X∗ : A].

This finishes the proof. \(∧2
∧)/

Exercise 1.11.1 Let Ω be a finite set with cardinality q ≥ 2, P = 1
q

∑
x∈Ω δx, and T : Ω → Ω

be a bijection. i) Verify that T is P -preserving. ii) For each x ∈ Ω, let p(x) be the minimal
p ∈ N such that T px ∈ {T jx}p−1

j=0. Then, verify that T p(x)x = x. iii) Prove that the following
conditions a)–c) are equivalent: a) ∀x ∈ Ω, p(x) = q. b) ∃x0 ∈ Ω, p(x0) = q. c) T is ergodic.
iv) Let f : Ω → R and x ∈ Ω be arbitrary. Then, verify by direct computation the following
special case of Birkhoff ergodic theorem.

1

n

n−1∑
j=0

f(T jx)
n→∞−→ 1

p(x)

p(x)−1∑
j=0

f(T jx).

Exercise 1.11.2 Let Ω = (0, 1), P (A) = 1
log 2

∫
A

dx
1+x

(A ∈ B(Ω)), and Tx = 1
x
− b 1

x
c (x ∈ Ω).

i) Verify that T is P -preserving. ii) It is known that T is P -ergodic [Bil95, p.322]. Assuming
this, use Theorem 1.11.2 to show that for any k ≥ 1,

1

n

n−1∑
j=0

1{b1/T jxc = k} n→∞−→ 1

log 2

(
log

(
1 +

1

k

)
− log

(
1 +

1

k + 1

))
, P (dx)-a.s.

Remark For x ∈ (0, 1)\Q, the numbers an(x) = b1/T nxc (n ≥ 1) give the digits in continued-
fraction representation of x in the sense that F (a1(x), . . . , an(x))

n→∞−→ x, where

F (a1(x), . . . , an(x)) =
1

a1(x)+
1

a2(x)+
1

...

an−2(x) +
1

an−1(x) +
1

an(x)

cf. [Bil95, pp.319–320]. Therefore, the limit considered in ii) can be interpreted as the asymp-
totic frequency with which the number k appears in the continued-fraction representation of
x.
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2 Characteristic functions

2.1 Definitions and Elementary Properties

Definition 2.1.1 (Fourier transform)

▶ For a Borel signed measure µ on Rd, the Fourier transform of µ is a function µ̂ : Rd → C
defined by

µ̂(θ) =

∫
exp (iθ · x) dµ(x). (2.1)

Example 2.1.2 a) (Fourier transform of L1-functions) Suppose that a signed measure
µ is of the form:

dµ(x) = f(x)dx, f ∈ L1(Rd).

Then,

µ̂(θ) = f̂(θ)
def
=

∫
Rd

exp (iθ · x) f(x)dx. (2.2)

Thus, (2.1) is given by the classical Fourier transform f̂ of the L1-function f .

b) (Fourier series of ℓ1-series) Suppose that a set S ⊂ Rd is countable, (cx)x∈S ∈ ℓ1(S),
and that a signed measure µ is of the form:

µ =
∑
x∈S

cxδx.

Then,

µ̂(θ)
def
=
∑
x∈S

cx exp(iθ · x). (2.3)

If S = Zd, (2.1) is given by the classical Fourier series of a sequence in ℓ1(Zd).

The following proposition states that a finite measure is uniquely characterized by its
Fourier transform:� �
Proposition 2.1.3 (Injectivity of the Fourier transform) For a Borel signed measure
µ on Rd,

µ = 0 ⇐⇒ µ̂(θ) = 0 for all θ ∈ Rd.� �
We will postpone the proof of this proposition until section 2.4.
Let (Ω,F , P ) be a probability space in what follows.� �

Proposition 2.1.4 (Characteristic function) For µ ∈ P(Rd) and a r.v. X : Ω → Rd,
the following are equivalent:

a) E exp(iθ ·X) = µ̂(θ) for all θ ∈ Rd;

b) X ≈ µ.

▶ The expectation on the left-hand side of a) above is called the characteristic function
(ch.f. for short) of X.� �

Proof: Let ν = P (X ∈ ·). Then,
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1) E exp (iθ ·X)
(1.9)
=

∫
exp(iθ · x)dν(x) (2.1)

= ν̂(θ).

Therefore

a)
1)⇐⇒ µ̂ = ν̂

Proposition 2.1.3⇐⇒ µ = ν ⇐⇒ b).

\(∧2
∧)/

Remark: By Proposition 2.1.4,

the ch.f. of a r.v. = the Fourier transform of its law.� �
Corollary 2.1.5 (Criterion of the independence) Let Xj : Ω → Rdj (j = 1, ..., n) be
r.v.’s. Then, the following are equivalent:

a) E

[
n∏

j=1

exp(iθj ·Xj)

]
=

n∏
j=1

E exp(iθj ·Xj) for all θj ∈ Rdj (j = 1, ..., n).

b) {Xj}nj=1 are independent.� �
Proof: Let d = d1 + ...+ dn, θj ∈ Rdj and µj = P (Xj ∈ ·) ∈ P(Rdj) (1 ≤ j ≤ n). We write:

θ = (θj)
n
j=1 ∈ Rd, X = (Xj)

n
j=1 : Ω → Rd, µ = ⊗n

j=1µj ∈ P(Rd).

Then,

1) exp(iθ ·X) = exp

(
i

n∑
j=1

θj ·Xj

)
=

n∏
j=1

exp(iθj ·Xj).

Therefore,

2) E exp(iθ ·X)
1)
= E

[
n∏

j=1

exp(iθj ·Xj)

]
,

and

3)



µ̂(θ)
(2.1)
=

∫
Rd

exp(iθ · x)dµ(x) =
∫
Rd

n∏
j=1

exp(iθj · xj)dµ1(x1) · · · dµn(xn)

Fubini
=

n∏
j=1

∫
Rdj

exp(iθj · xj)dµj(xj)

(1.9)
=

n∏
j=1

E exp(iθj ·Xj).

Therefore,

a) ⇐⇒ RHS 2)=RHS 3)
2),3)⇐⇒ LHS 2)=LHS 3)

Proposition 2.1.4⇐⇒ X ≈ µ
Proposition 1.6.1⇐⇒ b).

\(∧2
∧)/
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Exercise 2.1.1 Let µ be a Borel signed measure on Rd, and |µ| be its total variation. Prove
that

|µ̂(θ)| ≤ |µ|(Rd), |µ̂(θ)− µ̂(θ′)| ≤
∫
Rd

| exp(i(θ − θ′) · x)− 1|d|µ|

for θ, θ′ ∈ Rd. In particular, µ̂ is bounded and uniformly continuous.

Exercise 2.1.2 Let X = (Xα)
k
α=1 be an Rk valued r.v. Prove that the following conditions

are equivalent. (a) UX ≈ X for all U ∈ Ok, where Ok denotes the totality of k × k real
orthogonal matrices. (b) E exp(iθ ·X) = E exp(i|θ|X1) for all θ ∈ Rk.

Exercise 2.1.3 Let X be an Rk valued r.v. which satisfies the conditions stated in Exercise
2.1.2. Prove then that AX ≈ BX for d×k matirices A and B such that AA∗ = BB∗. Hint: If
AA∗ = BB∗, then, |A∗θ| = |B∗θ| for all θ ∈ Rd. Combine this observation with Exercise 2.1.2.

2.2 Basic Examples

Example 2.2.1 (ch.f. of binomial and Poisson r.v.’s) Let µ ∈ P(N) and X : Ω → N be
a r.v. with X ≈ µ. Recall that we have defined the generating function by

G(µ; s)
def
= EsX =

∞∑
n=0

µ(n)sn, s ∈ C, |s| ≤ 1,

where µ(n) = µ({n}) (Definition 1.7.1). By plugging s = exp(iθ) in the above expression, we
see that

µ̂(θ) = E exp(iθX) = G(µ; exp(iθ)). (2.4)

Let µn,p be (n, p)-binomial distribution, and πc be c-Poisson distribution. Then, we see from
(1.61), (1.66) and (2.4) that

µ̂n,p(θ) = G(µn,p; exp(iθ)) = (p exp(iθ) + 1− p)n, (2.5)

π̂c(θ) = G(πc; exp(iθ)) = exp(c(exp(iθ)− 1)). (2.6)

Example 2.2.2 (ch.f. of a Uniform r.v.) Suppose that a r.v. U is uniformly distributed
on an interval (a, b) (cf. (1.16)). Then,

E exp(iθ · U) = exp(iθb)− exp(iθa)

i(b− a)θ
. (2.7)

Proof: Since U has the density: u(x) = (b− a)−11(a,b)(x), we have that

E exp(iθ · U) (2.1)
= (b− a)−1

∫ b

a

exp(iθx)dx = RHS (2.7).

\(∧2
∧)/

Example 2.2.3 (ch.f. of N(0, Id)) Let X be an Rd-valued r.v. ≈ N(0, Id). We will show
that

E exp(iθ ·X) = exp
(
−1

2
|θ|2
)
. (2.8)

Since X has the density : h(x)
def
= (2π)−d/2 exp

(
− |x|2

2

)
, we have that

E exp(iθ ·X)
(2.1)
=

∫
Rd

exp(iθ · x)h(x)dx.

Let us prove that
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1)

∫
Rd

exp(zθ · x)h(x)dx = exp
(
1
2
z2|θ|2

)
, ∀θ ∈ Rd, ∀z ∈ C

and hence (by setting z = i) that (2.8) holds. Note first that both hand sides of 1) are
holomorphic in z. Therefore, by the unicity theorem, it is enough to prove the equality for all
z = t ∈ R. Note that

tθ · x− 1
2
|x|2 = 1

2
t2|θ|2 − 1

2
|x− tθ|2,

and therefore,

2) exp(tθ · x)h(x) = exp(1
2
t2|θ|2)h(x− tθ).

Thus, ∫
Rd

exp (tθ · x)h(x)dx 2)
= exp

(
1
2
t2|θ|2

) ∫
Rd

h(x− tθ)dx︸ ︷︷ ︸
=1

= exp
(
1
2
t2|θ|2

)
,

which implies 1). See Exercise 2.3.3 for an alternative proof. \(∧2
∧)/

Example 2.2.4 (ch.f. of N(m,V )) For d ∈ N\{0}, we denote by S+
d the totality of sym-

metric, non-negative definite d× d real matrices. Let m ∈ Rd and V ∈ S+
d in what follows. In

Example 1.2.4, we have defined multi-dimensional Gaussian distribution N(m,V ) when V is
strictly positive definite. We now generalize the definition to the case where V is non-negative
definite, but not necessarily strictly positive definite.

Let k ∈ N\{0}. We take a d × k matrix A such that V = AA∗. See Proposition 8.2.4 for
a characterization of such A for a given V . Let Y be an Rk-valued r.v. ≈ N(0, Ik). Then, we
define N(m,V ) to be the law of the following r.v.

X
def
= m+ AY. (2.9)

We will prove that:

E exp(iθ ·X) = exp
(
iθ ·m− 1

2
θ · V θ

)
, θ ∈ Rd. (2.10)

This, together with Proposition 2.1.4, shows that the law N(m,V ) is uniquely determined by
m and V , without depending on the choice of A (See also Exercise 2.1.3). Note that:

1) θ ·X (2.9)
= θ ·m+ θ · AY = θ ·m+ A∗θ · Y .

2) |A∗θ|2 = A∗θ · A∗θ = θ · AA∗θ = θ · V θ.

We use these to see (2.10) as follows:

E exp(iθ ·X)
1)
= exp (iθ ·m)E exp(iA∗θ · Y )

(2.8)
= exp

(
iθ ·m− 1

2
|A∗θ|2

) 2)
= exp

(
iθ ·m− 1

2
θ · V θ

)
.

We will next use (2.10) to show the following. Let Xj : Ω → Rd (j = 1, 2) be independent
r.v.’s such that Xj ≈ N(mj, Vj), where mj ∈ Rd and Vj ∈ S+

d . Then,

X
def
= X1 +X2 ≈ N(m,V ), where m = m1 +m2, V = V1 + V2. (2.11)
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We have for any θ ∈ Rd that

E exp(iθ ·X)
(1.53)
=

2∏
j=1

E exp(iθ ·Xj)

(2.10)
=

2∏
j=1

exp
(
iθ ·mj − 1

2
θ · Vjθ

)
= exp

(
iθ ·m− 1

2
θ · V θ

)
.

This implies (2.11) via Proposition 2.1.4. \(∧2
∧)/

Example 2.2.5 (ch.f. of a Cauchy r.v.: dimension one) Suppose that an R-valued r.v.
Y has (c)-Cauchy distribution: Y ≈ c

π
dx

c2+x2 . Then,

E exp(iθY ) = exp(−c|θ|), θ ∈ R. (2.12)

Let gc(x) =
e−c|x|

2c
. Then,

ĝc(θ) =

∫ ∞

−∞

e−c|x|+iθx

2c
dx =

∫ ∞

0

e−(c−iθ)x

2c
dx+

∫ ∞

0

e−(c+iθ)x

2c
dx

=
1

2c

(
1

c− iθ
+

1

c+ iθ

)
=

1

c2 + θ2
. (2.13)

Thus,

exp(−c|θ|) = 2cgc(θ)
(2.37)
= 2c · 1

2π

∫ ∞

−∞
exp(−iθx)ĝc(x)dx

(2.13)
=

c

π

∫ ∞

−∞

exp(−iθx)

c2 + x2
dx =

c

π

∫ ∞

−∞

exp(iθx)

c2 + x2
dx = E exp(iθY ).

\(∧2
∧)/

Remark (Relevance of (2.13) to functional analysis) We see from (2.13) that f̂(θ)
c2+θ2

= ĝc(θ)f̂(θ)
for f ∈ L2(R). By the Fourier inversion, this implies that

(c2 −∆)−1f(x) =

∫
R
gc(x− y)f(y)dy,

where ∆f = f ′′ with the domain:

{f ∈ L2(R) ; f and f ′ are absolute continuous, f ′′ ∈ L2(R) }.

Exercise 2.2.1 Let U1, U2 be i.i.d. with uniform distribution on (−1, 1). (i) Show that
U1+U2

2
≈ f(x)dx, where f(x)

def.
= (1−|x|)+ and that f̂(θ) = sin2(θ/2)

(θ/2)2
. (ii) Show that 1

2π

∫∞
−∞ f̂ =

1. 1
2π
f̂ is the density of Polya’s distribution. Hint: (2.37).

Exercise 2.2.2 Let X1, X2, .. be iid such that P (X1 = ±1) = 1/2. Prove the following. (i)

U
def
=
∑

n≥1
Xn

2n
is uniformly distributed on [−1, 1]. (ii)

sin θ

θ
=

∞∏
n=1

cos
θ

2n
for θ ∈ R.
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Exercise 2.2.3 Let V be a symmetric, non-negative definite d×d real matrix with eigenvalues
{λα}dα=1 and let X : Ω → Rd be a r.v. ≈ N(0, V ). Prove then that |X|2 ≈

∑d
α=1 λα|Yα|2,

where Y = (Yα)
d
α=1 ≈ N(0, Id). Hint Let D = (

√
λαδα,β)

d
α,β=1 and let U be an orthogonal

matrix such that V = UD2U∗. Then, X ≈ UDY .

Exercise 2.2.4 (Stability of Gaussian distribution) LetX1, X2 be Rd-valued independent
r.v.’s such that Xj ≈ N(0, Vj), cf. (1.24) and A1, A2 be d× d matrices. Prove then that

X
def
= A1X1 + A2X2 ≈ N(0, V ), where V = A1V1A

∗
1 + A2V2A

∗
2

Hint: Compute E exp(iθ ·X) and use Proposition 2.1.3.

Exercise 2.2.5 Let X be a mean-zero Rd-valued r.v. Prove then that X is a Gaussian r.v. if
and only if X · θ is a Gaussian r.v. for any θ ∈ Rd. Hint: (2.10), Proposition 2.1.3.

Exercise 2.2.6 Suppose that X = (Xα)
d
α=1 is a mean-zero Rd-valued Gaussian r.v. Prove

then that coordinates {Xα}dα=1 are independent if and only if E[XαXβ] = 0 for α 6= β. This
shows in particular that the independence for r.v.’s {Xα}dα=1 above follows from the pairwise
independence. Hint: (2.10), Corollary 2.1.5.

Exercise 2.2.7 (⋆) Suppose that X is a real r.v. ≈ 2
cπ

cosh(x/c)−1dx (c > 0) (cf. Exercise
1.2.16). (i) Show that E exp(iθX) = cosh(cπθ/2)−1 (∀θ ∈ R). Hint: One can use residue
theorem. (ii) Noting that z ∈ C\

(
π
2
i+ πiZ

)
7→ (cosh z)−1 is holomorhic, we write its Taylor

expansion around the origin as (cosh z)−1 =
∑∞

k=0(−1)kEkz
2k/(2k)! (|z| < π/2), where the

numbers Ek’s are called Euler numbers. Then prove for k ∈ N that E[X2k] = (cπ/2)2kEk, and
deduce therefrom the following celebrated formula.

∞∑
n=0

(−1)n

(2n+ 1)2k+1
=

π2k+1

Ek22k+3
.

Exercise 2.2.8 (⋆) Suppose thatX = X1+X2, whereX1 andX2 are i.i.d. ≈ 2
cπ

cosh(x/c)−1dx
(c > 0). (i) Show that E exp(iθX) = cosh(cπθ/2)−2 (∀θ ∈ R). Hint: Exercise 2.2.7 (i).
(ii) Show that X ≈ 8

cπ2
x

sinh(x/c)
dx. (iii) Show that E[|X|s−2] = 8cs−2

π2 Γ(s)
∑∞

n=0(2n + 1)−s

for s ∈ (1,∞). (iii) Noting that z ∈ C\
(
π
2
i+ πiZ

)
7→ tanh z is holomorhic, we write its

Taylor expansion around the origin as tanh z =
∑∞

k=1 2
2k(22k − 1)(−1)k−1Bkz

2k−1/(2k)! (|z| <
π/2), where the numbers Bk’s are called Bernoulli numbers. Then prove for k ∈ N\{0} that
E[X2k−2] = 2(22k − 1)Bk(cπ)

2k−2 and deduce therefrom the following celebrated formula.

∞∑
n=0

1

(2n+ 1)2k
=

(22k − 1)Bk

2

π2k

(2k)!
.

Exercise 2.2.9 Apply the residue theorem to a melomorphic function exp(iθz)
c2+z2

to give an al-
ternative proof of (2.12).

Exercise 2.2.10 (Stability of Cauchy distribution) (i) Suppose that Yj (j = 1, 2) has
(cj)-Cauchy distribution and that Y1 and Y2 are independent. Prove then that Y1 + Y2 has
(c1+c2)-Cauchy distribution. (ii) Let Sn = Y1+ ...+Yn, where Y1, Y2, ... are independent r.v.’s
with (c)-Cauchy distribution. Prove then that Sn/n ≈ Y1 for all n ≥ 1. This shows that Sn/n
does not converge to a constant, even weakly (cf. Theorem 1.10.2).
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2.3 (⋆) Further Examples

Example 2.3.1 (ch.f. of a Gamma r.v.) Let X be a real r.v. such that X ≈ γc,a. We will
show that

γ̂c,a(θ) =

(
1 +

θ2

c2

)−a/2

exp

(
iaArctan

θ

c

)
. (2.14)

To prove this, we go thruough a little of complex analysis. For z ∈ C\{0}, we define Arg z ∈
(−π, π] (argument of z) by

1) z = |z| exp(iArg z),

and Logz ∈ C by
Log z = log |z|+ iArg z.

By definition, Arg z is the angle, signed counter-clockwise, from the positive real axis to the
vector representing z.

③

❆�✁③

Finally we set:
zs = exp (sLog z) , for z ∈ C\{0} and s ∈ C.

It is well-known that Log z is holomorphic in z ∈ C\(−∞, 0], and hence so is zs. Note also
that

2) zs = exp (sLog z) = exp (s log |z|+ isArg z) = |z|s exp(isArg z).

We first show that

3) E exp(−zX) =
(
1 +

z

c

)−a

for any z ∈ C with Re z > −c.

To prove 3), note that both hand-sides are holomorphic in z for Re z > −c. Therefore, by the
unicity theorem, it is enough to prove the equality for all z = t ∈ (−c,∞). Then,

E exp(−tX)
(1.27)
=

ca

Γ(a)

∫ ∞

0

xa−1e−(t+c)xdx

x=y/(t+c)
=

ca

Γ(a)

(
1

t+ c

)a ∫ ∞

0

ya−1e−ydy︸ ︷︷ ︸
=Γ(a)

=

(
1 +

t

c

)−a

.

This proves 3).
Finally, we use 3) to derive (2.14). For θ ∈ R,
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4)

∣∣∣∣1− iθ

c

∣∣∣∣ = (1 + θ2

c2

)1/2

, Arg

(
1− iθ

c

)
= −Arctan

θ

c
.

Therefore,

γ̂c,a(θ)
3)
=

(
1− iθ

c

)−a
2)
=

∣∣∣∣1− iθ

c

∣∣∣∣−a

exp

(
−iaArg

(
1− iθ

c

))
4)
=

(
1 +

θ2

c2

)−a/2

exp

(
iaArctan

θ

c

)
.

Example 2.3.2 (Stieltjes’ counterexample to the moment problem) We consider the
following question. Suppose that a function f ∈ C([0,∞)) satisfies∫ ∞

0

tn|f(t)|dt <∞, and

∫ ∞

0

tnf(t)dt = 0 for all n ∈ N.

Then f ≡ 0? Stieltjes gave the following counterexample to this question (1894):

f(t)
def
= exp(−t1/4) sin t1/4.

We can use (2.14) with c = 1, a = 4n + 4 (n ∈ N), θ = 1 to verify that the above function is
indeed a counterexample. Let n ∈ N. Since Arctan 1 = π/4, we have

1) exp(4(n+ 1)iArctan 1) = exp((n+ 1)πi) = (−1)n+1.

Therefore, we see that

2)
1

Γ(4n+ 4)

∫ ∞

0

x4n+3 exp(−x+ ix)dx = γ̂1,4n+4(1)
(2.14), 1)

= (−1)n+12−(2n+2) ∈ R.

Thus, taking the imaginary part, we have

0
2)
=

∫ ∞

0

x4n+3 exp(−x) sin xdx t=x4

=
1

4

∫ ∞

0

tn exp(−t1/4) sin t1/4dt.

Example 2.3.3 (Euler’s complementary formula for the Gamma function) We will
use (2.14) to prove the following identity due to Euler:

1

Γ(a)Γ(1− a)
=

sin(πa)

π
, a ∈ (0, 1). (2.15)

For a = 1/2, the above identity follows from Γ(1/2) =
√
π. Moreover, the identity is invariant

under the replacement of a by 1 − a. Thus, to prove identity, we may and will assume that
a < 1/2. Let fa(x) = 1

Γ(a)
xa−1e−x1x>0 (the density of γ(1, a)). Note that f1±a ∈ L2(R) for

a < 1/2. Thus, we have by the Plancherel formula that:

1)

∫ ∞

0

f1+a(x)f1−a(x)dx =
1

2π

∫
R
f̂1+a(θ)f̂1−a(−θ)dθ.

Since

f1+a(x)f1−a(x) =
1

Γ(1 + a)Γ(1− a)
e−2x1x>0,

we see that
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2)

∫ ∞

0

f1+a(x)f1−a(x)dx =
1

2Γ(1 + a)Γ(1− a)

On the other hand,

f̂1+a(θ)f̂1−a(−θ)
(2.14)
=

1

1 + θ2
exp(i(1 + a)Arctan θ − i(1− a)Arctan θ)

= (Arctan θ)′ exp(2iaArctan θ).

Thus,

3)


∫
R
f̂1+a(θ)f̂1−a(−θ)dθ

t=Arctan θ
=

∫ π/2

−π/2

exp(2iat)dt

=
exp(iaπ)− exp(−iπa)

2ia
=

sin(πa)

a

By 1)–3), we see that
1

2Γ(1 + a)Γ(1− a)
=

sin(πa)

2πa
,

which is equivalent to (2.15), since Γ(1 + a) = aΓ(a).

Before Example 2.3.5, we prepare the following Lemma.� �
Lemma 2.3.4 For a ∈ R, c, λ > 0,∫ ∞

0

ta−1 exp
(
− c2t

2
− λ2

2t

)
dt =

∫ ∞

0

t−a−1 exp
(
− c2

2t
− λ2t

2

)
dt

= 2(λ/c)aKa(cλ), (2.16)

where Ka stands for the Macdonald’s function, defined by (2.25). In particular, for a =
n+ 1

2
(n ∈ N ∪ {−1}), the above integral takes the following more explicit form.

√
2πc−(n+1)λnpn(1/cλ)e

−cλ, (2.17)

where p−1(x) = 1 and pn(x) =
∑n

r=0
(n+r)!
r!(n−r)!

(
x
2

)r
for n ≥ 0.� �

Proof: The first equality is easily obtained by the change of variable t 7→ 1/t. On the other
hand, by the change of integral variable t = (λ/c)ex, we have∫ ∞

0

ta−1 exp
(
− c2t

2
− λ2

2t

)
dt = (λ/c)a

∫ ∞

−∞
exp(−cλ coshx) exp(ax)dx.

Therefore, we obtain (2.16) and (2.17) from Lemma 2.3.8. which proves (3). \(∧2
∧)/

Example 2.3.5 Le a, c > 0, and X ≈ γ(c, a). Then, the Laplace transform of 1/X is com-
puted as:

E exp(− λ
X
) =

2(cλ)
a
2

Γ(a)
Ka(2

√
cλ), λ > 0, (2.18)
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where Ka stands for the Macdonald’s function, defined by (2.25). In particular for a = 1/2,
RHS of (2.18) equals exp(−2

√
cλ). This result is used later, e.g., Example 2.3.6 and (6.50).

We have:

E exp(− λ
X
) =

ca

Γ (a)

∫ ∞

0

ta−1 exp
(
−ct− λ

t

)
dt

By Lemma 2.3.4, the above integral equals the RHS of (2.18). \(∧2
∧)/

Example 2.3.6 (ch.f. of a Cauchy r.v.: higher dimensions) With c > 0 and a > 0 fixed,
we consider µc,a ∈ P(Rd) defined as follows.

µc,a(B) =
c2aΓ(a+ d

2
)

πd/2Γ(a)

∫
B

dx

(c2 + |x|2)a+
d
2

, B ∈ B(Rd).

Then, µ
c,
1
2
is the (c)-Cauchy distribution. We will show that

∫
Rd

exp(ix · θ)dµc,a(x) =
2(c|θ|/2)a

Γ(a)
Ka(c|θ|), θ ∈ Rd, (2.19)

where Ka stands for the Macdonald’s function, defined by (2.25). In particular,∫
Rd

exp(ix · θ)dµc, 1
2
(x) = exp(−c|θ|), θ ∈ Rd

Proof: We will use (1.69) to prove this. Let X1, X2, ..., Xd, Y be independent r.v.’s with
Xj ≈ N(0, 1), 1 ≤ j ≤ d (cf. (1.24)) and Y ≈ γc2/2,a ( cf. (1.27)). Let us write X = (Xj)

d
j=1

for simplicity. Then,∫
Rd

exp(ix · θ)dµc,a(x)
(1.69)
= E exp(iθ · Y −1/2X) =

∫ ∞

0

E exp(iθ · y−1/2X)dγ c2

2
,a
(y)

(2.10)
=

∫ ∞

0

exp

(
−|θ|2

2y

)
dγ c2

2
,a
(y)

(2.18)
=

2(c|θ|/2)a

Γ(a)
Ka(c|θ|).

Remark: An alternative proof of (2.19) for d = 3 can be given by applying the inversion

formula (2.37) to F̂c,2(θ) =
c4

(c2+|θ|2)2 (Exercise 2.3.2) as in Example 2.2.5.

Before Example 2.3.7, we need some preparation. For ν ∈ (−1,∞), we introduce the
following power series.

Fν(z) =
∞∑
n=0

cn

(z
2

)2n
, z ∈ C, where cn =

1

Γ(ν + n+ 1)n!
. (2.20)

See (2.23)–(2.25) below for the relation of this power series to the Bessel functions. The series
(2.20) converges for all z ∈ C, since

cn+1

cn
=

1

(ν + n+ 1)(n+ 1)

n→∞−→ 0.
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Example 2.3.7 (a) For z ∈ C, ν ∈ (−1,∞), and n ∈ N,

Fν+n(z) =

(
2

z

d

dz

)n

Fν(z), Fν+n(iz) =

(
−2

z

d

dz

)n

Fν(iz). (2.21)

In particular, settig ν = −1/2 in (2.21),

Fn−1/2(z) =
1√
π

(
2

z

d

dz

)n

cosh z, Fn−1/2(iz) =
1√
π

(
−2

z

d

dz

)n

cos z. (2.22)

(b) For z ∈ C and ν ∈ (−1/2,∞),∫ π

0

exp(z cos θ) sin2ν θdθ =

∫ 1

−1

exp(zt)(1− t2)ν−
1
2dt =

√
πΓ(ν + 1

2
)Fν(z).

(c) For an integer d ≥ 2, z ∈ C, and x ∈ Rd,∫
Sd−1

exp(zx · u)dσd(u) = 2πd/2F d
2
−1(|x|z).

where σd stands for the surface measure on Sd−1.

Proof: (a) It is easy to see (2.21) for n = 1, and hence they follow by induction. To see (2.22),
it is enough to show that F−1/2(z) =

1√
π
cosh z and F−1/2(iz) =

1√
π
cos z. To do so, note first

that

(1) Γ
(
n+ 1

2

)
=

(2n)!
√
π

22nn!
.

Then,

(2)
1

Γ
(
n+ 1

2

)
n!

(1)
=

22nn!√
π(2n)!n!

=
22n√
π(2n)!

,

Therefore,

F−1/2(z) =
∞∑
n=0

1

Γ
(
n+ 1

2

)
n!

(z
2

)2n (2)
=

1√
π

∞∑
n=0

22n

(2n)!

(z
2

)2n
=

1√
π
cosh z,

Hence F−1/2(iz) =
1√
π
cos z.

(b) The first equality follows from the change of integral variable t = cos θ. To prove the
second equality, we note that

(3)

∫ 1

−1

t2n(1− t2)ν−
1
2dt =

(2n)!
√
π

22nn!

Γ(ν + 1
2
)

Γ(ν + n+ 1)
.

Indeed, by the change of integral variable t =
√
s, we have∫ 1

−1

t2n(1− t2)ν−
1
2dt = 2

∫ 1

0

t2n(1− t2)ν−
1
2dt =

∫ 1

0

sn−
1
2 (1− s)ν−

1
2dt

= B(n+ 1
2
, ν + 1

2
) =

Γ(n+ 1
2
)Γ(ν + 1

2
)

Γ(ν + n+ 1)

(1)
=

(2n)!
√
π

22nn!

Γ(ν + 1
2
)

Γ(ν + n+ 1)
.
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Since (1− t2)ν−
1
2 is an even function, we have

∞∑
n=0

∫ 1

−1

exp(tz)(1− t2)ν−
1
2dt =

∞∑
n=0

z2n

(2n)!

∫ 1

−1

t2n(1− t2)ν−
1
2dt

(3)
=

√
πΓ(ν + 1

2
)

∞∑
n=0

1

Γ(ν + n+ 1)n!

(z
2

)2n
.

This proves the second equality.
(c) Let Ad = σd(S

d−1) = 2π
d
2 /Γ

(
d
2

)
. Since σd is invariant under rotation, we may assume that

x = |x|e1. Then,∫
Sd−1

exp(zx · u)dσd(u) =

∫
Sd−1

exp(|x|zu1)dσd(u) = Ad−1

∫ π

0

exp(|x|z cos θ) sind−2 θdθ

(b)
= Ad−1

√
πΓ
(
d
2
− 1
)
F d

2
−1(|x|z) = 2πd/2F d

2
−1(|x|z).

\(∧2
∧)/

Complement (Bessel functions): We have defined the power series (2.20) for ν ∈ (−1,∞).
We now extend its definition for ν ∈ R. To do so, recall that the Gamma function Γ(z) =∫∞
0
tz−1 exp(−t)dt (z ∈ C, Re z > 0) has a unique holomorphic extension on C\(−N), which

we denote by the same notation Γ. Recall also that the extension Γ satisfies the following
properties.
(a) Γ has no zero’s;
(b) Γ(z) → ∞ as z → −n (∀n ∈ N);
(c) Γ(z + 1) = zΓ(z) (∀z ∈ C\(−N)).
For n ∈ N, we set Γ(−n) = ∞ and 1/Γ(−n) = 0, which is justified by the property (b) above.
Using the extended Gamma function introduced now, and via the formula (2.20), we extend
the definition of the power series Fν(z) (z ∈ C) for all ν ∈ C.

If ν 6∈ {−m ; m ∈ N\{0}}, then cn 6= 0 (∀n ∈ N). On the other hand, if ν = −m for some
m ∈ N\{0}, then c0 = . . . = cm−1 = 0 and cn 6= 0 (∀n ≥ m). In both cases, cn 6= 0 for all
sufficiently large n’s and

cn+1

cn
=

1

(ν + n+ 1)(n+ 1)

n→∞−→ 0.

Therefore, the series (2.20) converges for all z ∈ C. Moreover, the recursion (2.21) extends to
all ν ∈ R and z ∈ C.

For ν ∈ R and z ∈ (0,∞), we introduce,

Jν(z) =
(z
2

)ν
Fν(iz) =

∞∑
n=0

(−1)ncn

(z
2

)ν+2n

, (2.23)

Iν(z) =
(z
2

)ν
Fν(z) =

∞∑
n=0

cn

(z
2

)ν+2n

, (2.24)

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
if ν ∈ C\Z and Kn(z) = lim

ν→n
ν∈C\Z

Kν(z) if n ∈ Z. (2.25)

The function Jν is called the Bessel function. The function Iν (resp. Kν) is called respectively,
the modified Bessel function of the first kind (resp. Macdolald’s function). Note that we now
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have the recursions (2.21) for all ν ∈ C and z ∈ C\(−∞, 0]. They imply the raising operator
relations.

Jν+1(z) =

(
− d

dz
+
ν

z

)
Jν(z), Iν+1(z) =

(
d

dz
− ν

z

)
Iν(z). (2.26)

We also note the lowering operator relations.

Jν−1(z) =

(
d

dz
+
ν

z

)
Jν(z), Iν−1(z) =

(
d

dz
+
ν

z

)
Iν(z). (2.27)

Finally, by (2.25), (2.26) and (2.27),

Kν+1(z) =

(
− d

dz
+
ν

z

)
Kν(z) Kν−1(z) = −

(
d

dz
+
ν

z

)
Kν(z). (2.28)

It follows from (2.26)–(2.28) that both Iν(z) and Kν(z) solve the following differntial equation.(
d2

dz2
+

d

dz
− 1− ν2

z2

)
u(z) = 0. (2.29)

In fact, Iν(z) and Kν(z) are independent solution to (2.29), as can be seen from their assymp-
totic behavior as z → ∞, cf. [Leb72, p.123, (5.11.8), (5.11.9)].

Iν(z) ∼
(

1

2πz

)1/2

ez, Kν(z) ∼
( π
2z

)1/2
e−z. (2.30)

We also note the following formulas for n ∈ N, which follow from (2.22).

Jn− 1
2
(z) =

(
2

π

)1/2

zn−
1
2

(
−1

z

d

dz

)n

cos z, (2.31)

In− 1
2
(z) =

(
2

π

)1/2

zn−
1
2

(
1

z

d

dz

)n

cosh z. (2.32)

We now prove the following representation formulas for Kν(z).� �
Lemma 2.3.8

Kν(z) =
1

2

∫ ∞

−∞
exp(−z coshx− νx)dx. (2.33)

Moreover, for n ∈ N,

Kn+ 1
2
(z) =

( π
2z

)1/2
e−zpn

(
1

z

)
, (2.34)

where p−1(x) = 1 and pn(x) =
∑n

r=0
(n+r)!
r!(n−r)!

(
x
2

)r
for n ≥ 0.� �

Proof: Let us donote the integral on the right-hand side of (2.33) by uν(z). To prove (2.33),
it is enough to verify that

(1) uν solves (2.29). (2) uν(z) ∼
( π
2z

)1/2
e−z.

To verify (1), it is is enough to show the following two equations separetely.
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(3) uν+1(z) =

(
− d

dz
+
ν

z

)
uν(z), uν−1(z) = −

(
d

dz
+
ν

z

)
uν(z).

We have,

− d

dz
uν(z) =

1

2

∫ ∞

−∞
exp(−z coshx) cosh x exp(−νx)dx =

1

2
uν−1(z) +

1

2
uν+1(z),

ν

z
uν(z) = −1

2

∫ ∞

−∞

1

z
exp(−z coshx) d

dx
(exp(−νx))dx

= −1

2

[
1

z
exp(−z coshx) exp(−νx)

]∞
−∞

− 1

2

∫ ∞

−∞
exp(−z coshx) sinh x exp(−νx)dx

= −1

2
uν−1(z) +

1

2
uν+1(z),

from which (3) follow. Since coshx ≥ 1 + x2

2
, we have

uν(z) ≤ e−z

2

∫ ∞

−∞
exp

(
−zx

2

2
− νx

)
dx = e−z

( π
2z

)1/2
exp

(
ν2

2z

)
= e−z

( π
2z

)1/2 (
1 +O(z−1)

)
,

which gives the upper bound for (2). As for the lower bound, we note that coshx ≤ 1+ x2

2
+Cε4,

for |x| ≤ ε. Therefore,

uν(z) =
1

2

∫ ∞

−∞
exp(−z coshx)ch (νx)dx ≥ 1

2

∫ ∞

−∞
exp(−z coshx)dx

≥ exp(−z − Czε4)

2

∫ ε

−ε

exp

(
−zx

2

2

)
dx =

exp(−z − Czε4)

2
√
z

∫ ε
√
z

−ε
√
z

exp

(
−x

2

2

)
dx

≥ exp(−z − Czε4)

(( π
2z

)1/2
− 2

ε
√
z
exp

(
−ε

2z

2

))
.

Choosing ε = z−1/3, we get the desired lower bound.
For n = 0, (2.34) easily follows from (2.25) and (2.32). On the other hand, we see from

tedious, but straightforward computations that

(4) pn+1

(
1

z

)
=

(
− d

dz
+
n+ 1

z
+ 1

)
pn

(
1

z

)
.

Suppose that (2.34) is valid for some n ∈ N. Then, by (2.28), the induction hypothesis (IH),
and (4),

Kn+ 3
2
(z)

(2.28)
=

(
− d

dz
+ (n+

1

2
)z−1

)
Kn+ 1

2
(z)

(IH)
=

( π
2z

)1/2
e−z

(
− d

dz
+
n+ 1

z
+ 1

)
pn(1/z)

(4)
= z−(n+2)e−zpn+1(1/z).

\(∧2
∧)/
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Exercise 2.3.1 Let a > 0 and fa+1
2
(x) = 1

Γ(a+1
2

)
x

a−1
2 e−x1x>0 (the density of γ(1, a+1

2
)), Ia =∫∞

0
fa+1

2
(x)2dx, Ja =

∫∞
−∞(1 + |x|2)−a+1

2 dx. Prove then the following. (i) Ia = 2−aΓ(a)

Γ(a+1
2

)2
. (ii)

Ja =
Γ(a

2
)
√
π

Γ(a+1
2

)
. Hint: Exercise 1.2.13. (iii) Ia = 1

2π
Ja. Hint: Plancherel identity. (iv)

Γ(a) =
2a−1

√
π
Γ
(a
2

)
Γ

(
a+ 1

2

)
a > 0.

Exercise 2.3.2 (i) Let f : [0,∞) → R be a Borel function such that
∫∞
0
r2|f(r)|dr <∞ and

that F (x) = f(|x|), x ∈ R3. Prove then that F ∈ L1(R3) and that for θ ∈ R3\{0},

F̂ (θ) =
4π

|θ|

∫ ∞

0

rf(r) sin(r|θ|)dr = 4π

|θ|
Im

(∫ ∞

0

rf(r) exp(ir|θ|)dr
)
.

(ii) Use (i) and Example 2.3.1 to show that

F̂c,a(θ) =
c

(|θ|2 + c2)a/2
sin

(
aArctan

|θ|
c

)
for Fc,a(x) =

ca+1

4πΓ(a+ 1)
|x|a−2e−c|x|, a, c > 0.

In particular, F̂c,1(θ) =
c2

c2+|θ|2 and F̂c,2(θ) =
c4

(c2+|θ|2)2 . Fc,1 is a constant × the Green function,

while F̂c,2 is a constant × the density of the Cauchy distribution, cf. the remark after Example
2.3.6.

Exercise 2.3.3 Give an alternative proof of (2.8) via polar coordiate transform and Example
2.3.7 (c).

2.4 Weak Convergence

The following fact has an important application to probability theory.� �
Proposition 2.4.1 (Weak convergence of measures) Suppose that (µn)n≥0 are Borel
finite measures on Rd. Then the following are equivalent:

a) µ̂n(θ)
n→∞−→ µ̂0(θ) for all θ ∈ Rd (cf. (2.1)).

b) For all f ∈ Cb(Rd), ∫
Rd

fdµn
n→∞−→

∫
Rd

fdµ0. (2.35)

▶ The sequence (µn)n≥1 is said to converge weakly to µ0 if one of (thus, both) a)–b)
holds. We will henceforth denote this convergence by

µn
w−→ µ0. (2.36)

Here, the measure µ0 is called the weak limit of the sequence (µn)n≥1.� �
Remark (i) For a sequence (µn)n≥1 of Borel finite measures on Rd, its weak limit is unique.
Indeed, if µ and ν are both weak limits, it follows from (2.35) that

∫
Rd fdµ =

∫
Rd fdν, for

∀f ∈ Cb(Rd), which implies that µ = ν by Lemma 1.3.2. (ii) See Theorem 9.1.1 for some
other equivalent conditions to a)–b) in Proposition 2.4.1.
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The proof of Proposition 2.4.1 will be presented at the end of this section, followed by the
proof of Proposition 2.1.3. We now look at a simple example to get familiar with the notion
of weak convergence.

Example 2.4.2 (Riemann sum) Let f ∈ C([0, 1]). Then, we know very well that

1)
1

n

n−1∑
k=0

f

(
k

n

)
n→∞−→

∫ 1

0

fdµ0,

where µ0 is the Lebesgue measure on [0, 1]. However, the proof of 1) usually depends on the
fact that

2) f is Riemann integrable.

Indeed, without resorting to 2), we would not even know the existence of the limit as n→ ∞
of the left-hand side of 1). On the other hand, as we see now, we can show 1) by Proposition
2.4.1, instead of 2).

Let µn = 1
n

∑n−1
k=0 δk/n ∈ P(R) for n ∈ N\{0}, where δx is a point mass at x ∈ R. We will

show that

3) µn
w−→ µ0,

or equivalently,

1

n

n−1∑
k=0

f

(
k

n

)
=

∫
fdµn

n→∞−→
∫ 1

0

fdµ0,

which proves 1). By Proposition 2.4.1, 3) is equivalent to

4) µ̂n(θ)
n→∞−→ µ̂0(θ), for all θ ∈ R.

This can be seen as follows. We have

µ̂0(θ) =

{
exp(iθ)−1

iθ
, if θ 6= 0,

1, if θ = 0,

µ̂n(θ) =
1

n

n−1∑
k=0

exp

(
ikθ

n

)
=

{
1
n

exp(iθ)−1
exp(iθ/n)−1

, if θ 6∈ 2πnZ,
1, if θ ∈ 2πnZ.

Let θ ∈ R be arbitrary. Then, for n > |θ|
2π
,

µ̂n(θ) =
1

n

exp (iθ)− 1

exp (iθ/n)− 1

n→∞−→ exp (iθ)− 1

iθ
= µ̂0(θ),

which proves 4).
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� �
Proposition 2.4.3 (Weak convergence of r.v.’s) For n = 0, 1, ..., let Xn be Rd-valued
r.v.’s and that Xn ≈ µn ∈ P(Rd). Then, the following are equivalent:

a) E exp(iθ ·Xn) −→ E exp(iθ ·X0) for all θ ∈ Rd.

b) µn
w−→ µ0.

▶ The sequence (Xn)n≥1 is said to converge weakly (or converge in law) to X0 if
one (therefore all) of the above conditions is satisfied. We will henceforth denote this
convergence by

Xn
w−→ X0 or Xn

w−→ µ0

Here, the r.v. X0 is called the weak limit (or limit in law) of the sequence (Xn)n≥1.� �
Proof:

E exp(iθ ·Xn) = µ̂n(θ), n = 0, 1, ...

Thus,

a) ⇐⇒ µ̂n(θ) −→ µ̂0(θ), ∀θ ∈ Rd Proposition 2.4.1⇐⇒ b).

\(∧2
∧)/

Example 2.4.4 Let (Nc)c>0 be r.v.’s such that πc(k)
def
= P (Nc = k) = e−cck/k! for all k ∈ N

and c > 0. We will prove the following two facts, of which the first is probabilistic, the second
purely analytic:

a)
Nc − c√

c

w−→ N(0, 1), as c→ ∞.

b) n!
n→∞∼

√
2πn (n/e)n (Stirling’s formula).

Proof: Both a) and b) are based on the following observation.

1) π̂c

(
θ√
c

)
exp

(
−i

√
cθ
) c→∞−→ exp

(
−θ

2

2

)
.

To verify 1), note that

exp(iθ) = 1 + iθ − θ2

2
+O(|θ|3) as θ → 0,

and hence that

2) exp

(
i
θ√
c

)
= 1 +

iθ√
c
− θ2

2c
+O

(
|θ|3

c3/2

)
as c→ ∞ for any θ ∈ R.

Since π̂c(θ)
(2.6)
= exp(c(exp(iθ)− 1)), we have

π̂c

(
θ√
c

)
exp

(
−i

√
cθ
)

= exp

(
c

(
exp

(
i
θ√
c

)
− 1− i

θ√
c

))
2)
= exp

(
c

(
−θ

2

2c
+O

(
θ3

c3/2

)))
c→∞−→ exp

(
−θ

2

2

)
.

This proves 1).
a) By 1), we have
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3) E exp

(
iθ
Nc − c√

c

)
= π̂c

(
θ√
c

)
exp

(
−i

√
cθ
) c→∞−→ exp

(
−θ

2

2

)
.

Recall that exp
(
− θ2

2

)
is the Fourier transform of N(0, 1) (Example 2.2.4). We see the desired

weak convergence from 3) and Proposition 2.4.3.
b) We will prove Stirling’s formula in the following equivalent form.

4)

√
n

n!

(n
e

)n n→∞−→ 1√
2π

.

We have that
π̂c(θ) =

∑
k≥0

exp(ikθ)πc(k), θ ∈ R

Multiplying exp(−inθ)/(2π) to both-hands sides of the above identity and integrating them
over θ ∈ [−π, π], we obtain

5) πc(n) =
1

2π

∫ π

−π

π̂c(θ) exp(−inθ)dθ.

Moreover, since 1− cos θ ≥ 2θ2

π2 , |θ| ≤ π, we have

6)
∣∣∣π̂c ( θ√

c

)∣∣∣ = exp
(
−c
(
1− cos θ√

c

))
≤ exp

(
−2θ2

π2

)
, |θ| ≤ π

√
c.

Finally, note that

7)


√
n

n!

(n
e

)n
=

√
nπn(n)

5)
=

√
n

2π

∫ π

−π

π̂n(θ) exp(−inθ)dθ

=
1

2π

∫ π
√
n

−π
√
n

π̂n

(
θ√
n

)
exp(−i

√
nθ)dθ

By 1), 6) and the dominated convergence theorem, we conclude that, as n→ ∞, the right-hand
side of 7) converges to

1

2π

∫ ∞

−∞
exp

(
− θ2

2

)
dθ =

1√
2π
.

This proves 4). \(∧2
∧)/

Example 2.4.5 (The Stirling’s formula and a certain weak convergence) Let Xa and
Ya (a > 0) be r.v’s such that Xa ≈ γ(1, a) and Ya ≈ γ(

√
a, a). We will prove the following two

facts, of which the first is probabilistic, the second purely analytic:

a)
Xa − a√

a
≈ Ya −

√
a

w−→ N(0, 1), as a→ ∞.

b) Γ(a)
a→∞∼

√
(2π/a) (a/e)a (Stirling’s formula).

Proof: a) It is easy to verify that Xa/
√
a ≈ Ya, and hence that (Xa − a)/

√
a ≈ Ya −

√
a. Let

fc,a(x) =
caxa−1

Γ(a)
e−cx1{x > 0} (the density of γ(c, a), c, a > 0), and recall from Example 2.3.1

that
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1) f̂c,a(θ) =
(
1− iθ

c

)−a
=
(
1 + θ2

c2

)−a/2

exp
(
iaArctan θ

c

)
.

On the other hand,

2) −Log(1− z) =
∑
n≥1

zn

n
= z +

z2

2
+O(|z|3), as z → 0.

Therefore,

3)



E exp(iθ(Ya −
√
a)) = f̂√a,a(θ) exp(−iθ

√
a)

1)
=

(
1− iθ√

a

)−a

exp(−iθ
√
a)

= exp
(
−aLog

(
1− iθ√

a

)
− iθ

√
a
)

2)
= exp

(
a
(

iθ√
a
− θ2

2a
+O

(
|θ|3
a3/2

))
− iθ

√
a
)

a→∞−→ exp
(
− θ2

2

)
.

Recall that exp
(
− θ2

2

)
is the Fourier transform of N(0, 1) (Example 2.2.4). We see from 3)

and Proposition 2.4.3 that Ya −
√
a

w−→ N(0, 1).

b) Suppose that a ≥ 2. We then see from 1) that fc,a ∈ L1(R)∩C(R) and f̂c,a ∈ L1(R). Thus,
we have by the inversion formula (Lemma 2.4.6 below) that

fc,a(x) =
1

2π

∫ ∞

−∞
f̂c,a(θ) exp(−iθx)dθ, ∀x ∈ R.

In particular,

4)
1√
aΓ(a)

(a
e

)a
= f√a,a(

√
a) =

1

2π

∫ ∞

−∞
f̂√a,a(θ) exp(−iθ

√
a)dθ

We know from 3) that

5) f̂√a,a(θ) exp(−iθ
√
a)

a→∞−→ exp
(
− θ2

2

)
, ∀θ ∈ Rd.

Moreover,
(
1 + θ2

a

)a
is increasing in a > 0 and hence for a ≥ 2,

6) |f̂√a,a(θ) exp(−iθ
√
a)| 1)

=
(
1 + θ2

a

)−a/2

≤
(
1 + θ2

2

)−1

∈ L1(R).

We now conclude from 4),5),6) and DCT that

1√
aΓ(a)

(a
e

)a a→∞−→ 1

2π

∫ ∞

−∞
exp

(
− θ2

2

)
dθ =

1√
2π
,

which is to be proved. \(∧2
∧)/

To prove Proposition 2.4.1, we will use:
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� �
Lemma 2.4.6 Suppose that f, f̂ ∈ L1(Rd).

a) (Inversion formula) For a.e. x ∈ Rd,

f(x) = (2π)−d

∫
Rd

exp(−iθ · x)f̂(θ)dθ. (2.37)

b) (Plancherel’s formula) Suppose in addition that f is continuous. Then, (2.37) holds
for all x ∈ Rd and f is bounded. Moreover, for any Borel signed measure µ on Rd,∫

fdµ = (2π)−d

∫
Rd

f̂(θ)µ̂(−θ)dθ. (2.38)

� �
Proof: a) We prepare

1) ht ∗ f −→ f in L1(Rd) as t→ 0, where ht(x) = (2πt)−d/2 exp(−|x|2/2t)

We have that

|ht ∗ f − f |(x) ≤
∫
Rd

ht(y)|f(x− y)− f(x)|dy =

∫
Rd

h1(y)|f(x−
√
ty)− f(x)|dy

and hence

2)

∫
Rd

|ht ∗ f − f |(x)dx ≤
∫
Rd

h1(y)gt(y)dy where gt(y) =

∫
Rd

|f(x−
√
ty)− f(x)|dx.

We have for any y ∈ Rd that

lim
t→0

gt(y) = 0 and 0 ≤ gt(y) ≤ 2

∫
Rd

|f(x)|dx.

Thus, by (2) and the dominated convergence theorem,

lim
t→0

∫
Rd

|ht ∗ f − f |(x)dx = 0.

We set f∨(x) = (2π)−df̂(−x) (x ∈ Rd). We will next show that:

3) f ∗ ht = (f∧h∧t )
∨, where ht(x) = (2πt)−d/2 exp(−|x|2/2t) (x ∈ Rd, t > 0).

By (2.10),

4) h∧t (θ) = exp(−t|θ|2/2).

Using (2.10) again, we see that ht = h∧∨t . Therefore,

f ∗ ht(x) = f ∗ h∧∨t (x)

= (2π)−d

∫
f(x− y)dy

∫
exp(−iθ · y)︸ ︷︷ ︸

=exp(−iθ·x) exp(i(θ·(x−y)))

h∧t (θ)dθ

Fubini
= (2π)−d

∫
exp(−iθ · x)h∧t (θ)dθ

∫
f(x− y) exp(i(θ · (x− y)))dy︸ ︷︷ ︸

=f∧(θ)

= (f∧h∧t )
∨(x).
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We see from (4) and the dominated convergence theorem that

lim
t→0

(f∧h∧t )
∨(x) = f∧∨(x) for all x ∈ Rd.

Combining this, (1) and (3), we arrive at f∧∨ = f , a.e., which is (2.37).
b) The right-hand side of (2.37) is bounded and continuous in x (Exercise 2.1.1). Thus, if f
is continuous, it follows from a) that (2.37) is valid for all x ∈ Rd, which also implies that f is
bounded. Considering the positive and negative parts of the Jordan decomposition of µ, it is
enough to prove (2.38), assuming that µ is a positive Borel measure. Then,∫

fdµ
(2.37)
=

∫
Rd

dµ(x)(2π)−d

∫
Rd

exp(−iθ · x)f̂(θ)dθ

Fubini
= (2π)−d

∫
Rd

f̂(θ)dθ

∫
exp(−iθ · x)dµ(x)︸ ︷︷ ︸

=µ̂(−θ)

\(∧2
∧)/

Now, we prove the following lemma which includes Proposition 2.4.1. The lemma can also
be used in Exercise 2.4.11 and Exercise 2.4.12. To state the lemma, we introduce the following
notation. For an open subset G ⊂ Rd, let

Cc(G) = {f ∈ C(Rd) ; f has a compact support in G},
C∞

c (G) = Cc(G) ∩ C∞(G).� �
Lemma 2.4.7 Suppose that (µn)n≥0 are Borel finite measures on Rd such that µ0(G

c) = 0
for an open subset G ⊂ Rd (To prove Proposition 2.4.1, it is enogh to take G = Rd). Then,
the following are equivalent:

a) µ̂n(θ)
n→∞−→ µ̂0(θ) for all θ ∈ Rd.

b) (2.35) holds for all f ∈ Cb(Rd).

c) (2.35) holds for all f ∈ C∞
c (G) and lim

n→∞
µn(Rd) ≤ µ0(Rd).� �

Proof: a) ⇒ c): By setting θ = 0 in the assumption a), we have µn(Rd)
n→∞−→ µ0(Rd), hence

lim
n→∞

µn(Rd) ≤ µ0(Rd). Let us prove that (2.35) holds for all f ∈ C∞
c (Rd) and therefore, for all

f ∈ C∞
c (G). We have f̂ ∈ L1(Rd) for f ∈ C∞

c (Rd), which is a well-known properties of the
Fourier transform for the Schwartz space of rapidly decreasing functions (cf. [RS80, page 3,
Theorem IX.1]), so that the Plancherel formula (2.38) is available 9. On the other hand, we
have

1) sup
n≥1

|µ̂n(−θ)| ≤ sup
n≥1

µn(Rd) = sup
n≥1

µ̂n(0)
a)
<∞.

9The availability of the Plancherel formula is the very reason for which we go through the space C∞
c (Rd),

rather than working directly with the space Cb(Rd). In fact, f̂ is not defined in general for f ∈ Cb(Rd).

Even for f ∈ Cc(Rd), it is not true in general that f̂ ∈ L1(Rd) (A counterexample for d = 1 is provided by
f(x) = (1− log(1− |x|))−11{|x|<1}).

78



Therefore, by the dominated convergence theorem (DCT),∫
Rd

fdµn
(2.38)
= (2π)−d

∫
Rd

f̂(θ)µ̂n(−θ)dθ
a),1),DCT−→ (2π)−d

∫
Rd

f̂(θ)µ̂0(−θ)dθ
(2.38)
=

∫
Rd

fdµ0.

c) ⇒ b): We first verify that

2) any function f ∈ Cc(G) is uniformly approximated by an element of C∞
c (G).

Indeed, let φε(x) = ε−dφ(x/ε), ε > 0 where φ ∈ C∞(Rd) is supported in the unit ball,∫
Rd φ = 1. Set

(f ∗ φε)(x)
def
=

∫
Rd

φε(x− y)f(y)dy.

Then, it is standard to verify that f ∗ φε ∈ C∞
c (G) for small enough ε and that

sup
x∈Rd

|(f ∗ φε)(x)− f(x)| ε→0−→ 0.

This proves 1).
By 2), we may assume that (2.35) holds for all f ∈ Cc(G). Let Km, m ≥ 1 be an increasing
sequence of compact subsets in G such that G =

⋃
m≥1Km, and hm ∈ Cc(G → [0, 1]) be such

that hm = 1 on Km. Then,

3) hm
m→∞−→ 1G.

Note also that for real sequences an and bn,

4) lim
n→∞

(an + bn) ≤ lim
n→∞

an + lim
n→∞

bn.

Take f ∈ Cb(Rd) with M = supx |f(x)|. We then have by the dominated convergence theorem
(DCT) that∫

Rd

fdµ0 +Mµ0(Rd) =

∫
Rd

(f +M)dµ0 =

∫
G

(f +M)dµ0

3), DCT
= lim

m→∞

∫
Rd

(f +M)hmdµ0
c)
= lim

m→∞
lim
n→∞

∫
Rd

(f +M)hmdµn

≤ lim
n→∞

∫
Rd

(f +M)dµn

4)

≤ lim
n→∞

∫
Rd

fdµn +M lim
n→∞

µn(Rd)

a)

≤ lim
n→∞

∫
Rd

fdµn +Mµ0(Rd),

and hence that

5)

∫
Rd

fdµ0 ≤ lim
n→∞

∫
Rd

fdµn.

By replacing f by −f in 5), we have∫
Rd

fdµ0 ≥ lim
n→∞

∫
Rd

fdµn,
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which, together with 5), proves the desired convergence.
b) ⇒ a): x 7→ exp(iθ · x) belongs to Cb(Rd) for all θ ∈ Rd. \(∧2

∧)/

Proof of Proposition 2.1.3: We only need to prove ⇐. Thus, we have to prove that

µ̂+(θ) = µ̂−(θ) for all θ ∈ Rd =⇒ µ+ = µ−,

where µ± are positive and negative parts of the Jordan decomposition of µ. We consider
a sequence νn = µ+ (∀n ≥ 1), which is constant in n. Then we have by assumption that

ν̂n(θ) = µ̂+(θ) = µ̂−(θ) for all n ∈ N and θ ∈ Rd, and hence that

lim
n→∞

ν̂n(θ)
(νn = µ+)

= µ̂+(θ) = µ̂−(θ).

This implies by Proposition 2.4.1 that both µ± are weak limits of the sequence µn, and hence
µ+ = µ− by the uniqueness of the weak limit (cf. Remark after Proposition 2.4.1). \(∧2

∧)/

Exercise 2.4.1 LetX,X1, X2, . . . be Rd-valued r.v.’s. Prove then that the following conditions
are related as “a) or b) ” ⇒ c) ⇒ d) ⇒ e). a) Xn

n→∞−→ X, P -a.s. b) Xn
n→∞−→ X in Lp(P )

for some p ≥ 1. c) Xn
n→∞−→ X in probability, i.e., P (|Xn − X| > ε)

n→∞−→ 0 for any ε > 0.
d) E|f(Xn) − f(X)| n→∞−→ 0 if f : Rd → R is bounded, uniformly continuous. e) Xn

n→∞−→ X
weakly.

Exercise 2.4.2 Show by an example that e) 6⇒ d) in Exercise 2.4.1. Hint: Xn = (−1)nX,
where P (X = ±1) = 1/2.

Exercise 2.4.3 Let X,Y,X1, X2, . . . be Rd-valued r.v.’s such that Xn
w→ X. Is it true in

general that Xn + Y
w→ X + Y ?

Exercise 2.4.4 Let X1, X2, . . . be Rd valued r.v.’s and c ∈ Rd. Prove then that Xn → c in
probability if and only if Xn

w→ c. Hint: Xn → c in probability if and only if Eφ(Xn) → 0,

where φ(x) = |x−c|
1+|x−c| .

Exercise 2.4.5 Let (Xn, Yn) be r.v.’s with values in Rd1 × Rd2 . Suppose that Xn and Yn are
independent for each n and that Xn

w→ X and Yn
w→ Y . Prove then that (Xn, Yn)

w→ (X,Y ),
and hence that F (Xn, Yn)

w→ F (X,Y ) for any F ∈ C(Rd1 × Rd2).

Exercise 2.4.6 Let (Xn, Yn) be r.v.’s with values in Rd1 × Rd2 . Suppose that Xn
w→ X and

Yn
w→ c (Here, we do not assume that Xn and Yn are independent for each n. Instead, we

assume that c is a constant vector in Rd2). Prove then that (Xn, Yn)
w→ (X, c), and hence that

F (Xn, Yn)
w→ F (X, c) for any F ∈ C(Rd1 × Rd2). Hint: It is enough to show that

lim
n→∞

E exp(iθ1 ·Xn + iθ2 · Yn) = E exp(iθ1 ·X + iθ2 · c) for (θ1, θ2) ∈ Rd1 × Rd2 .

In doing so, uniform continuity of the map (x, y) 7→ exp(iθ1 · x+ iθ2 · y) would help.

Exercise 2.4.7 Let X,X1, X2, ... Rd-valued r.v.’s. Suppose that Xn (n = 1, 2, . . .) are mean-
zero Gaussian r.v.’s and that they converge weakly to X. Prove then that X is a mean-zero
Gaussian r.v. and that the covariance matrix V = (vαβ)

d
α,β=1 is given by vαβ = lim

n→∞
E[XnαXnβ].

Hint: Consider characteristic functions to see that limits vαβ (1 ≤ α, β ≤ n) exist. Prove then
that E exp(iθ ·X) = exp(−θ · V θ/2).
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Exercise 2.4.8 Let F0(x) =
∑∞

n=0
1

(n!)2

(
x
2

)2n
, x ≥ 0 (cf. (2.20)). Referring to Example 2.4.4,

prove the following. (i) F0(x) =
exp(x)
2π

∫ π

−π
|π̂x

2
(θ)|2dθ for x > 0. (ii) F0(x)

x→∞∼ exp(x)√
2πx

.

Exercise 2.4.9 Let X,Y1, Y2, ... be r.v.’s with X ≈ γc,a and Yn ≈ βa,n (n = 1, 2, .. cf. (1.27),

(1.33)). Prove then that nYn
w→ cX. Hint: Let Sn = X1 + ... +Xn where X1, X2, ... be i.i.d.

such that Xn ≈ γc,1. Then, nYn ≈ nX
X+Sn

by Example 1.7.5. Moreover, nX
X+Sn

→ cX, P -a.s. by
Theorem 1.10.2.

Exercise 2.4.10 Let Sn = X1 + ... + Xn, where (Xn)n≥1 are i.i.d. with Polya distributions
(Exercise 2.2.1). Prove then that Sn/n converges weakly to (1)-Cauchy distribution as n→ ∞.

Exercise 2.4.11 Suppose that (µn)n≥0 are Borel finite measures on R such that µ0(R\(0, 1)) =
0. Prove then that the following conditions (a) and (b) are equivalent. (a) µ̂n(k)

n→∞−→ µ̂n(k) for
all k ∈ Z. (b) µn

w−→ µ0 as n → ∞. Hint: It is enough to prove that a) implies b). Assume
a). Then, by Lemma 2.4.7, it is enough to prove that

∫
fdµn

n→∞−→
∫
fdµ0 for f ∈ Cc((0, 1)),

while f ∈ Cc((0, 1)) is uniformly approximated on [0, 1] by trigonometric polynomials (Exercise
1.8.3).

Exercise 2.4.12 (Weyl’s theorem) Let αn = nα − bnαc, n ∈ N, where α ∈ R\Q and
byc = max{n ∈ Z ; n ≤ y} for y ∈ R. Then, use Exercise 2.4.11 to prove that the measures
µn = 1

n

∑n−1
k=0 δαk

converges weakly to the uniform distribution on (0, 1).

Exercise 2.4.13 (Benford law) Let q ≥ 2 be an integer. Then, each x ∈ (0,∞) is expressed
as the q-adic expansion.

x = dqn +
n−1∑

k=−∞

dkq
k,

where n ∈ Z, d ∈ {1, . . . q − 1}, and dk ∈ {0, . . . q − 1} for −∞ < k ≤ n− 1. Moreover, n and
d are uniquely determined. We call d(x) the initail digit of x. Let π(x) = x−bxc and suppose
that {xn}n≥1 ⊂ (0,∞) is a sequence for which the following measures converges to the uniform
distribution on (0, 1).

µn =
1

n

∑
j=1

δπ(xj), n ≥ 1.

Then, prove that

1

n

∑
j=1

1{d(qxj) = d} n→∞−→ logq

(
d+ 1

d

)
, for all d = 1, . . . , q − 1.

Hint: Note that d(qx) = d ⇔ π(x) ∈ [logq d, logq(d + 1)). Then, the desired convergence
follows immediately from the assumption.

Exercise 2.4.14 (⋆) Let X be a real r.v.and φ(θ) = E exp(iθX). Then, φ ∈ C2 ⇐⇒ X ∈
L2(P ). Prove this by assuming that X is symmetric (cf. Exercise 2.4.15 for the removal of

this extra assumption). Hint: If φ ∈ C2, then 1
2
φ′′(0) = limθ→0

φ(θ)+φ(−θ)−2φ(0)
θ2

.

Exercise 2.4.15 (⋆) Let X be a real r.v. (i) For p ∈ [1,∞), prove that X − X̃ ∈ Lp(P ) ⇐⇒
X ∈ Lp(P ), where X̃ is an independent copy of X. Hint: X ∈ Lp(P ), if X − c ∈ Lp(P ) for
some constant c ∈ R. Combine this observation with Fubini’s theorem. (ii) Use (i) to remove
the assumption “symmetric” from Exercise 2.4.14
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Exercise 2.4.16 (⋆) Suppose that X,X1, X2... are real r.v’s and that Xn
w→ X. Prove then

that ess.supX ≤ ess.supX ≤ ess.supX, where X = limn→∞Xn and X = limn→∞Xn and, for
a r.v. Y ∈ [−∞,∞], ess.supY is the supremum of m ∈ R such that P (Y > m) > 0.

Exercise 2.4.17 Referring to Proposition 2.4.1 and its proof, is it true that c) ⇒ b)?
Hint µn = δxn , where |xn| → ∞.

2.5 (⋆) Convergence of Moments

Let (Yn)n≥0 be Rd-valued r.v.’s such that Yn
w→ Y0, and let f ∈ C(Rd). If f is bounded, we

have

(∗) lim
n→∞

Ef(Yn) = Ef(Y0).

On the other hand, it is natural to ask under which condition we still have (∗) even when f is
unbounded, e.g., f(y) = |y|. The following definition plays an important role in answering this
question, where we have Xn = f(Yn) in mind.

Definition 2.5.1 (uniform integrability) Let Λ be a set. Real r.v.’s (Xλ)λ∈Λ are said to be
uniformly integrable (u.i. in short) if

sup
λ∈Λ

E[|Xλ| : |Xλ| > m] −→ 0 as m→ ∞.

The next lemma shows that the uniform integrability is close to, but slightly more than
that

sup
λ∈Λ

E|Xλ| <∞. (2.39)

� �
Lemma 2.5.2 Let (Xλ)λ∈Λ be real r.v.’s.

a) If (Xλ)λ∈Λ are u.i., then (2.39) holds.

b) Suppose that there exists a non-decreasing φ : [0,∞) → [0,∞) such that

lim
x→∞

φ(x) = ∞, sup
λ∈Λ

E[|Xλ|φ(|Xλ|)] <∞.

Then, (Xλ)λ∈Λ are u.i.� �
Proof: Let εm = supλ∈ΛE[|Xλ| : |Xλ| > m].

a):εm ≤ 1 for large enough m, and for such m and for all λ ∈ Λ,

E|Xλ| ≤ E[|Xλ| : |Xλ| ≤ m] + E[|Xλ| : |Xλ| > m] ≤ m+ εm < m+ 1.

b): By the monotonicity of φ and (a variant of) Chebychev’s inequality (Proposition 1.1.9),

E[|Xλ| : |Xλ| > m] ≤ E[|Xλ| : φ(|Xλ|) ≥ φ(m)] ≤ φ(m)−1E[|Xλ|φ(|Xλ|)].

Thus, εm ≤ φ(m)−1C → 0, as m→ ∞, where C = supλ∈ΛE[|Xλ|φ(Xλ)] <∞. \(∧2
∧)/
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Example 2.5.3 Let Sn = X1 + ...+Xn, where (Xn)n≥1 are real r.v.’s such that

sup
n≥1

varXn ≤M <∞, cov(Xm, Xn) = 0 if m 6= n.

Then, Yn = (Sn − ESn)/
√
n are u.i. In fact,

E[|Yn|2] =
1

n
var Sn =

1

n

n∑
k=1

varXk ≤M.

Thus, Lemma 2.5.2b) applies.� �
Lemma 2.5.4 (Fatou’s lemma for weak convergence) Suppose that X,Xn (n ∈ N)
be real r.v.’s such that Xn → X weakly. Then,

E|X| ≤ lim
n→∞

E|Xn|. (2.40)

� �
Proof: Since R 3 x 7→ |x| ∧m is in Cb(R) for any m > 0, we have that

E|X| = sup
m≥0

E[|X| ∧m] = sup
m≥0

lim
n→∞

E[|Xn| ∧m] ≤ lim
n→∞

E|Xn|.

\(∧2
∧)/� �

Proposition 2.5.5 Suppose that X,Xn (n ∈ N) be real r.v.’s such that Xn → X weakly.
Then, the following are equivalent.

a) (Xn)n∈N are u.i.

b) X,Xn ∈ L1(P ) (∀n ∈ N), EXn
n→∞−→ EX and E|Xn|

n→∞−→ E|X|.

c) X,Xn ∈ L1(P ) (∀n ∈ N) and E|Xn|
n→∞−→ E|X|.

Suppose in particular that Xn → X in probability. Then, the following is also equivalent
to a)–c) above.

d) X,Xn ∈ L1(P ) (∀n ∈ N) and E|Xn −X| n→∞−→ 0.� �
Proof: a) ⇒ b): It follows from Lemma 2.5.2 and (2.40) that X,Xn ∈ L1(P ) (∀n ∈ N).

We prove that EXn
n→∞−→ EX and E|Xn|

n→∞−→ E|X|, by showing that E[X±
n ]

n→∞−→ E[X±]. We
note that

Xn −→ X weakly =⇒ X±
n −→ X± weakly,

(Xn)n∈N are u.i. =⇒ so are (X±
n )n∈N.

Thus, it is enough to prove that EXn
n→∞−→ EX assuming that X,Xn ≥ 0 (n ∈ N). By (2.40),

it is enough to show that

1) lim
n→∞

EXn ≤ EX.

Note that
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2) lim
n→∞

E[Xn : Xn ≤ m] ≤ EX for any m > 0.

In fact,
lim
n→∞

E[Xn : Xn ≤ m] ≤ lim
n→∞

E[Xn ∧m] = E[X ∧m] ≤ EX.

Then, with εm
def
= supn≥1E[Xn : Xn > m],

lim
n→∞

EXn = lim
n→∞

(E[Xn : Xn ≤ m] + E[Xn : Xn > m])
2)

≤ EX + εm.

Since m is arbitrary, we get 1).
b) ⇒ c): Obvious.
c) ⇒ a): Let ε > 0 be arbitrary. Since E|Xn| → E|X|, there exists an n1 = n1(ε) ∈ N such
that

3) E|Xn| < E|X|+ ε/4 for n ≥ n1.

For m > 0, let fm ∈ Cb(R) be defined by

fm(x) =


x if x ∈ [0,m/2]
m− x if x ∈ [m/2,m]
0 if x 6∈ [0,m]

Then, by MCT, there exists an ℓ = ℓ(ε) > 0 such that

4) E|X| < Efℓ(|X|) + ε/4.

Since Xn → X weakly, there exists an n2 = n2(ε) such that

5) E[|Xn| : |Xn| ≤ ℓ] ≥ Efℓ(|Xn|) ≥ Efℓ(|X|)| − ε/4 for n ≥ n2.

By 3)–5), we have for n ≥ n3
def
= n1 ∨ n2 and m ≥ ℓ that

E[|Xn| : |Xn| > m] ≤ E[|Xn| : |Xn| > ℓ] = E|Xn| − E[|Xn| : |Xn| ≤ ℓ]
3),5)

≤ E|X| − Efℓ(|X|) + ε/2
4)

≤ 3ε/4.

Note that n3 depends only on ε. Thus, there exists an m0 = m0(ε) such that

max
n≤n3

E[|Xn| : |Xn| > m] < ε/4 for m ≥ m0.

Putting these together, we conclude that

sup
n∈N

E[|Xn| : |Xn| > m] < ε for m ≥ ℓ ∨m0.

We suppose from here on that Xn → X in probability.
a) ⇒ d): Let ε > 0 be arbitrary. By a) and the integrability of X, there exists an m = m(ε)
such that

6) sup
n∈N

E[|Xn| : |Xn| > m] + E[|X| : |X| > m] < ε/2.
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Let gm ∈ Cb(R) be defined by

gm(x) =


−m if x ∈ (−∞,−m]
x if x ∈ [−m,m]
m if x ∈ [m,∞)

Since Xn → X in probability, we have that

E|gm(Xn)− gm(X)| n→∞−→ 0,

(Exercise 2.4.1) and hence, there exists an n0 = n0(ε) such that

7) sup
n≥n0

E|gm(Xn)− gm(X)| < ε/2.

Note that |gm(x)− x| = (|x| −m)1|x|>m ≤ |x|1|x|>m. Thus, for n ≥ n0,

E|Xn −X| ≤ E|Xn − gm(Xn)|+ E|gm(Xn)− gm(X)|+ E|gm(X)−X|
≤ E[|Xn| : |Xn| > m] + E|gm(Xn)− gm(X)|+ E[|X| : |X| > m]

6),7)
< ε/2 + ε/2 = ε.

d) ⇒ c): Obvious. \(∧2
∧)/

Remarks: Let everything be as in Proposition 2.5.5.
1) The following condition does not imply a)–c).

c’) X,Xn ∈ L1(P ) (∀n ∈ N), EXn
n→∞−→ EX.

For example, Let U be a r.v. uniformly distributed on (−1, 1), and let X ≡ 0, and Xn =
n2U1{|U | ≤ 1/n}. Then, X,Xn ∈ L1(P ) (∀n ∈ N), Xn → X a.s. Moreover, EX = EXn = 0,
hence EXn → EX. However, E|X| = 0, E|Xn| = 1/2, hence E|Xn| 6→ E|X|.
2) a)–c) do not imply d) without assuming that Xn → X in probability. For example, let
P (X = ±1) = 1/2 and Xn = (−1)nX. Since Xn ≈ X, Xn → X weakly and (Xn)n∈N are u.i.
But for odd n’s, |Xn −X| = 2 and hence E|Xn −X| = 2.

Exercise 2.5.1 Disprove the converse to Lemma 2.5.2a) with the following example: let P

be the Lebesgue measure on (Ω,F)
def
= ([0, 1],B([0, 1])) and Xn(ω) = n1{ω ≤ 1/n}, n ≥ 1.

Exercise 2.5.2 Prove that real r.v.’s (Xn)n≥1 are u.i. if E[supn≥1 |Xn|] <∞.

Exercise 2.5.3 Suppose that Xn > 0, n ≥ 1 are i.i.d. and that E[X−ε
1 ] < ∞ for some

ε > 0. Prove then that the r.v.’s n/(X1 + . . . + Xn) converge as n → ∞ to 1/EX1 a.s. and
in L1(P ) (with convention 1/∞ = 0). Hint: Show the convergence in L1(P ) via the uniform
integrability.
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2.6 The Central Limit Theorem

Recall that we have introduced in Example 2.2.4 the Gaussian distribution N(m,V ), where
m ∈ Rd, and V is a d × d symmetric, non-negative definite matrix. Recall also that we have
introduced in Proposition 2.4.3 the notion of weak convergence of r.v.’s. In this section, we
will discuss the following� �
Theorem 2.6.1 (The Central Limit Theorem) Let (Ω,F , P ) be a probability space
and Xn : Ω → Rd (n ≥ 1) be i.i.d. with E[|X1|2] <∞. Define

Sn = X1 + ...+Xn,

m = (E[X1,α])
d
α=1 ∈ Rd and V = (cov(X1,α, X1,β))

d
α,β=1.

Then,
Sn − nm√

n

w−→ N(0, V ) as n→ ∞, (2.41)

� �
Remarks : 1) Theorem 2.6.1 tells us the following information on the distribution of Sn for
large n. Let Y be r.v. such that Y ≈ N(0, V ). Roughly speaking, Theorem 2.6.1 says that for
large n,

Sn − nm√
n

approximately
≈ Y

or

Sn

approximately
≈ nm+

√
n Y.

2) The “central limit theorem” is often abbreviated as CLT.

Although it requires some work to prove CLT in the generality of Theorem 2.6.1, the proof
is remarkably easy in some examples:

Example 2.6.2 (CLT for Poisson r.v.’s) Let πc denote the (c)-Poisson distribution and
suppose that Xn ≈ π1 in Theorem 2.6.1. Recall that

EXn = varXn = 1, (Exercise 1.2.2).

Recall also that:
Sn = X1 + ...+Xn ≈ πn (cf. (1.65)).

Therefore, by Example 2.4.4,

Sn − n√
n

w−→ N(0, 1) (n→ ∞).

Thus we have verified Theorem 2.6.1 in this special case. \(∧2
∧)/

Example 2.6.3 (⋆) (Stirling’s formula) Let us prove as an application of CLT for Poisson
r.v.’s (Example 2.6.2) that

1) n! ∼
√
2πn(n/e)n as n→ ∞.

Proof: Let N be a r.v. with P (N = n) = rne−r

n!
((r)-Poisson r.v.), Then,
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2) E[(N − r)−] = r
r⌊r⌋e−r

brc!
.

In fact,

E[(N − r)−] =

⌊r⌋∑
n=0

(r − n)
rne−r

n!
= r

⌊r⌋∑
n=0

rne−r

n!
−

⌊r⌋∑
n=1

rne−r

(n− 1)!

= r

⌊r⌋∑
n=0

rne−r

n!
− r

⌊r⌋−1∑
n=0

rne−r

n!
= r

r⌊r⌋e−r

brc!
.

Now, let Sn be an (n)-Poisson r.v. Then,

3) E

[(
Sn − n√

n

)−
]
= n−1/2E

[
(Sn − n)−

] (2)
= n−1/2 · n · n

ne−n

n!
=
nn+

1
2 e−n

n!
.

Since (Sn − n)/
√
n (n ≥ 1) are uniformly integrable by Example 2.5.3, so are their negative

parts. Thus, we conclude 1) from 3), CLT (Example 2.6.2) and Proposition 2.5.5 as follows:

lim
n→∞

nn+
1
2 e−n

n!

3)
= lim

n→∞
E

[(
Sn − n√

n

)−
]
=

√
1

2π

∫ 0

−∞
x−e−x2/2dx

=

√
1

2π

∫ ∞

0

xe−x2/2dx =

√
1

2π
\(∧2

∧)/

Exercise 2.6.1 Suppose that Xn ≈ N(m,V ) in Theorem 2.6.1. Prove then that Sn−mn√
n

≈
N(0, V ) for any n ≥ 1. Thus the theorem in this special case is trivial.

Exercise 2.6.2 (A generalization of CLT) Let (Sn)n≥0 be as in Theorem 2.6.1 and Y ≈
N(0, V ) Suppose that f : Rd → Rm be measurable, differentiable at m, and that

|f(m+ x)− f(m)− f ′(m)x| ≤ C|x|2 for all x ∈ Rd

where C is a constant. Use (2.41) to show that

√
n (f(Sn/n)− f(m))

w−→ f ′(m)Y as n→ ∞,

This result includes (2.41) as a special case that f(x) = x.
Hint: Set Yn = (Sn −mn)/

√
n and g(x) = f(m+ x)− f(m)− f ′(m)x to write

√
n (f(Sn/n)− f(m)) = f ′(m)Yn +

√
ng(Yn/

√
n).

Then, apply Exercise 2.4.6 to F (x, y) = x+ y.

Exercise 2.6.3 (⋆) Let X1, X2, ... be mean-zero, real iid with E[X2
1 ] ∈ (0,∞) and let Sn =

X1 + . . .+Xn. Prove then that P (limn→∞
Sn√
n
= ∞) = P (limn→∞

Sn√
n
= −∞) = 1. [Hint: Use

the CLT and Fatou’s lemma to show that P (limn→∞
Sn√
n
≥ x) > 0 and that P (limn→∞

Sn√
n
≤

x) > 0 for any x ∈ R. Then, combine these with Kolmogorov’s zero-one law (Lemma 1.6.4) to
deduce the conclusion. ]
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Exercise 2.6.4 (⋆) (Wallis’ formula) Prove that 4−n
(
2n
n

) n→∞∼ 1√
πn

in two different way as

follows. (i) Prove Wallis’ formula by applying Stirling’s formula (cf. (2.50)). (ii) Let Sn be
r.v. with P (Sn = r) = 2−n

(
n
r

)
. Prove first that E[(S2n − n)−] = n

2
4−n

(
2n
n

)
and then use CLT

to conclude Wallis’ formula as in Example 2.6.3.

Exercise 2.6.5 (⋆) (chi-square test) Referring to Theorem 2.6.1, suppose in addition that
E[X1,αX1,β] = qαδα,β with qα > 0 (α, β = 1, . . . , d). Then,

(∗)
d∑

α=1

(Sn,α −mαn)
2

qαn

w−→
d−1∑
α=1

|Yα|2 + (1− |ℓ|2)|Yd|2 as n→ ∞,

where Y1, . . . , Yd are i.i.d. ≈ N(0, 1) and ℓ = (mα/
√
qα)

d
α=1. Prove this by successively verifying

the following. i) V = D(Id − ℓ ⊗ ℓ)D, where D = (q
1/2
α δα,β)

d
α,β=1 and ℓ ⊗ ℓ = (ℓαℓβ)

d
α,β=1. ii)

ℓ ∈ Ker(|ℓ|2 − ℓ⊗ ℓ) and (Rℓ)⊥ ⊂ Ker(ℓ⊗ ℓ). iii) |Z|2 ≈
∑d−1

α=1 |Yα|2 + (1− |ℓ|2)|Yd|2 for a r.v.

Z ≈ N(0, Id − ℓ⊗ ℓ). iv) D−1
(

Sn−nm√
n

)
w−→ N(0, Id − ℓ⊗ ℓ). v) (∗) holds.

Remark Here is a typical setting to which the result of Exercise 2.6.5 can be applied. Let ξn
be i.i.d. with values in a measurable space (S,B), and B1, . . . , Bd ∈ B be disjoint sets with

qα
def
= P (ξ1 ∈ Bα) > 0 (α = 1, . . . , d). Then, the assumption of Exercise 2.6.5 is satisfied by

Xn
def
= (1{ξn ∈ Bα})dα=1. Moreover, if q1 + · · · + qd = 1, then λ0 = 1, and therefore, the limit

law for (∗) is χ2
d−1.

2.7 Proof of the Central Limit Theorem

We start by explainning the outline of the proof. We will prove that

E exp

(
iθ · Sn − nm√

n

)
n→∞−→ exp

(
−1

2
θ · V θ

)
for all θ ∈ Rd. (2.42)

By Proposition 2.4.1, (2.42) finishes the proof of Theorem 2.6.1. We set Y = X1 − m and
φ(θ) = E exp(iθ · Y ). Then,

E exp

(
iθ · Sn −mn√

n

)
= E

n∏
j=1

exp

(
iθ · Xj −m√

n

)
(1.53)
=

(
E exp

(
iθ · Y√

n

))n

= φ

(
θ√
n

)n

(2.43)

We will show in Lemma 2.7.2 below that:

φ(θ) = 1− 1
2
θ · V θ + o(|θ|2), θ −→ 0. (2.44)

We will see by Lemma 2.7.3 below that

φ

(
θ√
n

)n

=

(
1− θ · V θ

2n
+ o

(
|θ|2

n

))n
n→∞−→ exp

(
−1

2
θ · V θ

)
,

which proves (2.42).
We first prepare an elementary estimate.
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� �
Lemma 2.7.1 For t ∈ R, ∣∣∣∣exp(it)− 1− it+

t2

2

∣∣∣∣ ≤ |t|3 ∧ |t|2. (2.45)

� �
Proof: We will prove for z ∈ C and n ∈ N\{0} that

1)

∣∣∣∣∣exp z −
n∑

m=0

zm

m!

∣∣∣∣∣ ≤ |z|n+1 exp((Re z)+)

(n+ 1)!
∧ |z|n(exp((Re z)+) + 1)

n!

By setting z = it and n = 2 in 1), we obtain (2.45). We fix z ∈ C and introduce f(t) = etz,
t ∈ R. By Taylor’s theorem,

gn(z)
def
= exp z −

n∑
m=0

zm

m!
= f(1)−

n∑
m=0

f (m)(0)

m!

=
1

n!

∫ 1

0

(1− t)nf (n+1)(t)dt =
zn+1

n!

∫ 1

0

(1− t)n exp(tz)dt.

Since | exp(tz)| = exp(tRe z) ≤ exp((Re z)+), we obtain

2) |gn(z)| ≤
|z|n+1 exp((Re z)+)

(n+ 1)!

On the other hand,

|gn(z)| =
∣∣∣∣gn−1(z) +

zn

n!

∣∣∣∣ 2)

≤ |z|n(exp((Re z)+) + 1)

n!
.

\(∧2
∧)/

We now present a lemma which implies (2.44). This lemma will also play an important
role in the proof of Theorem 3.2.2.� �
Lemma 2.7.2 Let Y = X1 −m. Then,∣∣E exp(iθ · Y )− (1− 1

2
θ · V θ)

∣∣ = o(|θ|2) as |θ| ↘ 0. (2.46)� �
Proof: We have that

E[θ · Y ] =
d∑

α=1

θαE[Yα] = 0, E[(θ · Y )2] =
d∑

α,β=1

θαθβE[YαYβ] = θ · V θ,

and hence that

1)

{
E exp(iθ · Y )− (1− 1

2
θ · V θ) = E

[
exp(iθ · Y )− 1− iθ · Y + 1

2
(θ · Y )2

]
= E[f(θ · Y )],

where f(t) = exp(it)− 1− it+ t2

2
(t ∈ R). Therefore,
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2)

 left-hand side of (2.46)
1)
= |E [f(Y · θ)]| ≤ E [|f(Y · θ)|]

(2.45)

≤ E [|Y · θ|3 ∧ |Y · θ|2] ≤ |θ|2E [|Y |2(|Y ||θ| ∧ 1)] .

We see by the dominated convergence theorem that

lim
|θ|↘0

E
[
|Y |2(|Y ||θ| ∧ 1)

]
= 0

which, together with 2), proves (2.46). \(∧2
∧)/

We now conclude (2.42) by (2.43), (2.44) and the following lemma with α = 2, h(θ) =
−1

2
θ · V θ.� �
Lemma 2.7.3 Let h, φ : Rd → C, α > 0 be such that

a) h(rθ) = rαh(θ) for all θ ∈ Rd and r ∈ (0, 1],

b) φ(θ) = 1 + h(θ) + o(|θ|α) as θ → 0.

Then,

φ

(
θ

n1/α

)n
n→∞−→ exp(h(θ)) for all θ ∈ Rd.

If additionally h is locally bounded, then the convergence above is locally uniform in θ.� �
Remark: Suppose that h and φ are as in Lemma 2.7.3 and that φ = µ̂ for some µ ∈ P(Rd).
Then φ(n−1/αθ)n is the ch.f. of

Yn =
X1 + ...+Xn

n1/α
,

where X1, X2, ... are i.i.d. ≈ µ. Thus, Lemma 2.7.3, together with Lévy’s convergence theorem
(Theorem 9.2.1) shows that eh is a ch.f. of a random variable Y and Yn

w→ Y .

Proof of Lemma 2.7.3: Recall that

1) |zn − wn| ≤ n(|z| ∨ |w|)n−1|z − w|, z, w ∈ C, n ≥ 1.

We will apply this inequality to z
def
= φ

(
θ

n1/α

)
and w

def
= exp

(
h(θ)
n

)
, so that

2) zn − wn = φ

(
θ

n1/α

)n

− exp (h(θ)) .

We have that

3) z = φ

(
θ

n1/α

)
b)
= 1 + h

(
θ

n1/α

)
+ o

(
|θ|α

n

)
a)
= 1 +

h(θ)

n
+ o

(
|θ|α

n

)
.

Since ez = 1 + z +O(|z|2) as |z| → 0,

4) w = exp

(
h(θ)

n

)
= 1 +

h(θ)

n
+O

(
|h(θ)|2

n2

)
.

Therefore,
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5) z − w
3),4)
= o

(
|θ|α

n

)
+O

(
|h(θ)|2

n2

)
.

Moreover, for large enough n’s,

6) |z| =
∣∣∣∣φ( θ

n1/α

)∣∣∣∣ 3)

≤ 1 +
|h(θ)|+ |θ|α

n
.

Hence,

7)


|z|n−1 =

∣∣∣∣φ( θ

n1/α

)∣∣∣∣n−1 6)

≤
(
1 +

|h(θ)|+ |θ|α

n

)n−1

≤ exp(|h(θ)|+ |θ|α),

|w|n−1 =

∣∣∣∣exp(h(θ)n
)∣∣∣∣n−1

= exp

(
n− 1

n
Reh(θ)

)
≤ exp(|h(θ)|).

Therefore, ∣∣∣∣φ( θ

n1/α

)n

− exp (h(θ))

∣∣∣∣
2)
= |zn − wn|

1)

≤ n(|z| ∨ |w|)n−1|z − w|
5),7)

≤ n exp(|h(θ)|+ |θ|α)
(
o

(
|θ|α

n

)
+O

(
|h(θ)|2

n2

))
n→∞−→ 0.

Moreover, the final estimate shows that the convergence above is uniform in θ, if h is locally
bounded. \(∧2

∧)/

Exercise 2.7.1 (CLT for continuous-time RW) Let Sn = X1 + ...+Xn be as in Theorem
2.6.1 and (Nt)t≥0 be Poisson process with parameter c > 0 (Example 1.7.6). We suppose that

(Xn)n≥1 and (Nt)t≥0 are independent and define S̃t = SNt . Then, show the following:

(i) E exp(iθ · S̃t) = exp ((E exp(iθ ·X1)− 1) ct).

(ii)
S̃t −mct√

t

w−→ N(0, cṼ ) as t → ∞, where the matrix Ṽ is given by Ṽαβ = E[X1,αX1,β]

(α, β = 1, ..., d).

Exercise 2.7.2 (More than L2) Use the argument in the proof of Lemma 2.7.2 to prove the
following:
(i) If X1 ∈ L2+q(P ) for some q ∈ [0, 1], then,∣∣E exp(iY · θ)− 1 + 1

2
θ · V θ

∣∣ ≤ |θ|2+qP [|Y |2+q] = O(|θ|2+q) as |θ| ↘ 0.

Hint: min{|Y ||θ|, 1} ≤ |Y |q|θ|q.
(ii) If Y is symmetric and X1 ∈ L3+q(P ) for some q ∈ [0, 1], then,∣∣E exp(iY · θ)− 1 + 1

2
θ · V θ

∣∣ ≤ |θ|3+qP (|Y |3+q) = O(|θ|3+q) as |θ| ↘ 0.

Exercise 2.7.3 (⋆)(Less than L2) Let X real r.v. with the density α
2
|x|−(α+1)1{|x| ≥ 1},

where 0 < α ≤ 2. Show that

φ(θ)
def
= E exp(iθX) = cos θ − |θ|α

∫ ∞

|θ|

sin y

yα
dy

=

{
1− θ2 ln(1/|θ|) +O(θ2) if α = 2
1− c(α)|θ|α + o(|θ|α) if 0 < α < 2

as θ → 0,

where c(α) =
∫∞
0

sin y
yα
dy = π

2Γ(α) sin απ
2
.
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Exercise 2.7.4 (⋆)(Logarithmic correction to Lemma 2.7.3) Replace the condition (c)
in Lemma 2.7.3 by:

φ(θ) = 1− h(θ) ln(1/|θ|) +O(|θ|α), θ → 0,

while keeping all the other assumptions. Prove then that

φ

(
θ

(n lnn)1/α

)n
n→∞−→ exp(−h(θ)) for all θ ∈ Rd.

Exercise 2.7.5 (⋆) (α-stable law) Let Sn = X1+ ...+Xn, where (Xn)n≥1 are real i.i.d. with
the density α

2
|x|−(α+1)1{|x| ≥ 1}, where 0 < α ≤ 2.

(i) For α = 2, use Exercise 2.7.3 and Exercise 2.7.4 to prove that Sn√
n lnn

w−→ N(0, 1).

(ii) (⋆) For 0 < α < 2 and c > 0, use Exercise 2.7.3 and Lemma 2.7.3 to show that

φ(n−1/αθ)n
n→∞−→ exp(−c(α)|θ|α) uniformly in |θ| < R for any R > 0,

or equivalently, for any c > 0,

φ(n−1/αrθ)n
n→∞−→ exp(−c|θ|α) uniformly in |θ| < R for any R > 0,

where r = (c/c(α))1/α. This shows that there exists µc,α ∈ P(R) such that

µ̂c,α(θ) = exp(−c|θ|α), θ ∈ R, and that
rSn

n1/α

w−→ µc,α,

(cf. the remark after Lemma 2.7.3). µc,α is called the symmetric α-stable law (For α = 2, it is
N(0, 2c), and for α = 1, it is the (c)-Cauchy distribution).

2.8 (⋆) Local Central Limit Theorem

Example 2.8.1 (Local CLT for Poisson distribution) Let πc(n) =
e−ccn

n!
, n ∈ N, c > 0.

If c is large enough, then the histogram of the function n 7→ πc(n) looks like the density of
Gaussian distribution (In Example 1.2.2, we see a picture for c = 14). Here is a mathematical
explication.

πc(n) =
1√
2πc

exp

(
−(n− c)2

2c

)
+O

(
1

c

)
, as c→ ∞, uniformly in n ∈ N. (2.47)

This shows that n 7→ πc(n) is well approximated by the density of N(c, c) as c → ∞. As we
will see now, (2.10) and (2.6) can be used to prove (2.47).

Proof: We see from (2.6) that∑
n≥0

πc(n) exp(iθn) = exp((eiθ − 1)c),

which is the Fourier series of the sequence πc(n). Therefore, by inverting the Fourier series,
we have that

1) πc(n) =
1

2π

∫ π

−π

exp
(
−iθn+ (eiθ − 1)c

)
dθ.
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Let q(θ) = 1 + iθ − eiθ and ñc = (n− c)/
√
c. We then have that

2)


πc(n)

1)
=

1

2π

∫ π

−π

exp (−iθ(n− c)− cq(θ)) dθ

=
1

2π
√
c

∫ π
√
c

−π
√
c

exp
(
−iθñc − cq

(
θ√
c

))
dθ.

On the other hand,

exp

(
−cθ

2

2

)
(2.10)
=

1√
2πc

∫ ∞

−∞
exp

(
iθx− x2

2c

)
dx =

1√
2πc

∫ ∞

−∞
exp

(
−iθx− x2

2c

)
dx.

Replacing c by 1/c, and interchanging the letters θ and x, we have that

3) exp
(
−x2

2c

)
=

√
c

2π

∫ ∞

−∞
exp

(
−iθx− cθ2

2

)
dθ.

Let hc(x) =
1√
2πc

exp
(
−x2

2c

)
(x ∈ R). Then,

4)


hc(n− c)

3)
=

1

2π

∫ ∞

−∞
exp

(
−iθ(n− c)− cθ2

2

)
dθ

=
1

2π
√
c

∫ ∞

−∞
exp

(
−iθñc − θ2

2

)
dθ.

By dividing the integral
∫∞
−∞ in 4) into

∫ π
√
c

−π
√
c
and

∫
|θ|≥π

√
c
, we see from 3) and 4) that

5) sup
n∈N

|πc(n)− hc(n− c)| ≤ 1

2π
√
c
(I1 + I2),

where

I1 =

∫ π
√
c

−π
√
c

∣∣∣exp(−cq ( θ√
c

))
− exp

(
− θ2

2

)∣∣∣ dθ, I2 =

∫
|θ|≥π

√
c

exp
(
− θ2

2

)
dθ.

The integral I2 can easily be bounded.

6) I2
(1.37)

≤ 2

π
√
c
exp

(
− cπ2

2

)
.

To bound the integral I1, we recall that

7) | exp z − expw| ≤ |z − w| exp(Re z ∨ Re w), z, w ∈ C.

We will apply this inequality to z = −cq
(

θ√
c

)
and w = −θ2/2. By expanding the exponential,

8) exp (iθ) = 1 + iθ − θ2

2
+ r(θ), with |r(θ)| ≤ |θ|3

6
≤ |θ|3.

Hence,

9)
∣∣∣cq ( θ√

c

)
− θ2

2

∣∣∣ = ∣∣∣c(1 + iθ√
c
− exp

(
iθ√
c

)
− θ2

2c

)∣∣∣ 8)
= c

∣∣∣r ( θ√
c

)∣∣∣ ≤ |θ|3√
c
.
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Moreover, we note that
1− cos θ ≥ 2θ2

π2 , |θ| ≤ π,

and hence

10) Re cq
(

θ√
c

)
= c

(
1− cos θ√

c

)
≥ 2θ2

π2 , |θ| ≤ π
√
c,

Therefore, putting together 7), 9), 10) and noting 2
π2 <

1
2
, we have for |θ| ≤ π

√
c that∣∣∣exp(−cq ( θ√

c

))
− exp

(
− θ2

2

)∣∣∣ ≤ |θ|3√
c
exp

(
−2θ2

π2

)
.

Hence,

11) I1 ≤
1√
c

∫ ∞

−∞
|θ|3 exp

(
−2θ2

π2

)
dθ = O(1/

√
c).

Finally, we conclude from 5), 6), 11) that

sup
n∈N

|πc(n)− hc(n− c)| = O(1/c).

\(∧2
∧)/

Example 2.8.2 (Local CLT for trinomial distribution) Let p, q, r ∈ [0, 1) be such that
p + q + r = 1. We assume either r ∈ (0, 1) or p = q = 1/2. Let also Xn, n ∈ N\{0} be i.i.d.

such that Xn = 1,−1, 0 with probabilities, p, q, r, respectively. Then, m
def
= EX1 = p− q and

v
def
= varX1 = 4pq + r(1− r) > 0. For n ∈ N\{0}, we define Sn = X1 + ...+Xn and

µn(k) = P (Sn = k), |k| ≤ n.

If r > 0, then

max
|k|≤n

∣∣∣∣µn(k)−
1√
2πvn

exp

(
−(k −mn)2

2vn

)∣∣∣∣ = O
(
n−α

)
, as n→ ∞, (2.48)

where α = 3/2 if E[(X1 −m)3] = (2m2 + 3r − 2)m = 0, and α = 1 if otherwise. On the other
hand, if p = q = 1/2, then,

max
|k|≤n

n+ k is even

∣∣∣∣∣µn(k)−
√

2

πn
exp

(
− k2

2n

)∣∣∣∣∣ = O
(
n−3/2

)
, as n→ ∞. (2.49)

Proof: We start by preparing some equalities/inequalities which will be needed later. Let

φ(θ) = E exp(iθ(X1 −m)) = pei(1−m)θ + qe−i(1+m)θ + re−miθ,

ψ (θ) = φ (θ)− exp
(
−vθ2

2

)
.

Let also k̃n = (k −mn)/
√
n. We first show that

1) µn(k) =
1

2π
√
n

∫ π
√
n

−π
√
n

exp
(
−iθk̃n

)
φ
(

θ√
n

)n
dθ,
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and that

1’) µn(k) =
1 + (−1)k+n

2π
√
n

∫ π
√
n/2

−π
√
n/2

exp
(
−iθk̃n

)
φ
(

θ√
n

)n
dθ if p = q = 1/2.

We have

n∑
k=−n

µn(k) exp(iθk) = E exp(iθSn) = (peiθ + qe−iθ + r)n = exp(inm)φ(θ)n.

Therefore, by inverting the Fourier series, we have

µn(k) =
1

2π

∫ π

−π

exp (−iθ(k −mn))φ(θ)ndθ

=
1

2π
√
n

∫ π
√
n

−π
√
n

exp
(
−iθk̃n

)
φ
(

θ√
n

)n
dθ.

If p = q = 1/2, then φ(θ) = cos θ and hence φ(π − θ) = −φ(θ). Thus,

µn(k)
1)
=

1

2π

∫ π/2

−π/2

exp (−iθk)φ(θ)ndθ +
1

2π

∫ π/2

−π/2

exp (−i(π − θ)k)φ(π − θ)ndθ

=
1 + (−1)k+n

2π

∫ π/2

−π/2

exp (−iθk)φ(θ)ndθ

=
1 + (−1)k+n

2π
√
n

∫ π
√
n/2

−π
√
n/2

exp
(
−iθk̃n

)
φ
(

θ√
n

)n
dθ.

Next, we show that there exists a constant c1 ∈ (0,∞) which depends only on p, q, r such that

2) |ψ (θ) | ≤ c1|θ|β, |θ| ≤ π,

where β = 4 if E[(X1 −m)3] = 0, and β = 3 if otherwise. By expanding the exponential,

exp (iθ) = 1 + iθ − θ2

2
− i θ

3

3!
+O(θ4).

Hence

ψ (θ) =
(
1− v

2
θ2 − i

3!
E[(X1 −m)3]θ3 +O(θ4)

)
−
(
1− v

2
θ2 +O(θ4)

)
= − i

3!
E[(X1 −m)3]θ3 +O(θ4).

This implies 2).
We next show that there exists a constant c2 ∈ (0,∞) which depends only on p, q, r such that

3) |φ(θ)| ≤ exp(−c2θ2),
{

for |θ| ≤ π if 0 < r < 1,
for |θ| ≤ π/2 if pq > 0.

We note that
| sin θ| ≥ 2|θ|

π
, if |θ| ≤ π/2,

On the other hand, we see from a direct computation that

|φ(θ)| =
√

1− 4pq sin2 θ − 4r(1− r) sin2 θ
2
.
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If r ∈ (0, 1), then, for |θ| ≤ π,

|φ(θ)| ≤
√

1− 4r(1− r) sin2 θ
2
≤
√
1− 4r(1− r)θ2/π2 ≤ exp(−2r(1− r)θ2/π2).

If pq > 0, then, for |θ| ≤ π/2,

|φ(θ)| ≤
√

1− 4pq sin2 θ ≤
√
1− 16pqθ2/π2 ≤ exp(−8pqθ2/π2).

These imply 3).

Let hn(x) =
1√
2πvn

exp
(
− x2

2vn

)
(x ∈ R). We will next show that

4) hn(k −mn) =
1

2π
√
n

∫ ∞

−∞
exp

(
−iθk̃n − vθ2

2

)
dθ.

We know from the proof of Example 2.8.1 that

exp
(
−x2

2c

)
=

√
c

2π

∫ ∞

−∞
exp

(
−iθx− cθ2

2

)
dθ, x ∈ R, c > 0.

Setting c = vn, we have that

5) exp
(
− x2

2vn

)
=

√
vn

2π

∫ ∞

−∞
exp

(
−iθx− vnθ2

2

)
dθ.

Thus

hn(k −mn)
5)
=

1

2π

∫ ∞

−∞
exp

(
−iθ(k −mn)− vnθ2

2

)
dθ

=
1

2π
√
n

∫ ∞

−∞
exp

(
−iθk̃n − vθ2

2

)
dθ.

We combine 1)–4) above to prove (2.48) and (2.49). Let us first consider (2.48). We have that
We see from 1) and 4) that

6) max
|k|≤n

|µn(k)− hn(k −mn)| ≤ 1

2π
√
n
(I1 + I2),

where

I1 =

∫ π
√
n

−π
√
n

∣∣∣φ( θ√
n

)n
− exp

(
−vθ2

2

)∣∣∣ dθ, I2 =

∫
|θ|≥π

√
n

exp
(
−vθ2

2

)
dθ.

The integral I2 can easily be bounded.

7) I2 =
1√
v

∫
|θ|≥π

√
vn

exp
(
− θ2

2

)
dθ

(1.37)

≤ 2

πv
√
n
exp

(
−π2vn

2

)
.

We now estimate the integral I1. Recall that

|zn − wn| ≤ n|z − w|(|z| ∨ |w|)n−1, z, w ∈ C, n = 1, 2, ...
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We will apply this inequality to z = φ
(

θ√
n

)
and w = exp

(
−vθ2

2n

)
. Then, if |θ| ≤ π

√
n,∣∣∣φ( θ√

n

)n
− exp

(
−vθ2

2

)∣∣∣
= |zn − wn| ≤ n|z − w|(|z| ∨ |w|)n−1

≤ n
∣∣∣ψ ( θ√

n

)∣∣∣ (∣∣∣φ( θ√
n

)∣∣∣ ∨ exp
(
−vθ2

2n

))n−1

7, 8)

≤ c1n
1−β

2 |θ|β exp
(
−c3θ2

)
,

for some c3 > 0. Therefore, we obtain that

8) I1 ≤ c1n
1−β

2

∫ ∞

−∞
|θ|β exp

(
−c3θ2

)
dθ = O(n1−β

2 ).

Finally, we conclude from 6), 7), 8) that

max
|k|≤n

|µn(k)− hn(k −mn)| = O(n−β−1
2 ),

which proves (2.48). Using 1’) instead of 1), (2.49) can be obtained similarly as above. \(∧2
∧)/

Exercise 2.8.1 We refer to Example 2.8.1 and suppose that n, c→ ∞ and that n = c+O(
√
c).

Prove the de Moivre-Laplace theorem for Poisson distribution:

πc(n) ∼
1√
2πc

exp

(
−(n− c)2

2c

)
.

Also, by setting c = n, deduce Stirling’s formula:

n! ∼
√
2πn

(n
e

)n
. (2.50)

Exercise 2.8.2 We refer to Example 2.8.2 and suppose that n, k → ∞ and that k = mn +
O(

√
n). Prove the de Moivre-Laplace theorem for trinomial distribution:

µn(k) ∼


1√
2πvn

exp
(
− (k−mn)2

2vn

)
, if r ∈ (0, 1)√

2
πn

exp
(
− k2

2n

)
if p = q = 1/2.
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3 Random Walks

3.1 Definition

Definition 3.1.1 Suppose that (Xn)n≥1 are Rd-valued i.i.d. defined on a probability space
(Ω,F , P ). A random walk is a sequence (Sn)n≥0 of Rd-valued r.v.’s defined by S0 = 0, and

Sn = X1 + . . .+Xn for n ≥ 1.

Remarks
1) Note that the iid (Xn)n≥1 referred to above certainly exists by Proposition 8.3.1 and so does
the random walk (Sn)n≥0.
2) Our definition of “random walk” is the same as in [Dur95]. This definiton however is rather
wider than traditional ones (e.g., [Spi76]) which will be called, in our language, the Zd-valued
random walk.

Theorem 1.10.2 implies;� �
Theorem 3.1.2 Let (Sn)n≥0 be a random walk such that E[|X1|] < ∞. We define its
mean vector by

m = (mα)
d
α=1 = (E[X1,α])

d
α=1 , (3.1)

where X1,α is the α-th coordinate of X1 ∈ Rd. Then,

Sn/n
n→∞−→ m, P -a.s. (3.2)� �

Remark: If we write Sn in a silly expression:

Sn = nm+ (Sn − nm),

then (3.2) says that {Sn}n≥1 almost surely follows a deterministic constant velocity motion
{nm}n≥1 by the correction term Sn−nm which is of order o(n). In this sense, one can conclude
that the random walk travels in the direction of the vector m.

Exercise 3.1.1 Suppose that the random walk satisfies P (X1 ∈ {0,±e1, . . . ,±ed}) = 1. Prove
the following.
i) mα = p(eα)− p(−eα) and vαβ = δαβ(p(eα) + p(−eα))−mαmβ, where p(x) = P (X1 = x).
ii) Two different coordinates Xn,α, Xn,β (α 6= β) of Xn are not independent of each other, even
though they are uncorrelated if m = 0.

Exercise 3.1.2 Consider a Z-valued random walk such P (X1 = ±1) = p± > 0, P (X1 = 0) =
p0 = 1−p+−p−. Show the following. (i) For y0, y1, . . . , yn ∈ Z, let N(0) =

∑n
j=1 1{yj−yj−1 =

0} (x ∈ Z). Then,

P (S1 = y1, . . . Sn = yn) = p
n−N(0)+yn

2
+ p

n−N(0)−yn
2

− p
N(0)
0

= (p+/p−)
ynP (S1 = −y1, . . . Sn = −yn).

(ii) P (Sn = y) =
∑

|y| ≤ m ≤ n

m± y are even

(
m

m+y
2

)
p

m+y
2

+ p
m−y

2
− pn−m

0 = (p+/p−)
yP (Sn = −y)
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Exercise 3.1.3 An Rd-valued r.v. X is said to be symmetric if −X ≈ X. A random walk
is said to be symmetric if X1 is symmetric. Check that a symmetric random walks with
E|X1| <∞ has the mean vector m = 0.

Exercise 3.1.4 Let (Sn)n≥0 be a symmetric random walk (cf. Exercise 3.1.3). For m ≥ 0,

define (S
(m)
n )n≥0 by S

(m)
n = Sn for n ≤ m and S

(m)
n = 2Sm − Sn for n ≥ m. Prove then that

(S
(m)
n )n≥0 has the same distribution as (Sn)n≥0 for each m.

Exercise 3.1.5 Consider a random walk such that E|X1| < ∞. Use Theorem 3.1.2 to prove
that, if mα > 0 (resp. mα < 0), for some α = 1, . . . , d, then

P (Sn,α
n→∞−→ +∞) = 1, (resp. P (Sn,α

n→∞−→ −∞) = 1.)

Exercise 3.1.6 (LLN for continuous-time RW) Let Sn = X1 + ...+Xn be as in Theorem
3.1.2 and (Nt)t≥0 be Poisson process with parameter c > 0 (Example 1.7.6). We suppose that

(Xn)n≥1 and (Nt)t≥0 are independent and define S̃t = SNt . Then, show that S̃t/t
t→∞−→ cm, a.s.

3.2 Transience and Recurrence

In this section, we will take up a question whether a random walk (Sn)n≥0 comes back to its
starting point with probability one.

Definition 3.2.1 Let (Sn)n≥0 be a random walk in Rd, and Xn = Sn − Sn−1 (n ≥ 1).

• If P (X1 ∈ Zd) = 1, or equivalently, P (Sn ∈ Zd) = 1 for all n ≥ 0, we say that the random
walk is Zd-valued.

• A Zd-valued random walk is said to be simple if

P (X1 = ±eα) = (2d)−1 for all α = 1, . . . , d. (3.3)

� Throughout this section, we will restrict ourselves to Zd-valued random walks.

This is to avoid being bothered by inessential complication. We will prove the following� �
Theorem 3.2.2 Consider a Zd-valued random walk with:

E[|X1|2] < ∞, E[X1,α] = 0 (∀α = 1, . . . , d). (3.4)

detV > 0, where V = (cov(X1,α, X1,β))
d
α,β=1. (3.5)

Then,

h(0)
def
= P (Sn = 0 for some n ≥ 1)

{
= 1 if d ≤ 2,
< 1 if d ≥ 3.� �

Example 3.2.3 Supppose that P (X1 ∈ {0,±e1, ...,±ed}) = 1 and set p(x) = P (X1 = x)
(x ∈ Zd). Then, (3.6) & (3.7) ⇐⇒ (3.5), where

p(eα) ∨ p(−eα) > 0 for all α = 1, ..., d, (3.6)

p(0) +
d∑

α=1

p(eα) ∧ p(−eα) > 0. (3.7)

(See also Example 10.1.3.)
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Proof: (3.5) is equivalent to that

1) θ · V θ > 0 for θ ∈ Rd\{0}.

To simplify the notation, We write

vα = p(eα) ∨ p(−eα), wα = p(eα) ∧ p(−eα),
qα = p(eα) + p(−eα) = vα + wα.

Then, cov(X1,α, X1,β) = qαδα,β −mαmβ, cf. (0.18). Thus,

2) θ · V θ =
d∑

α,β=1

(qαδα,β −mαmβ)θαθβ =
d∑

α=1

qαθ
2
α −

(
d∑

α=1

mαθα

)2

.

If we suppose (3.6), then qα ≥ vα
(3.6)
> 0 for all α = 1, ..., d, so that we can define:

δ =
d∑

α=1

m2
α

qα
=

d∑
α=1

(vα − wα)
2

vα + wα

.

(3.6) & (3.7) ⇒ (3.5): Since vα−wα

vα+wα
≤ 1, it follows that

3) δ ≤
d∑

α=1

(vα − wα)
(3.7)
< p(0) +

d∑
α=1

vα ≤ p(0) +
d∑

α=1

(vα + wα) = 1,

4)

(
d∑

α=1

mαθα

)2

=

(
d∑

α=1

mα√
qα

√
qαθα

)2
Schwarz

≤ δ
d∑

α=1

qαθ
2
α.

Suppose that θ 6= 0. Then,
∑d

α=1 qαθ
2
α > 0. We thus obtain 1):

θ · V θ
2),4)

≥ (1− δ)
d∑

α=1

qαθ
2
α

3)
> 0.

(3.6) & (3.7) ⇐ (3.5): Suppose that (3.6) fails, i.e., that vα = 0 for some α = 1, ..., d. Then,
qα = mα = 0, and hence the α-th row and the α-th column of the matrix V vanish. Thus (3.5)
fails. Suppose on the other hand that (3.6) holds but (3.7) fails. In this case, we have wα = 0,
qα = vα = |mα| > 0 for all α = 1, ..., d, so that

5) δ =
d∑

α=1

m2
α

qα
=

d∑
α=1

vα
(3.7) fails

= p(0) +
d∑

α=1

(vα + wα) = 1.

Now, choosing θ ∈ Rd with θα = mα/qα 6= 0, α = 1, ..., d,

θ · V θ 2)
=

d∑
α=1

m2
α/qα −

(
d∑

α=1

m2
α/qα

)2

= δ − δ2
5)
= 0.

Thus, 1) fails. \(∧2
∧)/
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It is convenient to introduce the following notations. For x ∈ Zd, we set

V (x) =
∑
n≥1

1{Sn = x} = “the number of visits to x”. (3.8)

h(m)(x) = P (V (x) ≥ m), m = 1, . . . ,∞ (3.9)

= “probability that x is visited at least m times”.

h(x) = h(1)(x) (3.10)

= “probability that x is visited at least once”.

g(x) =
∑
n≥0

P (Sn = x) ∈ [0,∞], 0 ≤ s ≤ 1, (3.11)

The function g(x) above is called the Green function of the random walk.� �
Proposition 3.2.4 (Transience/Recurrence) Let (Sn)n≥0 be a Zd-valued random walk.
Then, the following conditions T1)–T5) are equivalent:

T1) h(0) < 1.

T2) g(0) <∞.

T3) g(x) <∞ for all x ∈ Zd.

T4) h(∞)(0) = 0.

T5) h(∞)(x) = 0 for all x ∈ Zd.

(Sn)n≥0 is said to be transient if one of (therefore all of) conditions T1)–T5) are satisfied.
On the other hand, the following conditions R1)–R5) are equivalent:

R1) h(0) = 1.

R2) g(0) = ∞.

R3) g(x) = ∞ if h(x) > 0.

R4) h(∞)(0) = 1.

R5) h(∞)(x) = 1 if h(x) > 0.

(Sn)n≥0 is said to be recurrent if one of (therefore all of) conditions R1)–R5) are satisfied.� �
Example 3.2.5 Suppose that you and one of your friends perform simple random walks in-
dependently from 0 ∈ Zd. Then, you will meet each other infinitely many times if d ≤ 2 and
you will eventually be separated forever if d ≥ 3.

Proof: Let (S ′
n)n≥0 and (S ′′

n)n≥0 be independent random walks. Then, Sn = S ′
n − S ′′

n, n ≥ 0 is
again a random walk and

1) P (Sn = 0) = P (S ′
n − S ′′

n = 0) = P (S ′
2n = 0)
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Let g and g′ be the Green functions of S· and S
′
· respectively. Then,

g(0) =
∑
n≥0

P (Sn = 0)
(1)
=
∑
n≥0

P (S ′
2n = 0) = g′1(0),

where the reason for the last identity is that P (S ′
2n+1 = 0) = 0. Thus, we see the claim from

Theorem 3.2.2 and Proposition 3.2.4. \(∧2
∧)/

Exercise 3.2.1 Prove that

P ( lim
n→∞

|Sn| = +∞) =

{
0 for a recurrent RW,
1 for a transient RW.

Exercise 3.2.2 Prove that P (H ⊂ {Sn}n≥1) = 1 for any recurrent RW, where H = {x ∈
Zd ; h(x) > 0}. It would be interesting to compare this with Exercise 3.4.1 below.

Exercise 3.2.3 Prove that for all z ∈ Zd,

g(z) = δ0,z + Eg(z −X1), (3.12)

h(z) = (1− h(0))P{X1 = z}+ Eh(z −X1), (3.13)

h(∞)(z) = Eh(∞)(z −X1). (3.14)

Exercise 3.2.4 (⋆)(Green function for continuous-time RW) Let Sn = X1 + ... + Xn be a
Zd-valued random walk and (Nt)t≥0 be Poisson process with parameter c > 0 (Example 1.7.6).
We suppose that (Xn)n≥1 and (Nt)t≥0 are independent. Then, show that

∫∞
0
P (SNt = x)dt =

1
c
g(x), x ∈ Zd, where g is the Green function for (Sn)n∈N.

3.3 Proof of Proposition 3.2.4 for T1)–T3), R1)–R3)

In this section, we will prove the equivalence of (T1)–(T3), and that of (R1)–(R3). These are
simpler than the other part of the equivalence, and still enough to proceed to the proof of
Theorem 3.2.2. (T4), (T5), (R4) and (R5) will be discussed in section 3.5.

We begin by proving the following� �
Lemma 3.3.1 For x ∈ Zd,

h(m)(x) = h(x)h(0)m−1, (3.15)

g(x) =

{
1

1−h(0)
if x = 0,

h(x)
1−h(0)

if x 6= 0.
(3.16)

g(x) = h(x)g(0) if x 6= 0. (3.17)� �
Remark Intuition behind (3.15) can be explained as follows; A trajectory of a random walk
which visits a point x m times can be decomposed into m segments; a segment starting from
the origin until its first visit to x andm−1 “loops” (or “excursions” ) starting from x until their
next return to x. One can vaguely imagine that thesem segments should be independent for the
following reason; each time the random walk visits x, it starts afresh from there independently
from the past.
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Proof: Define the mth-hitting time to x ∈ Zd by

T (m)
x = inf

{
n ≥ 1 ;

n∑
k=1

1{Sk = x} = m

}
. (3.18)

Then,

1) h(m)(x) = P (T (m)
x <∞) =

∑
ℓ≥1

P
(
T (m−1)
x = ℓ, ∃n ≥ 1, Sn+ℓ − Sℓ = 0

)
We observe that

Eℓ
def
= {T (m−1)

x = ℓ} ∈ σ[Xj ; j ≤ ℓ],

Fℓ
def
= {∃n ≥ 1, Sn+ℓ − Sℓ = 0} ∈ σ[Xj ; j > ℓ],

and therefore that

2) Eℓ and Fℓ are independent.

We also see that

3)
∑
ℓ≥1

P (Eℓ) = P (T (m−1)
x <∞)

(3.9)
= h(m−1)(x).

Note on the other hand that
(Sn+ℓ − Sℓ)

∞
n=1 ≈ (Sn)

∞
n=1.

This implies that

4) P (Fℓ) = P (F0)
(3.10)
= h(0).

Combinning 1)–4), we have that

h(m)(x)
1)
=

∑
ℓ≥1

P (Eℓ ∩ Fℓ)
2)
=
∑
ℓ≥1

P (Eℓ)P (Fℓ)

4)
=

∑
ℓ≥1

P (Eℓ)h(0)
3)
= h(m−1)(x)h(0).

We then get (3.15) by induction. Equality (3.16) can be seen as follows;

g(x)
(3.26)
= δ0,x +

∑
n≥1

P (Sn = x)
Fubini
= δ0,x + EV (x)

(1.12)
= δ0,x +

∑
m≥1

P (V (x) ≥ m)︸ ︷︷ ︸
=h(m)(x)

(3.15)
= δ0,x +

h(x)

1− h(0)
.

(3.17) follows immediately from (3.16). \(∧2
∧)/

Proof of T1) ⇐⇒ T2) ⇐⇒ T3):

T1) ⇔ T2): This follows from the identity g(0)
(3.16)
= 1/(1− h(0)).
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T2) ⇒ T3): This follows from the identity g(x)
(3.17)
= h(x)g(0) for x 6= 0.

T3) ⇒ T2): Obvious. \(∧2
∧)/

Proof of R1) ⇐⇒ R2) ⇐⇒ R3):

R1) ⇔ R2): This follows from the identity g(0)
(3.16)
= 1/(1− h(0)).

R2) ⇒ R3): This follows from the identity g(x)
(3.17)
= h(x)g(0) for x 6= 0.

R3) ⇒ R2): It is clear that ∃x ∈ Zd, h(x) > 0. Then, it follows from R3) that g(x) = ∞. If

x = 0, we are done. If x 6= 0, g(0)
(3.17)
= g(x)/h(x) = ∞. \(∧2

∧)/

Exercise 3.3.1 Conclude from (3.15) that V (0) for a transient RW is a r.v. with geometric
distribution with the parameter 1− h(0) (cf. Exercise 1.7.8).

Exercise 3.3.2 (i) Show that h(x + y) ≥ h(x)h(y) for all x, y ∈ Zd. This implies that
the set H = {x ∈ Zd ; h(x) > 0} has the property that x, y ∈ H ⇒ x + y ∈ H.
Hint: Apply the argument in the proof of (3.15) above. (ii) Use (i) and (3.16) to show that
g(x+ y)g(0) ≥ g(x)g(y) for all x, y ∈ Zd.

Exercise 3.3.3 Prove the following for Z-valued random walk. (i) If P (X1 ≥ 2) = 0, then,
P (supn≥0 Sn ≥ x) = h(x) = h(1)x for all x ≥ 1. Hint Apply the argument in the proof
of (3.15) to verify that h(x + 1) = h(x)h(1) for all x ≥ 1. (ii) If P (X1 ≤ −2) = 0, then,
P (infn≥0 Sn ≤ −x) = h(−x) = h(−1)x for all x ≥ 1. (iii)10 If P (|X1| ≥ 2) = 0 and

p±
def
= P (X1 = ±1) > 0, then h(x) =

(
p+
p−

∧ 1
)x

and h(−x) =
(

p−
p+

∧ 1
)x

for all x ≥ 1.

3.4 Proof of Theorem 3.2.2

Let Sn = X1 + ...+Xn be a random walk in Zd such X1 ≈ µ ∈ P(Zd). As before, we write:

µ̂(θ) = E exp(iθ ·X1) =
∑
x∈Zd

exp(iθ · x)µ(x), θ ∈ Rd. (3.19)

The following proposition relates the transience/recurrence of the random walk to the be-
haviour of µ̂(θ) as θ → 0:� �
Proposition 3.4.1 Let α, δ > 0.

a) Suppose that there exists a constant c1 ∈ (0,∞) such that

c1|θ|α ≤ |1− µ̂(θ)| for |θ| ≤ δ. (3.20)

Then, h(0) < 1 if d > α.

b) Suppose that there exist constants c2, c3 ∈ (0,∞) such that

c2|θ|α ≤ 1− Re µ̂(θ) and |1− µ̂(θ)| ≤ c3|θ|α for |θ| ≤ δ. (3.21)

Then, h(0) = 1 if d ≤ α.� �
10See also Exercise 3.7.1 and (4.69).
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Proof of Theorem 3.2.2 assuming Proposition 3.4.1: It follows from Lemma 2.7.2 that:

1) 1− µ̂(θ) = 1
2
θ · V θ + o(|θ|2) as |θ| → 0.

Since detV 6= 0, 1) implies (3.20), (3.21) with α = 2 and small enough δ > 0. Thus, the
conclusion follows from Proposition 3.4.1. \(∧2

∧)/

For δ > 0, we write
δB = {x ∈ Rd ; |x| ≤ δ}.� �

Lemma 3.4.2 For any δ > 0, there exists a constant Cδ ∈ (0,∞) and wδ ∈ C(Rd) such
that

0 ≤ wδ ≤ Cδ1δB, (3.22)

f(x) ≤
∫
δB

exp(−iθ · x)wδ(θ)f̂(θ)dθ, (3.23)

for all nonnegative f ∈ ℓ1(Zd), where f̂(θ) =
∑

x∈Zd exp(iθ · x)f(x).� �
Proof: We first take an even, continuous function v : Rd → [0,∞) and C ∈ (0,∞) such

that :

0 ≤ v ≤ C11
2
B
,

∫
Rd

v = 1.

We then define:

vδ(x) = δ−dv(x/δ), wδ(x) =

∫
Rd

vδ(x− y)vδ(y)dy.

Then, wδ is even and continuous. Moreover, we have

0 ≤ vδ ≤ Cδ−d1 δ
2
B, v̂δ(θ) ∈ R,

∫
Rd

vδ = 1.

Thus,

1) 0 ≤ wδ(x) ≤ ‖vδ‖∞
∫
Rd vδ ≤ Cδ−d,

2) supp wδ ⊂ {x+ y ;x, y ∈ supp vδ} ⊂ δB,

3) ŵδ(θ) = v̂δ(θ)
2 ≥ 0,

4) ŵδ(0) =
∫
Rd wδ =

(∫
Rd vδ

)2
= 1.

We see (3.22) from 1) and 2), whereras (3.23) is obtained as follows.

f(x)
4)
= f(x)ŵδ(0)

3)

≤
∑
y∈Zd

f(y)ŵδ(y − x)

=
∑
y∈Zd

f(y)

∫
Rd

exp(i(y − x) · θ)wδ(θ)dθ

Fubini
=

∫
Rd

exp(−ix · θ)wδ(θ)dθ
∑
y∈Zd

f(y) exp(iy · θ)

=

∫
Rd

exp(−ix · θ)wδ(θ)f̂(θ)dθ =

∫
δB

exp(−ix · θ)wδ(θ)f̂(θ)dθ.
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\(∧2
∧)/� �

Lemma 3.4.3

g(0) ≥ 1

(2π)d

∫
(πI)\Γ(µ)

1− Re µ̂(θ)

|1− µ̂(θ)|2
dθ, (3.24)

where πI = [−r, r]d and Γ(µ) = {θ ∈ Rd ; µ̂(θ) = 1}. On the other hand, for δ > 0,

g(0) ≤ Cδ

∫
δB

dθ

|1− µ̂(θ)|
. (3.25)

where Cδ is from Lemma 3.4.2.� �
Proof: For s ∈ (0, 1], we introduce

gs(x) =
∑
n≥0

snP (Sn = x), x ∈ Zd. (3.26)

Then, for s ∈ (0, 1), gs(x) converges absolutely and gs(x) ↗ g(x) as s ↗ 1. We first prove
that

gs(x) =
1

(2π)d

∫
πI

exp(−iθ · x)
1− sµ̂(θ)

dθ for x ∈ Zd and 0 ≤ s < 1. (3.27)

Note that ∑
x∈Zd

exp(iθ · x)P (Sn = x) = E exp(iθ · Sn)
Corollary 2.1.5

= µ̂(θ)n. (3.28)

Thus, by inverting the Fourier series, we get11:

P (Sn = x) =
1

(2π)d

∫
πI

exp(−iθ · x)µ̂(θ)ndθ, for x ∈ Zd and n ∈ N. (3.29)

For x ∈ Zd and 0 ≤ s < 1,

gs(x) =
∑
n≥0

snP (Sn = x)
(3.29)
=

1

(2π)d

∑
n≥0

sn
∫
πI

exp(−iθ · x)µ̂(θ)ndθ

Fubini
=

1

(2π)d

∫
πI

exp(−iθ · x)
∑
n≥0

snµ̂(θ)ndθ =
1

(2π)d

∫
πI

exp(−iθ · x)
1− sµ̂(θ)

dθ.

(3.24): Since the left-hand side of (3.27) is a real number, we may replace the integrand in the
right-hand side by its real part. We therefore see that

1) gs(0) =
1

(2π)d

∫
πI

Re
1

1− sµ̂(θ)
dθ =

1

(2π)d

∫
πI

1− sRe µ̂(θ)

|1− sµ̂(θ)|2
dθ.

11The equality (3.29) will also be used in the proof of Proposition 3.6.1 below.
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We use 1) to obtain (3.24) as follows.

g(0)
MCT
= lim

s↗1
gs(0)

1)
=

1

(2π)d
lim
s↗1

∫
πI

1− sRe µ̂(θ)

|1− sµ̂(θ)|2
dθ

≥ 1

(2π)d
lim
s↗1

∫
(πI)\Γ(µ)

1− sRe µ̂(θ)

|1− sµ̂(θ)|2
dθ

Fatou

≥ 1

(2π)d

∫
(πI)\Γ(µ)

lim
s↗1

1− sRe µ̂(θ)

|1− sµ̂(θ)|2
dθ

=
1

(2π)d

∫
(πI)\Γ(µ)

1− Re µ̂(θ)

|1− µ̂(θ)|2
dθ.

(3.25): Let wδ be from Lemma 3.4.2. We apply (3.23) to f(x) = P (Sn = x). Since f̂ = µ̂n by
(3.28), we have for x ∈ Zd and n ∈ N that12:

P (Sn = x) ≤
∫
δB

exp(−ix · θ)wδ(θ)µ̂(θ)
ndθ. (3.30)

Let 0 ≤ s < 1. Note that for z ∈ C with Re z ≤ 1

|1− sz| ≥ s|1− z|. (3.31)

In fact, with x = Re z and y = Im z, we have

1− sx ≥ s(1− x) ≥ 0.

Hence
|1− sz|2 = (1− sx)2 + (sy)2 ≥ (s(1− x))2 + (sy)2 = (s|1− z|)2.

Thus,

gs(0) =
∑
n≥0

snP (Sn = 0)
(3.30)

≤
∑
n≥0

sn
∫
δB

wδ(θ)µ̂(θ)
ndθ

Fubini
=

∫
δB

wδ(θ)
∑
n≥0

snµ̂(θ)ndθ =

∫
δB

wδ(θ)dθ

1− sµ̂(θ)

≤
∫
δB

wδ(θ)dθ

|1− sµ̂(θ)|
(3.31)

≤ 1

s

∫
δB

wδ(θ)dθ

|1− µ̂(θ)|
(3.22)

≤ Cδ

s

∫
δB

dθ

|1− µ̂(θ)|
.

Hence,

g(0)
MCT
= lim

s↗1
gs(0) ≤ Cδ

∫
δB

dθ

|1− µ̂(θ)|
.

\(∧2
∧)/

Remark Concerning (3.25), the following inequality is easier to prove.

g(x) ≤ 1

(2π)d

∫
πI

dθ

|1− µ̂(θ)|
, x ∈ Zd. (3.32)

12The bound (3.30) will also be used in the proof of Proposition 3.6.1 below.
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In fact,

g(x)
MCT
= lim

s↗1
gs(x)

(3.27)

≤ lim
s↗1

1

(2π)d

∫
πI

dθ

|1− sµ̂(θ)|
(3.31)

≤ 1

(2π)d

∫
πI

dθ

|1− µ̂(θ)|
.

An advantage of (3.25) over (3.32) is that the integral on the right-hand side is only over a
small neighborhood of θ = 0, cf. the proof of Proposition 3.4.1.

Proof of Proposition 3.4.1: We begin with a simple observation. Let Ad = 2π
d
2 /Γ(d

2
) (the area

of the unit sphere in Rd). Using the polar coordinate transform, we see that

1)

∫
δB

dθ

|θ|α
= Ad

∫ δ

0

rd−α−1dr

{
<∞ if d > α,
= ∞ if d ≤ α.

a) Let d > α. Then,

g(0)
(3.25)

≤ Cδ

∫
δB

dθ

|1− µ̂(θ)|
(3.20)

≤ Cδ

c1

∫
δB

dθ

|θ|α
1)
<∞.

Thus, h(0) < 1 by Proposition 3.2.4.
b) Let d ≤ α. Let also c2, c3 and δ be from (3.21). We may suppose that δ ≤ π. By the first
estimate of (3.21), we see that (δB)\{0} ⊂ (πI)\Γ(µ). Therefore,

g(0)
(3.24)

≥ 1

(2π)d

∫
(δB)\{0}

1− Re µ̂(θ)

|1− µ̂(θ)|2
dθ

(3.21)

≥ c2
(2π)dc23

∫
(δB)\{0}

dθ

|θ|α
1)
= ∞.

Thus, h(0) = 1 by Proposition 3.2.4. \(∧2
∧)/

Example 3.4.4 Let α ∈ (0, 2). We will present an example of µ ∈ P(Zd) for which (3.20)
and (3.21) hold true. Let µ1 ∈ P(Z) such that

µ1(0) = 0 and µ1(x) =
|x|−1−α

2c1
for x 6= 0,

where c1 = 2
∑

n≥1 n
−1−α. We define µ ∈ P(Zd) by

µ(x) =

{
1
d
µ1(xβ), if x = (δβ,γxβ)

d
γ=1 for some β = 1, ..., d,

0, if otherwise.

Then, it is easy to see that

µ̂(θ) =
1

d

d∑
β=1

µ̂1(θβ).

Thus, (3.20) and (3.21) follow from those for µ1. In fact, we will prove that:

1)
1− µ̂1(θ)

|θ|α
θ→0−→ c2

c1
∈ (0,∞), where c2 = 2

∫ ∞

0

1− cosx

x1+α
dx =

π

Γ(α + 1) sin απ
2

.
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We may assume that θ 6= 0. By symmetry, we may also assume that θ > 0. It is convenient
to introduce

f(x) =
1− cosx

x1+α
, x > 0

and its approximation fθ(x)
θ→0−→ f(x) (x > 0) defined by:

fθ(x) = f(nθ) if x ∈ ((n− 1)θ, nθ], n = 1, 2, ...

We compute:

µ̂1(θ) =
1

2c1

∑
x∈Z
x ̸=0

|x|−1−α exp(ixθ) =
1

c1

∑
n≥1

n−1−α cos(nθ)

Thus,

2)
1− µ̂1(θ)

θα
=

θ

c1

∑
n≥1

(nθ)−α−1(1− cos(nθ)) =
1

c1

∫ ∞

0

fθ(x)dx.

We will check that

3) there exists a g ∈ L1((0,∞)) such that fθ(x) ≤ g(x) for x > 0 and θ ∈ (0, 1].

Then, 1) follows from 2) and the dominated convergence theorem. Note that

4) 0 ≤ 1− cos θ ≤ 2 ∧ θ2

2
for θ ∈ R.

Suppose that x ∈ (0, 1) and that x ∈ ((n− 1)θ, nθ]. Then,

fθ(x) = (nθ)−α−1(1− cos(nθ))
4)

≤ (nθ)1−α ≤
{
x1−α if α ∈ [1, 2)
(1 + x)1−α if α ∈ (0, 1)

}
∈ L1((0, 1)).

Suppose on the other hand that x ∈ [1,∞) and that x ∈ ((n− 1)θ, nθ]. Then,

fθ(x) = (nθ)−α−1(1− cos(nθ))
4)

≤ 2(nθ)−1−α ≤ 2x−1−α ∈ L1([1,∞)).

These prove 3). \(∧2
∧)/

(⋆) Completion Referring to (3.9) and (3.18), we now define

h(m)
s (x) =

{
E[sT

(m)
x ], if 0 ≤ s < 1,

h(m)(x), if s = 1.
(3.33)

and
hs(x) = h(1)s (x), 0 ≤ s ≤ 1. (3.34)

Note that, by the monotone convergence theorem,

h
(m)
1 (x) = lim

s↗1
h(m)
s (x), (3.35)

h(∞)(x) = lim
m↗∞

h(m)(x). (3.36)
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We now prove (3.15) in the following generalized form.� �
Lemma 3.4.5 Consider a random walk (Sn)n≥0 on Zd. For all s ∈ [0, 1], x ∈ Zd and
m ≥ 1,

h(m)
s (x) = hs(x)hs(0)

m−1, (3.37)

gs(x) = δ0,x +
hs(x)

1− hs(0)
. (3.38)

� �
Proof: It is enough to prove (3.37) and (3.38) for s < 1. The results for s = 1 can be obtained
by passing to the limit s↗ 1. We begin by proving (3.37) for s < 1. To do so, we may assume
that P{Tx <∞} > 0. In fact, (3.37) is just “0=0” if otherwise. For 1 ≤ k <∞, define

T
(m−1,k)
0 = inf

{
n ≥ 1 ;

n∑
j=1

1{Sk+j − Sk = 0} = m− 1

}
.

Then,
1) T

(m−1,k)
0 ≈ T

(m−1)
0 .

2) T
(m−1,k)
0 is independent of {Xj}kj=1 and thus, independent of {Tx = k}.

3) {Tx = k} ⊂ {T (m)
x = k + T

(m−1,k)
0 }.

Note also that
sT

(m)
x = sT

(m)
x 1{Tx <∞}.

We therefore have that

4)


E
[
sT

(m)
x

]
= E

[
sT

(m)
x : Tx <∞

]
3)
=

∞∑
k=1

skE
[
sT

(m−1,k)
0 : Tx = k

]
1),2)
=

∞∑
k=1

skE
[
sT

(m−1)
0

]
P (Tx = k) = E

[
sTx
]
E
[
sT

(m−1)
0

]
.

By applying 4) to x = 0 inductively, we see that

E
[
sT

(m−1)
0

]
= E

[
sT0
]m−1

,

which, in conjunction with 4), proves (3.37). We next prove (3.38) for s < 1 as follows:

gs(x) = δ0,x +
∞∑
n=1

snP{Sn = x},

∞∑
n=1

snP{Sn = x} =
∞∑
n=1

sn
∞∑

m=1

P{T (m)
x = n} =

∞∑
m=1

E

[
∞∑
n=1

sT
(m)
x 1{T (m)

x = n}

]
=

∞∑
m=1

E
[
sT

(m)
x

]
(3.37)
=

∞∑
m=1

hs(x)hs(0)
m−1 =

hs(x)

1− hs(0)
.

\(∧2
∧)/

Exercise 3.4.1 Suppose that
∫
πI

dθ
1−Reµ̂(θ)

<∞, which is true for the simple random walk with
d ≥ 3. Prove then the following.
i) 1

1−µ̂
∈ L1(πI), g(x) = (2π)−d

∫
πI
dθ exp(−iθ·x)

1−µ̂(θ)
, x ∈ Zd.

ii) g(x) → 0 and h(x) → 0 as |x| → ∞. Hint: The Riemann-Lebesgue lemma.
iii) P (H 6⊂ {Sn}n≥1) = 1, where H = {x ∈ Zd ; h(x) > 0}. This is in contrast with Exercise
3.2.2. Hint: P (H ⊂ {Sn}n≥1) ≤ h(x) for any x ∈ H.
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Exercise 3.4.2 Prove that

E[T (m)
x : T (m)

x <∞] = lim
s↗1

∂
∂s
h(m)
s (x). (3.39)

Exercise 3.4.3 Consider a Z-valued random walk such that

P (X1 = ±1) = p± > 0 and P (X1 = 0) = p0 = 1− p+ − p−.

i) Use residue theorem to compute the integral (3.27) and conclude that

gs(x) =

{
δ(s)−1/2f−(s)

x if x ≥ 0,
δ(s)−1/2f+(s)

|x| if x ≤ 0,
(3.40)

where δ(s) = (1 − p0s)
2 − 4p+p−s

2 and f±(s) = 1−p0s−δ(s)1/2

2p±s
. ii)13 Use (3.38) and (3.40) to

prove that

hs(x) =


f−(s)

x if x > 0,
1− δ(s)1/2 if x = 0,
f+(s)

|x| if x < 0.
(3.41)

iii)14 Use (3.35), (3.39) and (3.41) to prove that

h(x) =

{
1 ∧ (p+/p−)

x if x 6= 0,
1− |p+ − p−| if x = 0.

E[Tx] =

{
|x|/|p+ − p−| if x(p+ − p−) > 0,
∞ if otherwise.

E[Tx|Tx <∞] =


|x|/|p+ − p−| if x(p+ − p−) < 0,
(1− |p+ − p−|)(p+ + p− + 4p+p−)/|p+ − p−| if p+ 6= p− and x = 0,
∞ if p+ = p−.

Exercise 3.4.4 (Green function in a subset) Suppose that (Sn)n∈N is a Zd-valued random
walk and that 0, x ∈ A ⊂ Zd. Define

T (Ac) = inf{n ≥ 1 ; Sn 6∈ A}, Tx = inf{n ≥ 1 ; Sn = x},

gAs (x) =
∞∑
n=0

snP (Sn = x, n < T (Ac)),

hAs (x) =

{
E
[
sTx : Tx < T (Ac)

]
, if 0 ≤ s < 1,

P (Tx < T (Ac)) if s = 1.

HA
s (x) =

{
E
[
sT (Ac) : ST (Ac) = x}

]
, if 0 ≤ s < 1,

P (T (Ac) <∞, ST (Ac) = x) if s = 1.

Then, prove that15

gAs (x) = δx,0 +
hAs (x)

1− hAs (0)
, 0 < s ≤ 1, (3.42)

gs(x) = gAs (x) +
∑

y∈Zd\A

HA
s (y)gs(x− y), 0 < s ≤ 1. (3.43)

13See also (4.68) below.
14See also Exercise 3.3.3, Exercise 3.7.1, and Proposition 4.5.3.
15Special case of these identities can be found in [Law91]; See Exercise 1.5.7 and Proposition 1.5.8. of that

book.
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Exercise 3.4.5 16 Prove the following for the random walk considered in Exercise 3.4.3. For
a, b ∈ N\{0} and s ∈ (0, 1],

E[sT−a : T−a < Tb] =
f−(s)

−b − f+(s)
b

f+(s)−af−(s)−b − f+(s)bf−(s)a
, (3.44)

E[sTb : Tb < T−a] =
f+(s)

−a − f−(s)
a

f+(s)−af−(s)−b − f+(s)bf−(s)a
. (3.45)

In particular, if p+ < p−, then as special cases of (3.44) and (3.45) with s = 1,

P (T−a < Tb) =
(p−/p+)

b − 1

(p−/p+)b − (p−/p+)−a
, P (Tb < T−a) =

1− (p−/p+)
−a

(p−/p+)b − (p−/p+)−a
. (3.46)

Hint: Referring to Exercise 3.4.4, for A = Z ∩ (−∞, b), hAs (−a) = E[sT−a : T−a < Tb].
Similarly, or A = Z ∩ (−a,∞), hAs (b) = E[sTb : Tb < T−a].

3.5 (⋆) Completion of the Proof of Proposition 3.2.4

We will finish the proof of Proposition 3.2.4 by taking care of T4),T5),R4) and R5). To do so,
we prepare a couple of lemmas.� �
Lemma 3.5.1 For y, z ∈ Zd,

1− h∞(y) ≥ h(z)(1− h∞(y − z)). (3.47)� �
Proof: Define the first hitting time to x ∈ Zd by

η(x) = inf {n ≥ 1 | Sn = x} .

Then,

1− h∞(y) = P

(⋃
m≥1

⋂
n≥m

{Sn 6= y}

)

≥ P

(
η(z) <∞,

⋃
m≥1

⋂
n≥m

{Sn+η(z) 6= y}

)

=
∑
ℓ≥1

P

η(z) = ℓ︸ ︷︷ ︸
=:Eℓ

,
⋃
m≥1

⋂
n≥m

{Sn+ℓ − Sℓ 6= y − z}︸ ︷︷ ︸
=:Fℓ

 .

We observe that
Eℓ ∈ σ[Xj ; j ≤ ℓ], Fℓ ∈ σ[Xj ; j > ℓ],

and therefore that

1) Eℓ and Fℓ are independent.

16See also Proposition 4.5.5.
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We also see that

2)
∑
ℓ≥1

P (Eℓ) = P (η(z) <∞)
(3.9)
= h(z).

Note on the other hand that
(Sn+ℓ − Sℓ)

∞
n=1 ≈ (Sn)

∞
n=1.

This implies that

3) P (Fℓ) = P (F0) = 1− h∞(y − z).

Combinning 1)–3), we have that∑
ℓ≥1

P (Eℓ ∩ Fℓ)
(1)
=

∑
ℓ≥1

P (Eℓ)P (Fℓ)
(3)
=
∑
ℓ≥1

P (Eℓ)(1− h∞(y − z))

(2)
= h(z)(1− h∞(y − z)).

Putting things together, we obtain (3.47). \(∧2
∧)/

The equivalence of T1),T4),T5) and that of R1),R4),R5) are immediate from the following� �
Lemma 3.5.2 For x ∈ Zd,

h∞(x) =

{
0 ⇐⇒ h(0) < 1 or h(x) = 0,
1 ⇐⇒ h(0) = 1 and h(x) > 0.

(3.48)

h∞(0) =

{
0 ⇐⇒ h(0) < 1,
1 ⇐⇒ h(0) = 1.

(3.49)

� �
Proof: By the monotone convergence theorem (MCT) and (3.15), we have that:

1) h∞(x)
MCT
= lim

m↗∞
hm(x)

(3.15)
=

{
0 if h(0) < 1,
h(x) if h(0) = 1.

By setting x = 0 in 1), we see that

h∞(0) =

{
0 if h(0) < 1,
1 if h(0) = 1.

This implies (3.49). Observe that (3.48) follows from 1) and the following

2) h(0) = 1, h(x) > 0 =⇒ h∞(x) = 1.

To see this, suppose that h(0) = 1, h(x) > 0. Then, h∞(0) = 1, h(x) > 0 by (3.49). Then, by
taking (y, z) = (0, x) in Lemma 3.5.1, we have

0 = 1− h∞(0) ≥ h(x)(1− h∞(−x)), hence h∞(−x) = 1.

This in particular implies that h(−x) > 0. Then, by taking (y, z) = (0,−x) in Lemma 3.5.1,
we have

0 = 1− h∞(0) ≥ h(−x)(1− h∞(x)), hence h∞(x) = 1.

This proves 2). \(∧2
∧)/

Exercise 3.5.1 Conclude from Lemma 3.5.1 that the set
{x ∈ Zd ; h∞(x) = 1} is either empty or a subgroup of Zd.
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3.6 (⋆) Bounds on the Transition Probabilities

In section 3.4, we have used the characteristic function to estimate the Green function. In this
section, we will estimate the transition probabilities by similar argument. We will prove:� �
Proposition 3.6.1 Let α > 0.

a) Suppose that there exists a constant c1, δ ∈ (0,∞) such that

1− |µ̂(θ)| ≥ c1|θ|α for |θ| ≤ δ. (3.50)

Then, there exists a constant b1 ∈ (0,∞) such that

sup
x∈Zd

P (Sn = x) ≤ b2
nd/α

for all n ≥ 1. (3.51)

b) Suppose that X1 ≈ −X1 and that there exists a constant c2, δ ∈ (0,∞) such that (3.21)
holds. Then, there exists a constant b2 ∈ (0,∞) such that

P (S2n = 0) ≥ b1
nd/α

for all n ≥ 1. (3.52)� �
Remark The condition (3.50) is slightly stronger than (3.20) in general, but they are equivalent
if X1 ≈ −X1, since µ̂(θ) > 0 for θ close to the origin. The random walk considered in Theorem
3.2.2 satisfies the conditions for Proposition 3.6.1 with α = 2. Example 3.4.4 provides an
example for which the conditions for Proposition 3.6.1 hold for α ∈ (0, 2).

We prepare a technical estimate:� �
Lemma 3.6.2 Suppose that α, c, δ > 0 and cδα ≤ 1. Then, there exist b1, b2 ∈ (0,∞) such
that:

b1
td/α

≤
∫
x∈Rd, |x|≤δ

(1− c|x|α)tdx ≤ b2
td/α

for all t ≥ 1 (3.53)

� �
Proof: We write the integral in (3.53) by It. Then,

1) It
x=yt−1/α

= t−d/αJt with Jt =
∫
|y|≤δt1/α

(
1− c|y|α

t

)t
dy.

Since the integrand of Jt is increasing in t ≥ 1 and converges to exp(−c|y|α) as t → ∞, we
have

2) 0 < J1 ≤ Jt ≤
∫
Rd

exp(−c|y|α)dy <∞. for all t ≥ 1.

(3.53) follows from 1)–2). \(∧2
∧)/

Proof of Proposition 3.6.1:
a) We have that

P (Sn = x)
(3.30), (3.22)

≤ Cδ

∫
|θ|≤δ

|µ̂(θ)|ndθ
(3.50)

≤ Cδ

∫
|θ|≤δ

(1− c2|θ|α)ndθ
(3.53)

≤ b2
nd/α

.
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This proves (3.51).
b) Note that µ̂(θ) ∈ R and hence that µ̂(θ)2n ≥ 0. Thus,

P (S2n = 0)
(3.29)
=

1

(2π)d

∫
πI

µ̂(θ)2ndθ ≥ 1

(2π)d

∫
|θ|≤δ

µ̂(θ)2ndθ

(3.21)

≥ 1

(2π)d

∫
|θ|≤δ

(1− c1|θ|α)2ndθ
(3.53)

≥ b1
nd/α

.

This proves (3.52). \(∧2
∧)/

3.7 Reflection Principle and its Applications

Reflection principle (Proposition 3.7.1) is an important tool to study nearest-neighbor random
walks in Z. In this subsection, we will focus on the reflection principle and its applications.
Throughout this subsection, we consider a Z-valued random walk S0 = 0, Sn = X1 + ...+Xn,
n ≥ 1 such that

P (X1 = ±1) = p± > 0, and P (X1 = 0) = p0 = 1− p+ − p−.

For a ∈ Z, define
Ta = inf{n ≥ 0 ; Sn = a}.

Then, we have

a

Ta

Sn

2a− Sn

� �
Proposition 3.7.1 (Reflection principle). For x ∈ Zk and y ∈ Zn,

P
(
Ta = k, (Sj)

k
j=1 = x, (Sk+j)

n
j=1 = y

)
= P

(
Ta = k, (Sj)

k
j=1 = x, (2a− Sk+j)

n
j=1 = y

)
(p+/p−)

yn−a. (3.54)

In particular, letting a = 0,

P
(
(Sj)

n
j=1 = y

)
= P

(
(Sj)

n
j=1 = −y

)
(p+/p−)

yn . (3.55)� �
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Proof: We define the events A, B± by
A = {Ta = k, (Sj)

k
j=1 = x}, B± = {(a± (Sk+j − Sk))

n
j=1 = y}.

Note that A ∈ σ(X1, . . . , Xk) and that B± ∈ σ(Xk+1, . . . , Xk+n). Therefore, A is independent
of B±. Moreover, A ⊂ {Sk = a}. Therefore,

1)


the LHS of (3.54) = P (A ∩ {(Sk+j)

n
j=1 = y})

= P (A ∩ {(a+ Sk+j − Sk)
n
j=1 = y})

= P (A)P (B+).
Similarly,

2)


(p+/p−)

−(yn−a) × the RHS of (3.54)
= P (A ∩ {(2a− Sk+j)

n
j=1 = y})

= P (A ∩ {(a− (Sk+j − Sk))
n
j=1 = y})

= P (A)P (B−).
Note that P (Xj = ±1) = (p+/p−)

±1P (Xj = ∓1). Thus, with the convention yk = a, we have

3)


P (B+) =

∏n
j=1 P (Xk+j = yj − yj−1)

= (p+/p−)
yn−a

∏n
j=1 P (−Xk+j = yj − yj−1)

= (p+/p−)
yn−aP (B−).

Therefore,

the LHS of (3.54)
1)
= P (A)P (B+)
3)
= (p+/p−)

yn−aP (A)P (B−)
2)
= the RHS of (3.54)

. \(∧2
∧)/

� �
Corollary 3.7.2 For a ∈ Z\{0}, n ≥ 1, and x ∈ Z with a(a− x) > 0,

P (Ta > n, Sn = x) = P (Sn = x)− (p+/p−)
a P (Sn = x− 2a). (3.56)

Moreover,

P (Ta > n) =

{
P (Sn < a)− (p+/p−)

a P (Sn < −a), if a > 0,
P (−|a| < Sn)− (p+/p−)

a P (|a| < Sn), if a < 0.
(3.57)

� �
Proof: (3.56). If a > 0 and x < a, then, 2a − x > a. If a < 0 and a < x, then 2a − x < a.
Thus we have the following inclusion in both cases.
1) {Sn = 2a− x} ⊂ {Ta ≤ n}.
On the other hand, it follows from (3.55) that

P (Sn = x) = (p+/p−)
xP (Sn = −x). (3.58)

Therefore,

2)


P (Sn = x− 2a)

(3.58)
= (p+/p−)

x−2aP (Sn = 2a− x)
1)
= (p+/p−)

x−2aP (Ta ≤ n, Sn = 2a− x)
(3.54)
= (p+/p−)

−aP (Ta ≤ n, Sn = x)
= (p+/p−)

−a{P (Sn = x)− P (Ta > n, Sn = x)},
which proves (3.56).
(3.57): If a > 0, then, taking the summation of both-hands side of (3.56) over x < a, we have

P (Ta > n) = P (Sn < a)− (p+/p−)
aP (Sn < −a).

which proves (3.57) for a > 0. If a < 0, then, taking the summation of both-hands side of 3)
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over x > a, we have

P (Ta > n) = P (−|a| < Sn)− (p+/p−)
aP (|a| < Sn).

which proves (3.57) for a < 0. \(∧2
∧)/

Remark: Suppose that p+ = p−. Then, we see from Example 2.8.2 the following. If p0 > 0,

P (Sn = x) =
1√
2πvn

+O
(
n−1
)
, as n→ ∞,

where v = 2p+ + 4p0(1− p0).
If p0 = 0, then for x ∈ Z and n ∈ N such that n+ x is even,

P (Sn = x) =

√
2

πn
+O

(
n−3/2

)
, as n→ ∞.

These, together with (3.57), imply that

P (Ta > n) = |a|
√

2

πvn
+O

(
n−3/2

)
, as n→ ∞.

Exercise 3.7.1 Use (3.57) to prove the following.
(i)17 For a > 0, P (Ta <∞) = (p+/p−)

a ∧ 1, P (T−a <∞) = (p−/p+)
a ∧ 1.

(ii)

 P (T1 > n) =
(
1− p0

2p+

)
P (Sn = 0) + 1

2p+
P (Sn+1 = 0) +

(
1− p−

p+

)
P (Sn > 1),

P (T−1 > n) =
(
1− p0

2p−

)
P (Sn = 0) + 1

2p−
P (Sn+1 = 0) +

(
1− p+

p−

)
P (Sn < −1).

(iii)


P (T0 > n) = p+P (T−1 > n− 1) + p−P (T1 > n− 1)

= p−
p+
P (Sn = 0) +

(
1− p0(1−p0)2

2p+p−

)
P (Sn−1 = 0)

+(p+ − p−)(P (Sn−1 > 1)− P (Sn−1 < −1)).

Exercise 3.7.2 Prove the following. (i) For x ∈ Z and an even function F : Zn → R,

E[F (S1, . . . , Sn) : Sn = x] = E[F (S1, . . . , Sn) : Sn = −x](p+/p−)x.

(ii) Let An =
⋂n

j=1{|Sj| = rj} for r1, . . . , rn ∈ N with |rj − rj−1| ≤ 1 (r0
def
= 0). Then,

P (Sn = rn|An) = prn+ /(p
rn
+ + prn− ). (iii) P (An) =

∏n
j=1 p(rj−1, rj), where

p(r, s) =


(pr+1

+ + pr+1
− )/(pr+ + pr−) if s = r + 1,

(p−p
r
+ + p+p

r
−)/(p

r
+ + pr−) if r ≥ 1 and s = r − 1,

p0 if s = r.

17See Exercise 3.3.3 and (4.69) for alternative proofs.
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4 Martingales

4.1 Conditional Expectation

Let (Ω,G) be a measurable space, µ be a measure on (Ω,G), and ν be either a measure or a
signed measure on (Ω,G). ν is said to be absolutely continuous with respect to µ, and denoted
by ν � µ if

A ∈ G, µ(A) = 0 =⇒ ν(A) = 0. (4.1)

We start by recalling� �
Theorem 4.1.1 (The Radon-Nikodym theorem) Let (Ω,G) be a measurable space, µ
be a σ-finite measure on (Ω,G). Suppose that a signed measure ν on (Ω,G) is absolutely
continuous with respect to µ. Then, there exists a unique ρ ∈ L1(µ) such that

ν(A) =

∫
A

ρdµ for all A ∈ G. (4.2)

The function ρ is called the Radon-Nikodym derivative and is denoted by dν
dµ

.� �� �
Lemma 4.1.2 Let (Ω,G) and µ be as in Theorem 4.1.1, Suppose that signed measures

ν, ν1, ν2 on (Ω,G) are absolutely continuous with respect to µ and that ρ = dν
dµ

, ρj =
dνj
dµ

(j = 1, 2). Then,

ν = αν1 + βν2 =⇒ ρ = αρ1 + βρ2, µ-a.e. for α, β ∈ R, (4.3)

ν1 ≤ ν2 =⇒ ρ1 ≤ ρ2, µ-a.e., (4.4)

|ρ| ≤ d|ν|
dµ

, µ-a.e., where |ν| denotes the total variation of ν. (4.5)

� �
Proof: (4.3): Let A ∈ G be arbitrary. Then,

ν(A) = αν1(A) + βν2(A)
(4.2)
=

∫
A

(αρ1 + βρ2)dµ.

Thus, ρ = αρ1 + βρ2, µ-a.e. by the uniqueness of the Radon-Nikodym derivative.
(4.4): Let A ∈ G be arbitrary. Then,∫

A

ρ1dµ
(4.2)
= ν1(A) ≤ ν2(A)

(4.2)
=

∫
A

ρ2dµ.

Thus, ρ1 ≤ ρ2, µ-a.e.
(4.5): Since ±ν ≤ |ν|, it follows from (4.4) that ±ρ ≤ d|ν|

dµ
, µ-a.e. \(∧2

∧)/

For the rest of this subsection, we suppose that (Ω,F , P ) is a probability space, and that
G is a sub σ-algebra of F .
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� �
Proposition 4.1.3 (Conditional expectation) Let X ∈ L1(P ).

a) There exists a unique Y ∈ L1(Ω,G, P |G) such that

E[X : A] = E[Y : A] for all A ∈ G. (4.6)

The r.v. Y is called the conditional expectation of X given G, and is denoted by
E[X|G].

b) For X,Xn ∈ L1(P ) (n ∈ N),

E[αX1 + βX2|G] = αE[X1|G] + βE[X2|G], a.s. for α, β ∈ R, (4.7)

X1 ≤ X2, a.s. =⇒ E[X1|G] ≤ E[X2|G], a.s., (4.8)

|E[X|G]| ≤ E[|X||G], a.s., (4.9)

X is G-measurable ⇐⇒ E[X|G] = X, a.s. (4.10)

X is independent of G =⇒ E[X : A] = EXP (A), ∀A ∈ G (4.11)

⇐⇒ E[X|G] = EX, a.s. (4.12)

Xn
n→∞−→ X in L1(P ) ⇐⇒ E[|Xn −X||G] n→∞−→ 0 in L1(P ). (4.13)� �

Proof: a) Let Q be a signed measure on (Ω,F) defined by Q(A)
def
= E[X : A] (A ∈ F). Then,

Q|G � P |G and |Q|(A) = E[|X| : A] (A ∈ F). Thus, by Theorem 4.1.1, there exists a unique
Y ∈ L1(Ω,G, P |G) such that

Q(A) =

∫
A

Y dP, for all A ∈ G.

which however is nothing but (4.6). In particular,

E[X|G] = dQ|G
dP |G

. (4.14)

b) (4.7), (4.8), (4.9) follow respectively from (4.3), (4.4), (4.5).
(4.10) ⇒: Suppose that X is G-measurable. Since the relation (4.6) is trivially true for Y = X,
it follows from the uniqueness of the conditional expectation that X = E[X|G] a.s.
(4.10) ⇐: This is obvious, since E[X|G] is G-measurable by definition.
(4.11): Obvious.
(4.12) ⇒: Let Y = EX and A ∈ G. Then,

E[X : A] = EXP (A) = E[Y : A].

This implies, via the uniqueness of the conditional expectation, that Y = E[X|G] a.s.
(4.11) ⇐: Suppose that E[X|G] = EX, a.s. Then, by taking the expectation of the both-side
hands over the event A ∈ G, we have that E[X : A] = EXP (A).
(4.12): This follows from (4.11).
(4.13): Let Yn = E[|Xn −X||G]. Then,

E|Yn|
(4.6)
= E|Xn −X|.
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Thus E|Xn −X| n→∞−→ 0 ⇐⇒ E|Yn|
n→∞−→ 0. \(∧2

∧)/

Remark Referring to Proposition 4.1.3, if G = σ(Y1, Y2, ...) for r.v’s Y1, Y2, ..., we write
E[X|G] = E[X|Y1, Y2, ...].

Example 4.1.4 For X ∈ L1(P ), the conditional expectation of X, given an event A ∈ F with
P (A) > 0 is defined by

E[X|A] = E[X : A]/P (A). (4.15)

Let J be an at most countable set and {Gj}j∈J ⊂ F be such that P (Gj) > 0 for all j ∈ J ,
Ω =

⋃
j∈J Gj and Gj ∩Gk = ∅ if j 6= k. Finally, let G = σ[{Gj}j∈J ]. Then, for X ∈ L1(P ),

E[X|G] =
∑
j∈J

E[X|Gj]1Gj
, a.s., (4.16)

To verify this identity, we take an arbitrary A ∈ G and let

1) Y =
∑
j∈J

E[X|Gj]1Gj
.

Since there exists K ⊂ J such that

2) A =
⋃
j∈K

Gj,

we have for any j ∈ J that

3) Gj ∩ A =

{
Gj, if j ∈ K,
∅, if j 6∈ K.

By putting these together, we see that Y satisfies (4.6) as follows.

E[Y : A]
1)
=

∑
j∈J

E[X|Gj]P (Gj ∩ A)
3)
=
∑
j∈K

E[X|Gj]P (Gj)

(4.15)
=

∑
j∈K

E[X : Gj]
2)
= E[X : A].

This implies (4.16).

Example 4.1.5 For j = 1, 2, let (Sj,Bj) be a measurable space, f : S1 × S2 → R be
measurable, Xj : Ω → Sj be a r.v. Suppose that X1 and X2 are independent and that
f(X1, X2) ∈ L1(P ). Then,

E[f(X1, X2)|X2] =

∫
S1

f(x1, X2)P (X1 ∈ dx1) a.s.

Let

F2(x2) =

∫
S1

f(x1, x2)P (X1 ∈ dx1), x2 ∈ X2.

Then, we should prove that

1) ∀A ∈ σ[X2], E[f(X1, X2) : A] = E[F2(X2) : A].
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Note that ∀A ∈ σ[X2], ∃B ∈ B(R), A2 = {X2 ∈ B}. Thus,

E[F2(X2) : A] = E[F2(X2) : X2 ∈ B] =

∫
B

P (x2 ∈ dx2)

∫
S1

f(x1, x2)P (X1 ∈ dx1)

Fubini
= = E[f(X1, X2) : X2 ∈ B] = E[f(X1, X2) : A].� �

Proposition 4.1.6 (The projection property) Let X ∈ L1(P ). Then, for σ-algebras
G1, G2 such that G1 ⊂ G2 ⊂ F ,

E[E[X|G1]|G2] = E[X|G1], a.s. (4.17)

E[E[X|G2]|G1] = E[X|G1], a.s. (4.18)� �
Proof: Let Yj = E[X|Gj] (j = 1, 2).
(4.17): Since Y1 is G1-measurable, it is also G2-measurable. Thus, we see from (4.10) that
E[Y1|G2] = Y1,a.s.
(4.18): Let A ∈ G1 be arbitrary. Then, since A ∈ G2,

E[Y2 : A]
(4.6)
= E[X : A]

(4.6)
= E[Y1 : A],

Thus, we see from (4.6) that E[Y2|G1] = Y1, a.s. \(∧2
∧)/

Remark: E[E[X|G1]|G2] and E[E[X|G1]|G2] are not always the same if we do not assume
either G1 ⊂ G2 or G2 ⊂ G1 (cf. Exercise 4.1.5).� �
Proposition 4.1.7 Let X,Z be r.v.’s such that Z is G-measurable, X,ZX ∈ L1(P ).
Then,

E[ZX|G] = ZE[X|G], a.s. (4.19)� �
Proof: a) We first consider the case where Z = 1B with B ∈ G. Let A ∈ G be arbitrary. Since
A ∩B ∈ G, we have

E[ZX : A] = E[X : A ∩B]
(4.6)
= E[E[X|G] : A ∩B] = E[ZE[X|G] : A].

Thus, (4.19) holds.
b) We now consider the general case. There exists a sequence Zn of G-measurable simple r.v.’s
such that Zn

n→∞−→ Z and that |Zn| ≤ |Z|. By a) and (4.7), we have for each n ∈ N that

1) E[ZnX|G] = ZnE[X|G], a.s.

Since ZnX
n→∞−→ ZX in L1(P ) by DCT, we see from (4.13) that E[ZnX|G] n→∞−→ E[ZX|G] in

L1(P ). Therefore, there exists a subsequence {Zn(k)}k∈N such that

2) E[Zn(k)X|G] k→∞−→ E[ZX|G], a.s.

On the other hand, since Zn
n→∞−→ Z, a.s., we have Zn(k)

k→∞−→ Z, a.s., and hence,

3) Zn(k)E[X|G] k→∞−→ ZE[X|G], a.s.
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Thus, we obtain (4.19) from 1),2),3). \(∧2
∧)/� �

Proposition 4.1.8 (Hölder’s inequality) Let p, q ∈ (1,∞), 1
p
+ 1

q
= 1, X ∈ Lp(P ) and

Y ∈ Lq(P ). Then,
E[|XY ||G] ≤ E[|X|p|G]1/pE[|Y |q|G]1/q a.s. (4.20)

In particular,
E[|X||G]p ≤ E[|X|p|G] a.s. (4.21)� �

Proof: Thanks to (4.7), (4.8), and (4.19), the proof of (4.20) goes in the same way as that of
usual Hölder’s inequality (cf. Proposition 8.1.1). \(∧2

∧)/� �
Proposition 4.1.9 (The orthogonal projection property) Let M = L2(Ω,G, P |G)
and M⊥ be its orthogonal complement in L2(P ). Then, for X ∈ L2(P ),

E[X|G] ∈M, X − E[X|G] ∈M⊥, (4.22)

that is, the map X 7→ E[X|G] (L2(P ) → M) is the orthogonal projection from L2(P ) to
M .� �

Proof: Y
def
= E[X|G] is G-measurable by Proposition 4.1.3 and it is square integrable by (4.21).

Hence, Y ∈M . On the other hand, let Z ∈M be arbitrary. Then,

Z(X − Y )
(4.19)
= ZX − E[ZX|G], and hence E[Z(X − Y )] = 0.

Therefore, X − Y ∈M⊥. \(∧2
∧)/� �

Proposition 4.1.10 (Jensen’s inequality) Let I ⊂ R be an open interval and φ : I → R
be convex. Suppose that X : Ω → I satisfies X,φ(X) ∈ L1(P ). Then,

φ (E[X|G]) ≤ E[φ(X)|G], a.s. (4.23)� �
Proof: We set Y = E[X|G] to simplify the notation.
a) We first consider the case where Y ∈ J a.s., where J ⊂ I is a compact interval. As is
well known, for y ∈ I, the following limit (the right derivative of φ at y) exists and is non
decreasing in y.

φ′
+(y)

def
= lim

h→0
h>0

φ(y + h)− φ(y)

h

Moreover,
φ(x) ≥ φ(y) + φ′

+(y)(x− y), for all x, y ∈ I.

Thus,
φ(X) ≥ φ(Y ) + φ′

+(Y )(X − Y ), a.s.

Since φ is continuous, and φ′
+ is monotone on I, both φ, φ′

+ are bounded on J . As a con-
sequence, the right-hand side of the last inequality is integrable. Therefore, by taking the
conditional expectation, and by using Proposition 4.1.7, we have that a.s.,

E[φ(X)|G] ≥ φ(Y ) + φ′
+(Y )(E[X|G]− Y ) = φ(Y ).
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b) We now consider the general case. By translation, if necessary, we may assume that
0 ∈ I. Let Jn (n ≥ 1) be an increasing sequence of compact intervals such that J1 3 0 and⋃

n≥1 Jn = I. Let also Zn = 1{Y ∈ Jn}. Then, by Proposition 4.1.7,

E[ZnX|G] = ZnY ∈ Jn, a.s.

Hence, we may apply the result of a) to ZnX, in place of X, to obtain that

1) φ (ZnY ) = φ (E[ZnX|G]) ≤ E[φ(ZnX)|G], a.s.

As for the left-hand side of 1), note that ZnY
n→∞−→ Y, a.s. Thus, by the continuity of φ,

2) φ (ZnY )
n→∞−→ φ(Y ), a.s.

As for the right-hand side of 1), note that

3) φ(ZnX) = Znφ(X) + (1− Zn)φ(0),

and hence, a.s.,

4) E[φ(ZnX)|G] 3)
= ZnE[φ(X)|G] + (1− Zn)φ(0)

n→∞−→ E[φ(X)|G].
Thus, (4.23) follows from 1),2) and 4). \(∧2

∧)/� �
Lemma 4.1.11 (⋆) (MCT) Let Xn ∈ L1(P ) be such that Xn ≤ Xn+1 (∀n ∈ N) and that
X = supn∈NXn ∈ L1(P ). Then,

E[Xn|G]
n→∞−→ E[X|G], a.s. and in L1(P ). (4.24)� �

Proof: (4.24) is equivalently stated as Yn
def
= E[X − Xn|G]

n→∞−→ 0, a.s. and in L1(P ). As for
the L1-convergence, we note that 0 ≤ X − Xn ≤ X − X1 ∈ L1(P ), which, via DCT implies
that X −Xn

n→∞−→ 0 in L1(P ). Thus, we see from (4.13) that

1) Yn
n→∞−→ 0 in L1(P ).

We next show that Yn
n→∞−→ 0, a.s. We see from (4.8) that Yn ≥ Yn+1 ≥ 0, a.s. for ∀n ∈ N.

Thus, there exists a G-measurable r.v. Y∞ ≥ 0 such that Yn
n→∞−→ Y∞, a.s. We combine this

with 1) to coclude that Y∞ = 0, a.s. \(∧2
∧)/� �

Proposition 4.1.12 (⋆) (Fatou’s lemma and DCT) Consider the following conditions
forXn ∈ L1(Ω,F , P ).

a) sup
n∈N

|Xn| ∈ L1(P ),

b) Xn
n→∞−→ X,a.s. for some r.v. X.

Then, under the assumption a),

E[ lim
n→∞

Xn|G] ≤ lim
n→∞

E[Xn|G] ≤ lim
n→∞

E[Xn|G] ≤ E[ lim
n→∞

Xn|G], a.s. (4.25)

Moreover, under the assumptions a) and b),

X ∈ L1(Ω,F , P ) and E[|X −Xn||G]
n→∞−→ 0, a.s. and in L1(P ). (4.26)� �
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Proof: If we assume a), then, the inequality (4.25) follows from Lemma 4.1.11, exactly in the
same way as Fatou’s lemma follows from MCT in the theory of Lebesgue integration. To see

(4.26), let Yn
def
= E[|X−Xn||G]. Note that a) and b) imply that Xn

n→∞−→ X in L1(P ) via DCT.
Thus,

EYn
(4.6)
= E|X −Xn|

n→∞−→ 0.

Hence Yn
n→∞−→ 0 in L1(P ). On the other hand, by using (4.25) with Xn replaced by |X −Xn|,

and by applying condition b), we have

lim
n→∞

Yn
(4.25)

≤ E[ lim
n→∞

|X −Xn||G] = 0.

Hence Yn
n→∞−→ 0, P -a.s. \(∧2

∧)/� �
Lemma 4.1.13 (⋆) Let X ∈ L1(P ). Then, the family of r.v.’s defined as follows is u.i.

{E[X|G] ; G is a sub σ-algebra of F}.� �
Proof: Let ε > 0 be arbitrary. Recall from Exercise 1.1.5 that there exists δ > 0 such that
E[|X| : A] < ε for all A ∈ F with P (A) < δ. Let m > E|X|/δ. Then, for any sub σ-algebra G
of F ,

P (E[|X||G] > m)
Chebyshev

≤ E[E[|X||G]]/m = E|X|/m < δ.

Thus,

E[|E[X|G]| : |E[X|G]| > m] ≤ E[E[|X||G]| : E[|X||G] > m]

= E[|X| : E[|X||G] > m] < ε.

\(∧2
∧)/

Exercise 4.1.1 Let λ be a σ-finite measure, µ be a finite measure, and ν be a signed measure,
such that ν � µ� λ. Prove then that λ-a.e. dν

dλ
, dν

dµ
, dµ

dλ
are well-defined and dν

dλ
= dν

dµ
dµ
dλ
.

Exercise 4.1.2 Suppose that X1, X2 ∈ L1(P ), B ∈ G, and that X1 ≤ X2 a.s. on B. Then,
prove that E[X1|G] ≤ E[X2|G] a.s. on B.

Exercise 4.1.3 Is the converse to (4.12) true? Hint Let Ω = {−1, 0, 1}, F = 2Ω, P ({j}) =
1/3 (j = 0,±1), G = σ[{0}, {−1, 1}] and X(j) = j.

Exercise 4.1.4 Let X ∈ L1(P ), X ≥ 0, a.s., and Y = E[X|G]. Then, prove for any α, β > 0
that P (X ≥ α|G) ≤ β1{Y > 0}+ 1{Y ≥ αβ}, a.s. and hence in particular that P (X ≥ α) ≤
βP (Y > 0) + P (Y ≥ αβ).

Exercise 4.1.5 Let Ω = {1, 2, 3}, F = 2Ω, P ({i}) = 1/3, Gi = σ[{i}], χi(ω) = 1{ω = i} for
i = 1, 2, 3. Then, for X : Ω → R and for (i, j) = (1, 2), (2, 1), verify that

E[X|Gi] = X(i)χi +
X(j) +X(3)

2
(1− χi),

E[E[X|Gi]|Gj] =
X(j) +X(3)

2
χj +

(
X(i)

2
+
X(j) +X(3)

4

)
(1− χj).

Conclude from this that E[E[X|G1]|G2] 6= E[E[X|G2]|G1], unless X is a constant.
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Exercise 4.1.6 Suppose that X,Y ∈ L1(P ), and that G, H are sub σ-algebras of F . Then,
show the following. (i) σ(X)∨G and σ(Y )∨H are independent⇒ E[XY |G∨H] = E[X|G]E[Y |H],
a.s. (ii) σ(X)∨G andH are independent⇒ E[X|G∨H] = E[X|G], a.s. (iii) σ(X) andH are in-
dependent, and G and H are independent 6⇒ E[X|G∨H] = E[X|G], a.s. [Hint. Ω = {0, 1, 2, 3},
F = 2Ω, P ({ω}) = 1/4 (∀ω ∈ Ω), X = 1{1,2}, G = σ[{2, 3}], H = σ[{1, 3}].]

4.2 Filtrations and Stopping Times I

Throughout this subsection, we assume that

� (Ω,F , P ) is a probability space and T ⊂ R.

The set T is considered as the set of time parameters, typical examples of which are N and
[0,∞). In section 5.5, we consider the case of T = −N.

Definition 4.2.1 (Filtration, Stopping times)
▶ A sequence (Ft)t∈T of sub σ-algebras of F is called a filtration if

Fs ⊂ Ft for all s, t ∈ T with s < t. (4.27)

▶ Given a filtration (Ft)t∈T, a r.v. T : Ω → T ∪ {∞} is called a stopping time if

{T ≤ t} ∈ Ft for all t ∈ T. (4.28)

▶ Given a filtration (Ft)t∈T, and a stopping time T , we define a sub σ-algebra FT of F by

A ∈ FT ⇐⇒ A ∩ {T ≤ t} ∈ Ft for all t ∈ T. (4.29)

Remark It is easy to verify that FT defined by (4.29) is indeed a sub σ-algebra of F and that,
if T ≡ t (a constant), then FT = Ft.

Example 4.2.2 (First entry/hitting time) Let (S,B) be a measurable space and Xt : Ω →
S, t ∈ T be a sequence of r.v.’s. We set

F0
t = σ(Xs : s ∈ T, s ≤ t). (4.30)

Then, (F0
t )t∈T is a filtration, which we refer to in this example. Now, suppose that T ⊂ [0,∞).

For A ∈ B, we define

TA = inf{t ∈ T ; Xt ∈ A}, (4.31)

T+
A = inf{t ∈ T ∩ (0,∞) ; Xt ∈ A}. (4.32)

TA and T+
A are called, the first entry time and the first hitting time. Let us now assume for

simplicity that
every bounded subset of T is a finite set. (4.33)

Then, TA and T+
A are stopping times w.r.t.the filtraiton (4.30). To see this, we observe that

(4.33) implies the following properties.

1) T is at most countable.

2) Any subset of T is closed in R.
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We will then, verify that the following are equivalent for any t ∈ T.

a) ∃s ∈ T ∩ [0, t], Xs ∈ A.

b) TA ≤ t.

Indeed, it is obvious that a) implies b). To show the converse, let UA = {s ∈ T, Xs ∈ A}
so that TA = inf UA by definition. This does not directly mean18 that b) implies a). We will
verify that TA = minUA, which does mean that b) implies a). UA is bounded from below by
definition, and is closed by 2). Moreover, TA < ∞ ⇐⇒ UA 6= ∅. Thus, if TA < ∞, then
TA = inf UA = minUA.

Thanks to the equivalence of a) and b), togeter with the property 1), we have

{TA ≤ t} =
⋃

s∈T∩[0,t]

{Xs ∈ A}
1)
∈ F0

t .

Similarly, {T+
A ≤ t} ∈ F0

t . Therefore, TA and T+
A are stopping times by (4.28).

We summarize some basic properties of stopping times in the following� �
Lemma 4.2.3 Let S, T and Tn (n = 1, 2, ...) be stopping times. Then,

T is FT -measurable, (4.34)

S ≤ T =⇒ FS ⊂ FT , (4.35)

sup
n≥1

Tn(ω) ∈ T ∪ {∞}, ∀ω ∈ Ω =⇒ sup
n≥1

Tn is a stopping time, (4.36)

min
1≤j≤n

Tj (n = 1, 2, ...) are stopping times, (4.37)

FS∧T = FS ∩ FT , (4.38)

{S ≤ t < T}, {S ≤ T ≤ t} ∈ Ft, ∀t ∈ T, (4.39)

{S ≤ T} ∈ FS∧T (4.40)

Moreover, for a r.v. X,

X is FS-measurable =⇒ X1{S≤T} is FS∧T -measurable. (4.41)� �
Proof: (4.34):It is enough to show that A

def
= {T ≤ s} ∈ FT for ∀s ∈ T. We take an arbitrary

t ∈ T to verify the condition (4.29). Then,

A ∩ {T ≤ t} = {T ≤ s ∧ t}
(4.28)
∈ Fs∧t

(4.27)
⊂ Ft.

Hence A ∈ FT .
(4.35): We take an arbitrary A ∈ FS and show that A ∈ FT . Let us take t ∈ T to verify the
condition (4.29). Note that

1) A ∩ {S ≤ t}
(4.29)
∈ Ft and {T ≤ t}

(4.28)
∈ Ft.

18For example, let U = {t+ n−1}n≥1. Then, t = inf U , but U ∩ [0, t] = ∅.
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Since {T ≤ t} = {S ≤ t} ∩ {T ≤ t}, we see that

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t}
1)
∈ Ft.

Hence A ∈ FT by (4.29).
(4.36): By assumption, sup

n∈N
Tn defines a measurable function from Ω to T ∪ {∞}. Moreover,

for all t ∈ T, {
sup
n∈N

Tn ≤ t

}
=
⋂
n∈N

{Tn ≤ t} ∈ Ft.

Hence sup
n∈N

Tn is a stopping time by (4.28).

(4.37): For t ∈ T, {
min
1≤j≤n

Tj ≤ t

}
=

⋃
1≤j≤n

{Tj ≤ t} ∈ Ft.

Hence min
1≤j≤n

Tj is a stopping time by (4.28).

(4.38): The inclusion ⊂ follows from (4.35). To prove the opposite inclusion, we take an
arbitrary A ∈ FS ∩ FT and t ∈ T and verify that A ∩ {S ∧ T ≤ t} ∈ Ft. Since {S ∧ T ≤ t} =
{S ≤ t} ∪ {T ≤ t},

A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t})
(4.28)
∈ Ft.

Thus A ∈ FS∧T by (4.29).
(4.39): As for the first set,

{S ≤ t < T} = {S ≤ t}\{T ≤ t}
(4.28)
∈ Ft.

As for the second, note that S ∧ t is FS∧t-measurable by (4.34) and hence Ft-measurable by
(4.35). Similary T ∧ t is Ft-measurable. These imply that {S ∧ t ≤ T ∧ t} ∈ Ft. Hence,

{S ≤ T ≤ t} = {S ∧ t ≤ T ∧ t} ∩ {S ≤ t} ∩ {T ≤ t} ∈ Ft.

(4.40): We verify that the set A
def
= {S ≤ T} satisfies A ∩ {S ∧ T ≤ t} ∈ Ft for all t ∈ T as

follows.

A ∩ {S ∧ T ≤ t} = {S ≤ T, S ≤ t} = {S ≤ t < T} ∪ {S ≤ T ≤ t}
(4.39)
∈ Ft.

This proves (4.40).
(4.41): Since it is enough to consider the case where X = 1A for some A ∈ FS, we have only
to prove that A ∩ {S ≤ T} ∈ FS∧T for A ∈ FS. Note first that

{S ≤ T}
(4.40)
∈ FS∧T

(4.35)
⊂ FS,

and hence A ∩ {S ≤ T} ∈ FS. On the other hand, FS∧T = FS ∩ FT , by (4.38). Therefore, it
only remains to prove that

2) A ∩ {S ≤ T} ∈ FT .
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To do so, we take an arbitray t ∈ T. Then, A ∩ {S ≤ t}
(4.29)
∈ Ft and {S ≤ T ≤ t}

(4.39)
∈ Ft.

Therefore,
(A ∩ {S ≤ T}) ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {S ≤ T ≤ t} ∈ Ft,

which proves 2) by (4.29). \(∧2
∧)/

Remark Referring to (4.37), it is not true in general that

inf
n≥1

Tn(ω) ∈ T, ∀ω ∈ Ω =⇒ inf
n≥1

Tn is a stopping time. (4.42)

See Example 6.9.5 for a counterexample. On the other hand, (4.42) holds true under either of
the following assumptions.

� The set T consists only of isolated points (To see that this implies (4.42), apply Exercise

4.2.6 to the sequence Sn
def
= min

1≤j≤n
Tj of stopping times).

� T = [0,∞) and the filtration is right-continuous (Exercise 6.9.2).� �
Lemma 4.2.4 Let T = N, or [0,∞). If S and T are stopping times, then, so is S + T .� �

Proof: If T = N and n ∈ N, then

1) {S + T ≤ n} =
n⋃

j=0

{S ≤ j, T ≤ n− j} ∈ Fn.

Hence, S + T is a stopping time by (4.28).
Suppose that T = [0,∞). By (4.28), it is enough to prove that {t < S + T} ∈ Ft for all t ≥ 0.
By dividing the event {t < S+T} into the three possibilities S = 0, 0 < S ≤ t, t < S, we have

{t < S + T} = {S = 0, t < T} ∪ {0 < S ≤ t, t < S + T} ∪ {t < S}.

It is easy to see that, the first, and third events on the right-hand side are in Ft. As for the
second event, we note that for r ∈ (0, t)

{r < S ≤ t, t < r + T} = {r < S ≤ t, t− r < T} ∈ Ft.

Thus,

{0 < S ≤ t, t− S < T} =
⋃
r∈Q

0<r<t

{r < S ≤ t, t < r + T} ∈ Ft.

Hence, {t < S + T} ∈ Ft. See also Exercise 6.9.3 for an alternative proof assuming the
right-continuity of the filtration. \(∧2

∧)/

Exercise 4.2.1 Let S and T be stopping times and let A ∈ FS∧T . Prove then that S1A+T1Ac

is a stopping time.

Exercise 4.2.2 Referring to Example 4.2.2, let U be a stopping time and define

TA,U = inf{t ∈ T ; U ≤ t, Xt ∈ A}.

Assuming (4.33), prove that TA,U is a stopping time.
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Exercise 4.2.3 Let TA be defined by (4.31), An ⊂ S, n ∈ N and A =
⋃

n∈NAn. Prove then
that TA = infn∈N TAn .

Exercise 4.2.4 Referring to Example 4.2.2, suppose that S is a metric space, T = [0,∞),
and that t 7→ Xt(ω) is left-continuous for all ω ∈ Ω. Suppose also that (An)n∈N is a decreasing
sequence of closed subsets of S and that A =

⋂
n∈NAn. Prove then that TA = supn∈N TAn .

Exercise 4.2.5 Let Tn (n ∈ N) be stopping times and suppose that, for each ω ∈ Ω, there

exists m = m(ω) ∈ N such that Tn = Tm for all n ≥ m. Then, prove that T
def
= lim

n→∞
Tn is a

stopping time. Hint: Note that Ω =
⋃
m∈N

Am, where Am =
⋂
n≥m

{Tn = Tm} and that T = Tm on

Am. Therefore, it is enough to show that Am ∩ {Tm ≤ t} ∈ Ft for all t ∈ T.

Exercise 4.2.6 Let Tn (n ∈ N) be stopping times. Suppose that the set T consists only of
isolated points and that, for all ω ∈ Ω, T (ω) = limn→∞ Tn(ω) exists and belongs to T. Then,
prove that T is a stopping time. Hint: Check that the assumption for Exercise 4.2.5 is satisfied.

4.3 Martingales, Definition and Examples

Throughout this section, we assume that

� (Ω,F , P ) is a probability space and T ⊂ R;

� (Ft)t∈T is a filtration, cf. Definition 4.2.1;

� X = (Xt)t∈T is a sequence of real r.v.’s defined on (Ω,F , P ).

Definition 4.3.1 Referring to the notation introduced at the beginning of this section, X =
(Xt,Ft)t∈T is called a martingale if the following hold true.

� (adapted) Xt is Ft-measurable for all t ∈ T;

� (integrable) Xt ∈ L1(P ) for all t ∈ T;

� (martingale property)

E[Xt|Fs] = Xs a.s. if s, t ∈ T and s < t. (4.43)

If the equality in (4.43) is replaced by ≥ (resp. ≤), X is called a submartingale (resp. super-
martingale ).

Remark When we simply say that (Xt)t∈T is a martingale, it means that (Xt,Ft)t∈T is a
martingale for some filtration (Ft)t∈T. This applies similarly to submartingales and super-
martingales.

Example 4.3.2 a) If t 7→ Xt is a non random function of t, then it is a submartingale (resp.
supermartingale) iff it is nondecreasing (resp. nonincreasing).

b) Let Y ∈ L1(P ). Then, the process defined by Xt = E[Y |Ft], t ∈ T is a martingale.
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c) Let F∞ = σ (Ft, t ∈ T), Q be a signed measure on (Ω,F∞), and Pt = P |Ft , Qt = Q|Ft .

Suppose that Qt � Pt for all t ∈ T. Then, Xt
def
= dQt

dPt
, t ∈ T is a martingale.

Proof: a) Obvious.
b) It follows from the definition of the conditional expectation that (Xt)t∈T is adapted and
integrable. Moreover, let s, t ∈ T, s < t and A ∈ Fs. Then,

E[Xt|Fs] = E[E[Y |Ft]|Fs]
(4.18)
= E[Y |Fs] = Xs.

Hence, (Xt)t∈T is a martingale.
c) Xt is Ft-measurable and Xt ∈ L1(P ). Let s, t ∈ T, s < t and A ∈ Fs. Then, since A ∈ Ft,

E[Xt : A] = Qt(A) = Q(A) = Qs(A) = E[Xs : A].

Thus, E[Xt|Fs] = Xs, a.s. \(∧2
∧)/

Remark: Example 4.3.2 b) is a special case of c), where Q(A) = E[Y : A]. One might then
ask:

For all martingale (Xt)t∈T, does there exist a signed measure Q such that

Qt � Pt and Xt =
dQt

dPt
for all t ∈ T?

See Proposition 4.7.1 below for the answer.� �
Lemma 4.3.3 Let X = (Xt,Ft)t∈T be a submartingale and φ : R → R be a convex
function such that φ(Xt) ∈ L1(P ) for all t ∈ T. Then, (φ(Xt),Ft)t∈T is a submartingale
if either φ is increasing or X is a martingale.� �

Proof: Let s, t ∈ T, s < t. We will prove that

1) E[φ(Xt)|Fs] ≥ φ(Xs) a.s.

By Proposition 4.1.10,

2) E[φ(Xt)|Fs] ≥ φ(E[Xt|Fs]) a.s.

If φ is increasing, then 2) implies 1), since E[Xt|Fs] ≥ Xs, a.s. If X is a martingale, then
2) implies 1) again, since E[Xt|Fs] = Xs, a.s. Therefore, (φ(Xt),Ft)t∈T is a submartingale in
both cases. \(∧2

∧)/

Remark: For a submartingaleX = (Xt,Ft)t∈T and a convex function φ : R → R, (φ(Xt),Ft)t∈T
is not necessarily a submartingale. In fact, let t 7→ Xt be a non random, strictly increasing
positive function and φ(x) = 1/x. Then, X is a submartingale (Example 4.3.2 a)) and φ is
convex. However, φ(Xt) = 1/Xt is not a submartingale, since it is a non random, strictly
decreasing function.

In what follows, we consider the case of T = N. For r.v.’s Xn, n ∈ N, we set

∆Xn = Xn −Xn−1, n ≥ 1. (4.44)
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� �
Lemma 4.3.4 Suppose that X = (Xn,Fn)n∈N is adapted, integrable. Then, the following
are equivalent.

X is a martingale; (4.45)

E[Xn+1|Fn] = Xn, a.s. for all n ∈ N; (4.46)

E[∆Xn+1|Fn] = 0, a.s. for all n ∈ N. (4.47)

Moreover, submartingale (resp. supermartingale) are characterized by similar conditions
as (4.46) and (4.47) with equalities replaced by ≥ (resp. ≤).� �

Proof: (4.45) =⇒ (4.46) ⇐⇒(4.47): Obvious.
(4.47) ⇒ (4.45): Let m,n ∈ N, m < n. Since Xn −Xm =

∑n−1
j=m ∆Xj+1, we have

E[Xn|Fm]−Xm = E[Xn −Xm|Fm] =
n−1∑
j=m

E[∆Xj+1|Fm]

(4.18)
=

n−1∑
j=m

E[E[∆Xj+1|Fj]|Fm]
(4.47)
= 0 a.s.

The case of submartingale (resp. supermartingale) can be treated similarly. \(∧2
∧)/

As a direct consequence of the preceeding lemma, we have

Example 4.3.5 (summation of conditionally mean-zero r.v’s) Let (ξn,Fn)n∈N be adapted,
integrable. We define X = (Xn,Fn)n∈N by

Xn =
n∑

j=0

ξj.

Then,
E[ξn+1|Fn] = 0 a.s. for n ∈ N ⇐⇒ X is a martingale. (4.48)

Moreover,

E[ξn+1|Fn] ≥ 0 (resp. ≤ 0) a.s. ⇐⇒ X is a submartingale (resp. supermartingale). (4.49)

Example 4.3.6 (product of conditionally mean-one r.v’s) Let (ξn,Fn)n∈N be adapted,
integrable. We define X = (Xn,Fn)n∈N by

Xn =
n∏

j=0

ξj.

We assume that Xn ∈ L1(P ) for all n ∈ N. Then,

E[ξn+1|Fn] = 1 a.s. for n ∈ N =⇒ X is a martingale. (4.50)

The converse is true if Xn 6= 0 a,s. for n ∈ N.
Suppose in addition that ξn ≥ 0 a.s. for all n ∈ N. Then,

E[ξn+1|Fn] ≥ 1 (resp. ≤ 1) a.s. =⇒ X is a submartingale (resp. supermartingale). (4.51)

The converse is true if Xn 6= 0 a,s. for n ∈ N.
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Proof: Before go into (4.50), let us observe the consequence of the preamble. X is adapted by
the definition and is integrable by the assumption. Let n ∈ N. Since Xn+1 = Xnξn+1, we have

1) E[Xn+1|Fn] = XnE[ξn+1|Fn].

(4.50) (⇒) The right-hand side of 1) is = Xn a.s., if E[ξn+1|Fn] = 1, a. s.
(4.50) (⇐) If X is a martingale, then, it follows from 1) that Xn = XnE[ξn+1|Fn] a.s. Thus,
1 = E[ξn+1|Fn] a.s. if Xn 6= 0 a,s.
Proofs of (4.51) and its converse are similar. \(∧2

∧)/

Remark: Referring to Example 4.3.6 a), suppose that ξ0, ξ1, ... are independent, Fn =

σ(ξ0, . . . , ξn), n ∈ N and Eξn = 1, n ≥ 1. Then, E[ξn+1|Fn]
(4.12)
= Eξn+1 = 1 a.s. for

n ∈ N. Hence X is a martingale.

(⋆) Complement to section 4.3: Analogy between martingales and harmonic fnc-
tions Let us briefly review some basic properties of harmonic function on the open unit disc
D ⊂ C.

Soppose that a function u : D → R is Borel measurable and locally bounded. u is called
harmonic if

1

2π

∫ π

−π

u(a+ reiθ)dθ = u(a), (4.52)

whenever a + rD ⊂ D (a ∈ D, r ∈ (0, 1)). Similarly u is called subharmonic (resp. superhar-
monic) if the equality in the definition (4.52) is replaced by the inequality≥ (resp. ≤). Suppose
in particular that u ∈ C2(D). Then u is harmonic (resp. subharmonic, superharmonic) if and
only if (

∂2

∂x2
+

∂2

∂y2

)
u = 0 resp. (≥ 0, ≤ 0) on D.

cf. [MP10, p.65, Theorem 3.2].
In what follows, we identify the unit circle S1 with the interval (−π, π], equipped with the

Borel σ-algebra and the normalized Lebesgue measure. For 0 < r ≤ 1 and a Borel measurable
and integrable function f : S1 → R, we define the Poisson integral Hrf : rD → R by

(Hrf)(z) =

{
1
2π

∫ π

−π
h(z, reiφ)f(eiφ)dφ, if z ∈ rD,

f(σ), if z = rσ, σ ∈ S1,
(4.53)

where h(z, w) denotes the Poisson kernel:

h(z, w) = Re
w − z

w + z
=

|w|2 − |z|2

|w − z|2
. (4.54)

It is easy to see that for z ∈ rD and w ∈ rS1,

0 ≤ h(z, w) ≤ r + |z|, 1

2π

∫ π

−π

h(z, reiθ)dθ = 1. (4.55)

Therefore, the function z 7→ Hrf(z) on the the disc rD is well-defined and is obtained by
averaging f : S1 → R by the probability measure 1

2π
h(z, reiθ)dθ. It is known that

Hrf is continuous on rD, harmonic on rD. (4.56)
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cf. [Rud87, p.112, 5.25]. For 0 < r ≤ 1, and a Borel measurable function u : rD → R, let
ur : S1 → R be defined by ur(σ) = u|rS1(rσ). Then,

If u ∈ C(rD) is harmonic on rD, then Hrur = u on rD. (4.57)

If u ∈ C(rD) is subharmonic (resp. superharmonic) on rD, then Hrur ≥ u

(resp. Hrur ≤ u) on rD. (4.58)

cf. [Rud87, p.112, 5.25, p.234, 11.8, p.338, 17.9].
If u ∈ C(D) is harmonic on D, then, it follows from (4.57) that

(Htut)s = us 0 ≤ s < t < 1,

This can be thought of as an analogy of the martingale property E[Xt|Fs] = Xs (0 ≤ s < t).
Similarly, if u ∈ C(D) is subharmonic (resp. superharmonic) on D, then, it follows from (4.58)
that

(Htut)s ≥ us (resp. (Htut)s ≤ us) if 0 ≤ s < t < 1.

This can be thought of as an analogy of the submartingale (resp. supermartingale) property
E[Xt|Fs] ≥ Xs (resp. E[Xt|Fs] ≤ Xs).

Exercise 4.3.1 Let (Xt,Ft)t∈T be a martingale, s, t ∈ T, s < t. Suppose that a r.v. Y is Fs-
measurable and thatXtY ∈ L1(P ). Prove then thatXsY ∈ L1(P ) and that E[XtY ] = E[XsY ].

Exercise 4.3.2 Let s, t ∈ T, s < t. Prove the following. i) If (Xt)t∈T is a nonnegative
supermartingale, then, Xt = 0 a.s. on {Xs = 0}. ii) If (Xt)t∈T is a nonnegative submartingale
and Xt = 0 a.s. then, Xs = 0 a.s. [Here, it is not true in general that Xs = 0 a.s. on {Xt = 0}.
For example, consider a nonnegative submartingale Xn = |Sn|, where Sn is a simple random
walk with S0 ≡ 0. Then, {X2n = 0} ⊂ {X2n−1 = 1} for n ≥ 1.]

Exercise 4.3.3 Let (Yt,Ft)t∈T be a martingale, a ∈ T, and Zt, t ∈ T ∩ (−∞, a] be Fa-
measurable r.v.’s. Suppose that Yt = 0 for t ≤ a, and that YtZa ∈ L1(P ) for t ≥ a. Prove then
that Xt = YtZt∧a is a martingale. [Hint: Prove (4.43) separately for s ≤ a and for s ≥ a.]

Exercise 4.3.4 Let ξ1, ξ2, ... ∈ L1(P ) be mean-zero, independent, F0 = {∅,Ω}, and Fn =

σ(ξ1, ..., ξn), n ≥ 1. For k ∈ N\{0}, prove that (X(k)
n ,Fn)n∈N defined as follows is a martingale.

X
(k)
0 = 0, X(k)

n =
∑

1≤j1<...<jk≤n

ξj1 · · · ξjk , n ≥ 1.

Exercise 4.3.5 Let X0, ξn, ηn ∈ L1(P ), n ∈ N\{0} be such that Eξn = 0, Eηn = 1 for
all n ∈ N\{0} and that X0, ζ1, ζ2, ... are independent, where ζn = (ξn, ηn). We define Xn,
n ∈ N\{0} by Xn = ξn + ηnXn−1 for n ≥ 1. Then, prove that (Xn,Fn)n∈N is a martingale,
where Fn = σ(X0, ζ1, ..., ζn).

Exercise 4.3.6 Suppoese that Xt (t ≥ 0) is a nonnegative submartigale and b ∈ (0,∞).
Then, prove that (Xt)t≤b is uniformly integrable.
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4.4 Discrete Stochastic Integral

Definition 4.4.1 A sequence of r.v.’s H = (Hn)n∈N is said to be predictable if Hn is Fn−1-
measurable for all n ≥ 1.

� �
Proposition 4.4.2 For sequences X = (Xn)n∈N, H = (Hn)n≥1 of r.v.’s, we define H ·X =
((H ·X)n)n∈N by

(H ·X)0 = 0 and (H ·X)n =
n∑

j=1

Hj∆Xj for n ≥ 1. (4.59)

cf. (4.44). Suppose that H is predictable and that Hn∆Xn ∈ L1(P ) for n ≥ 1.

a) If X is a martingale w.r.t. (Fn)n∈N, then, so is H ·X.

b) Suppose that Hn ≥ 0 a.s. for all n ≥ 1. If X is a submartingale (resp. supermartingale)
w.r.t. (Fn)n∈N, then, so is H ·X.

The process H ·X is called the the discrete stochastic integral of H by X.� �
Proof: H · X is adapted by the definition and is integrable by the assumption. Let n ∈ N.
Since ∆(H ·X)n+1 = Hn+1∆Xn+1 and Hn+1 is Fn-measurable, we have

1) E[∆(H ·X)n+1|Fn] = Hn+1E[∆Xn+1|Fn].

The right-hand side of 1) is = 0 a.s., if X is a martingale. Suppose that Hn ≥ 0 a.s. for all
n ≥ 1. Then, the right-hand side of 1) is ≥ 0 (resp. ≤ 0) a.s., if X is a submartingale (resp.
supermartingale). Thus, we obtain a) and b) by Lemma 4.3.4. \(∧2

∧)/

The following corollary to Proposition 4.4.2 will be applied to proof of the upcrossing
inequality (Lemma 5.1.6), which is a key lemma for the martingale convergence theorem (The-
orem 5.1.1).� �
Corollary 4.4.3 Suppose that X = (Xn)n∈N is a submartingale and that H = (Hn)n≥1,
K = (Kn)n≥1 are predictable, Hn∆Xn, Kn∆Xn ∈ L1(P ), Hn ≤ Kn a.s., ∀n ≥ 1. Then,

E(H ·X)n ≤ E(K ·X)n, ∀n ∈ N. (4.60)

If X is replaced by a supermartingale, then the inequality ≤ in (4.60) is replaced by ≥.� �
Proof: (K −H) ·X is a submartingale by Proposition 4.4.2. Thus,

E(K ·X)n − E(H ·X)n = E((K −H) ·X)n ≥ E((K −H) ·X)0 = 0.

\(∧2
∧)/
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� �
Corollary 4.4.4 (stopped processes) Let S and T be stopping times w.r.t. (Fn)n∈N
such that S(ω) ≤ T (ω) for all ω ∈ Ω. If X = (Xn,Fn)n∈N is a submartingale (resp.
supermartingale), then, so is

(XT∧n −XS∧n,Fn)n∈N.

In particular, taking S ≡ 0, (XT∧n,Fn)n∈N is a submartingale (resp. supermartingale).� �
Proof: Let Hn = 1{S < n ≤ T}. Then, Hn, n ≥ 1 is predictable, since,

{S < n ≤ T} = {S ≤ n− 1}\{T ≤ n− 1} ∈ Fn−1.

Thus, H ·X is a submartingale by Proposition 4.4.2. Moreover, for n ≥ 1,

(H ·X)n =
n∑

j=1

1{S<j≤T}∆Xj =
n∑

j=1

1{j≤T}∆Xj −
n∑

j=1

1{j≤S}∆Xj

=
T∧n∑
j=1

∆Xj −
S∧n∑
j=1

∆Xj = XT∧n −XS∧n.

\(∧2
∧)/

4.5 Hitting Times for One-dimensional Random Walks

Let ξn, n ∈ N\{0} be i.i.d. such that ξn = 0,±1 with probabilities, p0, p±, respectively, where
p0 ≥ 0, p± > 0, p0 + p+ + p− = 1. We define (Sn)n∈N by

S0 = 0, Sn+1 = Sn + ξn+1, n ∈ N.

We consider a filtration defined by F0 = {∅,Ω} and Fn = σ(ξ1, ..., ξn) for n ≥ 1. In this
subsection, we investigate the following stopping time.

Ta = inf{n ≥ 0 ; Sn = a} a ∈ Z.

For this purpose, we introdce the following function.

g(s, t)
def
= stEtξ1 − t = p+st

2 − (1− p0s)t+ p−s, for s > 0 and t ∈ R. (4.61)

As for the discriminant of the quadratic function t 7→ g(s, t), we have

δ(s)
def
= (1− p0s)

2 − 4p+p−s
2 ≥ 0 for s ∈ (0, s∗],

where

s∗ =
1

2
√
p+p− + p0

{
> 1, if p+ 6= p−,
= 1, if p+ = p−.

(4.62)

For s ∈ (0, s∗], we define

f±(s) =
1− p0s−

√
δ(s)

2p±s
. (4.63)

Then, for any fixed s ∈ (0, s∗], the equation g(s, t) = 0 has real solutions

t = f+(s) and t =
1− rs+

√
δ(s)

2p+s
= f−(s)

−1.
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Let us quickly collect some information on f±(s), which we will need. To do so, it is enough to
look at f+(s) only, since f±(s) are essentially the same, with only the roles of p± interchanged.
The function f+ is differentiable on (0, s∗) and

f ′
+(s) =

f+(s)

s
√
δ(s)

, s ∈ (0, s∗). (4.64)

This can be computed for example as follows. Since g(s, f+(s)) ≡ 0, we have

0 =
d

ds
g(s, f+(s)) =

∂g

∂s
(s, f+(s)) +

∂g

∂t
(s, f+(s))f

′
+(s)

= p+f+(s)
2 + p0f+(s) + p− + (2p+sf+(s)− (1− p0s))f

′
+(s)

= f+(s)/s−
√
δ(s)f ′

+(s).

By (4.64), the functions f+ behave as we summarize in the following table.

s 0 ↗ 1 ↗ s∗
f+(s) 0 ↗ (p−/p+) ∧ 1 ↗ (p−/p+)

1/2

In particular, we note that

f+(s) < f+(1) = (p−/p+) ∧ 1, for all s ∈ (0, 1). (4.65)

� �
Lemma 4.5.1 Let 0 < s ≤ s∗, t > 0, and Xn = tSnsn, n ∈ N. Then,

a) (Xn)n∈N is a

{
supermartingale if t ∈ [f+(s), f−(s)

−1],
submartingale if t 6∈ (f+(s), f−(s)

−1).
In particular, the following

processes are martingales.

X±(n)
def
= f±(s)

±Snsn, n ∈ N. (4.66)

b) Suppose that T is a stopping time such that (X±(n ∧ T ))n∈N is bounded, and X±(n ∧
T )

n→∞−→ Y±, a.s. for some r.v Y±. Then,

EY± = 1. (4.67)� �
Proof: a) We compute

Xn+1 −Xn = tSn+ξn+1sn+1 − tSnsn = tSn−1sn(tξn+1+1s− t).

Since ξn+1 is independent of Fn, we have

E[Xn+1|Fn]−Xn
(4.12)
= tSn−1sn(stE[tξn+1 ]− t)

= tSn−1sn(p+st
2 + p−s+ p0st− t) = tSn−1sng(s, t).

Note that

g(s, t)

{
≤ 0 if t ∈ [f−(s)

−1, f+(s)],
≥ 0 if t 6∈ (f−(s)

−1, f+(s)).
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Therefore, we arrive at the conclusion via Lemma 4.3.4.
b) By a) and Corollary 4.4.4, X±(n ∧ T ), n ∈ N are martingales, so that

EX±(n ∧ T ) = EX±(0) = 1.

Then, (4.67) follows from BCT. \(∧2
∧)/� �

Corollary 4.5.2 Let φ : Z → R be defined by φ(x) = x if p+ = p− and φ(x) = (p−/p+)
x

if p+ 6= p−. Then, (φ(Sn),Fn)n∈N is a martingale.� �
Proof: If p+ = p−, then φ(Sn) = Sn is a martingale, since it is the summation of mean-zero
i.i.d ξn. If p+ 6= p−, then

(p−/p+)
(4.65)
=

{
f+(1) if p+ > p+,
f−(1)

−1 if p+ < p−.

Therefore,

φ(Sn) = (p−/p+)
Sn =

{
f+(1)

Sn if p+ > p+,
f−(1)

−Sn if p+ < p−,

which is a martingale by Lemma 4.5.1. \(∧2
∧)/� �

Proposition 4.5.3 a For a ∈ N\{0} and 0 < s < 1,

EsTa = f−(s)
a, EsT−a = f+(s)

a, (4.68)

P (Ta <∞) = ((p+/p−) ∧ 1)a, P (T−a <∞) = ((p−/p+) ∧ 1)a. (4.69)

with the convention that s∞ = 0. Moreover, if p+ < p−, then

ET−a = E[Ta|Ta <∞] =
a

p− − p+
. (4.70)

On the other hand, if p+ = p−, then

ET−a = ETa = ∞. (4.71)

aSee also Exercise 3.7.1, Exercise 3.3.3, and Exercise 3.4.3� �
Proof: (4.68): To prove the first equality, note that S(n ∧ Ta) ≤ a, and that

1 ≤ (p+/p−) ∨ 1
(4.65)
< f−(s)

−1.

Thus,
0 ≤ X−(n ∧ Ta) ≤ f−(s)

−S(n∧Ta) ≤ f−(s)
−a.

If Ta <∞, then, S(n ∧ Ta)
n→∞−→ S(Ta) = a, and hence,

X−(n ∧ Ta) = f−(s)
−S(n∧Ta)sn∧Ta n→∞−→ f−(s)

−asTa .

On the other hand, if Ta = ∞, then, 0 ≤ f−(s)
−Sn ≤ f−(s)

−a, ∀n ∈ N, and hence

X−(n ∧ Ta) = f−(s)
−Snsn

n→∞−→ 0 = f−(s)
−asTa .
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We now apply (4.67) to X− and T = Ta:

1 = f−(s)
−aEsTa .

This proves the first equality. The second equality is obtained in the same way.
(4.69): We have for any r.v. T : Ω → [0,∞] that

lim
s→1
s<1

EsT = P (T <∞).

Thus, we see (4.69) from (4.65) and (4.68).

(4.70), (4.71): We compute the limits f ′
−(1−)

def
= lim

s→1
s<1

f ′
−(s). We see from (4.64) and (4.65) that

1) f ′
−(1−) =


1

p+−p−
if p+ > p−,

1
p−−p+

· p+
p−

if p+ < p−,

∞ if p+ = p−.

It follows from (4.68) and Exercise 1.1.6 that

E[Ta : Ta <∞] = lim
s→1
s<1

d

ds
EsTa

(4.68)
= lim

s→1
s<1

d

ds
f+(s)

−a

= af−(1)
−a−1f ′

−(1−)
1), (4.65)

=
a

p− − p+

(
p+
p−

)a

.

Since P (Ta < ∞) = (p+/p−)
a by (4.69), we obtain the second equality of (4.70). The other

equalities can be obtained in the same way. \(∧2
∧)/

Remark (i) See Exercise 3.3.3 and Exercise 3.7.1 for alternative proofs for (4.69). (ii) If
p+ < p−, the validity of the first identity of (4.68) extends to all s ∈ (0, s∗] (cf. (4.62)). In
particular, T−a is exponentially integrable. To see this, we note that Xn = f−(s∗)

−Snsn∗ is a

martingale by Lemma 4.5.1. Thus Es
T−a
∗ ≤ f−(s∗)

−a by Exercise ??. This implies that EsT−a

for s ∈ C, |s| < s∗ can be expressed as an absolutely converging power seris. Therefore, by
the unicity theorem, the first identity of (4.68) extends to all s ∈ (0, s∗). Finally, the case of
s = s∗ is obtained by the monotone convergence theorem.� �
Corollary 4.5.4 Suppose that p+ < p−. Then, the following r.v. is geometrically dis-
tributed with parameter p+/p−.

M
def
= max

n∈N
Sn.� �

Proof: P (M ≥ a) = P (Ta <∞)
(4.69)
= (p+/p−)

a. \(∧2
∧)/
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� �
Proposition 4.5.5 a For a, b ∈ N\{0} and s ∈ (0, 1],

E[sT−a : T−a < Tb] =
f−(s)

−b − f+(s)
b

f+(s)−af−(s)−b − f+(s)bf−(s)a
, (4.72)

E[sTb : Tb < T−a] =
f+(s)

−a − f−(s)
a

f+(s)−af−(s)−b − f+(s)bf−(s)a
. (4.73)

In particular, if p+ < p−, then as special cases of (4.72) and (4.73) with s = 1,

P (T−a < Tb) =
(p−/p+)

b − 1

(p−/p+)b − (p−/p+)−a
, P (Tb < T−a) =

1− (p−/p+)
−a

(p−/p+)b − (p−/p+)−a
. (4.74)

On the other hand, if p+ = p−, then

P (T−a < Tb) =
b

a+ b
, P (Tb < T−a) =

a

a+ b
. (4.75)

aSee also Exercise 3.4.5.� �
Proof: (4.72) and (4.73): As in the proof of Proposition 4.5.3, we consider the martingales
(4.66). This time, we take T = T−a ∧ Tb. Then,

1) 0 ≤ X−(n ∧ T ) ≤ f−(s)
−S(n∧T ) ≤ f−(s)

−b, 0 ≤ X+(n ∧ T ) ≤ f+(s)
S(n∧T ) ≤ f+(s)

a.

We now note that

2) T−a 6= Tb a.s.

This can be seen as follows. If T−a = Tb < ∞, then, −a = S(T−a) = S(Tb) = b, which is
impossible. Hence, {T−a = Tb <∞} = ∅. On the other hand, we see from (4.69) that

p+ ≤ p− =⇒ P (T−a <∞) = 1, p+ ≥ p− =⇒ P (Tb <∞) = 1.

Thus, P (T−a = Tb = ∞) = 0.
It follows from 2) that almost surely,

3)

{
X+(n ∧ T ) = X+(n ∧ T−a)1{T−a < Tb}+X+(n ∧ Tb)1{Tb < T−a}

n→∞−→ f+(s)
−asT−a1{T−a < Tb}+ f+(s)

bsTb1{Tb < T−a}.

4)

{
X−(n ∧ T ) = X−(n ∧ T−a)1{T−a < Tb}+X−(n ∧ Tb)1{Tb < T−a}

n→∞−→ f−(s)
asT−a1{T−a < Tb}+ f−(s)

−bsTb1{Tb < T−a}.

Now, by applying (4.67), we have

1 = f+(s)
−aE[sT−a : T−a < Tb] + f+(s)

bE[sTb : Tb < T−a],

1 = f−(s)
aE[sT−a : T−a < Tb] + f−(s)

−bE[sTb : Tb < T−a]

from which we obtain (4.72) and (4.73).
(4.75): This follows easily from the above argument applied to the (much simpler) martingale
Sn, instead of X±(n). \(∧2

∧)/
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� �
Corollary 4.5.6 Suppose that p− ≥ p+. Then, the law of the r.v.

Z
def
= max

n≤T−a

Sn

(Note that T−a <∞ a.s. by (4.69)) is given by

P (Z ≥ b) =

{
1−(p−/p+)−a

(p−/p+)b−(p−/p+)−a if p+ < p−,

a/(a+ b) if p+ = p−.
(4.76)

In particular,

EZ =
∞∑
b=1

P (Z ≥ b)

{
<∞ if p+ < p−,
= ∞ if p+ = p−.� �

Proof: P (Z ≥ b) = P (Tb < T−a)
(4.74),(4.75)

= the right-hand side of (4.76). \(∧2
∧)/

Exercise 4.5.1 Let χn = 1{Sn=0}. Then, prove the following.
(i) ∆|Sn| = χn−1|ξn| + (1 − χn−1)(ξnSn−1/|Sn−1|) for n ≥ 1, cf. (4.44). (ii) If p+ = p−, then
|Sn| − (1− p0)

∑n−1
j=0 χj, n ∈ N is a martingale. Hint: Proposition 4.6.2.

Exercise 4.5.2 Prove that

E[T−a ∧ Tb] =

{
b(p+/p−)−a+a(p+/p−)b−(a+b)

(p−−p+)((p+/p−)−a−(p+/p−)b)
if p+ < p−,

= ab
1−p0

if p+ = p−.

[Hint: For p+ < p−, use the martingale Sn − (p+ − p−)n, and for p+ = p−, use the martingale
S2
n − (1− p0)n.]

Remark By Proposition 4.5.7 below, T−a ∧ Tb is exponentially integrable, whenever p0 < 1.

Exercise 4.5.3 (Position of the first decrease by length ℓ) Let s ∈ (0, 1], Mn =
max0≤j≤n Sj, and

Xn = (p− + (1− s)p+(Mn − Sn))s
Mn .

Prove the following.
i) E[Xn+1|Fn] = Xn + (1 − s)p+(p− − p+)s

Mn1{Mn > Sn}, n ∈ N. As a consequence,
(Xn,Fn)n∈N is a submartingale (resp. supermartingale) if p+ ≤ p− (resp. p+ ≥ p−).

ii) If p+ ≤ p−, and a ∈ N\{0}, then T def
= inf{n ≥ 0 ; Mn − Sn = ℓ} <∞ a.s. and

EsMT ≥ p−
p− + (1− s)p+ℓ

.

In particular, if p+ = p−, then the above inequality becomes an equality, which implies that
the r.v. MT + 1(= ST + ℓ + 1) is geometrically distributed with parameter 1/(a + 1). See
Example 7.6.4 for an analogy in the case of the Brownian motion.

(⋆) Complement to section 4.5
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Let (ξn)n≥1 be i.i.d. with values in Zd such that P (ξ1 = 0) 6= 1. We define (Sn)n∈N by

S0 = 0, Sn+1 = Sn + ξn+1, n ∈ N.

For x ∈ Zd and A ⊂ Zd, we set

T (x,A) = inf{n ≥ 1 ; x+ Sn ∈ A}.� �
Proposition 4.5.7 (Exit time from a finite set) For a finite set A ⊂ Zd, there is an
ε > 0 such that

E exp (εT (x,Ac)) <∞ for all x ∈ A. (4.77)� �
Proof: We first pick z 6= 0 such that α

def.
= P (ξ1 = z) > 0. Since A− A = {x− x′ ; x, x′ ∈ A}

is a finite set, there exists m ∈ N\{0} such that mz 6∈ A − A. We then set β = 1 − αm < 1.
We will prove by induction that

1) sup
x∈A

P (T (x,Ac) > km) ≤ βk, k = 1, 2, . . . .

We begin with k = 1.

P (T (x,Ac) ≤ m) ≥ P (x+ Sm 6∈ A)

≥ P (Sm 6∈ A− A)

≥ P (Sm = mz)

≥ P (X1 = . . . = Xm = z) = αm.

This proves 1) for k = 1. We now suppose 1) for some k. Then,

P (T (x,Ac) > (k + 1)m) ≤
∑
y∈A

P (T (x,Ac) > km, x+ Skm = y, T̃ (y, Ac) > m),

where
T̃ (y, Ac) = inf{n ≥ 1 ; y + Sn+km − Skm ∈ Ac}.

Let F0 = {∅,Ω} and Fn = σ(ξ1, ..., ξn) for n ≥ 1. Then,

2) {T (x,Ac) > km, x+ Skm = y} ∈ Fkm,

3) T̃ (y, Ac) is independent of Fkm,

4) T̃ (y, Ac) has the same distribution as T (y, Ac).

Thus, we have∑
y∈A

P (T (x,Ac) > km, x+ Skm = y, T̃ (y, Ac) > m)

=
∑
y∈A

P (T (x,Ac) > km, x+ Skm = y)P (T (y, Ac) > m) by 2),3),4)

≤ β
∑
y∈A

P (T (x,Ac) > km, x+ Skm = y) by 1) for k = 1,

= βP (T (x,Ac) > km)

≤ βk+1 by the induction hypothesis.
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This completes the induction and proves 1).
Now, 1) can be used to prove that there are C > 0 and ε > 0 such that

P (T (x,Ac) > n) ≤ C exp(−εn), for all n ≥ 1,

which proves (4.77) (cf. Exercise 1.1.3). \(∧2
∧)/

4.6 Quadratic variation and discrete stochastic integrals� �
Lemma 4.6.1 Let X = (Xn,Fn)n∈N be a predictable martingale. Then, Xn ≡ X0, a.s.,
∀n ∈ N.� �

Proof: Since Xn+1 is Fn-measurable, we have

Xn
(4.43)
= E[Xn+1|Fn]

(4.10)
= Xn+1.

Thus, we arrive at the conclusion by induction. \(∧2
∧)/
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� �
Proposition 4.6.2 Let X = (Xn,Fn)n∈N, Y = (Yn,Fn)n∈N be adapted, integrable.

a) There exists a unique predictable, integrable process A = (An)n∈N with A0 ≡ 0 such that

M
def
= (Xn − An,Fn)n∈N

is a martingale. Moreover, An for n ≥ 1 is given by

An =
n∑

j=1

E[∆Xj|Fj−1]. (4.78)

The processes M and A are called respectively the martingale part and the pre-
dictable part of X.

b) Suppose that XmYn ∈ L1(P ) for all m,n ∈ N. Then, there exists a unique predictable,
integrable process 〈X,Y 〉 = (〈X,Y 〉n)n∈N with 〈X,Y 〉0 ≡ 0 such that

M̃
def
= (XnYn − 〈X,Y 〉n,Fn)n∈N

is a martingale. Moreover, 〈X,Y 〉n for n ≥ 1 is given by

〈X,Y 〉n =
n∑

j=1

E[∆(XjYj)|Fj−1]. (4.79)

Suppose in particular that X and Y are martingales. Then,

〈X,Y 〉n =
n∑

j=1

E[∆Xj∆Yj|Fj−1], n ≥ 1. (4.80)

The process 〈X,Y 〉 is called the bracket of X and Y . In particular, when X = Y ,

the process 〈X 〉 def
= 〈X,X 〉 is called the quadratic variation of X.� �

Proof: a) We first verify the uniqueness of A. If both A and A′ are such processes, then,

Mn
def
= Xn − An and M ′

n
def
= Xn − A′

n are martingales and Mn −M ′
n = A′

n − An. Thus, by
Lemma 4.6.1, An − A′

n ≡ A0 − A′
0 = 0 for all n ∈ N.

Next, let Mn = Xn − An, where A0 ≡ 0 and An for n ≥ 1 is given by (4.78). Since

∆Mn+1 = ∆Xn+1 − E[∆Xn+1|Fn], n ∈ N,

we have E[∆Mn+1|Fn] = 0, a.s. Thus, M is a martingale by Lemma 4.3.4.
b) This is a special case of a) in which Xn is replaced by XnYn. If X,Y are martingales, then,

E[∆Xj∆Yj|Fj−1]
(4.44)
= E[XjYj −Xj−1Yj −XjYj−1 +Xj−1Yj−1|Fj−1]

= E[XjYj|Fj−1]−Xj−1E[Yj|Fj−1]− Yj−1E[Xj|Fj−1] +Xj−1Yj−1

(4.43)
= E[XjYj|Fj−1]−Xj−1Yj−1

(4.44)
= E[∆(XjYj)|Fj−1].

This implies (4.80). \(∧2
∧)/

143



Remark: By Proposition 4.6.2 a), any adapted, integrable process X is decomposed into a
martingale M and a predictable process A. This decomposition is called the Doob’s decom-
position.� �
Corollary 4.6.3 Suppose that X = (Xn,Fn)n∈N and Y = (Yn,Fn)n∈N are martingales
such that XmYn ∈ L1(P ) for all m,n ∈ N. Then,

E[XmYn] = E[X0Y0] + E〈X,Y 〉m∧n, m, n ∈ N. (4.81)� �
Proof: Suppose for example that m ≤ n. Then,

1) E[XmYn] = E[E[XmYn|Fm]]
(4.19)
= E[XmE[Yn|Fm]]

(4.43)
= E[XmYm].

On the other hand, since M̃n = XnYn − 〈X,Y 〉n is a martingale, we have

2) E[XmYm]− E〈X,Y 〉m = EM̃m = EM̃0 = E[X0Y0]

By 1) and 2),
E[XmYn] = E[X0Y0] + E〈X,Y 〉m.

\(∧2
∧)/

The following special case of Proposition 4.6.2 is well worth being stated as� �
Corollary 4.6.4 Referring to Proposition 4.6.2, suppose in particular that

X0,∆X1,∆X2, ... are independent and Fn = σ(X0, . . . , Xn), n ∈ N. (4.82)

Then, the following hold true.

a)

An =
n∑

j=1

mj, n ∈ N, where mj = E[∆Xj]. (4.83)

As a consequence,
(
Xn −

∑n
j=1mj, Fn

)
n∈N

is a martingale.

b) Suppose that Xn ∈ L2(P ) for all n ∈ N, and that mn = 0, n ≥ 1 . Then,

〈X 〉n =
n∑

j=1

vj, n ∈ N, where vj = E[(∆Xj)
2]. (4.84)

As a consequence,
(
X2

n −
∑n

j=1 vj, Fn

)
n∈N

is a martingale.� �
Proof: a) ∆Xj is independent of Fj−1 for all j ≥ 1. Therefore,

E[∆Xj|Fj−1]
(4.12)
= E[∆Xj] = mj.
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This implies (4.83).
b) X is a martingale by a). Moreover,

E[(∆Xj)
2|Fj−1]

(4.12)
= E[(∆Xj)

2] = vj.

Thus, we see (4.84) from (4.80). \(∧2
∧)/� �

Proposition 4.6.5 Suppose that X = (Xn,Fn)n∈N is a martingale such that Xn ∈  L2(P )
for all n ∈ N. Then, the following are equivalent.

a) E〈X 〉∞ <∞.

b) Xn converges to a r.v X∞ in L2 as n→ ∞.

Moreover, these imply that

E[X2
∞] = E[X2

0 ] + E〈X 〉∞. (4.85)� �
Proof: a) ⇒ b): It is enough to prove that Xn is a Cauchy sequence in L2. Let m ≤ n. Then,

1) E[XmXn]
Exercise 4.3.1

= E[X2
m]

(4.81)
= E[X2

0 ] + E〈X 〉m.

Thus,

E[|Xn −Xm|2] = E[X2
n] + E[X2

m]− 2E[XmXn]
1)
= E〈X 〉n − E〈X 〉m

m,n→∞−→ 0.

a) ⇐ b): Since 〈X 〉n is nondecreasing in n, we have by monotone convergence theorem that

E〈X 〉∞ = lim
n→∞

E〈X 〉n = lim
n→∞

E[X2
n]− E[X2

0 ] = E[X2
∞]− E[X2

0 ]

\(∧2
∧)/� �

Proposition 4.6.6 Let X = (Xn)n∈N, Y = (Yn)n∈N be martingales, H = (Hn)n≥1, K =
(Kn)n≥1 be predictable. Suppose that Hn ∈ L∞(P ), Kn ∈ L∞(P ), and XmYn ∈ L1(P ) for
all m,n ∈ N\{0}. Then, referring to (4.59),

〈H ·X,K · Y 〉n =
n∑

j=1

HjKj∆〈X,Y 〉j n ∈ N\{0}. (4.86)

In particular,

E[(H ·X)m(K · Y )n] =
m∧n∑
j=1

E[HjKj∆Xj∆Yj], m, n ∈ N\{0}. (4.87)

� �
Proof: For j ≥ 1,

1)

{
∆〈H ·X,K · Y 〉j

(4.80)
= E[∆(H ·X)j∆(K · Y )j|Fj−1]

(4.59)
= HjKjE[∆Xj∆Yj|Fj−1]

(4.80)
= HjKj∆〈X,Y 〉j
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By taking summation over j = 1, ..., n, this implies (4.86). The equality (4.87) is obtained as
follows

E[(H ·X)m(K · Y )n]
(4.81)
= E〈H ·X,K · Y 〉m∧n

(4.86), 1)
=

m∧n∑
j=1

E[HjKj∆Xj∆Yj].

\(∧2
∧)/� �

Lemma 4.6.7 Let X = (Xn,Fn)n∈N be adapted, integrable, and T be a stopping time w.r.t
(Fn)n∈N, such that ET <∞ and that

sup
n≥1

E[|∆Xn||Fn−1] ≤ C1 for a constant C1 ∈ [0,∞).

Then, XT ∈ L1(P ) and
E|XT −Xn∧T |

n→∞−→ 0.� �
Proof: Note that

1) {T ≥ n} = {T ≤ n− 1}c ∈ Fn−1

Thus,

E|XT −Xn∧T | = E[|XT −Xn| : T > n] ≤ E[
T∑

j=n+1

|∆Xj| : T > n]

= E[
∞∑

j=n+1

|∆Xj|1{T≥j}] =
∞∑

j=n+1

E[|∆Xj| : T ≥ j]

1)
=

∞∑
j=n+1

E[E[|∆Xj||Fj−1] : T ≥ j] ≤ C1

∞∑
j=n+1

P (T ≥ j)
n→∞−→ 0.

The above estimate shows also that XT −Xn∧T ∈ L1(P ) for all n ∈ N. By taking n = 0, we
see that XT ∈ L1(P ). \(∧2

∧)/

Example 4.6.8 Let X = (Xn,Fn)n∈N be adapted, integrable, and T be a stopping time w.r.t
(Fn)n∈N, such that ET <∞.

a) Suppose that
sup
n≥1

E[|∆Xn||Fn−1] ≤ C1 for a constant C1 ∈ [0,∞).

Let (An)∈N be defined by (4.78). Then, XT , AT ∈ L1(P ) and

EXT = EX0 + EAT . (4.88)

b) Suppose in addition that X is a martingale and that

sup
n≥1

E[|∆Xn|2|Fn−1] ≤ C2 for a constant C2 ∈ [0,∞).

Let 〈X 〉n, n ∈ N be given by (4.80). Then, X2
T , 〈X 〉T ∈ L1(P ) and

E[X2
T ] = E[X2

0 ] + E〈X 〉T . (4.89)
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Proof: a) Let Mn
def
= Xn − An. Then, (Mn,Fn)n∈N is a martingale (Proposition 4.6.2), and

hence (Mn∧T ,Fn)n∈N is a martingale (Corollary 4.4.4). This implies that

1) EMn∧T = EM0, ∀n ∈ N.

On the other hand, since

|∆An| ≤ E[|∆Xn||Fn−1], ∆Mn = ∆Xn −∆An,

we have

sup
n≥1

E[|∆An||Fn−1] = sup
n≥1

|∆An| ≤ sup
n≥1

E[|∆Xn||Fn−1] ≤ C1,

sup
n≥1

E[|∆Mn||Fn−1] ≤ 2C1.

Thus, by Lemma 4.6.7,

XT , AT ,MT ∈ L1(P ), E|MT −Mn∧T |
n→∞−→ 0.

In particular, by letting n→ ∞ in 1), we have EMT = EM0, and therefore,

EX0 = EM0 = EMT = EXT − EAT ,

which proves (4.88).

b) We will apply Proposition 4.6.5 to the stopped process XT def
= (Xn∧T )n∈N, which is a

martingale (Corollary 4.4.4). We have

〈XT 〉∞ = 〈X 〉T =
T∑

n=1

E[|∆Xn|2|Fn−1] ≤ C2T ∈ L1(P ).

Therefore, XT = XT
∞ ∈ L2(P ) and

E[(XT
∞)2]

(4.85)
= E[X2

0 ] + E〈XT 〉∞.

Since XT = XT
∞, and 〈XT 〉∞ = 〈X 〉T by Exercise 4.6.1, we obtain (4.89). \(∧2

∧)/

Remarks: Referring to Example 4.6.8 a), suppose that (4.82) and E[∆Xn] = m, n ≥ 1. Then,
An = mn, n ∈ N (Corollary 4.6.4). Therefore, the equality (4.88) takes the following form

EXT = EX0 +mET (Wald’s first equation). (4.90)

Let us now assume m 6= 0, but let not assume apriori that ET <∞. Then, we have that

ET <∞ ⇐⇒ sup
n∈N

|EXn∧T | <∞. (4.91)

In fact, by (4.90) applied to a bounded stopping time n ∧ T , we have that

EXn∧T = EX0 +mE[n ∧ T ],

from which (4.91) follows immediately.
2) Referring to Example 4.6.8 b), suppose that (4.82), E[∆Xn] = 0, E[(∆Xn)

2] = v, n ≥ 1.
Then, 〈X 〉n = vn, n ∈ N (Corollary 4.6.4). Therefore, the equality (4.89) takes the following
form

EX2
T = EX2

0 + vET (Wald’s second equation). (4.92)

\(∧2
∧)/
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Exercise 4.6.1 Let X = (Xn)n∈N be a process, (Fn)n∈N be a filtration, and T be a stopping

time. Let also XT def
= (Xn∧T )n∈N be the stopped process. Prove the following. i) If X is

predictable, then, so is XT .
ii) Suppose that M and A are respectively the martingale part and the predictable part of an
adapted, integrable process X. Then, MT and AT are respectively the martingale part and
the predictable part of XT .
iii) Suppose that X is a martingale such that Xn ∈ L2(P ) for all n ∈ N. Then 〈XT 〉 = 〈X 〉T .

4.7 (⋆) Structure of L1-bounded martingales I

We have already seen the analogy between martingales and harmonic fnctions on the open
unit disc D ⊂ C. For a harmonic function u on D, it is known that the following conditions
are equivalent, cf. [Dur84, p.160, (6)].

a) u is a difference of two nonnegative harmonic functions.

b) There exists a Borel signed measure µ on [−π, π] such that

u(z) =

∫ π

−π

h(z, eiθ)dµ(θ) for all z ∈ D, where h(z, w) = |w|2−|z|2
|w−z|2 .

c) sup
0<r<1

∫ π

−π

|u(reiθ)|dθ <∞.

Here is an analogue for martingales.� �
Proposition 4.7.1 Suppose that the set T is unbounded from above, and that X =
(Xt,FX

t )t∈T is a martingale. Then, the following conditions are equivalent.

a) X is a difference of two nonnegative (FX
t )-martingales.

b1) There exists a signed measure Q on (Ω,FX
∞) such that for all t ∈ T, |Q|t � Pt and

dQt/dPt = Xt.

b2) There exists a signed measure Q on (Ω,FX
∞) such that for all t ∈ T, Qt � P and

dQt/dPt = Xt.

c) sup
t∈T

E|Xt| <∞.

� �
I am grateful to Francis Comets for bringing the following lemma into my interest.� �

Lemma 4.7.2 Suppose that the set T ⊂ R is unbounded from above and that X =
(Xt,Ft)t∈T is a submartingale such that supt∈TE[X

+
t ] <∞.

a) There exists a martingale Y = (Yt,Ft)t∈T such that X+
t ≤ Yt for all t ∈ T.

b) (Krickeberg decomposition) There exists a nonnegative supermartingale Z =
(Zt,Ft)t∈T such that Xt = Yt − Zt for all t ∈ T. In particular, Z is a martingale if
X is a martingale.� �

Proof: a) We start by observing that
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1) t, u, v ∈ T, t ≤ u < v =⇒ E[X+
u |Ft] ≤ E[X+

v |Ft], a.s.

Indeed, (X+
t ,Ft)t∈T is a submartingale by Lemma 4.3.3. Thus,

X+
u ≤ E[X+

v |Fu], a.s.

We obtain 1) by taking the conditional expextations of the both hands sides of the above
identity.

By 1), the limit Yt
def
= limu→∞E[X+

u |Ft] ∈ [0,∞] exists and X+
t ≤ Yt for all t ∈ T. We verify

that

2) Y = (Yt,Ft)t∈T is a martingale.

First, Yt ∈ L1(P ) for all t ∈ T, since by 1) and the monotone convergence theorem,

EYt = lim
u→∞

E[E[X+
u |Ft]] = lim

u→∞
E[X+

u ] <∞.

Next, if s, t ∈ T and s < t, then, by the monotone convergence theorem for conditional
expectations,

E[Yt|Fs] = lim
u→∞

E[E[X+
u |Ft]|Fs] = lim

u→∞
E[X+

u |Fs] = Ys, a.s.

b) Zt
def
= Yt −Xt, t ∈ T is a nonnegative supermartingale. In particular, Z is a martingale if

X is a martingale. \(∧2
∧)/

Let X = (Xt)t∈T be a process. We write FX
t = σ(Xs ; s ∈ T ∩ [0, t]) t ∈ T, and FX

∞ =
σ(FX

t ; t ∈ T). For a signed measure Q on (Ω,FX
∞), let |Q| be its variation, Q± = (|Q|±Q)/2

(Jordan decomposition) and Qt = Q|FX
t
.� �

Lemma 4.7.3 Let Y = (Yt,FX
t )t∈T be a nonnegative, mean-one martingale. Then, there

exists a unique probability measure P Y on (Ω,FX
∞) such that

P Y (A) = E[Yt : A] for all t ∈ T and A ∈ FX
t .� �

Proof: For each t ∈ T, let P̃t(A) = E[Yt : A] for A ∈ FX
t . Then, the family of measures

(FX
t , P̃t), t ∈ T are consistent in the sense that P̃t|FX

s
= P̃s if s, t ∈ T, s < t. Thus, by

Kolmogorov’s extension theorem, there exists a unique probability measure P Y on (Ω,FX
∞)

such that P Y |FX
t
= P̃t for all t ∈ T. \(∧2

∧)/

Proof of Proposition 4.7.1: a) ⇒ b1): Suppose that X is a difference of two nonnegative
(FX

t )-martingales Yt and Zt. Then, by Lemma 4.7.3, there exist finite measures QY , QZ on
(Ω,FX

∞) such that for all t ∈ T, QY
t � Pt, Q

Z
t � Pt, Yt = dQY

t /dPt, Zt = dQZ
t /dPt. Set

Q = QY −QZ . Then, |Q| ≤ QY +QZ and hence |Q|t ≤ (QY +QZ)t � Pt. Moreover,

dQt/dPt = d(QY
t − dQZ

t )/dPt = dQY
t /dPt − dQZ

t /dPt = Yt − Zt = Xt.

b1) ⇒ b2): This follows from the inequality |Qt| ≤ |Q|t.
b2) ⇒ c): E|Xt| = |Qt|(Ω) ≤ |Q|(Ω) <∞.
c) ⇒ a): This follows from Lemma 4.7.2. \(∧2

∧)/
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5 Convergence Theorems for Martingales

5.1 Almost sure convergence

At the beginning of section 4.3, we have seen the analogy between martingales and harmonic
fnctions on the unit disc D ⊂ C. Suppose that a harmonic function u on D satisfies

sup
0<r<1

∫ π

−π

|u(reiθ)|dθ <∞.

Then, it is known that there exists f ∈ L1([−π, π]) such that

u(reiθ)
r↗1−→ f(eiθ) for almost all θ ∈ [−π, π].

cf. [Rud87, p.244,11.24].
The purpose of this subsection is to present the following analogue for the martingale.� �

Theorem 5.1.1 (Martingale convergence theorem) Suppose that X = (Xt,Ft)t∈T is
a submartingale or a supermartingale such that

either T = N, or T = [0,∞) and (Xt)t≥0 is right-continuous, (5.1)

and that
sup
t∈T

‖Xt‖1 <∞. (5.2)

Then, there exists X∞ ∈ L1(P ) such that

Xt
t→∞−→ X∞ a.s.� �

Remarks: i) Suppose that X in Theorem 5.1.1 is a martingale. Then, by the assumption
(5.2), there exists a signed measure Q on (Ω,F∞) such that Xn = dQn/dPn, n ∈ N, where
Pn = P |Fn and Qn = Q|Fn , cf. Proposition 4.7.1. Moreover, the signed measure Q and the a.s.
limit X∞ in Theorem 5.1.1 are related as dQ = X∞dP + 1NdQ, where N ∈ F and P (N) = 0,
cf. Proposition 5.6.1 below. ii) Referring to Theorem 5.1.1, the condition (5.2) is not necessary
for the conclusion of the theorem. An counterexample is provided as follows. Let Sn be the
random walk considered in section 4.5 with p+ = p− > 0. Then, Xn = S(n ∧ T−1)

2 is a
submartingale and Xn

n→∞−→ S(T−1)
2 = 1, a.s. However, since S2

n − (1 − p0)n is a martingale,
so is Xn − (1− p0)(n ∧ T−1) (Corollary 4.4.4). Hence,

EXn = (1− p0)E[n ∧ T−1]
n→∞−→ (1− p0)ET−1

(4.71)
= ∞.

We postpone the proof of Theorem 5.1.1 for a moment. As an immediate consequence of
Theorem 5.1.1, we have
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� �
Corollary 5.1.2 Suppose that X = (Xt,Ft)t∈T is a nonnegative supermartingale under

assumption (5.1). Then, there exists X∞ ∈ L1(P ) such that Xt
t→∞−→ X∞ a.s. Moreover,

a) Xt ≥ E[X∞|Ft] a.s. for all t ∈ T.

b) The following conditions are equivalent. b1) X is a uniformly integrable martingale.
b2) EX∞ = EX0. b3) Xt = E[X∞|Ft] a.s. for all t ∈ T.� �

Proof: Since 0 ≤ EXt ≤ EX0 for all t ∈ T, assmuption (5.2) is satisfied. Thus, by Theorem

5.1.1, there exists X∞ ∈ L1(P ) such that Xt
t→∞−→ X∞ a.s.

a) Since Xt is a supermartingale, E[Xu|Ft] ≤ Xt for all t, u ∈ T with t < u. Hence by letting
u→ ∞ and applying Fatou’s lemma, we obtain the desired inequality.
b1) ⇒ b2): Since X is a martingale, EXt = EX0 for all t ∈ T. On the other hand, X is

uniformly integrable and Xt
t→∞−→ X∞ a.s. Therefore, by Proposition 2.5.5, Xt

t→∞−→ X∞ in
L1(P ). THerefore, EX∞ = limt→∞EXt = EX0.

b2) ⇒ b3): Suppose that EX∞ = EX0 and let Yt
def
= E[X∞|Ft]. Then, for all t ∈ T, Xt ≥ Yt

a.s. by a) and hence
EXt ≥ EYt = EX∞ = EX0 ≥ EXt.

Thus, Xt ≥ Yt a.s. and EXt = EYt, which, implies that Xt = Yt.
b3) ⇒ b1): This follows from Lemma 4.1.13. \(∧2

∧)/

The following example is a simple application of Corollary 5.1.2. It shows also that the
convergence of Xn in Theorem 5.1.1 and Corollary 5.1.2 does not necessarily take place in
L1(P ).

Example 5.1.3 Let Xn =
∏n

j=0 ξj, n ∈ N, where ξn ≥ 0, n ∈ N are independent r.v.’s such

that Eξn ≤ 1 for all n ∈ N and that
n∏

j=0

E[ξδj ]
n→∞−→ 0 for some δ ∈ (0, 1). Then,

a) Xn
n→∞−→ 0 a.s.

b) Suppose in particular that Eξn = 1 for all n ∈ N. Then, Xn does not converge in L1(P ).

Proof: a) Xn, n ∈ N\{0} is a supermartingale by Example 4.3.6. Since Xn ≥ 0, we see from
Corollary 5.1.2 that there exists X∞ ∈ L1(P ) such that Xn

n→∞−→ X∞ a.s. On the other hand,

E[Xδ
∞]

Fatou

≤ lim
n→∞

E[Xδ
n] = lim

n→∞

n∏
j=0

E[ξδj ] = 0.

Hence X∞ = 0 a.s.
b)Xn, n ∈ N\{0} is a martingale by Example 4.3.6. Suppose thatXn

n→∞−→ Z in L1(P ) for some
Z ∈ L1(P ). Then, EZ = limn→∞EXn = 1. On the other hand, there exists a subsequence

Xn(k) such that Xn(k)
k→∞−→ Z a.s. This implies via a) that Z = 0 a.s., which is a contradiction.

\(∧2
∧)/

Here is another example in which the convergence of Xn in Theorem 5.1.1 and Corollary
5.1.2 does not take place in L1(P ).
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Example 5.1.4 Let Sn, n ∈ N from section 4.5 with p+ = p−. Then, for a ∈ N\{0},
Xn

def
= a + S(n ∧ T−a) ≥ 0, n ∈ N is a martingale by Corollary 4.4.4. Since T−a < ∞ a.s. by

(4.69), we see that Xn
n→∞−→ a + S(T−a) = 0 a.s. But the convergence does not take place in

L1(P ). Indeed, since a+ S(n ∧ T−a) is a martingale (Corollary 4.4.4),

EXn = EX0 = a > 0.

We now turn to the proof of Theorem 5.1.1. For a moment, we consider the case of T = N.
Suppose that X = (Xn)n∈N is a process. For −∞ < a < b < ∞ and n ∈ N, we would like to
formulate the number of upcrossing from a to b in the sequence X0, X1, ..., Xn. Let T0 ≡ 0,
and for k ≥ 1, we set

Sk = inf{n ≥ Tk−1 ; Xn ≤ a},
Tk = inf{n ≥ Sk ; Xn ≥ b}.

Then,
S1 ≤ T1 ≤ S2 ≤ T2 ≤ ...

If Tk <∞, then the k-th upcrossing from a to b in the sequence (Xn)n∈N starts at time Sk and
is completed at time Tk. For n ∈ N,

Un
def
= sup{k ∈ N ; Tk ≤ n},

which represents the number of completed upcrossing from a to b in the sequenceX0, X1, ..., Xn.
Noting that Un is nondecreasing, we set U∞ = limn→∞ Un ∈ [0,∞].

S1 S2 S3T1 T2

b

a

T3� �
Lemma 5.1.5 Suppose that U∞ <∞ a.s. for any −∞ < a < b <∞. Then:

a) The limit X∞ = lim
n→∞

Xn ∈ [−∞,∞] exists a.s.

b) Suppose in addition that (5.2) is satisfied. Then, X∞ ∈ L1(P ) and hence that |X∞| <
∞ a.s.� �

Proof: a) It follows from the assumption that
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1) P

(
lim
n→∞

Xn < a < b < lim
n→∞

Xn

)
= 0 for any −∞ < a < b <∞.

On the other hand,

2)

{
lim
n→∞

Xn < lim
n→∞

Xn

}
=
⋃
a,b∈Q
a<b

{
lim
n→∞

Xn < a < b < lim
n→∞

Xn

}
,

We see from 1) and 2) that
lim
n→∞

Xn = lim
n→∞

Xn a.s.

Hence the limit X∞ = lim
n→∞

Xn ∈ [−∞,∞] exists a.s.

b)

E|X∞|
Fatou

≤ lim
n→∞

E|Xn|
(5.2)
< ∞.

Therefore, X∞ ∈ L1(P ) and hence that |X∞| <∞ a.s. \(∧2
∧)/� �

Lemma 5.1.6 (The upcrossing inequality) If X = (Xn,Fn)n∈N is a submartingale,
then,

(b− a)EUn ≤ E[Xn ∨ a]− E[X0 ∨ a].� �
Before going through the proof of Lemma 5.1.6, let us use the lemma to persent

Proof of Theorem 5.1.1 for T = N. By symmetry, we may focus on the case of submartin-
gale. We first prove that U∞ < ∞ a.s., which implies Theorem 5.1.1 by Lemma 5.1.5. Let
a, b ∈ R, a < b. We see from the monotone convergence theorem and Lemma 5.1.6 that

(b− a)EU∞
MCT
= (b− a) lim

n→∞
EUn

Lemma 5.1.6

≤ sup
n∈N

E[Xn ∨ a]− E[X0 ∨ a]
(5.2)
< ∞.

Therefore U∞ <∞ a.s.
\(∧2

∧)/

Define Y = (Y )n∈N by Yn = Xn ∨ a. Since Yn = Xn if Xn ≥ a, Sk, Tk (k ≥ 1) are, and
hence Un is unchanged if we replace X by Y . We set

Hn =

{
0 if Tk−1 < n ≤ Sk for some k ≥ 1,
1 if Sk < n ≤ Tk for some k ≥ 1.

(5.3)

We define H · Y by

(H · Y )n =
n∑

j=1

Hj(Yj − Yj−1).

We start by proving the following lemma 19� �
Lemma 5.1.7 (b− a)Un ≤ (H · Y )n for n ∈ N� �

Proof: Note that
19The process X need not to be a submartingale or supermartingale for Lemma 5.1.7 to be true.
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1) Tk <∞ =⇒ Y (Sk) = a < b ≤ Y (Tk),

and that

2) Sk <∞ =⇒ Y (Sk) = a ≤ Y (n) for all n ∈ N.

(The inequality 2) is the reason for which we consider Y , instead of X.)
Now, let Un = ℓ, so that Tℓ ≤ n < Tℓ+1. Then, we will show that

3) (H · Y )(Tℓ) ≥ (b− a)Un,

4) (H · Y )n ≥ (H · Y )(Tℓ).

from which the lemma follows.
Indeed, 3) follows from the definition of H as follows.

(H · Y )(Tℓ) =
ℓ∑

k=1

 ∑
Tk−1<j≤Sk

+
∑

Sk<j≤Tk

Hj(Yj − Yj−1)

(5.3)
=

ℓ∑
k=1

∑
Sk<j≤Tk

(Yj − Yj−1)

=
ℓ∑

k=1

(Y (Tk)− Y (Sk))
1)

≥ (b− a)ℓ = (b− a)Un.

Let us next show 4). Noting that Tℓ < Sℓ+1 ≤ Tℓ+1, we consider the following two cases
separately.
• Case 1: Tℓ ≤ n ≤ Sℓ+1. Since Hj = 0 for Tℓ < j ≤ Sℓ+1,

(H · Y )n − (H · Y )(Tℓ) =
∑

Tℓ<j≤n

Hj(Yj − Yj−1)
(5.3)
= 0.

• Case 2:Sℓ+1 < n < Tℓ+1. Then,

(H · Y )n − (H · Y )(Tℓ) =

 ∑
Tℓ<j≤Sℓ+1

+
∑

Sℓ+1<j≤n

Hj(Yj − Yj−1)

(5.3)
=

∑
Sℓ+1<j≤n

(Yj − Yj−1) = Y (n)− Y (Sℓ+1)
3)

≥ 0.

Proof of Lemma 5.1.6: We show that

1) E(H · Y )n ≤ E[Yn − Y0] for n ∈ N.

This, together with Lemma 5.1.7, implies Lemma 5.1.6. Note that Y is a submartingale
(Lemma 4.3.3) and that Sk, Tk (k ≥ 1) are stopping times. Note also that Hn, n ≥ 1 is
predictable, because for each k ≥ 1,

{Sk < n ≤ Tk} = {Sk ≤ n− 1}\{Tk ≤ n− 1} ∈ Fn−1.
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Since Hn ≤ 1, we see from Corollary 4.4.3 that

E(H · Y )n ≤ E(1 · Y )n = E[Yn − Y0].

This proves 1). \(∧2
∧)/

Proof of Theorem 5.1.1 for T = [0,∞): We assume that T = [0,∞) and that (Xt)t≥0 is
right-continuous. By symmerty, we may focus on the case of submartingale. For I ⊂ [0,∞)
and −∞ < a < b <∞, Let

U(I) =

{
k ∈ N ;

there exists a sequence s1 < t1 < ... < sk < tk in I
such that Xsj ≤ a and b ≤ Xtj for all j = 1, ..., k.

}
. (5.4)

Let D be a dense subset of [0,∞), t ∈ D, and (Dn)n∈N be a sequence of finite subsets of
D∩ [0, t] such that 0, t ∈ Dn for all n ∈ N and that Dn ↗ D∩ [0, t] as n↗ ∞. Then it follows
from the proof of Lemma 5.1.5 that

(b− a)EU(Dn) ≤ E[X− ∨ a]− E[X0 ∨ a].

By the monotone convergence theorem in the limit n→ ∞,

(b− a)EU(D ∩ [0, t]) ≤ E[X− ∨ a]− E[X0 ∨ a].

Then, by the monotone convergence theorem in the limit t→ ∞,

(b− a)EU(D) ≤ sup
t≥0

E[X− ∨ a]− E[X0 ∨ a] <∞.

Hence U(D) < ∞, a.s., which implies, via the argument of Lemma 5.1.5 that the following
limit exists a.s.

X∞ = lim
t→∞
t∈D

Xt ∈ [−∞,∞].

Moreover, by the right-continuity, we can remove the restriction t ∈ D from the above limit.
Finally, we see that X∞ ∈ L1, similarly as in Theorem 5.1.1. \(∧2

∧)/

5.2 L1 Convergence

Throughout this subsection, we assume that X = (Xt,Ft)t∈T is an adapted process. Here is
the main result of this subsection.� �
Theorem 5.2.1 (L1 convergence theorem) Suppose that there exists a real r.v. X∞

such that Xt
t→∞−→ X∞ a.s. Then, the following conditions are equivalent.

X∞ ∈ L1(P ) and Xt = E[X∞|Ft] a.s. for all t ∈ T. (5.5)

There exists a Y ∈ L1(P ) such that Xt = E[Y |Ft] a.s. for all t ∈ T. (5.6)

X is a uniformly integrable martingale. (5.7)

X is a martingale, X∞ ∈ L1(P ) and Xt
n→∞−→ X∞ in L1(P ). (5.8)

Moreover, it follows from (5.5) and (5.6) that the r.v’s X∞ and Y are related as

X∞ = E[Y |F∞] a.s. where F∞ = σ

[⋃
t∈T

Ft

]
. (5.9)

� �
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Proof: (5.5) ⇒ (5.6): Obvious.
(5.6) ⇒ (5.7): This follows from Lemma 4.1.13.
(5.7) ⇔ (5.8): This follows from Proposition 2.5.5.
(5.8) ⇒ (5.5): Since X is a martingale,

1) Xt = E[Xu|Ft] a.s. for all t, u ∈ T, t < u.

On the other hand, it follows from (5.8) and (4.13) that E[Xu|Ft]
u→∞−→ E[X∞|Ft] in L1(P ),

which, together with 1), implies (5.5).
To prove (5.9), we take an arbitrary t ∈ T and A ∈ Ft. Then, it follows from (5.5) and

(5.6) that
E[X∞ : A] = E[Y : A].

Since t ∈ T is arbitrary, the above equality is valid for all A ∈
⋃

t∈TFt. Then, by Dynkin’s
Lemma (Lemma 1.3.1), the equality extends to all A ∈ F∞, which implies (5.9). \(∧2

∧)/

Remark: Suppose that X in Theorem 5.2.1 is bounded in L1(P ). Then, there exists a signed
measure Q on (Ω,F∞) such that Xn = dQn/dPn, n ∈ N, where Pn = P |Fn and Qn = Q|Fn ,
cf. Proposition 4.7.1. Moreover, conditions (5.5)-(5.8) are equivalent to that Q � P , cf.
Proposition 5.6.1 below.

As a direct consequence of Theorem 5.2.1, we obtain the following� �
Corollary 5.2.2 Let (Fn)n∈T be a filtration and Y ∈ L1(P ). Then,

E[Y |Fn]
n→∞−→ E[Y |F∞] a.s. and in L1(P ).� �

Proof: The martingale Xn
def
= E[Y |Fn] satisfies (5.6). Therefore, by Theorem 5.1.1, there exists

a real r.v. X∞ such that Xt
t→∞−→ X∞ a.s. Moreover, by (5.8), Xt

t→∞−→ X∞ in L1(P ). Finally,
X∞ = E[Y |F∞] by (5.9). \(∧2

∧)/

Example 5.2.3 Let Xn =
∏n

j=0 ξj, where (ξn)n∈N are mean-one nonnegative independent
r.v’s. Then, the following conditions are equivalent.

a) α
def
=

∞∏
n=1

E
√
ξn > 0. b)

√
Xn

n→∞−→
√
X∞ in L2(P ). c) (Xn)n∈N is uniformly integrable.

Proof: X = (Xn)n∈N is a mean-one, nonnegative martingale by Example 4.3.6.
a) ⇒ b): It is enough to verify that (

√
Xn)n∈N is a Cauchy sequence, which can be done as

follows. Let m < n. Then,

E
[√

Xm

√
Xn

]
= E

[
Xm

√
ξm+1 · · ·

√
ξn

]
=

n∏
j=m+1

E
√
ξj

m→∞−→ 1,

and hence

E
[
|
√
Xn −

√
Xm|2

]
= EXn + EXm − 2E

[√
XnXm

]
= 2− 2E

[√
XnXm

]
m→∞−→ 0.
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b) ⇒ c):

EX∞ = E[
√
X∞
√
X∞]

b)
= lim

n→∞
E[
√
Xn

√
Xn] = lim

n→∞
E[Xn] = EX0.

By Corollary 5.1.2, this implies c).
c) ⇒ a): To prove the contraposition, suppose α = 0. Then, X does not converge in L1(P )
by Example 5.1.3, hence X is not uniformly integrable, by the euivalence of (5.7) and (5.8).
\(∧2

∧)/

5.3 Optional Stopping Theorem

Throughout this subsection, we suppose thatX = (Xt,Ft)t∈T is adapted process which satisfies
(5.1). Now, suppose for a stopping time T that

Xt converges as t→ ∞ a.s. on the event {T = ∞}. (5.10)

If T < ∞ a.s., then nothing is assumed by (5.10). Let S : Ω → [0,∞] be a r.v. such that
{S = ∞} ⊂ {T = ∞}. Then the r.v. XS makes sense on the event {S < ∞}. Referring to
(5.10),

XS
def
= lim

t→∞
Xt on the event {S = ∞}. (5.11)

The purpose of this subsection is to present the following theorem.� �
Theorem 5.3.1 (Optional stopping theorem) Let X = (Xt,Ft)∈T be an adapted pro-
cess and T be a stopping time for which we suppose (5.10) and adopt the convention (5.11).
Then, the following conditions are equivalent.

XS∧T ∈ L1(P ) and EXT = EXS∧T for any stopping time S; (5.12)

XT ∈ L1(P ) and E[XT |FS] = XS∧T a.s. for any stopping time S; (5.13)

XT ∈ L1(P ) and E[XT |Ft] = Xt∧T a.s. for all t ∈ T; (5.14)

(Xt∧T )t∈T is uniformly integrable martingale. (5.15)� �
Remark See Example 5.3.6 for typical examples for which condition (5.15) is valid.

We present the following Corollary to Theorem 5.3.1, which can easily be seen from the
proof below.� �
Corollary 5.3.2 Let X = (Xt,Ft)∈T be a uniformly integral submartingale (resp. super-
martingale) and T be a stopping time for which we suppose (5.10) and adopt the convention
(5.11). Then, (5.12)–(5.14) hold with the equalities replaced by ≥ (resp. ≤).� �
For nonnegative supermartingales, (5.12)–(5.14) with the equalities replaced by ≤ are al-

ways true, even through they are not uniformly integrable in general. We note this fact as
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� �
Corollary 5.3.3 (Optional stopping theorem for nonnegative supermartigales)
Let (Xt)t∈T be a nonnegative supermartingale and T be a stopping time for which we sup-
pose (5.10) and adopt the convention (5.11). Then, (5.12)–(5.14) hold with the equalities
replaced by ≤. In particular, ,

XT+t1{XT = 0} = 0 for all t ≥ 0 a.s. (5.16)� �
Proof: We will prove (5.12) with the equality replaced by ≤. Then, (5.12) and (5.14) with the
equalities replaced by ≤ follows from the proof of Theorem 5.3.1. We first observe that

1) E[XT∧t|FS] ≤ XS∧T∧t a.s. for arbitrarily fixed t ∈ T.

This can be seen as follows. If T = N, then, {Xs∧t∧T}s∈N ⊂ {Xs}ts=0 is uniformly integrable.
Thus, 1) follows from Corollary 5.3.2. If T = [0,∞) and t 7→ Xt is right-continuous, then, 1)
follows from Lemma 5.3.4 below.

Note that XT = lim
t→∞

Xt∧T . Then, by using Fatou’s lemma for the conditional expectation

given FS, we pass from 1) to (5.12) with the equality replaced by ≤.
To see (5.16), we note that E[Xt+T |FT ] ≤ XT a.s. and hence

E[Xt+T1{XT = 0}|FT ] = 0 a.s.

from which (5.16) follows. \(∧2
∧)/

Proof of Theorem 5.3.1 for T = N:
(5.12) ⇔ (5.13): It is enough to prove (⇒). By Lemma 5.3.8 below,

E[XT |FS∧T ]
(5.20)
= E[XT |FS].

Thus, it is enough to prove that

1) E[XT |FS∧T ] = XS∧T a.s.

To show this, we take arbitrary A ∈ FS∧T and introduce

U = (S ∧ T )1A + T1Ac ,

which is a stopping time (Exercise 4.2.1) such that U ≤ T . Therefore, XU ∈ L1(P ) and

EXT
(5.12)
= EXU = E[XS∧T : A] + E[XT : Ac],

i. e., E[XT : A] = E[XS∧T : A], which implies 1).
(5.13) ⇔ (5.14): It is enough to prove (⇐). Let A ∈ FS be arbitrary. Then, A∩{S = n} ∈ Fn

for all n ∈ N and hence

3) E[XT : A ∩ {S = n}] (5.14)
= E[Xn∧T : A ∩ {S = n}].

Also, it is obvious that

4) XT = XS∧T on the event {S = ∞}.
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Therefore,

E[XT : A] =
∑
n∈N

E[XT : A ∩ {S = n}] + E[XT : A ∩ {S = ∞}]

3),4)
=

∑
n∈N

E[Xn∧T : A ∩ {S = n}] + E[XS∧T : A ∩ {S = ∞}]

= E[XS∧T : A],

which implies (5.13).
(5.14) ⇔ (5.15): This follows from Theorem 5.2.1 applied to (Xt∧T )t∈T.

\(∧2
∧)/

Remarks: 1) The condition (5.15) holds if sup
t∈T

|Xt∧T | ∈ L1(P ). This is in particular the case

when T = N and T is bounded.
2) Here is a well-known example for which a martingale does not satisfy (5.12) for a stopping
time T , even with S ≡ 0. Let X be a simple random walk on Z such that X0 = 0 and
T = inf{n ≥ 1 ; Xn = x} for x ∈ Z. Since X is recurrent, we have T < ∞ a.s. and XT = x
for all x. Thus, for x 6= 0, EXT = x 6= 0 = EX0.

We now turn to the proof of Theorem 5.3.1 for T = [0,∞)

� From here on, we assume that T = [0,∞) and (Xt)t≥0 is right-continuous.

The proofs of (5.15) ⇐ (5.13) ⇔ (5.12) are the same as those for the discrete-time case
(Theorem 5.3.1). We will henceforth concentrate on the proof of (5.15) ⇒ (5.13).

Let TN , N ∈ N be a discrete approximation of T from the right defined by

TN =

{
j
2N
, if j−1

2N
< T ≤ j

2N
for some j ∈ N,

∞, if T = ∞.
(5.17)

This approximation sequence is a subsequence of the one previously defined by (6.42). Thus,
TN are stopping times w.r.t. (Ft)t≥0 such that 0 ≤ TN −T ≤ 2−N . Here, additionally, we have
the monotonocity: TN+1 ≤ TN , N ∈ N.� �
Lemma 5.3.4 Suppose that X = (Xt,Ft)t≥0 is a right-continuous martingale and that
T is a bounded stopping time. Then (5.13) is true. Moreover, if we suppose X is a
right-continuous submartingale (resp. supermartingale) then, (5.13) holds with the equality
replaced by ≥ (resp. ≤)� �

Proof: We discuss only martingale case, adjustment needed for submartingale (supermartin-
gale) cases being obvious. It is enough to prove that

E[XT : A] = E[XS∧T : A] for all A ∈ FS. (5.18)

For N ∈ N fixed, X(N) = (Xt,Ft)t∈2−NN is a martingale, and SN , TN are stopping times
w.r.t. the filtration (Ft)t∈2−NN. Moreover, we have A ∈ FS ⊂ FSN

. Since TN is bounded by
assumption, it follows from Theorem 5.3.1 applied to the discrete-time martingale X(N) that

E[X(TN) : A] = E[X(SN ∧ TN) : A].
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Therefore, it only remains to prove that

X(TN)
N→∞−→ X(T ) and X(SN ∧ TN)

N→∞−→ X(S ∧ T ) in L1(P ).

By right-continuity, the above convergences take place a.s. Hence it is enough to prove that

1) {X(TN)}N∈N, {X(SN ∧ TN)}N∈N are uniformly integrable.

Let UN be either SN ∧TN or TN . By assumption, there exists m ∈ N such that T ≤ m a.s., and
hence UN ≤ TN ≤ T0 ≤ T + 1 ≤ m+ 1. Then, by Theorem 5.3.1 applied to the discrete-time
submartingale (|Xt|,Ft)t∈2−NN and the bounded stopping times UN , m + 1 w.r.t. (Ft)t∈2−NN,
we have

|X(UN)| ≤ E[|Xm+1||FUN
].

By Lemma 4.1.13, the right-hand side of the above inequality is uniformly integrable in N .
Thus, {X(UN)}N∈N is uniformly integrable, which proves 1). \(∧2

∧)/� �
Lemma 5.3.5 Suppose that X = (Xt,Ft)t≥0 is a right-continuous martingale (resp. sub-
martingale, supermartingale) Then, for any stopping time R, (Xt∧R,Ft)t≥0 is a martingale
(resp. submartingale, supermartingale).� �

Proof: We discuss only martingale case, adjustment needed for submartingale (supermartin-
gale) cases being obvious. By the right-continuity, the process (Xt∧R,Ft)t≥0 is adapted (Corol-
lary 6.6.15). Let 0 ≤ s < t. Then, t ∧ R is a bounded stopping time, and hence by Lemma
5.3.4,

Xt∧R ∈ L1(P ), E[Xt∧R|Fs] = Xs∧R a.s.

This proves the lemma. \(∧2
∧)/

Proof of Theorem 5.3.1 for T = [0,∞):
As is mentioned before, we have only to prove (5.15) ⇒ (5.13). For this purpose, it is enough
to prove (5.18). By Lemma 5.3.5, (Xt∧T ,Ft)t≥0 is a martingale and it is uniformly integrable
by the assumption (5.15). Thus, for any N ∈ N fixed, X(T,N) = (Xt∧T ,Ft)t∈2−NN is a uniformly
integrable martingale, and SN , TN are stopping times w.r.t. the filtration (Ft)t∈2−NN. More-
over, we have A ∈ FS ⊂ FSN

. Thus, by Theorem 5.3.1 applied to the discrete-time martingale
X(T,N), we have

E[XT : A]
T≤TN= E[X(TN ∧ T ) : A] = E[X(SN ∧ T ) : A]

Therefore, it only remains to prove that

X(SN ∧ T ) N→∞−→ X(S ∧ T ) in L1(P ).

By right-continuity, the above convergence takes place a.s. Hence it is enough to prove that

1) {X(SN ∧ T )}N∈N is uniformly integrable.

By assumption (5.15), the discrete-time submartingale (|Xt∧T |,Ft)t∈2−NN is uniformly inte-
grable. Thus, by Theorem 5.3.1 applied to this submartingale, we see that |X(S0∧T )| ∈ L1(P )
and that

|X(SN ∧ T )| ≤ E[|X(S0 ∧ T )||FSN
].

By Lemma 4.1.13, the right-hand side of the above inequality is uniformly integrable in N ,
which proves 1). \(∧2

∧)/
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Example 5.3.6 Let X = (Xt,Ft)t∈T be an adapted process. Here are typical examples for X
and a stopping time T for which (Xt∧T )t∈T is uniformly integrable. Suppose that |X0| ≤ M ,
a.s. for some M ∈ (0,∞) and let T = inf{t ∈ T ∩ (0,∞) ; |Xt| > M}. Suppose:
a) C

def
= supt∈TE|Xt| <∞,

b) Eihter the following b1) or b2) holds true.
b1) T = N and there exists R ∈ (0,∞) such that supn≥1 |Xn −Xn−1| ≤ R.
b2) T = [0,∞) and t 7→ Xt is continuous.
Then, (Xt∧T )t∈T is uniformly integrable.

Proof: Let λ > 0. Then,

E[|Xt∧T | : |Xt∧T | ≥ λ] = It(λ) + Jt(λ),

where
It(λ) = E[|Xt| : |Xt| ≥ λ, t < T ], Jt(λ) = E[|XT | : |Xt| ≥ λ, T ≤ t].

Since {t < T} ⊂ {|Xt| ≤M}, we have

sup
t∈T

It(λ) ≤M sup
t∈T

P (|Xt| ≥ λ) ≤MC/λ
λ→∞−→ 0.

As for Jt(λ), let us first assume b1). Then, |XT | ≤ |XT−1|+R ≤M +R and hence

sup
t∈T

Jt(λ) ≤ (M +R) sup
t∈T

P (|Xt| ≥ λ) ≤ (M +R)C/λ
λ→∞−→ 0.

If we assume b2), then, |XT | = M . Thus, we have supt∈T Jt(λ)
λ→∞−→ 0 similarly as above.

\(∧2
∧)/

Example 5.3.7 Suppose thatX = (Xt,Ft)t≥0 is a nonnegative martingale such that t 7→ Xt is
continuous and that X∞ ≡ 0 a.s. For a bounded stopping time S, we writeM[S,∞) = supt≥S Xt.
Then, for all x ∈ (1,∞)

P
(
M[S,∞) > xXS|FS

)
= x−1 a.s. on the set {XS 6= 0}.

In particular, if P (XS 6= 0) > 0, then, conditionally on the event XS 6= 0, the law of the r.v.
M[S,∞)/XS is given by x−21{x>1}dx.

Proof: We will prove that for all FS-measurable, integrable r.v. Z ≥ 0,

1) P
(
M[S,∞) > Z

∣∣FS

)
= 1 ∧ (XS/Z) a.s. on the set {Z 6= 0}.

Then, the desired equality follows by setting Z = xXS. It is easy to verify that

2) P
(
M[S,∞) > Z

∣∣FS

)
= 1 a.s. on the set {XS > Z}.

Indeed,

P
(
M[S,∞) > Z|FS

)
1{XS > Z} = P

(
M[S,∞) > Z,XS > Z|FS

)
= P (XS > Z|FS) = 1{XS > Z}.

By 2), it is enough to prove that
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3) ZP
(
M[S,∞) > Z

∣∣FS

)
= XS a.s. on the set {XS ≤ Z}.

For this purpose, we consider a stopping time T = inf{t ≥ S ; Xt > Z}. Then, for n ∈ N,
(S + n) ∧ T is a bounded stopping time, and hence

4) XS
Lemma 5.3.4

= E[X(S+n)∧T |FS] = E[XS+n1{T = ∞}|FS] + E[X(S+n)∧T1{T <∞}|FS].

Since XS+n
n→∞−→ 0 a.s. and {T = ∞} ⊂ {XS+n ≤ Z} for all n ∈ N, we have by DCT that

5) E[XS+n1{T = ∞}|FS]
n→∞−→ 0 a.s.

On the other hand, on the event {XS ≤ Z, T < ∞}, X(S+n)∧T
n→∞−→ XT = Z and 0 ≤

X(S+n)∧T ≤ Z for all n ∈ N. Therefore we have by DCT that

6) E[X(S+n)∧T1{T <∞}|FS]
n→∞−→ ZP (T <∞|FS) = ZP (M[S,∞) > Z|FS) a.s.

Combining 4)–6), we obtain 3). \(∧2
∧)/

(⋆) Complement
We present the following lemma, which was used in the proof of (5.13) ⇐ (5.12). This

lemma is valid in the general setting of Definition 4.2.1.� �
Lemma 5.3.8 Let S and T be stopping times and X ∈ L1(P ). Then,

E[X|FS] = E[X|FS∧T ] a.s. on {S ≤ T}. (5.19)

Suppose in particular that X is FT -measurable. Then,

E[X|FS] = E[X|FS∧T ] a.s. (5.20)� �
Proof: (5.19): The (5.19) is equivalent to

Y
def
= E[X|FS]1{S ≤ T} = E[X|FS∧T ]1{S ≤ T} a.s.,

which can be paraphrased as Y = E[Y |FS∧T ] a.s. Therefore, it is enough that Y is FS∧T -
measurable.

On the other hand, {S ≤ T} ∈ FS∧T by (4.40), and E[X|FS] is FS-measurable. Therefore,
Y is FS∧T -measurable by (4.41).
(5.20): By (5.19), (5.20) is equivalent to

Z
def
= E[X|FS]1{T ≤ S} = E[X|FS∧T ]1{T ≤ S} a.s.,

which can be paraphrased as Z = E[Z|FS∧T ] a.s. Therefore, it is enough that Z is FS∧T -
measurable.

On the other hand, X1{T ≤ S} is FS∧T -measurable by (4.41), since X is FT -measurable.
Hence

Z = E[X1{T ≤ S}|FS] = X1{T ≤ S}.
Therefore Z is FS∧T -measurable. \(∧2

∧)/

Exercise 5.3.1 Let S nand T be stopping times and X ∈ L1(P ). Prove then that
E[E[X|FT ]|FS] = E[X|FS∧T ] a.s. Hint: (5.20).
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Exercise 5.3.2 Let (Fn)n∈N be a filtration, Y ∈ L1(P ), T be a stopping time, and Xn =
E[Y |Fn], n ∈ N. Then, prove that XT = E[Y |FT ] a.s. on {T < ∞}. Hint: proof of (5.15) ⇒
(5.13).

Exercise 5.3.3 Let (Xt)t∈T be a nonnegative submartingale with assumption (5.1) and T be
a stopping time. Then, prove the following. i) EXt∧T ≤ EXt for all t ∈ T. ii) Suppose that
supt∈TEXt <∞, so that Xt → X∞, a.s. for some X∞ ∈ L1(P ) by the martingale convergence

theorem (Theorem 5.1.1). Then, EXT ≤ sup
t∈T

EXt, where XT
def
= X∞ on the set {T = ∞}.

Exercise 5.3.4 Using the argument of Example 5.3.7, give an alternative proof of the equal-
ities (4.76).

5.4 Lp Convergence

Throughout this subsection, we assume that X = (Xt,Ft)t∈T is an adapted process such that
(5.1) holds. We set

Yt = sup
s∈[0,t]∩T

Xs and Ỹt = sup
s∈[0,t]∩T

|Xs|. (5.21)

We start by proving the following� �
Proposition 5.4.1 (Doob’s inequalities) Let t ∈ T.

a) (maximal inequality) Suppose that (Xs)s∈[0,t]∩T is a submartingale. Then, for all
λ > 0,

λP (Yt ≥ λ) ≤ E[Xt : Yt ≥ λ]. (5.22)

b) (Lp-maximal inequality) Suppose that (Xs)s∈[0,t]∩T is a martingale, or a nonnegative
submartingale. Then,

‖Ỹt‖p ≤
p

p− 1
‖Xt‖p if p ∈ (1,∞). (5.23)

� �
Remark The inequality (5.23) is no longer true for p = 1. In fact, we present an example of
martingales for which there is no constant c ∈ [0,∞) such that

‖Ỹt‖1 ≤ c‖Xt‖1 for all t ∈ T (5.24)

cf. Example 5.4.3. In addition, the multiplicative constant p
p−1

on the RHS of (5.23) cannot

be improved (Exercise 5.4.3).

Proof of Proposition 5.4.1 a): Case 1: T = N: Let λ > 0 be fixed and T = inf{t ∈
T ; Xt ≥ λ}. Then,

1) A
def
= {Yt ≥ λ} = {T ≤ t}

Lemma 4.2.3
∈ Ft∧T .

Moreover, for each fixed t ∈ N, (Xs∧t)s∈N is clearly uniformly integrable submartingale, and
hence by 1) and Corollary 5.3.2,

2) E[Xt∧T : A] ≤ E[Xt : A].
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Finally, on the event A, we have that λ ≤ XT and T = t ∧ T . Therefore,
3) A ⊂ {λ ≤ Xt∧T}.
Combining these,

λP (A)
3)

≤ E[Xt∧T : A]
2)

≤ E[Xt : A],

which proves (5.22).
Case 2: T = [0,∞): Let λ > 0 and t > 0 be fixed. We approximate the interval [0, t] by a
finite subset set IN = {2−Nkt}2Nk=0. We also take a strictly increasing positive sequence λn such
that λn ↗ λ, so that
1) (λn,∞) ↘ [λ,∞) as n→ ∞.

By the argument of Case 1, (5.22) is valid for the discrete-time submartingale {Xs}s∈IN .
Therefore, we have for m < n that

2)


λnP

(
max
s∈IN

Xs > λn

)
≤ λnP

(
max
s∈IN

Xs ≥ λn

)
≤ E

[
Xt : max

s∈IN
Xs ≥ λn

]
≤ E

[
Xt : max

s∈IN
Xs > λm

]
.

Since X is right-continuous, max
s∈IN

Xs ↗ Yt as N → ∞. Note also that the indicator function

of an interval (a,∞) (a ∈ R) is left-continuous, and hence

1(a,∞)

(
max
s∈IN

Xs

)
N→∞−→ 1(a,∞)(Yt).

Thus, by letting N → ∞, it follows from 2) that
3) λnP (Yt > λn) ≤ E [Xt : Yt > λm].

By letting n→ ∞ first, and then letting m→ ∞, we obtain (5.22) from 1) and 3). \(∧2
∧)/

Proposition 5.4.1 b) will be proved via Lemma 5.4.2 below. The lemm has various appli-
cations beside the proof of Proposition 5.4.1 b), cf. Example 5.4.8. For this reason, we state
the lemma in a setting which is more general than is necessary to prove Proposition 5.4.1 b).
Here is the the settig for the lemma.

• Let φ1 : [0,∞) → [0,∞) a right-continuous, nondecreasing function such that
∫ 1

0
dφ1(λ)

λ
<∞.

For φ1 ∈ Φ, we associate it with a function φ2 : [0,∞) → [0,∞) defined by

φ2(λ) =

∫ λ

0

dφ1(t)

t
, λ ≥ 0.

We denote the totality of such pairs (φ1, φ2) by Φ, of which two typical examples are

φ1(λ) = λp (1 < p <∞) and φ2(λ) = qλp−1, where q = 1
1−p−1 , (5.25)

φ1(λ) = (λ− 1)+ and φ2(λ) = log+ λ
def
= (log λ) ∨ 0. (5.26)

Let f, g ≥ 0 be measurable functions on a measure space (S,B, µ). We consider the following
conditions.

µ(g ≥ λ) ≤ 1

λ

∫
g≥λ

fdµ if λ > 0, (5.27)∫
S

φ1(g)dµ ≤
∫
S

fφ2(g)dµ if (φ1, φ2) ∈ Φ, (5.28)∫
S

gpdµ ≤
(

p

p− 1

)p ∫
S

fpdµ if p ∈ (1,∞), (5.29)
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These conditions are related as follows.� �
Lemma 5.4.2 (5.27) ⇐⇒ (5.28) =⇒ (5.29).� �

Proof: It follows from
∫ 1

0
dφ1(λ)

λ
< ∞ that φ1(0) = φ2(0) = 0, and hence φ1(λ) =

∫ λ

0
dφ1(t)

and φ2(λ) =
∫ λ

0
dφ1(t)

t
for all λ ≥ 0. Therefore, for j = 1, 2,∫

S

fφj(g)dµ =

∫
S

f(x)dµ(x)

∫ ∞

0

1{g(x) ≥ λ}dφj(λ)

Fubini
=

∫ ∞

0

dφj(λ)

∫
S

f(x)1{g(x) ≥ λ}dµ(x)

=

∫ ∞

0

dφj(λ)

∫
g≥λ

fdµ. (5.30)

(5.27) ⇒ (5.28):∫
S

φ1(g)dµ
(5.30)
=

∫ ∞

0

dφ1(λ)µ(g ≥ λ)
(5.27)

≤
∫ ∞

0

dφ2(λ)

∫
g≥λ

fdµ
(5.30)
=

∫
S

fφ2(g)dµ.

(5.27) ⇐ (5.28): For fixed λ > 0, take (φ1, φ2) ∈ Φ defined by dφ1(t) = δλ(dt) and dφ2(t) =
1
t
δλ(dt) =

1
λ
δλ(dt).

(5.28) ⇒ (5.29): We may assume that
∫
S
fpdµ <∞. We take φ1(λ) = λp and φ2(λ) = qλp−1.

As we have already seen, (5.28) implies (5.33). Thus, by applying (5.33) with β = 2, we see
that ∫

S

gpdµ ≤ q2q
∫
S

fpdµ <∞.

Then applying (5.28),∫
S

gpdµ
(5.28)

≤ q

∫
S

fgp−1dµ
Hölder

≤ q

(∫
fpdµ

)1/p(∫
gpdµ

)1/q

By dividing both sides by
∫
gpdµ <∞, we obtain (5.29). \(∧2

∧)/

Proof of Proposition 5.4.1 b): If X is a nonnegative submartingale, then Ỹt = Yt. Hence,
we conclude (5.23) from (5.22) and Lemma 5.4.2.

If X is a martingale, then, the desired inequality is obtained by applying (5.23) to the
nonnegative submartingale (|Xt|)t∈T. \(∧2

∧)/

Example 5.4.3 Here is an example of a martingale for which there is no constant c ∈ [0,∞)
with property (5.24). Let X = (Xt,Ft)t∈T be a nonnegative martingale which is not uniformly
integrable (for example the martingale in Example 5.2.3 which satisfies α = 0) Then, by
Theorem 5.2.1, Xt does not converge in L1(P ) as t→ ∞. This implies, via Lemma 5.4.5 that

‖Yt‖1
t→∞−→ ∞. On the other hand, ‖Xt‖1 = ‖X0‖1 for all t ∈ T. In conclusion, there is no

constant c ∈ [0,∞) with property (5.24).

The rest of this subsection is devoted to the proof of
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� �
Proposition 5.4.4 (Lp convergence theorem) Let X = (Xt,Ft)t∈T be a martingale, or
a nonnegative submartingale with assumption (5.1) in both cases. Suppose that p ∈ (1,∞)
and that

sup
t∈T

‖Xt‖p <∞.

Then, there exists X∞ ∈ Lp(P ) such that

Xt
t→∞−→ X∞ a.s. and in Lp(P ).� �

To prove Proposition 5.4.4, we prepare the following� �
Lemma 5.4.5 Let T ⊂ [0,∞) be unbounded, (Xt)t∈T be a sequence of r.v’s and

Ỹt = max
s∈[0,t]∩T

|Xs|. Suppose that there exists a r.v. X∞ such that Xt
t→∞−→ X∞ a.s. and

that
sup
t∈T

‖Ỹt‖p <∞ for some p ∈ [1,∞), (5.31)

Then, Xt
t→∞−→ X∞ in Lp(P ).� �

Proof: We let Ỹ∞ = sup
t∈T

|Xt|. Then,

‖Ỹ∞‖p
Fatou

≤ lim
t→∞

‖Ỹt‖p <∞.

Therefore, Ỹ∞ ∈ Lp(P ) and hence

|Xt −X∞|p ≤ (2Ỹ∞)p ∈ L1(P ).

We see from above considerations and the dominated convergence theorem that Xt
t→∞−→ X∞

in Lp(P ). \(∧2
∧)/

Proof of Proposition 5.4.4: Note that

sup
t∈T

‖Xt‖1 ≤ sup
t∈T

‖Xt‖p <∞.

Then, it follows from the martingale convergence theorem (Theorem 5.1.1) that there exists

X∞ ∈ L1(P ) such that Xt
t→∞−→ X∞, a.s. On the other hand, we let Ỹt = max

s∈[0,t]∩T
|Xs|. Then,

by the Lp maximal inequality,

sup
t∈T

‖Ỹt‖p
(5.23)

≤ q sup
t∈T

‖Xt‖p <∞.

Therefore, we see from Lemma 5.4.5 that Xn
n→∞−→ X∞ in Lp(P ).

\(∧2
∧)/

Complement In addition to the conditons (5.27) and (5.28), we consider the following con-
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ditions.

µ(g/β ≥ λ) ≤ 1

(β − 1)λ

∫
f≥λ

fdµ if λ > 0 and β > 1, (5.32)∫
S

φ1(g/β)dµ ≤ 1

(β − 1)

∫
S

fφ2(f)dµ if (φ1, φ2) ∈ Φ and β > 1, (5.33)∫
S

(g − β)+ dµ ≤ α

∫
S

f log+ fdµ if α, β ∈ (1,∞), 1
α
+ 1

β
= 1. (5.34)

Remark Note that x ≤ (x − β)+ + β for all x, β ∈ R. Thus, if µ is a finite measure, then it
follows from (5.34) that ∫

S

gdµ ≤ α

∫
S

f log+ fdµ+ βµ(S). (5.35)

We have the following lemma.� �
Lemma 5.4.6 (⋆) The conditions (5.27)–(5.34) are related as

(5.27) ⇐⇒ (5.28) =⇒ (5.32) ⇐⇒ (5.33) =⇒ (5.34)� �
Proof:
(5.27) ⇒ (5.32):

βλµ(g ≥ βλ)
(5.27)

≤
∫
g≥βλ

fdµ =

∫
g≥βλ
f≥λ

fdµ+

∫
g≥βλ
f<λ

fdµ

≤
∫
f≥λ

fdµ+ λµ(g ≥ βλ).

Subtracting λµ(g ≥ βλ) from the both-hand sides, we obtain (5.32).
(5.32) ⇔ (5.33): This can be shown in the same way as (5.27) ⇔ (5.28).
(5.33) ⇒ (5.34): Apply (5.33) to φ1(λ) = (λ− 1)+ and φ2(λ) = log+ λ. \(∧2

∧)/� �
Proposition 5.4.7 (⋆) (L1-maximal inequality) Suppose that t ∈ T and that
(Xs)s∈[0,t]∩T is a martingale, or a nonnegative submartingale. Then, for all t ∈ T,

‖Ỹt‖1 ≤ α‖|Xt| log+ |Xt|‖1 +
α

α− 1
if α ∈ (1,∞) (5.36)� �

Proof: If X is a nonnegative submartingale, then Ỹt = Yt. Hence, we conclude (5.36) from
(5.22) and Lemma 5.4.6.

If X is a martingale, then, the desired inequality is obtained by applying (5.36) to the
nonnegative submartingale (|Xt|)t∈T. \(∧2

∧)/

Remark The reverse inequality to (5.36) holds true in some cases, cf. Example 5.4.8.

Example 5.4.8 (⋆) Here is an example of a martingale for which reverse inequality to (5.36)
holds true. Suppose that X = (Xn,Fn)n∈N is a nonnegative supermartingale such that X0 = 1
and that there exists C ≥ 1 such that Xn+1 ≤ CXn for all n ∈ N. Then,

E[X∞ log+X∞] ≤ C(EY∞ − 1).

Proof: Fix λ > 1 and set T = inf{n ≥ 1 ; Xn > λ}. We observe that
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1) X∞ > λ ⇒ Y∞ > λ ⇐⇒ T <∞,

2) T <∞ ⇒ XT ≤ CXT−1 ≤ Cλ.

Therefore,

E[X∞ : X∞ > λ]
1)

≤ E[X∞ : T <∞]
Corollary 5.3.3

≤ E[XT : T <∞]
2)

≤ CλP (T <∞)
1)
= CλP (Y∞ > λ). (5.37)

Noting that Y∞ ≥ X0 = 1, we have

EY∞ =

∫ ∞

0

P (Y∞ > λ)dλ = 1 +

∫ ∞

1

P (Y∞ > λ)dλ

(5.37)

≥ 1 + C−1

∫ ∞

1

E[X∞ : X∞ > λ]
dλ

λ
(5.33)
= 1 + C−1E[X∞ log+X∞].

Exercise 5.4.1 For 1 ≤ p < ∞, let Mp be the totality of the martingales X such that

‖X‖Mp
def
= supt≥0 ‖Xt‖p < ∞. Also, let M1

0 be the totality of the uniformly integrable mar-
tingales in M1. Prove the following. i) The map X 7→ X∞ defines a surjective isometry from
(Mp, ‖ · ‖Mp) to Lp(Ω,F∞, P ) for 1 < p < ∞. The same map defines a surjective isometry
from (M1

0, ‖ · ‖Mp) to L1(Ω,F∞, P ). ii) For 1 < p <∞, the norms ‖X‖Mp and ‖ supt≥0 |Xt|‖p
are equivalent.

Exercise 5.4.2 (exponential maximal inequality) Let t ∈ T. Suppose that (Xs)s∈[0,t]∩T
is a submartingale and that E expXt < ∞. Then, prove that E expYt ≤ eE expXt. Hint:
Let p ∈ (1,∞). Then, it follows from the assumption and Lemma 4.3.3 that exp(Xs/p),
s ∈ [0, t] ∩ T is a nonnegative submartigale. Thus, applying (5.23) to this submartingale, we
have

E expYt ≤
(

p
p−1

)p
E expXt.

Then, we let p→ ∞.

Exercise 5.4.3 (⋆) Let Ω = [0, 1), F = B(Ω) and P be the Lebesgue measure on (Ω,B(Ω)).
We let ‖ · ‖p denote the norm of Lp(P ). For f ∈ L1(P ) and x ∈ Ω, define

Hf(x) =
1

x

∫ x

0

f(y)dy.

The objective of this exercise is twofold. The first is to prove Hardy’s inequality

‖Hf‖p ≤
p

p− 1
‖f‖p if p ∈ (1,∞). (5.38)

as an application of Doob’s Lp-maximal inequality (5.23). The second is to show that for both
(5.23) and (5.38), the multiplicative constant p

p−1
cannot be improved.

For t ∈ [0, 1], x ∈ Ω and f ∈ L1(P ), we set
Ft = {A ∈ F ; either A ⊂ [1− t, 1) or Ω\A ⊂ [1− t, 1)},

ft(x) = (Hf)(1− t)1[0,1−t)(x) + f(x)1[1−t,1)(x).
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Then, prove the following. i) For fixed x ∈ Ω, t 7→ ft(x) is right-continuous, f1(x) = f(x) and
|Hf(x)| ≤ supx<t≤1 |f1−t(x)|. ii) For fixed t ∈ (0, 1], E[f |Ft](x) = ft(x), P (dx)-a.s. iii) For
p ∈ [1,∞),

‖Hf‖p ≤

∥∥∥∥∥ sup
t∈[0,1]

ft

∥∥∥∥∥
p

≤ the RHS of (5.38).

iv) For (5.38), the multiplicative constant p
p−1

cannot be improved in the following sense. If

1 < p < ∞ and c < p
p−1

, there exists f ∈ Lp(P ) such that ‖Hf‖p > c‖f‖p. Hint: Let

f(x) = x−δ (0 < δ < 1/p). Then, ‖Hf‖p = (1 − δ)−1(1 − δp)−1/p, ‖f‖p = (1 − δp)−1/p for

p ∈ (1,∞) and ‖f‖1 = δ(2−δ)
(1−δ)2

exp(−(1− δ)).

v) For (5.23), the multiplicative constant p
p−1

cannot be improved in the following sense. If

1 < p <∞ and c < p
p−1

, there exists f ∈ Lp(P ) for which ‖ supt∈[0,1] ft‖p > c‖f1‖p.

5.5 Backwards Martingales� �
Theorem 5.5.1 Suppose that X = (Xn)n∈−N is a submartingale (resp. supermartingale)
and that

−∞ < inf
n∈−N

EXn (resp. sup
n∈−N

EXn <∞). (5.39)

Then, there exists X−∞ ∈ L1(P ) such that

Xn
n→−∞−→ X−∞ a.s. and in L1(P ).� �

Proof: By symmerty, we may focus on the case of submartingale. We first prove that

1) ∃X−∞ = lim
n→−∞

Xn ∈ [−∞,∞] a.s.

Let a, b ∈ R, a < b and Un (n ∈ −N) be the number of upcrossing from a to b by the sequence
Xn, Xn+1, ..., X0. Noting that Un−1 ≥ Un for ∀n ∈ −N, we set U−∞ = limn→−∞ Un ∈ [0,∞].
Then, we have by the argument of Lemma 5.1.6 that

EUn ≤ E[(X0 − a)+]− E[(Xn − a)+] ≤ E[(X0 − a)+].

This implies 1) by the argument in the proof of Theorem 5.1.1.

To prove that Xn
n→−∞−→ X−∞ in L1(P ), it is enough to show that (Xn)n∈−N is uniformly

integrable. Noting (5.39) and that EXn−1 ≤ EXn for ∀n ∈ −N, we set m = limn→−∞EXn ∈
R. Then, for any ε > 0, there exists k ∈ −N such that m ≤ EXn ≤ m + ε for ∀n ≤ k. We
claim for n ≤ k and λ > 0 that

1) P (|Xn| > λ) ≤ (2E[X+
0 ]−m)/λ

2) E[|Xn| : |Xn| > λ] ≤ E[|Xk| : |Xn| > λ] + ε.

These imply the desired uniform integrability. To prove 1), we note that m ≤ EXn and that
X+

n is a submartingale (Lemma 4.3.3). Hence,

E|Xn| = 2E[X+
n ]− EXn ≤ 2E[X+

0 ]−m.

Then, 1) follows from Chebyshev’s inequality. To prove 2), we note that
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3) E[Xn : Xn > λ] ≤ E[Xk : Xn > λ],

4)


E[Xn : Xn < −λ] = EXn − E[Xn : Xn ≥ −λ]

2)

≥ EXk − ε− E[Xk : Xn ≥ −λ]
= E[Xk : Xn < −λ]− ε.

Putting these together,

E[|Xn| : |Xn| > λ] = E[Xn : Xn > λ]− E[Xn : Xn < −λ]
3),4)

≤ E[Xk : Xn > λ]− E[Xk : Xn < −λ] + ε

= E[|Xk| : |Xn| > λ] + ε.

\(∧2
∧)/

Remark: Supppose that X = (Xn)n∈−N is a martingale. Then (5.39) is obviously true.
Moreover, by Corollary 5.5.3 below, we have that

X−∞ = E[X0|F−∞] a.s. with F−∞ =
⋂

n∈−N

Fn.

� �
Corollary 5.5.2 Let Y ∈ L1(P ) and F−∞ =

⋂
n∈−N Fn. Then,

E[Y |Fn]
n→∞−→ E[Y |F−∞] a.s. and in L1(P ).� �

Proof: The process Xn = E[Y |Fn] (n ∈ −N) is a martingale by Example 4.3.2. Thus, by

Theorem 5.5.1, there exists an X−∞ ∈ L1(P ) such that Xn
n→−∞−→ X−∞ a.s. and in L1(P ).

Thus, it is enough to show that

1) X−∞ = E[Y |F−∞] a.s.

To verify this, we take an arbitrary A ∈ F−∞. Then, A ∈ Fn for all n ∈ −N, and thus,
E[Xn : A] = E[Y : A]. Letting n→ −∞, we have

2) E[X−∞ : A] = E[Y : A],

which implies 1). \(∧2
∧)/� �

Corollary 5.5.3 Suppose that X = (Xn)n∈−N is a submartingale (resp. supermartingale)

and that Xn
n→−∞−→ X−∞ in L1(P ). Then,

X−∞ ≤ E[X0|F−∞] (resp. X−∞ ≥ E[X0|F−∞]) a.s.,

where F−∞ =
⋂

n∈−N Fn.� �
Proof: Suppose that X = (Xn)n∈−N is a submartingale. Then, for all n ∈ −N

Xn ≤ E[X0|Fn] a.s.

Xn
n→−∞−→ X−∞ in L1(P ) by assumption. Moreover, E[X0|Fn]

n→−∞−→ E[X0|F−∞] in L1(P ) by
Corollary 5.5.2. Threrefore, the result follows from Exercise 1.10.1. \(∧2

∧)/
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5.6 (⋆) Structure of L1-bounded martingales II

Let u be a real harmonic function on the unit open disc D such that

sup
0<r<1

∫ π

−π

|u(reiθ)|dθ <∞.

Then, there exists a unique Borel signed measure µ on [−π, π] such that

u(z) =
1

2π

∫ π

−π

h(z, eiθ)dµ(θ) for all z ∈ D,

where h(z, w) = |w|2−|z|2
|w−z|2 , cf. [Rud87, p.247,11.30]. Then, let dµ(θ) = f(θ)dθ + 1N(θ)dµ(θ) be

Lebesgue decomposition of µ with respect to the Lebesgue measure, where f ∈ L1([−π, π])
and the signed measure and N ⊂ [−π, π] is a Borel set with zero-Lebesgue measure.

u(reiθ)
r↗∞−→ f(θ) for almost all θ ∈ [−π, π],

cf. [Rud87, p.244,11.24].
We will explain that an L1-bounded martingale X has an analogous properties.

Let (Ω,F , P ) be a probability space and let (Fn)n∈N be a filtration such that F = F∞
def
=

σ
[⋃

n∈NFn

]
. Suppose that X = (Xn,Fn)n∈N is a martingale such that supn∈N ‖Xn‖1 < ∞.

Then, there exists a signed measure Q on (Ω,F), such that Qn � Pn for all n ∈ N, where
Pn = P |Fn , Qn = Q|Fn , and that Xn = dQn

dPn
, cf. Proposition 4.7.1. Moreover, by Theorem

5.1.1, there exists X∞ ∈ L1(P ) such that Xn
n→∞−→ X∞ P -a.s.

The signed measure Q and the r.v. X∞ is related as follows.� �
Proposition 5.6.1 Referring to the setting explained before the proposition, the following
hold.

a) The conditions (5.5)–(5.8) in Theorem 5.2.1 for the martingale X = (Xn,Fn)n∈N are
also equivalent to that Q� P . Moreover, if Q� P , then, X∞ = dQ

dP
.

b) There exists an N ∈ F such that P (N) = 0 and dQ = X∞dP + 1NdQ.� �
Proof: a) Suppose the condition (5.5) of Theorem 5.2.1 and let Q̃(A) = E[Y : A] (A ∈ F).
Then, for any n ∈ N and A ∈ Fn,

Q̃(A) = E[Y : A] = E[Xn : A] = Q(A).

Since n is arbitrary, it follows from Dynkin’s Lemma (Lemma 1.3.1) that Q̃ = Q on F∞ = F .
Thus, Q� P and dQ/dP = X∞.
Suppose on the other hand that Q � P . Then, Q(A) = E[dQ

dP
: A] (A ∈ F). Thus, by the

definition of the conditional expectation (cf. (4.14)), we have that E[dQ
dP

|Fn] =
dQn

dPn
= Xn

(∀n ∈ N). Moreover, since F∞ = F , it follows from Corollary 5.2.2 that Xn
n→∞−→ dQ

dP
P -a.s.

and in L1(P ).
b) Let Q± be the positive and the negative parts of the Jordan decomposition of Q. Then,
X±

n = dQ±
n /dPn. Hence it is enough to prove the decomposition dQ = X∞dP + 1NdQ for
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Q± separately. Therefore, we may assume that Q is a positive finite measure. If Q = 0, then
Xn ≡ 0 and hence the decomposition dQ = X∞dP + 1NdQ holds with N = ∅. If Q 6= 0, then,
by considering Q(·)/Q(Ω) instead of Q, we may assume that Q(Ω) = 1.

Let Q be a probability measure. Then, there exists an N1 ∈ F such that P (N1) = 0 and
on Ω\N1,

1) Xn (n ∈ N ∪ {∞}) are well-defined and Xn
n→∞−→ X∞.

Let R = P+Q
2

, Rn = Pn+Qn

2
, n ∈ N. Note that P � R, Q � R, and Qn � Pn � Rn, n ∈ N.

Let also Yn = dPn

dRn
and Zn = dQn

dRn
. Then, by Exercise 4.1.1, R-almost surely, Xn, Yn, Zn are

well-defined and Zn = XnYn. Also, by part a), Yn
n→∞−→ dP

dR
, R-a.s. and Zn

n→∞−→ dQ
dR

, R-a.s.
Therefore, there exists an N2 ∈ F such that R(N2) = 0 and on Ω\N2,

2) Xn, Yn, Zn (n ∈ N), dP
dR

, dQ
dR

are well-defined, Zn = XnYn, Yn
n→∞−→ dP

dR
, and Zn

n→∞−→ dQ
dR

.

Let N = N1∪N2. Then, P (N) = 0 and on Ω\N , both 1) and 2) are true. Therefore, on Ω\N ,
we have that

3) dQ
dR

= X∞
dP
dR

.

For A ∈ F , we have that

Q(A\N) =

∫
A\N

dQ

dR
dR

3)
=

∫
A\N

X∞
dP

dR
dR = E[X∞ : A\N ] = E[X∞ : A],

from which we conclude that dQ = X∞dP + 1NdQ. \(∧2
∧)/

Example 5.6.2 (Kakutani’s dichotomy) Let (Sn,Bn), n ∈ N\{0} be measurable spaces,
µn, νn ∈ P(Sn,Bn), P = ⊗∞

n=1µn, and Q = ⊗∞
n=1νn. Suppose that νn � µn for all n ∈ N\{0}.

Then,

α
def
=

∞∏
n=1

∫ √
dνn
dµn

dµn

{
> 0 ⇒ Q� P,
= 0 ⇒ Q ⊥ P.

Proof: Let (Ω,F) =
∏∞

n=1(Sn,Bn) and ξn(ω) =
dνn
dµn

(ωn) for ω = (ωn)
∞
n=1. Then, ξn ≥ 0, n ∈

N\{0} are mean-one independent r.v.’s on (Ω,F , P ) and hence Xn =
∏n

j=1 ξj is a nonnegative
martingale. Moreover,

Q(A) = E[Xn : A] for all ∈ N\{0} and A ∈ Fn = σ(ξ1, . . . , xn).

Suppose first that α > 0. Then, by Example 5.2.3, Xn converges in L1(P ), which implies via
Proposition 5.6.1 that Q� P .

Suppose on the other hand that α = 0. Then, by Example 5.2.3, X∞ = 0 a.s., which
implies via Proposition 5.6.1 that Q ⊥ P . \(∧2

∧)/

172



6 Brownian Motion and its Markov Property

6.1 Definition, and Some Basic Properties

The Brownian motion came into the history in 1827, when R. Brown, a British botanist,
observed that pollen grains suspended in water perform a continual swarming motion. In 1905,
A. Einstein derived (6.3) below from the moleculer physics point of view. A mathematically
rigorous construction with a proof of the continuity (cf. B2) below) was given by N. Wiener
(1923).

We fix a probability space (Ω,F , P ) in this subsection. In the sequel, we will repeatedly
refer to a finite time series of the form

0 = t0 < t1 < ... < tn, n ≥ 1. (6.1)

Definition 6.1.1 (Brownian motion) Let B = (Bt : Ω → Rd)t≥0 be a family r.v.’s. We
consider the following conditions.

B1) For any time series (6.1),

B(0), B(t1)−B(0), . . . , B(tn)−B(tn−1) are independent, (6.2)

B(tj)−B(tj−1) ≈ N(0, (tj − tj−1)Id), j = 1, . . . , n, (6.3)

where Id is the identity matrix of degree d (cf. Example 1.2.4),

B2) There is an ΩB ∈ F such that P (ΩB) = 1 and t 7→ Bt(ω) is continuous for all ω ∈ ΩB.

B3) B0 = x, for a nonrandom vector x ∈ Rd.

▶ B is called a d-dimensional Brownian motion (BMd for short) if the conditions B1), B2) are
satisfied.

▶ B is called a d-dimensional Brownian motion started at x (BMd
x for short), if the conditions

B1)–B3) are satisfied.

▶ B is called a d-dimensional pre-Brownian motion (pre-BMd for short), if the conditions B1)
is satisfied. A d-dimensional pre-Brownian motion is said to be started at x, if it saitesfies B3)
and is abbreviated by pre-BMd

x.

Remark: 1) B2) does not follow from B1). In fact, there exists a pre-BM1
0 (Bt)t≥0 which

is almost surely discontinuos at all t ≥ 0 (Example 6.6.9). 2) If the condition B2) above is
replaced by the following stronger one, B is called an continuous modification of a BMd.

t 7→ Bt(ω) is continuous for all ω ∈ Ω. (6.4)

In some text books (e.g. [Bil95, p.503], [IkWa89, p.40], [KS91, p.47], [LeG16, p.27]), instead
of B1)–B2) above, B1), B2) and (6.4) are adopted as the definition of the Brownian motion.
However, there is no essential difference between B2) and (6.4). Suppose that B satisfies

B1)–B2) and define B̃ by

B̃t(ω) =

{
Bt(ω) if ω ∈ ΩB, t ≥ 0,
B0(ω) if ω 6∈ ΩB, t ≥ 0.
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Then, B̃ satisfies B1),B2) and (6.4).
3) In some text books (e.g. [Bil95, p.498], [KS91, p.47]), ”B0 = x” in the condition B4) above
is replaced by “B0 = x, a.s.”

� �
Lemma 6.1.2 Suppose that B̃ is a BMd

0 and that X : Ω → Rd is a r.v. independent of B

Then, B
def
= (X + B̃t)t≥0 is a BMd such that B0 = X.� �

Proof: Obvious from Definition 6.1.1. \(∧2
∧)/

Recall that r.v.’s {Xj}mj=1 is called Gaussian r.v.’s if there exist i.i.d. Z1, . . . , Zn ≈ N(0, 1)
such that each Xj (j = 1, . . . ,m) is a linear combination of Z1, . . . , Zn.� �
Lemma 6.1.3 Referring to Definition 6.1.1, the condition B1) is equivalent to each of the
following conditions
B1’) For any time series (6.1), the r.v’s

Xα
j

def
= Bα(tj)−Bα(tj−1), α = 1, . . . , d, j = 1, . . . , n.

are independent and Xα
j ≈ N(0, tj − tj−1) for all α = 1, . . . , d and j = 1, . . . , n.

B1”) For any time series (6.1), {Bα(tk)} 1≤α≤d
1≤k≤n

are mean-zero Gaussian r.v.’s such that

cov(Bα(tk), B
β(tℓ)) = δα,βtk for all α, β = 1, ..., d and 1 ≤ k ≤ ℓ ≤ n. (6.5)� �

Proof: B1) ⇔ B1’): This is because for each j,

B(tj)−B(tj−1) ≈ N(0, (tj − tj−1)Id)

iff {Xα
j }1≤α≤d are independent and Xα

j ≈ N(0, tj − tj−1) for all α = 1, . . . , d.

B1’) ⇒ B1”): By B1’), Zα
j

def
= Xα

j /
√
tj − tj−1 (1 ≤ α ≤ d, 1 ≤ j ≤ n) are i.i.d., ≈ N(0, 1).

Thus, {Bα(tk)} 1≤α≤d
1≤k≤n

are mean-zero Gaussian r.v.’s, since

Bα(tk) =
k∑

j=1

Xα
j =

k∑
j=1

√
tj − tj−1Z

α
j ,

for α = 1, . . . , d and k = 1, . . . , n. Moreover,

cov(Bα(tk), B
β(tℓ)) = δα,β

k∑
j=1

cov(Xα
j , X

α
j ) = δα,β

k∑
j=1

(tj − tj−1) = δα,βtk

B1”)⇒ B1’): Since {Bα(tk)} 1≤α≤d
1≤k≤n

are mean-zero Gaussian r.v.’s, so are {Xα
j } 1≤α≤d

1≤j≤n
. Moreover,

for α, β = 1, ..., d and 1 ≤ k ≤ ℓ ≤ n,

cov(Xα
k , X

β
ℓ )

= E[(Bα(tk)−Bα(tk−1))(B
β(tℓ)−Bβ(tℓ−1))]

= EBα(tk)B
β(tℓ)− EBα(tk)B

β(tℓ−1)− EBα(tk−1)B
β(tℓ) + EBα(tk−1)B

β(tℓ−1)
B1”)
= δα,β(tk − tk ∧ tℓ−1 − tk−1 + tk−1) = δα,βδk,ℓ(tk − tk−1).
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By Exercise 2.2.6, this implies B1’). \(∧2
∧)/

We note that the Brownian motion can be defined in a different way.� �
Proposition 6.1.4 Referring to Definition 6.1.1, let Bα = (Bα

t )t≥0, α = 1, . . . , d be the
α-th coordinate of B. Then, the following conditions are equivalent.
a) B is a BMd

0.
b) B1, ..., Bd are independent and each of them is a BM1

0.� �
Proof: The equivalence of a) and b) follows easily from that of B1) and B1’) of Lemma 6.1.3.
\(∧2

∧)/

The following invariance property of the Brownian motion allows us to investigate its
behavior as time t→ ∞ via that as time t→ 0, and vice versa.� �
Proposition 6.1.5 (Time inversion) Let B be a BMd. Define B̌ = (B̌t)t≥0 by

B̌t =

{
B0 + t(B1/t −B0), if t > 0,
B0, if t = 0.

(6.6)

Then, B̌ is a BMd such that B̌0 = B0.� �
Let us prove Proposition 6.1.5. Note that B0 and (B1/t − B0)t>0 are independent. Hence,

by Lemma 6.1.2, it is enough to consider the case of B0 ≡ 0. We first verify the following� �
Lemma 6.1.6 Let B be a pre-BMd

0. Then, so is the process B̌ defined by (6.6).� �
Proof: We take arbitrary time sequence of the form (6.1). By Proposition 6.1.4, it is enough
to show that

1) (B̌α(tj)) 1≤α≤d
1≤j≤n

are Gaussian r.v.’s which satisfies (6.5).

We know that

2) (Bα(tj)) 1≤α≤d
1≤j≤n

are Gaussian r.v.’s which satisfies (6.5).

Since 0 < 1/tn < 1/tn−1 < ... < 1/t1, (B
α(1/tj)) 1≤α≤d

1≤j≤n
is a mean-zero Gaussian r.v. by 2), and

hence so is (B̌α(tj)) 1≤α≤d
1≤j≤n

= (tjB
α(1/tj)) 1≤α≤d

1≤j≤n
. Moreover, for 1 ≤ k ≤ ℓ ≤ n and α, β = 1, ..., d,

cov(B̌α(tk), B̌
β(tℓ)) = tktℓE[B

α(1/tk)B
β(1/tℓ)]

2)
= δα,βtktℓ · t−1

ℓ

= δα,βtk.

Thus, we have verified 1). \(∧2
∧)/

To prove the continuity of B̌(t) at t = 0, we prepare the following
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� �
Lemma 6.1.7 For f ∈ C((0, 1) → R),

lim
t→0+

f(t) = lim
r→0+
r∈Q

f(r), lim
t→0+

f(t) = lim
r→0+
r∈Q

f(r).

In particular, for c ∈ [−∞,∞],

f(t)
t→0+−→ c ⇐⇒ f(r)

r∈Q, r→0+−→ c.� �
Proof: Since the first and second equalities are equivalent, we only prove the first one. As for
the first equality, note that

LHS = lim
δ→0+

sup
t∈(0,δ)

f(t), RHS = lim
δ→0+

sup
r∈(0,δ)∩Q

f(r).

Thus, it is enough to verify that

1) sup
t∈(0,δ)

f(t) = sup
r∈(0,δ)∩Q

f(r) for any 0 < δ ≤ 1.

To prove 1), we have only to show that LHS ≤ RHS, since the opposite inequality is obvious.
Let c <LHS, then, there exists t ∈ (0, δ) such that c < f(t). Then, by the continuity, there
exists r ∈ (0, δ)∩Q such that c < f(r). Hence c <RHS of 1). Since c is arbitrary, we see that
LHS ≤ RHS. \(∧2

∧)/� �
Lemma 6.1.8 (Removability of isolated discontinuity) Let X = (Xt)t≥0 and Y =
(Yt)t≥0 be two processes with values in Rd with the same law. Suppose that there exists
ΩX ∈ F with P (ΩX) = 1 such that
a) t 7→ Xt(ω) is continuous on [0,∞) for all ω ∈ ΩX .
b) t 7→ Yt(ω) is continuous on (0,∞) for all ω ∈ ΩX .
Then, there exists ΩY ∈ F with P (ΩY ) = 1 such that t 7→ Yt(ω) is continuous on [0,∞)
for all ω ∈ ΩY .� �

Proof: Let

CY =
{
Yt − Y0

t→0+−→ 0
}
,

CX,Q =
{
Xr −X0

r∈Q, r→0+−→ 0
}
, CY,Q =

{
Yr − Y0

r∈Q, r→0+−→ 0
}
.

It is enough to prove that

1) there exists ΩY ∈ F with P (ΩY ) = 1 such that ΩY ⊂ CY .

We will show this with ΩY
def
= ΩX ∩ CY,Q. We first verify that

2) CX,Q, CY,Q ∈ F .

Indeed,

CX,Q =
⋂
n∈N
n≥1

⋃
m∈N
m≥1

⋂
r∈(0,1/m)

r∈Q

{|Xr −X0| < 1/n} ∈ F .

Similarly, CY,Q ∈ F .
Now, P (CX,Q) = 1 by a) and hence P (CY,Q) = 1, by 2) and X ≈ Y . Therefore,
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3) ΩX ∩ CY,Q ∈ F , P (ΩX ∩ CY,Q) = 1.

On the other hand, b) and Lemma 6.1.7 implies that

4) ΩX ∩ CY,Q = ΩX ∩ CY ⊂ CY .

3) and 4) implies 1) with ΩY
def
= ΩX ∩ CY,Q. \(∧2

∧)/

Proof of Proposition 6.1.5: As is already explained, it is enough to consider the case of
BMd

0. Then, by Lemma 6.1.6, it is enough to verify the continuity of B̌t in t ≥ 0. Recall that
there exists an ΩB ∈ F such that P (ΩB) = 1 and t 7→ Bt(ω) is continuous for all ω ∈ ΩB

Then, for ω ∈ ΩB, B̌t(ω) is continuous at all t > 0. Therefore, the desired continuity follows
from Lemma 6.1.8. \(∧2

∧)/

For BMd, we define the canonical filtration (F0
t )t≥0 by

F0
t = σ(Bs ; s ≤ t). (6.7)

The independence of the increments of the Brownian motion has the following consequence.� �
Proposition 6.1.9 (Markov property I) Let B be a BMd and s ≥ 0. Define

B̂s = (B̂s
t )t≥0 = (Bs+t −Bs)t≥0. (6.8)

Then,
a) B̂s is a BMd

0,

b) F0
s and B̂s are independent.� �

Proof: a) Clearly, B̂s
0 = 0, and t 7→ B̂s

t is a.s. continuous. Let 0 ≤ u < t. Then,

B̂s
t − B̂s

u = Bs+t −Bs+u.

Hence, the increments of B̂s are independent and their laws are the same as those for B. Thus,
B̂s is a BMd

0.
b) We take 0 = r0 < ... < rm ≤ s and 0 = t0 < ... < tn. Then, it is enough to verify that

1) (B(rk))
m
k=1 and (B̂s(tℓ))

n
ℓ=1 are independent.

(cf. Lemma 1.6.5). Let

X
def
= (B(rj)−B(rj−1))

m
j=1 and Y

def
= (B(s+ tj)−B(s+ tj−1))

n
j=1

We see from B1) in Definition 6.1.1 that

2) B0, X and Y are independent.

Moreover, for k = 1, ...,m and ℓ = 1, ..., n,

B(rk) = B0 +
k∑

j=1

(B(rj)−B(rj−1)), B̂s(tℓ) =
ℓ∑

j=1

(B(s+ tj)−B(s+ tj−1)).

Thus,
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3) (B(rk))
m
k=1 is σ(B0, X)-measurable, and (B̂s(tℓ))

n
ℓ=1 is σ(Y )-measurable.

Now, 1) follows from 2) and 3). \(∧2
∧)/

The Markov property implies that the past and the future are independent, given the
present.� �
Corollary 6.1.10 Let s ≥ 0, F ∈ F0

s , and G ∈ Ts
def
= σ(Bt ; t ≥ s). Then,

P (G|F0
s ) = P (G|Bs), a.s. (6.9)

P (F ∩G|Bs) = P (F |Bs)P (G|Bs), a.s. (6.10)� �
Proof: Note that there exists Γ ∈ B((Rd)[0,∞)) such that

1) G = {(Bs+t)t≥0 ∈ Γ} = {(Bs +Bs
t )t≥0 ∈ Γ}.

Note also that the following function is Borel measurable.

f(x) = P ((x+Bs
t )t≥0 ∈ Γ), x ∈ Rd.

Since F0
s and (Bs

t )t≥0 is independent, we see from Exercise ?? that

P (G|F0
s ) = f(Bs), a.s.

In particular, P (G|F0
s ) is σ(Bs)-measurable, which implies (6.9). Then,

P (F ∩G|F0
s ) = 1FP (G|F0

s )
(6.9)
= 1FP (G|Bs), a.s.

By taking the conditional expectations given σ(Bs) of both hands sides of the above identity,
we get (6.10). \(∧2

∧)/

Let B be a BMd and s > 0. The Markov property allows us to construct a new Brownian
motion by replacing the path after the time s by an another Brownian motion β, which is
independent of Fs. More precisely, we have� �
Corollary 6.1.11 (Concatenation of Brownian motions I) Let B be a BMd, s > 0,

and β be a BMd
0 which is independent of F0

s . Then the process B̃ = (B̃t)t≥0 defined as
follows is a BMd.

B̃t =

{
Bt, if t ≤ s,
Bs + βt−s, if t ≥ s.

(6.11)

As a consequence, the Brownian motion β is expressed as

βt = B̃s+t − B̃s, t ≥ 0.� �
Proof: Let S = (Rd)[0,∞) and define F : S × S −→ S by

F (x, y)(t) =

{
x(t), if t ≤ s,
x(s) + y(t− s), if t ≥ s.

Define also X : Ω → S and B̂s : Ω → S by

X = (Bt∧s)t≥0, B̂s = (Bt+s −Bs)t≥0.

Then,
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1) B = F (X, B̂s), B̃ = F (X, β).

Then, X is F0
s -measurable, and hence by assumption, β is a BMd

0 which is independent of X.

On the other hand, we see from Proposition 6.1.9 that B̂s is a BMd
0 which is independent of

X. As a consequence,

2) (X, B̂s) ≈ (X, β).

This, together with 1), implies that B ≈ B̃. \(∧2
∧)/

(⋆) Complement to section 6.1
We will prove that a BMd

0 exists on a suitable probability space (Ω,F , P ). Once we are
given a BMd

0, then, we can construct many other BMd
0’s (Exercise 6.1.2). However, “the law

of BMd
0 is unique” in the following sense.� �

Proposition 6.1.12 (Uniqueness of the law of pre-BMd) Let S = (Rd)[0,∞) and let
B(S) be its product σ-algebra (cf. Definition 1.5.1).

a) Suppose that B is a pre-BMd
x. Then the map ω 7→ (Bt(ω))t≥0 ((Ω,F) −→ (S,B(S)) is

measurable.

b) Suppose that B and B̃ are pre-BMd
x’s. Then, their laws on (S,B(S)) induced by the

maps ω 7→ (Bt(ω))t≥0 and ω 7→ (B̃t(ω))t≥0 are the same;

P ((Bt)t≥0 ∈ A) = P ((B̃t)t≥0 ∈ A) for all A ∈ B(S). (6.12)� �
Proof: a): This follows from Lemma 1.5.2.

b): For time series of the form (6.1), the r.v.’s (B(tj))
n
j=1 and (B̃(tj))

n
j=1 have the same law

described in Proposition 6.1.4c). This proves (6.12) for all cylinder set A ⊂ S, and hence for
all A ∈ B(S) (Lemma 1.5.4). \(∧2

∧)/

Here is a variant of Proposition 6.1.12, which concerns a continuous modification of BMd
x

(cf. Definition 6.1.1).� �
Corollary 6.1.13 Let (S,B(S)) be as in Proposition 6.1.12 and let

W = {w = (wt)t≥0 ∈ S ; t 7→ wt is continuous},
B(W ) = {A ∩W ; A ∈ B(S)}.

a) Suppose that B is a continuous modification of BMd
x (cf. Definition 6.1.1). Then the

map ω 7→ (Bt(ω))t≥0 from (Ω,F) to (W,B(W )) is measurable.

b) Suppose that B and B̃ are two continuous modifications of BMd
x. Then, their laws on

(W,B(W )) induced by the maps ω 7→ (Bt(ω))t≥0 and ω 7→ (B̃t(ω))t≥0 are the same;

P ((Bt)t≥0 ∈ A) = P ((B̃t)t≥0 ∈ A) for all A ∈ B(W ). (6.13)� �
Proof: a): This follows from Lemma 1.5.8.
b): This follows from the same argument as in Proposition 6.1.12, using Lemma 1.5.9 instead
of Lemma 1.5.4. \(∧2

∧)/
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Remark: The unique law (6.13) on (W,B(W )) of a continuous modification of a Brownian
motion is called the Wiener measure. We note that W 6∈ B(S). In fact, suppose that W ∈
B(S), then, by Corollary 1.5.7, there exists an at most countable set Γ ⊂ [0,∞) with the
following property.

1) x ∈ S, y ∈ W, xt = yt for all t ∈ Γ =⇒ x ∈ W.

However, for any y ∈ W and for any at most countable Γ ⊂ [0,∞), we can always find an
x 6∈ W (i.e., t 7→ xt is discontinuous) such that xt = yt for all t ∈ Γ. Therefore the set W does
not have the property 1).� �
Lemma 6.1.14 Let B be a BMd, S = (Rd)[0,∞) and B(S) be the product σ-algebra of S.
Then,

a) The map (x, ω) 7→ x+B = (x+Bt(ω))t≥0 is (B(Rd)⊗F)/B(S)-measurable.

b) Let F : S → R be bounded, B(S)-measurable. Then, the function

Rd 3 x 7→ EF (x+B)

is Borel measurable.� �
Proof: a) By Lemma 1.5.2, it is enough to verify that the map (x, ω) 7→ x + Bt is (B(Rd) ⊗
F)/B(Rd)-measurable for each fixed t ≥ 0. But this is obvious, since the map (x, ω) 7→ x+Bt

is a composition of
(x, ω) 7→ (x,Bt) and (x, y) 7→ x+ y,

which are (B(Rd)⊗F)/B(R2d)-measurable and B(R2d)/B(Rd)-measurable, respectively.
b) It follows from a) that (x, ω) 7→ F (x+B) is B(Rd)⊗F -measurable. Thus, the measurability
in question follows from a standard argument (Exercise 6.1.12). \(∧2

∧)/

Exercise 6.1.1 Let B be a BMd
x, and

ht(x) = (2πt)−d/2 exp

(
−|x|2

2t

)
, t > 0, x ∈ Rd. (6.14)

Then, prove that

P (Bt1 ∈ A1, . . . , Btn ∈ An)

=

∫
A1

ht1(x1 − x)dx1

∫
A2

ht2−t1(x2 − x1)dx2 . . .

∫
An

htn−tn−1(xn − xn−1)dxn. (6.15)

for time series of the form (6.1) and A0, . . . , An ∈ B(Rd).
Hint: Note that {Btj − Btj−1

}nj=1 are independent and that {Bt1 ∈ A1, . . . , Btn ∈ An} =
{(Btj −Btj−1

)nj=1 ∈ D}, where D =
⋂n

j=1{y ∈ (Rd)n ; x+ y1 + ...+ yj ∈ Aj}. Therefore,

LHS of (6.15) =

∫
D

ht1(y1)ht2−t1(y2) · · ·htn−tn−1(yn)dy1 · · · dyn.

Exercise 6.1.2 Suppose that B is a BMd
0. Then, prove that (c−1/2Bct)t≥0 is a BMd

0 for all
c > 0 and that (UBt)t≥0 is a BMd

0 for any orthogonal d× d matrix U .
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Exercise 6.1.3 Let B be a BMd and s > 0. Then, prove that (Bs − Bs−t)0≤t≤s ≈ (Bt −
B0)0≤t≤s.

Exercise 6.1.4 Let B be a BMd
0. Then, prove the following for p > 0 and t > 0. i) E[|Bt|−p] =

t−p/2C(p, d) where C(p, d) <∞ if p < d and C(p, d) = ∞ if otherwise. ii)
∫ t

0
|Bs|−pds ∈ L1(P )

if p < 2 ∧ d.
Remark: For d = 1, it follows from ii) above that

∫ t

0
|Bs|−pds <∞ a.s. for p < 1. On the other

hand, it is known, as an application of Engelbert-Schmidt zero-one law that
∫ t

0
|Bs|−1ds = ∞

a.s. cf. [KS91, p.217].

Exercise 6.1.5 Let B be BM1
0 Prove the following. i) Suppose that F : [0, t) → R be right-

continuous and of bounded variation. Then, B(F )
def
=
∫ t

0
BtdF (t) is a mean-zero Gaussian

r.v. Hint: The step function B
(n)
s =

∑n
j=1B(tj/n)1[(j−1)t/n,jt/n))(s) (0 ≤ s ≤ t) converges

uniformly to Bs. ii) Suppose that Fj : [0, t) → R (j = 1, 2) are continuous and of bounded
variation. Then,

E [B(F1)B(F2)] = tF1(t)F2(t) +

∫ t

0

F1(s)F2(s)ds− F1(t)

∫ t

0

F2(s)ds− F2(t)

∫ t

0

F1(s)ds.

Exercise 6.1.6 Let B be a BMq
x (d ≥ 2, x ∈ Rd) and f : [0,∞) → [0,∞) be a measurable

function. Let also Fν(z) (ν, z ∈ C) be from (2.20). Then, prove that

Ex[f(|Bt|)] =
∫ ∞

0

kt(|x|, r)f(r)dr,

where

kt(r0, r) = 2(2t)−
d
2 rd−1 exp

(
−r

2
0 + r2

2t

)
F d

2
−1

(r0r
t

)
, r0, r ∈ [0,∞).

Exercise 6.1.7 Let X = (Xt : Ω → R)t≥0 be a process such that t 7→ Xt(ω) is continuous for
all ω ∈ Ω, and let v : [0,∞) → [0,∞) be continuous, strictly increasing, with v(0) = 0. Then,
prove that the following conditions (a) and (b) are equivalent. (a) There exists a Brownian
motion B such that Xt−X0 = Bv(t) (∀t ≥ 0). (b) The process X is of independent increment
and Xt −Xs ≈ N(0, v(t)− v(s)) for all 0 ≤ s < t.

Exercise 6.1.8 Let B be a BM1
0 and h : [0,∞) → R be continuous, of bounded variation on

any bounded interval. Then, prove the following. (i) The process

Xt = Xt(B)
def
= Bth(t)−

∫ t

0

Budh(u), t ≥ 0

is of independent increments and that Xt − Xs ≈ N (0, v(t)− v(s)) for all 0 ≤ s < t,
where v(t) =

∫ t

0
h(u)2du. Hint: Take a sequence of partitions of [0, t]: 0 = tn,0 < tn,1 <

. . . < tn,p(n) = t (n ≥ 1) such that max0≤j≤p(n)−1(tn,j+1 − tn,j)
n→∞−→ 0 and let B

(n)
s =∑p(n)−1

j=1 B(tn,j)1(tn,j ,tn,j+1](s). Then, Xt(B
(n))

n→∞−→ Xt in L2(P ). Moreover, by “summation
by parts”,

Xt(B
(n)) =

p(n)−1∑
j=1

(B(tn,j)−B(tn,j−1))h(tn,j).

(ii) Suppose in addition that h vanishes on no open interval. Then, there exists a Brownian
motion β such that Xt = βv(t) (∀t ≥ 0). Hint: Exercise 6.1.7.
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Exercise 6.1.9 Referring to Exercise 6.1.8, suppose in addition that h is strictly positive.
Prove that, for x ∈ R, Yt = h(t)−1 (h(0)x+Xt), t ≥ 0 is the unique solution to the following
integral equation.

(∗) Yt = x+Bt −
∫ t

0

Ys
dh(s)

h(s)
.

Remark Let λ > 0. Then, with the choice h(t) = exp(λt), the process Y = (Yt)t≥0 above is
called the Ornstein-Uhlenbeck process, which is therefore defined by

Yt = Bt + exp(−λt)
(
x− λ

∫ t

0

Bs exp(λs)ds

)
, t ≥ 0.

By Exercise 6.1.8 (ii), there exists a Brownian motion β such that

Yt = exp(−λt)
(
x+ β

(
exp(2λt)− 1

2λ

))
, t ≥ 0.

In particular, for each t > 0, Yt is a Gaussian r.v. with the mean exp(−λt)x and the variance
1−exp(−2λt)

2λ
. By Exercise 6.1.9, Y = (Yt)t≥0 is the unique solution to the following integral

equation.

Yt = x+Bt − λ

∫ t

0

Ysds.

Exercise 6.1.10 (Brownian bridge) Let a, b ∈ Rd, and s > 0. A process X = (Xt : Ω →
Rd)0≤t≤s is called a Brownian bridge from a to b (BBd

a,b,s for short) if

Xt = Bt −
t

s
Bs +

(
1− t

s

)
a+

t

s
b, 0 ≤ t ≤ s,

where B is a BMd
0. Prove the following. (i) If X is a BBd

a,b,s, then, (Xs−t)0≤t≤s is a BBd
b,a,s.

Hint Exercise 6.1.3. (ii) Suppose that two processes X = (Xt : Ω → Rd)0≤t≤s and β = (βt :
Ω → Rd)t≥0 are related as

Xt = tβ

(
1

t
− 1

s

)
, 0 < t ≤ s,

or equivalently,

βt =

(
t+

1

s

)
X

(
1

t+ 1
s

)
, t ≥ 0.

Then, X is a BBd
0,0,s if and only if β is a BMd

0. Hint: Suppose that β is a BMd
0. Then, by

Corollary 6.1.11, there exists a BMd
0, say B, such that βt = Bt+ 1

s
−B 1

s
. Then, use Proposition

6.1.5 to prove that X is a BBd
0,0,s. Suppose on the other hand that X is a BBd

0,0,s. Then, there

exists a BMd
0, say B, such that Xt = Bt − t

s
Bs. Then, use Proposition 6.1.5 to prove that β is

a BMd
0.

Exercise 6.1.11 (Markov porperty given the future) Let B be a BMd
0, s > 0, b ∈ Rd,

Ts = σ(Bt ; t ≥ s) and Xb = (Xb
t )0<t≤s = (Bt − t

s
Bs +

t
s
b)0<t≤s. Prove then the following.

i)
(
Xb, (Bt)t≥s

)
≈
(
(tB1/t − tB1/s +

t
s
b)0<t≤s, (tB1/t)t≥s

)
. In particular, Xb is independent
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of Ts. [Hint:Proposition 6.1.5.]
ii) Suppose that F : (Rd)(0,s] → R is bounded measurable and A ∈ Ts. Then,

E[F ((Bt)0<t≤s) : A] =

∫
A

E[F (Xb)]|b=Bs(ω)P (dω).

Therefore,
E[F ((Bt)0<t≤s)|Ts] = E[F (Xb)]|b=Bs , a.s.

Hint: For 0 < t ≤ s, Bt = X0
t +

t
s
Bs.

Exercise 6.1.12 20 Let (S1,A1) and (S2,A2) be measurable spaces and µ ∈ P(S2,A2). Then,
for F : S1 × S2 → R, bounded, A1 ⊗ A2-measurable, prove that f(x) =

∫
S2
F (x, y)µ(dy) is

A1-measurable. [Hint: It is enough to consider the case where F = 1A for A ∈ A1⊗A2. When
A = A1×A2 (Aj ∈ Aj), f = 1A1µ(A2) is clearly A1-measurable. Finally, use Dynkin’s lemma.]

6.2 The Existence of the Brownian Motion

We present a construction of a BM1
0 in this subsection. This is enough to prove the existence

of BMd
x for any d ≥ 1 and x ∈ Rd (cf. Lemma 6.1.2, Corollary ??). We begin by introducing

Haar functions φn,k : [0,∞) → R (n, k ∈ N) as follows.

0

√
2n−1

−
√
2n−1

1/2n 2/2n 3/2n 4/2n 5/2n

φn,0 φn,1 φn,2

φ0,k = 1(k,k+1],

φn,k =
√
2n−11(2k/2n,(2k+1)/2n] −

√
2n−11(2k+1)/2n,(2k+2)/2n], for n ≥ 1.

Let X = (Xn,k)n,k∈N, where Xn,k are iid ≈ N(0, 1), defined on a probability space (Ω,F , P ).
We will prove the existence of BM1

0 in the following form;

20This exercise is associated with Lemma 6.1.14 below.
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� �
Theorem 6.2.1 a) The following series absolutely converges a.s.

Bt =
∑
n,k≥0

Xn,k

∫ t

0

φn,k, t ≥ 0. (6.16)

More precisely, for any α ∈ [0, 1/2) and T > 0, there is an a.s. finite r.v. M =
M(α, T ) ≥ 0 such that

∑
n,k≥0

∣∣∣∣Xn,k

∫ t

s

φn,k

∣∣∣∣ ≤M |t− s|α for all 0 ≤ s < t ≤ T . (6.17)

In particular,
|Bt −Bs| ≤M |t− s|α for all 0 ≤ s < t ≤ T . (6.18)

b) (Bt)t≥0 defined above is a BM1
0.� �

Define

〈 f, g 〉 =
∫ ∞

0

fg, f, g ∈ L2[0,∞).

We also introduce X ⊂ L2([0,∞)) by:

X = finite linear combinations of 1(0,t] (t > 0).

Therefore, a function h ∈ X is expressed as

h =
ℓ∑

i=1

ci1(0,ti], c1, ..., cℓ ∈ R, t1, . . . , tℓ ∈ (0,∞) (6.19)

for some ℓ ≥ 1. We will prove Theorem 6.2.1 in the following generalized form:
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� �
Lemma 6.2.2 Then the following hold;

a) For h ∈ X , the following series absolutely converges a.s.

B(h)
def
=
∑
n,k≥0

Xn,k〈 φn,k, h 〉. (6.20)

More precisely, there exists an a.s. finite r.v. Z ≥ 0 for which the following holds
true. Suppose that h ∈ X is of the form (6.19) with t1, . . . , tℓ ∈ (0, T ] for some
T > 0. Then, for any q > 2,∑

n,k≥0

|Xn,k〈 φn,k, h 〉| ≤ CℓZ‖h‖q, (6.21)

where C = C(q, T ) ∈ (0,∞) is a constant and ‖ · ‖q = ‖ · ‖Lq [0,∞).

b) {B(h)}h∈X is a family of a mean-zero Gaussian r.v.’s such that

E[B(h1)B(h2)] = 〈 h1, h2 〉, for all h1, h2 ∈ X . (6.22)

c) If {hj}nj=1 ⊂ X and 〈 hi, hj 〉 = 0 for i 6= j, then {B(hj)}nj=1 are independent.� �
Remark: Note that X is dense in L2([0,∞)). Thus, by (6.22), the map X 3 h 7→ B(h)
extends to an isometry from L2([0,∞)) to L2(Ω,F , P ).

We now finish the proof of Theorem 6.2.1 assuming Lemma 6.2.2.

Proof of Theorem 6.2.1: We see from (6.16) and (6.20) that for 0 ≤ s ≤ t <∞,

1) Bt −Bs = B(1(s,t]).

Since ‖1(s,t]‖q = |t − s|1/q, the bound (6.17) follows from (6.21) and 1) with M(α, T ) =
2C(α−1, T )Z. Let next us check B0)–B2) (with d = 1 and x = 0) for {Bt}t≥0.
B0): This is obvious by the definition (6.16).
B1): If n ≥ 2 and 0 = t0 < t1 < . . . < tn, then for i 6= j, 〈 1(ti−1ti], 1(tj−1tj ] 〉 = 0. Therefore,
Btj −Btj−1

= B(1(tj−1tj ]) (j = 1, . . . n) are independent by Lemma 6.2.2 c).
B2): 〈 1(s,t], 1(s,t] 〉 = t − s for 0 ≤ s < t. Hence it follows from Lemma 6.2.2 b) that
Bt −Bs = B(1(s,t]) ≈ N(0, t− s).
B2): This follows from (6.17).

\(∧2
∧)/

We now turn to the proof of Lemma 6.2.2. We begin by proving the following
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� �
Lemma 6.2.3 {φn,k}n,k≥0 is a complete orthnormal system of L2[0,∞), i.e.,

〈 φn,k, φn′,k′ 〉 =
{

1, if (n, k) = (n′, k′)
0, if otherwise.

(6.23)

and ⋂
n,k≥0

{h ∈ L2[0,∞) ; 〈 φn,k, h 〉 = 0} = {h ≡ 0}. (6.24)

� �
Proof: The proof of (6.23) is easy and is left to the readers (cf. Exercise 6.2.1 below). To prove
(6.24), we take a function h from the set on the left-hand side of (6.24) and show that

H(t) = H(0) for all t ≥ 0, where H(t)
def.
=
∫ t

0
h.

Since diadic rationals are dense, it is enough to prove

1) H
(
2k+1
2n

)
= H(0) for all n, k ≥ 0.

We will prove (1) by induction on n. We have

2) H(k + 1)−H(k) =

∫ k+1

k

h = 〈 φ0,k, h 〉 = 0, k = 0, 1, . . . ,

which proves 1) for n = 0. Suppose that 1) holds true with n replaced by n − 1. Then, for
j, k ∈ N, H

(
2k+2j
2n

)
= H

(
k+j
2n−1

)
= H(0). Therefore,

H
(
2k+1
2n

)
−H(0) = H

(
2k+1
2n

)
− 1

2
H
(
2k
2n

)
− 1

2
H
(
2k+2
2n

)
= 1

2

(
H
(
2k+1
2n

)
−H

(
2k
2n

))
− 1

2

(
H
(
2k+2
2n

)
−H

(
2k+1
2n

))
= 1

2

∫ 2k+1
2n

2k
2n

h− 1
2

∫ 2k+2
2n

2k+1
2n

h = 1
2
2−

n−1
2 〈 φn,k, h 〉 = 0.

\(∧2
∧)/� �

Lemma 6.2.4
Z

def
= sup

n,k≥0
|Xn,k|/

√
log(2 + n+ k) <∞, a.s.

� �
Proof: We will in fact prove that for c > 2,

P
(
|Xn,k| ≤ c

√
log(2 + n+ k) except finitely many (n, k)’s

)
= 1.

We first compute for any y > 0 that

1)


P (|Xn,k| > y) =

√
2/π

∫ ∞

y

exp(−x2/2)dx

≤
√

2/π

∫ ∞

y

(x/y) exp(−x2/2)dx =
√

2/π exp(−y2/2)/y.
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We use this inequality as follows. (Note that
√
2/π ≤ 1. Note also that c

√
log(2 + n+ k) > 1,

since
√
log 2 = 0.83....)

E

[∑
n,k≥0

1{|Xn,k| > c
√

log(2 + n+ k)}

]

=
∑
n,k≥0

P (|Xn,k| > c
√
log(2 + n+ k))

1)

≤
∑
n,k≥0

exp

(
−c

2

2
log(2 + n+ k)

)
=

∑
n,k≥0

(2 + n+ k)−
c2

2 <∞.

As a consequence,
∑

n,k≥0 1{|Xn,k| > c
√

log(2 + n+ k)} < ∞, P -a.s., which is equivalent to
what we wanted to prove. \(∧2

∧)/

Proof of Lemma 6.2.2: a): Let It is enough to prove (6.21). We take p ∈ (1, 2) such that
1
p
+ 1

q
= 1 and define ε = 1

p
− 1

2
> 0. We also introduce Kn(h)

def
= {k ∈ N ; 〈 φn,k, h 〉 6= 0}. We

verify that

1) ‖φn,k‖p = 2
n−1
2

−n−1
p = 2−(n−1)ε.

2) maxKn(h) ≤ 2n−1T ,

3) |Kn(h)|
def
=

∑
k∈Kn(h)

1 ≤ (1 + T )ℓ.

We also get 1) by a direct computation. To see 2), note that h ≡ 0 outside (0, T ] and that

φn,k ≡ 0 outside ( 2k
2n
, (2k+2)

2n
]. If k > 2n−1T , then (0, T ]∩( 2k

2n
, (2k+2)

2n
] = ∅, and hence 〈φn,k, h〉 = 0.

The inequality 3) can be seen as follows. For any t > 0,

〈 φn,k, 1(0,t] 〉 6= 0 =⇒
{
k ≤ t, if n = 0
t ∈ [2k/2n, (2k + 2)/2n), if n ≥ 1.

and hence,

|Kn(1(0,t])| ≤
{

1 + t, if n = 0
1, if n ≥ 1

}
≤ 1 + T.

Therefore,

|Kn(h)| ≤
ℓ∑

j=1

|Kn(1(0,tj ])| ≤ ℓ(1 + T ).

Let cn,T
def
=
√

log(2 + n+ 2n−1T ). Then, for k ∈ Kn(h),

4)

 |Xn,k|
Lemma 6.2.4

≤ Z
√
log(2 + n+ k)

2)

≤ cn,TZ,

|〈 φn,k, h 〉|
Hölder

≤ ‖φn,k‖p‖h‖q
1)
= 2−(n−1)ε‖h‖q.
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Therefore, ∑
n,k≥0

|Xn,k〈 φn,k, h 〉| =
∑
n≥0

∑
k∈Kn(h)

|Xn,k〈 φn,k, h 〉|

4)

≤ ‖h‖qZ
∑
n≥0

cn,T2
−(n−1)ε

∑
k∈Kn(h)

1

3)

≤ ‖h‖qZ(1 + T )ℓ
∑
n≥0

cn,T2
−(n−1)ε.

The series in the third line converges and this proves (6.21).
b): Ingredients of the proof will be Lemma 6.2.3 and some basic properties of Gaussian r.v.’s
listed in Exercise 2.2.4–Exercise 2.4.7. For h ∈ X , we define B(h) by (6.20) and BN(h) by the
partial sum;

BN(h) =
N∑

n=0

∑
k≥0

Xn,k〈 φn,k, h 〉.

Then,

� BN(h) for each h ∈ X is a mean-zero Gaussian r.v.

In fact, BN(h) is a finite summation of independent mean-zero Gaussian r.v.’s (cf. 3)) and
hence is a mean-zero Gaussian r.v. by Exercise 2.2.4.
Next, as a consequence of part (a),

� BN(h)
N↗∞−→ B(h), P -a.s.

Moreover,

� E[BN(h1)BN(h2)]
N↗∞−→ 〈 h1, h2 〉 for h1, h2 ∈ X .

This can be seen as follows;

E[BN(h1)BN(h2)] =
N∑

n,n′=0

∑
k,k′≥0

〈 φn,k, h1 〉〈 φn′,k′ , h2 〉E[Xn,kXn′,k′ ]

=
N∑

n=0

∑
k≥0

〈 φn,k, h1 〉〈 φn,k, h2 〉
N↗∞−→

∑
n≥0

∑
k≥0

〈 φn,k, h1 〉〈 φn,k, h2 〉

= 〈 h1, h2 〉, by Parseval’s identity.

These, together with Exercise 2.4.7, prove that B(h) for each h ∈ X is a Gaussian r.v. and
that (6.22) holds for h1, h2 ∈ X .
c): By part b),

∑n
j=1 cjB(hj) = B(

∑n
j=1 cjhj) is a Gaussian r.v. for (cj)

n
j=1 ∈ Rn. Hence it

follows from Exercise 2.2.5 that (B(hj))
n
j=1 is an Rn-valued Gaussian r.v. By this, (6.22) and

Exercise 2.2.6, we see that {B(hj)}nj=1 are independent. \(∧2
∧)/

Exercise 6.2.1 Prove (6.23).
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6.3 α-Hölder continuity for α < 1/2

We start by proving the following estimate, which shows that the Brownian motion is α-Hölder
continuous for any α < 1/2.� �
Proposition 6.3.1 If B is a BM1

0, then for any α ∈ [0, 1/2) and T > 0,

sup
0≤s<t≤T

|Bt −Bs|
|t− s|α

<∞, a.s.

� �
To prove Proposition 6.3.1, we prepare the following� �

Lemma 6.3.2 For f ∈ C([0, T ] → R) and g ∈ C((0, T ] → (0,∞)),

sup
0≤s<t≤T

|f(t)− f(s)|
g(t− s)

= sup
0<s<t<T

s,t∈Q

|f(t)− f(s)|
g(t− s)

.

� �
Proof: We prove ≤ only, since ≥ is obvious. Let M be the right-hand side of the equality to
be proved. Then, we may assume that M < ∞. Let 0 ≤ s < t ≤ T . We choose sn, tn ∈ Q,
n ∈ N such that 0 < sn < tn < T , sn → s and tn → t. We have that

|f(tn)− f(sn)| ≤Mg(tn − sn).

Letting n→ ∞, we obtain that |f(t)−f(s)|
g(t−s)

≤M , as desired. \(∧2
∧)/

Proof of Proposition 6.3.1: Let B̃ be the BM1
0 on a probability space (Ω̃, F̃ , P̃ ), constructed

by Theorem 6.2.1. Let

E =

{
sup

0≤s<t≤T

|Bt −Bs|
|t− s|α

<∞
}
, F =

 sup
0<s<t<T

s,t∈Q

|Bt −Bs|
|t− s|α

<∞

 .

Note that E ⊂ F . Let also Ẽ and F̃ be defined in the same way as above, with B replaced
by B̃. Then, we know from Theorem 6.2.1 that Ẽ

a.s.
= Ω̃. We want to conclude from this that

E
a.s.
= Ω. Unfortunately, as is in the proof of Proposition 6.1.5, we can not do so directly, since

E 6∈ σ[B], as well as Ẽ 6∈ σ[B̃]. We will go around this bother by noting that

1) F ∈ σ[B], F̃ ∈ σ[B̃] and E
a.s.
= F .

Let us admit 1) for a moment to conclude the proof. By 1), it is enough to show that P (F ) = 1.

Since B ≈ B̃, F ∈ σ[B], F̃ ∈ σ[B̃], we have that P (F ) = P̃ (F̃ ) = 1.
We now see 1) as follows. First,

F =
⋃
m∈N

⋂
0<s<t<T

s,t∈Q

{
|Bt −Bs|
|t− s|α

≤ m

}
∈ σ[B].

Similarly, F̃ ∈ σ[B̃]. Now, recall that there exists an ΩB ∈ F such that P (ΩB) = 1 and t 7→
Bt(ω) is continuous for all ω ∈ ΩB. Thus, it follows from Lemma 6.3.2 that E ∩ΩB = F ∩ΩB,
and hence E

a.s.
= F . \(∧2

∧)/
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As an immediate conseqence of Proposition 6.3.1, we have the following� �
Corollary 6.3.3 If B is a BM1

0, then for any α ∈ [0, 1/2) and T > 0,

lim
h↘0

sup
0<t≤T

|Bt±h −Bt|
hα

= 0, a.s.

� �
With Proposition 6.1.5 and Corollary 6.3.3, we obtain the following property of the Brow-

nian motion as t→ ∞.� �
Corollary 6.3.4 ( The law of large numbers for the Brownian motion) Let B be
a BMd

0. Then, for any α > 1/2,

Bt/t
α t→∞−→ 0, a.s.� �

Proof: Let B̌ be as in Proposition 6.1.5. Then,

Bt/t
α t→∞−→ 0 ⇐⇒ t−(1−α)B̌t

t→0+−→ 0.

Since 1− α < 1/2, we see from Corollary 6.3.3 that

t−(1−α)B̌t
t→0+−→ 0, a.s.

\(∧2
∧)/

Remarks: 1) By Proposition 6.3.1, t 7→ Bt is α-Hölder continuous on any bounded interval
for α < 1/2. But this is no longer true for α = 1/2 (Exercise 6.5.1).
2) Proposition 6.3.1 can be improved in the following way.

sup
0≤s<t≤T

|Bt −Bs|√
|t− s| log(1/|t− s|)

<∞, a.s. (6.25)

See, e.g., [MP10, p.14, Theorem 1.12]. Moreover, this improvement is optimal, as can be seen
from the following result, known as Lévy’s modulus of continuity (P. Lévy (1937)).

lim
h↘0

sup
0≤t≤T

|Bt+h −Bt|√
h log(1/h)

=
√
2, a.s. (6.26)

See, e.g. [KS91, p.114, Theorem 9.25], [MP10, p.16, Theorem 1.14].
3) The following refinement of Corollary 6.3.4 is known as the law of iterated logarithm (A.
Hincin (1933)).

lim
t→∞

|Bt|√
t log log t

=
√
2, a.s. (6.27)

See, e.g. [Dur95, p.434, (9.1)], [KS91, p.112, Theorem 9.22], [MP10, p.119, Theorem 5.1].
This, together with Proposition 6.1.9 and Proposition 6.1.5, implies that for any t ≥ 0,

lim
h↘0

|Bt+h −Bt|√
h log log(1/h)

=
√
2, a.s. (6.28)

Although the results (6.26) and (6.28) are of the similar kind, the functions on the denominators
slightly differ, depending on whether the supremum of the time t is taken over an interval as
in (6.26), or the time t is fixed as in (6.28).
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Exercise 6.3.1 (⋆) Let B be a pre-BM1
0, U be a uniformly distributed r.v. on (0, 1), and

φ : [0,∞) → (0,∞) be a nondecreasing function. We define B̃ = (B̃t)t≥0 by

B̃t =

{
φ(n+ 1) if t = n+ U,
Bt if otherwise.

Prove the following. i) B̃ is a pre-BM1
0. ii) lim

t→∞
|B̃t|/φ(t) ≥ 1, which shows that the conclusion

of Corollary 6.3.4 is no longer true for pre-Brownian motions.

6.4 Nowhere α-Hölder continuity for α > 1/2

One of the most striking property of the Brownian motion is the nowhere differentiablity21:

With probability one, t 7→ Bt is not differentiable at any t ≥ 0. (6.29)

Let us describe the above property in a more quantitative way. For a function f : [0,∞) → R
and a exponent α ∈ (0, 1], we define the right (resp. left) Hölder coefficients C+

α,f (t), t ≥ 0

(resp. C−
α,f (t), t > 0) as follows.

C±
α,f (t)

def
= lim

h↘0

|f(t± h)− f(t)|
hα

. (6.30)

If f is right (resp. left) differentiable at t, then, for all α ∈ (0, 1],

C+
α,f (t) ≤ C+

1,f (t) <∞ (resp. C−
α,f (t) ≤ C−

1,f (t) <∞).

Thus, (6.29) is a consequence of the following� �
Proposition 6.4.1 Let B be a BM1

0 and α ∈ (1/2, 1]. Then, a.s.,

C+
α,B(t) = ∞ for all t ≥ 0 and C−

α,B(t) = ∞ for all t > 0. (6.31)� �
Remark Davis, and independently, Perkins and Greenwood, proved in 1983 that

inf
t∈[0,1]

C+
1/2,B(t) = 1, a.s.

This shows that (6.31) is no longer true for α = 1/2. See also Exercise 6.5.1 below.

We turn to the proof22 of (6.31). We start with the following lemma, which has nothing to
do with probability in itself. For f : [0,∞) → R and α ∈ (0,∞), we define

S+
α,f (t)

def
= sup

h∈(0,1]

|f(t+ h)− f(t)|
hα

. (6.32)

21Due to R.E.A.C.Paley, N. Wiener and A. Zygmund (1933)
22We follow the line of argument by A. Dvoretsky, P. Erdös, S. Kakutani (1961).
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� �
Lemma 6.4.2 a) Suppose that

inf
t∈[0,T ]

S+
α,f (t) < ℓ for some T, ℓ ∈ (0,∞).

Then, for any δ ∈ (0, 1), there exists i = 0, . . . , bT/δc such that

|f((i+ j + 1)δ)− f((i+ j)δ)| ≤ 2ℓ(j + 1)αδα for all j = 1, . . . , b1/δc − 1.

b) Suppose that f is bounded on [t, t+ 1] for some t ≥ 0. Then,

S+
α,f (t) <∞ ⇐⇒ C+

α,f (t) <∞.� �
Proof: a) Take t ∈ [0, T ] such that S+

α,f (t) < ℓ and i ∈ N such that iδ ≤ t < (i + 1)δ. Then,
for k = 0, 1 and j = 1, . . . , bδ−1c − 1, we have

(i+ j + k)δ − t =

{
(j + k − 1)δ + (i+ 1)δ − t > (j + k − 1)δ ≥ 0,
(j + k)δ + iδ − t ≤ (j + k)δ ≤ 1.

and hence,

|f ((i+ j + 1)δ)− f ((i+ j)δ)| ≤
∑
k=0,1

|f ((i+ j + k)δ)− f(t)|

≤ S+
α,f (t)

∑
k=0,1

((i+ j + k)δ − t)α

≤ S+
α,f (t)

∑
k=0,1

((j + k)δ)α ≤ 2ℓ(j + 1)αδα.

a) ⇒: Obvious, since S+
α,f (t) ≥ C+

α,f (t).

⇐ Since lim
h↘0

= lim
ε→0

sup
h∈(0,ε]

, there exists 0 < ε ≤ 1 such that

1) sup
u∈(0,ε]

|f(t+ h)− f(t)|
hα

≤ C+
α,f (t) + 1 <∞.

On the other hand,

2) sup
h∈(ε,1]

|f(t+ h)− f(t)|
hα

≤ 1

εα
sup

h∈(ε,1]
|f(t+ h)− f(t)| <∞.

It follows from 1) and 2) that S+
α,f (t) <∞. \(∧2

∧)/

Proof of Proposition 6.4.1 Step1 23: Referring to (6.32), we first prove that,

a.s., S+
α,B(t) = ∞ for all t ≥ 0,

or equivalently that the following set F is a null set.

1) F
def
=
{
S+
α,B(t) <∞ for some t ≥ 0

}
.

It is enough to prove that each FT,ℓ =
{
inft∈[0,T ] S

+
α,B(t) < ℓ

}
(T, ℓ ∈ N\{0}) is a null set, since

F =
⋃

T,ℓ∈N\{0} FT,ℓ. For this purpose, take m ∈ N\{0} such that

23The continuity of the path is not used here, so that the result is valid for pre-Brownian motion.
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2) (α− 1
2
)m > 1

and fix it. It follows from Lemma 6.4.2 a) that, on the set FT,ℓ, for any δ ∈ (0, 1), there exists
i = 0, . . . , bT/δc such that

Xδ,i,j
def
= |B ((i+ j + 1)δ)−B ((i+ j)δ)| ≤ 2ℓ(j + 1)αδα for all j = 1, . . . , b1/δc − 1.

Suppose from here on that δ ∈ (0, 1/(m + 2)) and hence m ≤ b1/δc − 1. Then, the above
inequality applied for j = 1, . . . ,m yields

Xδ,i,j ≤ Lδα for j = 1, . . . ,m, where L
def
= 2ℓ(m+ 1)α.

From what we have dicussed so far, we obtain the following inclusion for any δ ∈ (0, 1/(m+2)).

FT,ℓ ⊂ Gδ
def
=

⌊T/δ⌋⋃
i=0

m⋂
j=1

{Xδ,i,j ≤ Lδα} .

Thus, it is enough to prove that P (Gδ)
δ→0−→ 0. To see this, let us fix δ and i for a moment.

Then, ((i+ j)δ, (i+ j + 1)δ], j ≥ 1 are disjoint intervals with the same length δ. Hence,

3) {Xδ,i,j}mj=1 are i.i.d.≈ δ
1
2 |Y | with Y ≈ N(0, 1),

4) P (Xδ,i,j ≤ Lδα) = P (δ
1
2 |Y | ≤ Lδα) = P (|Y | ≤ Lδα−

1
2 ) ≤ Lδα−

1
2 ,

where we have used the inequality P (|Y | ≤ x) ≤ x, which is easy to verify. Therefore,

P (Gδ) ≤
⌊T/δ⌋∑
i=0

P

(
m⋂
j=1

{Xδ,i,j ≤ Lδα}

)
3),4)

≤ ((T/δ) + 1)
(
Lδα−

1
2

)m
= (T + δ)Lmδ(α−

1
2
)m−1 δ→0−→ 0 (cf. 2)).

Step2: We prove (6.31). As for C+
α,B(t), we have to prove that

5) E
def
= {C+

α,B(t) <∞ for some t ≥ 0} is a null set.
To show this, recall that there exists ΩB ∈ F with P (ΩB) = 1 on which t 7→ Bt is continuous,
and hence t 7→ Bt is locally bounded. Thus, ΩB ∩ E ⊂ F (cf. 1)) by Lemma 6.4.2 b) and
hence

E ⊂ (ΩB ∩ E) ∪ Ωc
B ⊂ F ∪ Ωc

B.

Since F is a null set by Step 1, obtain 5).
To treat C−

α,B(t), fix T > 0 and set β(t) = B(T )− B(T − t) (t ∈ [0, T ]). Then, (β(t))t∈[0,T ] is

a BM1
0 and C−

α,B(t) = C+
α,β(T − t) for t ∈ (0, T ]. Thus, the assertion for C−

α,B(t) follows from

that for C+
α,B(t). \(∧2

∧)/

6.5 The Right-Continuous Enlargement of the Canonical Filtration

Let B be a BMd. We define the right-continuous enlargement (Ft)t≥0 of the canonical filtration
(F0

t )t≥0 as follows;

F0
t = σ(Bs ; s ≤ t), and Ft =

⋂
ε>0

F0
t+ε. (6.33)

In particular, F0 is called the germ σ-algebra. The technical advantage of introducing Ft (“an
infinitesimal peeking in the future”) is to enlarge F0

t to get the right-continuity:⋂
ε>0

Ft+ε = Ft, ∀t ≥ 0. (6.34)
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Indeed, ⋂
ε>0

Ft+ε =
⋂
ε>0

⋂
δ>0

F0
t+ε+δ =

⋂
ε,δ>0

F0
t+ε+δ = Ft.

Note that Ft is strictly larger than F0
t . For example, the r.v. X = lim

n→∞
B1(t+ 1

n
) is Ft-

measurable, but not F0
t -measurable. Here, X = B1

t a.s. and hence X is F0
t -measurable up to

a null function. In fact, Ft is larger than F0
t only by the null sets in the following sense. Let

Nt denote the totality of Ft-measurable null sets. Then, Ft = σ(F0
t ∪Nt) (Proposition 6.5.3).

Remark To avoid being confused in the future, we find it helpful to clarify the dependence of
σ-algebra Ft on the value of B0, particularly in the case of B0 ≡ x. In this case, for any t ≥ 0,
the σ-algebra Ft does not depend on the starting point x. Indeed, F0

t = σ(Bs ; 0 < s ≤ t),
since B0 ≡ x, and hence neither F0

t or Ft depends on x. However, an event A in Ft may
depend on the value of x. For example, take A = {f(Bt) > f(B0)} for some Borel function
f : Rd → R.� �
Proposition 6.5.1 Let B be a BMd, s ≥ 0, and B̂s = (Bs+t − Bs)t≥0 (cf. (6.8)). Then,

Fs and B̂s is independent.� �
Proof: We take arbitrary A ∈ Fs, m ∈ N\{0}, 0 ≤ t1 < ... < tm and verify that

A and (B̂s(tj))
m
j=1 are independent.

(cf. Lemma 1.6.5) To do so, we take arbitrary f ∈ Cb((Rd)m) and write

F (B̂s) = f(B̂s(t1), ..., B̂
s(tm)).

It is enough to show that

1) E[F (B̂s) : A] = E[F (B̂s)]P (A).

For n ∈ N\{0}, A ∈ Fs ⊂ F0
s+ 1

n

, and hence A and B̂s+ 1
n are independent by Proposition 6.1.9.

Thus, we have that

2) E[F (B̂s+ 1
n ) : A] = E[F (B̂s+ 1

n )]P (A).

Since F (B̂s+ 1
n )

n→∞−→ F (B̂s) a.s., we obtain 1) from 2) by letting n→ ∞. \(∧2
∧)/

By Proposition 6.5.1 and the proof of Corollary 6.5.2, we obtain the following� �
Corollary 6.5.2 Let s ≥ 0, F ∈ Fs, and G ∈ Ts

def
= σ(Bt ; t ≥ s). Then,

P (G|Fs) = P (G|Bs), a.s. (6.35)

P (F ∩G|Bs) = P (F |Bs)P (G|Bs), a.s. (6.36)� �
Corollary 6.5.2 can be used to show that the right-continuous enlargement of Ft is larger

than F0
t by null sets:
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� �
Proposition 6.5.3 Let B be a BMd, t ≥ 0. Then,

a) Ft = σ(F0
t ∪Nt), where Nt denotes the totality of Ft-measurable null sets.

b) (germ triviality / Blumenthal zero-one law) If B is a BMd
x for some x ∈ Rd and

A ∈ F0, then, P (A) ∈ {0, 1}.� �
Proof: a) It is clear that Ft ⊃ σ(F0

t ∪Nt). We will show the opposite inclusion. Let

G ∈ Gt
def
=
⋂
ε>0

σ(Bt+s ; 0 ≤ s ≤ ε).

Since Gt ⊂ Ft ∩ Tt, we see from (6.35) that

1G = P (G|Ft)
(6.35)
= P (G|Bt), a.s.

Thus, 1G is a.s. equals to an σ(Bt)-measurable function. This implies that

Gt ⊂ σ(Bt) ∨ σ(Nt).

Hence
Ft = σ(F0

t ∪ Gt) ⊂ σ(F0
t ∪Nt).

b) Suppose in particular that B is a BMd
x for some x ∈ Rd. Then F0

0 = {∅,Ω}, and hence
F0 = σ(N0), which consists only of events A with P (A) ∈ {0, 1}. \(∧2

∧)/

Remarks:
1) If B is a BMd

x for some x ∈ Rd and A ∈ F0, the value P (A) = 0, 1 may differ depending
on the choice of the starting point x. For example, let A = {B(1/n)

n→∞−→ 0} ∈ F0. Then,
P (A) = δ0,x.
2) The germ triviality is not true in gereral for pre-Brownian motions. In fact, let B be BM1

0,
and U be a r.v. uniformly distributed on (0, 1), which is independent of B. Now, define

B̃ = (B̃t)t≥0 by

B̃t =

{
Bt if t 6= U/n for any n ∈ N,
U if t = U/n for some n ∈ N.

Since P (t = U/n for some n ∈ N) = 0 for any fixed t ≥ 0, B and B̃ have the same law, and

hence the latter is a pre-BM1
0. However, the germ σ-algebra of B̃ contains σ(U).� �

Proposition 6.5.4 Let B be a BM1, t ≥ 0, and h1 > h2 > . . . > hn → 0 as n → ∞.
Then, a.s., B(t + hn) > B(t) for infinitely many n, and B(t + hn) < B(t) for infinitely
many n. In particular, the time t is an accumulation point of the set

{s > t ; Bs = Bt}.� �
Proof: Let B̂t be defined as in Proposition 6.1.9. Then,

{B(t+ hn) > B(t)} = {B̂t(hn) > 0}, {B(t+ hn) < B(t)} = {B̂t(hn) < 0}.
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Since B̂t is a BM1
0 by Proposition 6.1.9, it is enough to prove the proposition for BM1

0 and for
t = 0. Let

Am =
⋃
n≥m

{B(hn) > 0} ∈ Fhm , and A =
⋂
m≥1

Am ∈ F0.

Then, A1 ⊃ A2 ⊃ . . . and P (Am) ≥ P (B(hm) > 0) = 1/2. Thus,

P (A) = lim
m→∞

P (Am) ≥ 1/2.

Therefore, P (A) = 1 by Proposition 6.5.3, which implies that B(hn) > 0 for infinitely many
n. Similarly, B(hn) < 0 for infinitely many n. \(∧2

∧)/� �
Proposition 6.5.5 Let B be a BMd. The σ-algebra T defined as follows is called the tail
σ-algebra for the Brownian motion.

T def
=
⋂
t>0

σ(Bs ; s ≥ t). (6.37)

Let B̌ be a BMd defined by

B̌t =

{
B0 + t(B1/t −B0), if t > 0,
B0, if t = 0.

(cf. Proposition 6.1.5) Then,
F̌0 = σ(B0) ∨ T , (6.38)

where F̌0 is the germ σ-algebra for B̌. In particular, if B is a BMd
x for some x ∈ Rd, then,

F̌0 = T , (6.39)

which implies that P (A) ∈ {0, 1} for all A ∈ T (Tail triviality).� �
Proof: Note that the Brownian motion B is reconstructed from B̌ by

Bt =

{
B̌0 + t(B̌1/t − B̌0), if t > 0,
B̌0, if t = 0,

Thus,
σ(B̌s ; s ≤ t) = σ(B0, B1/s ; s ≤ t) = σ(B0, Bs ; s ≥ 1/t),

and hence

F̌0 =
⋂
t>0

σ(B0, B̌s ; s ≤ t) =
⋂
t>0

σ(B0, Bs ; s ≥ 1/t) = σ(B0) ∨ T .

This proves (6.38), which implies (6.39) for BMd
x. Finally, the tail triviality is a consequnce of

the germ triviality (Proposition 6.5.3) for B̌. \(∧2
∧)/

Remark: Referring to Proposition 6.5.5 in the case of BMd
x, the value of P (A) for A ∈ T does

not depend on the starting point x. Moreover, the tail triviality is true for any BMd (not only
for BMd

x for some x ∈ Rd). See Example 6.7.3 below.
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Exercise 6.5.1 Let B be a BM1. Prove the following.

i) For t ≥ 0, and a sequene h1 > h2 > . . . > hn → 0, lim
n→∞

B(t+ hn)−B(t)√
hn

= ∞, a.s. Hint:By

considering B̂t in Proposition 6.1.9, we may assume that B is a BM1
0 and t = 0. Then, prove

that, for any c > 0, the event lim
n→∞

B(hn)√
hn

≥ c has positive probability.

ii) For a sequene t1 < t2 < . . . < tn → ∞, lim
n→∞

B(tn)√
tn

= ∞, a.s.

6.6 The Strong Markov Property

Throughout this subsection, we assume that (Ω,F , P ) is a probability space. We start with
an abstract preparation. Let G be a sub σ-algebra of F , (S,B) be a measurable space and
Ω0 ⊂ Ω, without assuming that Ω0 ∈ F . A map φ : Ω0 → S is said to be G/B-measurable on
Ω0 if

B ∈ B =⇒ ∃A ∈ G, {ω ∈ Ω0 ; φ(ω) ∈ B} = Ω0 ∩ A. (6.40)

If Ω0 ∈ G, then, (6.40) is equivalent to that

B ∈ B =⇒ {ω ∈ Ω0 ; φ(ω) ∈ B} ∈ G. (6.41)

In this subsection, we always assume (6.4) for BMd, i.e. the map t 7→ Bt(ω) is continuous for
all ω ∈ Ω. We will denote by (Ft)t≥0 the right-continuous enlargement (6.33) of the canonical
filtration.� �
Proposition 6.6.1 (Strong Markov property I) Let B be a BMd and T be a stopping
time. Then,

a) the r.v. BT is FT -measurable on {T <∞}.

Suppose in addition that P (T <∞) > 0. Then, under P ( · |T <∞),

b) the process B̂T defined as follows is a BMd
0,

B̂T = (B̂T
t )t≥0 = (BT+t −BT )t≥0.

c) FT and B̂T are independent.� �
Proof: a) This follows from Lemma 6.6.10 below.

b) and c) Let m ≥ 1, 0 ≤ t1 < ... < tm, and f ∈ Cb((Rd)m → R) be arbitrary. Let B̂s for
s ≥ 0 be defined by (6.8). We write

F (B̂s) = f(B̂s(t1), ..., B̂
s(tm))

We will prove the following equality for an arbitrary A ∈ FT .

1) E[F (B̂T )1A|T <∞] = E[F (B̂0)]P (A|T <∞).

Let us admit 1) for a moment to finish the proof. Setting A = Ω, we have

2) E[F (B̂T )|T <∞] = E[F (B̂0)].
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Plugging 2) into 1), we also have that

3) E[F (B̂T )1A|T <∞] = E[F (B̂T )|T <∞]P (A|T <∞).

We see b) and c) respectively from 2) and 3) (cf. Lemma 1.6.5).
The equality 1) can be seen as follows. Let Tn, n = 1, 2, ... be a discrete approximation of T
from the right defined by

Tn =

{
j
n
, if j−1

n
< T ≤ j

n
for some j ∈ N,

∞, if T = ∞.
(6.42)

If T < ∞, then 0 ≤ Tn − T ≤ 1
n
, n ≥ 1, and hence Tn

n→∞−→ T . Let Cn,j
def
= { j−1

n
< T ≤ j

n
}.

Since A ∩ Cn,j ∈ Fj/n, we have by the Markov property I (Proposition 6.1.9) that

4) E[F (B̂j/n) : A ∩ Cn,j] = E[F (B̂0)]P (A ∩ Cn,j).

Therefore,

E[F (B̂Tn) : A ∩ {T <∞}]
=

∑
j≥0

E[F (B̂Tn) : A ∩ Cn,j] =
∑
j≥0

E[F (B̂j/n) : A ∩ Cn,j]

4)
=

∑
j≥0

E[F (B̂0)]P (A ∩ Cn,j) = E[F (B̂0)]P (A ∩ {T <∞}).

Note that B̂Tn
t (ω)

n→∞−→ B̂T
t (ω) for all t ≥ 0 and ω ∈ {T < ∞}. Thus, letting n → ∞, and

dividing the both hands sides by P (T <∞), we have 1). \(∧2
∧)/

Remark Tn defined by (6.42) is a stopping time. Indeed, for t ≥ 0,

{Tn ≤ t} = {T ≤ bntc/n} ∈ F⌊nt⌋/n ∈ Ft.

Let B be a BMd, T be an a.s. finite stopping time for B. The strong Markov property
allows us to construct a new Brownian motion by replacing the path after the time T by an
another Brownian motion β, which is independent of FT . More precisely, we have� �
Corollary 6.6.2 (Concatenation of Brownian motions II) Let B be a BMd, T be an
a.s. finite stopping time for B, and β be a BMd

0 which is independent of FT . Then the

process B̃ = (B̃t)t≥0 defined as follows is a BMd such that B̃0 = B0.

B̃t =

{
Bt, if t ≤ T ,
BT + βt−T , if t ≥ T .

As a consequence, the Brownian motion β is expressed as

βt = B̃T+t − B̃T , t ≥ 0.� �
Proof: Let S = (Rd)[0,∞) and define F : [0,∞)× S × S −→ S by

F (s, x, y)(t) =

{
x(t), if t ≤ s,
x(s) + y(t− s), if t ≥ s.
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Define also X : Ω → S and B̂T : Ω → S by

X = (Bt∧T )t≥0, B̂T = (Bt+T −BT )t≥0.

Then,

1) B = F (T,X, B̂T ), B̃ = F (T,X, β).

By (4.34) and Lemma 6.6.10, (T,X) is FT -measurable, and hence by assumption, β is a BMd
0

which is independent of (T,X). On the other hand, we see from Proposition 6.6.1 that B̂T is
a BMd

0 which is independent of (T,X). As a consequence,

2) (T,X, B̂T ) ≈ (T,X, β).

This, together with 1), implies that B ≈ B̃. \(∧2
∧)/

Let B be a BM1 and
Ta = inf{t ≥ 0 ; Bt = a}, a ∈ R. (6.43)

Recall that we assume (6.4). Thus, it follows from Lemma 6.6.11 below that Ta is a stopping
time w.r.t. (F0

t )t≥0, and hence w.r.t. (Ft)t≥0. Note also that

lim
t→∞

Bt = ∞, lim
t→∞

Bt = −∞ a.s.

(cf. Exercise 6.5.1) Thus, Ta <∞ a.s. for any a ∈ R.

The following lemma (reflection principle) is the source of a couple of useful consequences
(Proposition 6.6.4, Corollary 6.6.5). It will be useful to note in advance that for a ∈ R, the
map

x 7→ 2a− x (R → R)
represents the reflection (mirror image) relative to the point a. The core of the reflection
principle (which can be seen from the proof below) is that for BM1

0,

(Bt)t≥Ta ≈ (2a−Bt)t≥Ta .

� �
Lemma 6.6.3 (Reflection principle). Suppose that B is a BM1

0, and that a ∈ R\{0},
t > 0, J ∈ B(R). Then,

P (Ta ≤ t, Bt ∈ J) = P (Ta ≤ t, Bt ∈ 2a− J). (6.44)

Let J+
a = J ∩ [a,∞) and J−

a = J ∩ (−∞, a]. Then, for a > 0,

P (Ta ≤ t, Bt ∈ J) = P (Bt ∈ J+
a ) + P (Bt ∈ 2a− J−

a ) =

∫
J

ht(x ∨ (2a− x))dx, (6.45)

where ht(x) =
1√
2πt

exp
(
−x2

2t

)
. For a < 0,

P (Ta ≤ t, Bt ∈ J) = P (Bt ∈ J−
a ) + P (Bt ∈ 2a− J+

a ) =

∫
J

ht(x ∧ (2a− x))dx. (6.46)

� �
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a

Ta

Bt

2a−Bt

Proof: (6.44): Let

B̃t =

{
Bt, if t ≤ Ta,
2a−Bt, if t ≥ Ta.

We first verify that

1) (B̃t)t≥0 is a BM1
0.

To do so, we define β = (βt)t≥0 as follows. If Ta <∞, then

βt
def
= a−B(t+ Ta) = −(B(t+ Ta)−B(Ta)), ∀t ≥ 0.

If Ta = ∞, then βt
def
= 0, ∀t ≥ 0. Then, by the strong Markov property, β is a BM1

0 which is
independent of FTa Note that

t ≥ Ta =⇒ B(Ta) + β(t− Ta) = a− (Bt − a) = 2a−Bt.

Thus, 1) follows from Corollary 6.6.2.
On the other hand, we have

2)

{
T̃a

def
= inf{t ≥ 0 ; B̃t = a} = Ta,

Ta ≤ t =⇒ B̃t = 2a−Bt.

Therefore,

P (Ta ≤ t, Bt ∈ J)
1)
= P (T̃a ≤ t, B̃t ∈ J)

2)
= P (Ta ≤ t, Bt ∈ 2a− J).

This proves (6.44).
(6.45), (6.46): Since the proofs for (6.45) and (6.46) are similar, we present the proof only for
(6.45). We have

3) P (Ta ≤ t, Bt ∈ J−
a )

(6.44)
= P (Ta ≤ t, Bt ∈ 2a− J−

a ).

Moreover, for a > 0, J+
a ∪ (2a− J−

a ) ⊂ [a,∞), and hence
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4) {Bt ∈ J+
a ∪ (2a− J−

a )} ⊂ {Ta ≤ t}.

Finally, note that

5) x ∨ (2a− x) =

{
x, if x ≥ a,
2a− x, if x ≤ a.

Therefore,

P (Ta ≤ t, Bt ∈ J) = P (Ta ≤ t, Bt ∈ J+
a ) + P (Ta ≤ t, Bt ∈ J−

a )
3)
= P (Ta ≤ t, Bt ∈ J+

a ) + P (Ta ≤ t, Bt ∈ 2a− J−
a )

4)
= P (Bt ∈ J+

a ) + P (Bt ∈ 2a− J−
a )

=

∫
J+
a

ht(x)dx+

∫
J−
a

ht(2a− x)dx
5)
=

∫
J

ht(x ∨ (2a− x))dx.

\(∧2
∧)/

Remark: The equalities (6.45) and (6.46) can be used to prove the following. For a > 0 and
t > 0,

P (Ta > t,Bt ∈ J) = P (Bt ∈ J−
a )− P (Bt ∈ 2a− J−

a ) =

∫
J−
a

(ht(x)− ht(2a− x))dx. (6.47)

For a < 0 and t > 0,

P (Ta > t,Bt ∈ J) = P (Bt ∈ J+
a )− P (Bt ∈ 2a− J+

a ) =

∫
J+
a

(ht(x)− ht(2a− x))dx. (6.48)

Indeed, for a > 0,

P (Ta > t,Bt ∈ J) = P (Ta > t,Bt ∈ J−
a ) = P (Bt ∈ J−

a )− P (Ta ≤ t, Bt ∈ J−
a )

(6.45)
= P (Bt ∈ J−

a )− P (Bt ∈ 2a− J−
a )

The proof for the case of a < 0 is similar.

For BM1
0, the distribution of Ta can be computed as follows (See also Corollary 7.2.4).� �

Proposition 6.6.4 For BM1
0 and a ∈ R\{0},

Ta ≈ a2/B2
1 ≈ |a|√

2πt3
exp

(
−a

2

2t

)
dt. (6.49)

� �
Proof: Since the proofs for the case of a > 0 and of a < 0 are similar, we present the proof
only for the case a > 0.
(6.49): Let t > 0, For J = R, J+

a = 2a− J−
a = [a,∞). Thus, it follows from (6.45) for J = R

that

P (Ta ≤ t)
(6.45)
= 2P (Bt ≥ a) = P (a ≤ |Bt|) = P (a2/B2

1 ≤ t),

where we have used that Bt ≈
√
tB1 to see the third equality. We see from Example 1.2.6 that

B2
1/a

2 ≈ γ(a2/2, 1/2). Thus, we know the density of the r.v. a2/B2
1 from Exercise 1.2.8. This

proves the last equality of (6.49). \(∧2
∧)/
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Remark: We have Ta ≈ a2/B2
1 (Proposition 6.6.4) and B2

1/a
2 ≈ γ(a2/2, 1/2). Thus, by

Example 2.3.5, we obtain the Laplace transform of Ta.

E exp(−λTa) = exp(−|a|
√
2λ), λ > 0. (6.50)

See also Proposition 7.2.3 for an alternative proof of (6.50).

Let B be a BM1 and
St = sup

s≤t
Bs, st = inf

s≤t
Bs, t ≥ 0. (6.51)

Recall that we assume (6.4). Thus, St and st are F0
t -measurable, since the supremum/infimum

over s ≤ t can be replaced by that over s ∈ Q ∩ [0, t].� �
Corollary 6.6.5 Let

Q+ = {(x, y) ∈ R× (0,∞) ; x ≤ y}, Q− = {(x, y) ∈ R× (−∞, 0) ; x ≥ y}.

Suppose that B is a BM1
0 and that t > 0. Then,

a) St ≈ |Bt|. Moreover,

(Bt, St) ≈ (2y − x)

√
2

πt3
exp

(
−(2y − x)2

2t

)
dxdy on Q+.

b) st ≈ −|Bt|. Moreover,

(Bt, st) ≈ (x− 2y)

√
2

πt3
exp

(
−(x− 2y)2

2t

)
dxdy on Q−.� �

Proof: a) Since St ≥ a ⇐⇒ Ta ≤ t, we have for all a > 0,

P (St ≥ a) = P (Ta ≤ t)
(6.49)
= P (|Bt| ≥ a).

This proves that St ≈ |Bt|. On the other hand, we have

1) P (Bt ∈ J, St ≥ a) = P (Ta ≤ t, Bt ∈ J)
(6.45)
=

∫
J+
a

ht(x)dx+

∫
J−
a

ht(2a− x)dx.

On the other hand, let

kt(x)
def
= −h′t(x) =

x√
2πt3

exp

(
−x

2

2t

)
.

Then,

2)


ht(x) =

∫ ∞

x

kt(y)dy = 2

∫ ∞

x

kt(2y − x)dy

ht(2a− x) = 2

∫ ∞

a

kt(2y − x)dy.
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Therefore,

P (Bt ∈ J, St ≥ a)
1),2)
= 2

∫
J+
a

dx

∫ ∞

x

kt(2y − x)dy + 2

∫
J−
a

dx

∫ ∞

a

kt(2y − x)dy

= 2

∫
J

dx

∫ ∞

a

kt(2y − x)1{x≤y}dy.

This shows that the r.v. (Bt, St) has the density 2kt(2y − x) on the set Q+, which proves a).
b) Similar to the above. (∧2

∧)/

Our next objective is to prove� �
Proposition 6.6.6 Let B be a BM1, and

Za = {t ≥ 0 ; Bt = a}, a ∈ R.

Then, for any a ∈ R, a.s., Za is a closed set with Lebesgue measure zero, without isolated
points. In particular, a.s., Za has the cardinality of continuity.� �
We prepare two lemmas. Thanks to Proposition 6.6.1, Proposition 6.5.4 can be generalized

in the following way.� �
Lemma 6.6.7 Let B be a BM1, T be a stopping time such that P (T < ∞) > 0 and
h1 > h2 > . . . > hn → 0 as n → ∞. Then, P (·|T < ∞)-a.s., B(T + hn) > B(T ) for
infinitely many n, and B(T + hn) < B(T ) for infinitely many n. In particular, the time T
is an accumulation point of the set

{s > T ; Bs = BT}.� �
Proof: Let B̂T be defined as in Proposition 6.6.1. Then,

{B(T + hn) > B(T )} = {B̂T (hn) > 0}, {B(T + hn) < B(T )} = {B̂T (hn) < 0}.

By Proposition 6.6.1, B̂T is a BM1
0 under P (·|T < ∞). Thus, it is enough to prove this

proposition by replacing B̂T (under P (·|T <∞)) by BM1
0. Therefore, we obtain the conclusion

from Proposition 6.5.4. \(∧2
∧)/� �

Lemma 6.6.8 A complete metric space S 6= ∅ without isolated points has at least the
cardinality of continuity.� �

Proof: We construct an injection f : {0, 1}N → S as follows. Choose an x0 ∈ S arbitrarily.
Since x0 is not isolated, there exists x1 ∈ S\{x0}. We then take disjoint closed balls B0, B1

with radiuses ≤ 1, centered, respectively at x0, x1. Next, for α = 0, 1, we take two different
points xα0, xα1 ∈ Bα and disjoint closed balls Bα0, Bα1 ⊂ Bα with radiuses ≤ 1/2, centered,
respectively at xα0, xα1. By repeating this procedure, we obtain for any α = (αj)

∞
j=0 ∈ {0, 1}N

and n ∈ N
fn(α)

def
= xα0α1,....,αn , Bn(α)

def
= Bα0α1,....,αn .
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The sequence fn(α) is a Cauchy sequence, since, if m ≤ n, then, fn(α) ∈ Bm(α), and hence,

dist(fm(α), fn(α)) ≤ 1/m.

Consequently, the sequence fn(α) converges a limit f(α) as n→ ∞. The map f : {0, 1}N → S
is injective, as is easily seen as follows. If α, β ∈ {0, 1}N, α 6= β, then αm 6= βm for some
m ∈ N, and therefore,

Bm(α) ∩Bm(β) = ∅, f(α) ∈ Bm(α), f(β) ∈ Bm(β).

Hence f(α) 6= f(β). \(∧2
∧)/

Proof of Proposition 6.6.6: Clearly Za is closed, since it is the inverse image of a point a by
the continuous function t 7→ Bt. Denote by |Za| the Lebesgue measure of Za. Since,

|Za| =
∫ ∞

0

1{Bt = a}dt,

We have

E|Za| =
∫ ∞

0

P (Bt = a)dt = 0,

which implies that |Za| = 0 a.s. Let

Ta,r = inf{t ≥ r ; Bt = a}, r ≥ 0.

Then, we see that Ta,r is a stopping time, similarly as in Lemma 6.6.11. Therefore, by Lemma
6.6.7, and by the fact that B(Ta,r) = a a.s., for any r ≥ 0, there exists an event Ar ∈ F of
probability one, on which Ta,r is an accumulation point of the set

{t > Ta,r ; Bt = a} ⊂ Za.

Let Q+ = Q ∩ [0,∞) and A =
⋂

r∈Q+
Ar. Then, P (A) = 1, and

1) on the event A, all Ta,r, r ∈ Q+ are accumulation points of Za.

Thus, it is enough to prove that,

2) on the event A, all t ∈ Za\{Ta,r ; r ∈ Q+} are accumulation points of Za.

This can be seen as follows. For t ∈ Za\{Ta,r ; r ∈ Q+}, let r(n) ∈ Q+ ∩ [0, t) be such that
r(n) ↗ t. Then, r(n) < t and t ∈ Za. Thus, it follows from the definition of Ta,r(n) that

r(n) ≤ Ta,r(n) < t,

and hence Za 3 Ta,r(n)
n→∞−→ t.

Since Za is a closed set 6= ∅ without isolated point, it has the cardinality of continuity by
Lemma 6.6.8. \(∧2

∧)/

Complement
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Example 6.6.9 (⋆) Let B be BM1
0 and U be a uniformly distributed r.v. on (0, 1). We define

B̃ by

B̃(t) =


0, if t > 0, t ∈ U +Q and B(t) 6= 0,
1, if t > 0 and B(t) = 0,
B(t), if otherwise.

Then,
a) B̃ is a pre-BM1

0.

b) If ω ∈ ΩB, then t 7→ B̃(t) is discontinuous for all t ≥ 0.

Proof: a) For any fixed t > 0, P ({t ∈ (U +Q)} ∪ {Bt = 0}) = 0, and hence B(t) = B̃(t) a.s.
b) Let ω ∈ ΩB and t0 > 0.

Case1: t0 = 0 (Then,B̃(t0) = B̃(0) = 0). Since there exists tn ∈ (0,∞) such that B(tn) = 0
and tn

n→∞−→ 0,
B̃(tn) = 1

n→∞−→ 1 6= 0 = B̃(0).

Thus B̃ is discontinuous at 0.
Case2: t0 > 0, B(t0) = 0 (B̃(t0) = 1 in this case). Since (U + Q) ∩ (0,∞) is dense in (0,∞),
there exists rn ∈ Q such that (0,∞) 3 U + rn

n→∞−→ t0. Then,

0 = B̃(U + rn)
n→∞−→ 0 6= 1 = B̃(t0).

Thus B̃ is discontinuous at t0.
Case3: t0 > 0, B(t0) 6= 0 and t0 ∈ U +Q (B̃(t0) = 0 in this case). Since (0,∞)\((U +Q)∪Z0)
is dense in (0,∞), there exists tn ∈ (0,∞)\((U +Q) ∪ Z0) such that tn

n→∞−→ t0. Then,

B̃(tn) = B(tn)
n→∞−→ B(t0) 6= 0 = B̃(t0).

Thus B̃ is discontinuous at t0.
Case4: t0 > 0, B(t0) 6= 0 and t0 6∈ U +Q (B̃(t0) = B(t0) in this case). Since (U +Q) ∩ (0,∞)
is dense in (0,∞), there exists rn ∈ Q such that (0,∞) 3 U + rn

n→∞−→ t0. Then,

0 = B̃(U + rn)
n→∞−→ 0 6= B(t0) = B̃(t0).

Thus B̃ is discontinuous at t0. \(∧2
∧)/

Exercise 6.6.1 Suppose that B is a BM1
0. Then, prove that for a ∈ R\{0} and t > 0,

P (Ta > t) =

√
2

π

∞∑
n=0

(−1)n

(2n+ 1)2nn!

(
|a|√
t

)2n+1

.

In particular, P (Ta > t) = |a|
√

2
πt

+O(t−3/2) as t→ ∞. [Hint: Ta ≈ a2/B2
1 ]

Exercise 6.6.2 Suppose that B is a BM1
0. Then, use Corollary 6.6.5 to prove the following.

i) St −Bt ≈ |Bt|. ii) 2St −Bt ≈ |Xt|, where X is a BM3
0.

Exercise 6.6.3 Suppose that B is a BM1
x with x > 0 and that J ∈ B([0,∞)). Then, prove

that

P (Bt ∈ J, T0 > t) =

∫
J

(ht(y − x)− ht(y + x))dy.

[Hint: In terms of BM1
0, the LHS =P (x+Bt ∈ J, T−x > t).]
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Exercise 6.6.4 Suppose that B is a BM1
0, s > 0, and X is a r.v. with the Cauchy distribution

with paraameter 1. Then, prove the following.
i) Let B̂s be from Proposition 6.1.9 and let Ta(B̂

s) = inf{t ≥ 0 ; B̂s
t = a}, a ∈ R. Then,

T±Bs(B̂
s) ≈

(
Bs/B̂

s
1

)2
≈ sX2.

[Hint: The first equality in law follows from Proposition 6.6.4, and the second from (1.70).]

ii) Ts,0
def
= inf{t > s ; Bt = 0} ≈ (1 +X2)s. [Hint: Ts,0 = s+ T−Bs(B̂

s).]

iii) (First Arcsin Law) T−
s,0

def
= sup{t < s ; Bt = 0} ≈ s/(1 + X2) ≈ sY , where Y is a

r.v. with the arcsin law. [Hint: The first equality in law follows from the relation T−
s,0 < t ⇔

s < Tt,0, and the second from Exercise 1.2.14.]

(⋆) Complement to section 6.6

We prove Proposition 6.6.1a) in the following slightly generalized form.� �
Lemma 6.6.10 Let S be a metric space, and (Xt : Ω → S)t≥0 be a process adapted to a
filtration (Ft)t≥0. Suppose that the function t 7→ Xt(ω) is either right-continuous for all
ω ∈ Ω, or left-continuous for all ω ∈ Ω. Then, for a stopping time T , the r.v. XT is
FT -measurable on {T <∞}.� �

Proof: Here, we assume that the function t 7→ Xt(ω) is left-continuous for all ω ∈ Ω, since this
is enough for Proposition 6.6.1a). See Corollary 6.6.15 below for the right-continuous case.
Let Tn, n = 1, 2, ... be a discrete approximation of T from the left defined by

Tn =


0, if T ≤ 1

n
,

j
n
, if j

n
< T ≤ j+1

n
for some j = 1, 2, ...,

∞, if T = ∞.

If T <∞, then 0 ≤ T−Tn ≤ 1
n
, n ≥ 1, and hence Tn

n→∞−→ T . Note that {Tn <∞} = {T <∞}
for all n ≥ 1. By the left-continuity, X(Tn)

n→∞−→ X(T ) on {T < ∞}. Therefore, it is enough
to prove that X(Tn) is FT -measurable on {T <∞} for all n ≥ 1. (We need to approximate T
from the left, rather than the right, so that the following argument goes through.) Now, for
B ∈ B(S), let

Cn,0 =
{
T ≤ 1

n
, X0 ∈ B

}
, Cn,j =

{
j
n
< T ≤ j+1

n
, Xj/n ∈ B

}
, j ≥ 1.

Then,

{T <∞, X(Tn) ∈ B} =
⋃
j∈N

Cn,j.

Thus, in view of (6.41), it is enough to show that

1) Cn,j ∈ FT for all j ∈ N.

This can be seen as follows. For t ≥ 0,

Cn,0 ∩ {T ≤ t} =
{
T ≤ 1

n
∧ t, X0 ∈ B

}
∈ Ft,

Cn,j ∩ {T ≤ t} = Cn,j =
{

j
n
< T ≤ j+1

n
∧ t, Xj/n ∈ B

}
∈ Ft, j ≥ 1.
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These imply 1). \(∧2
∧)/� �

Lemma 6.6.11 Let S be a metric space, X = (Xt : Ω → S)t≥0 be a process, TA, and
(F0

t )t≥0 be defined as Example 4.2.2. Suppose that the function t 7→ Xt(ω) is continuous
for all ω ∈ Ω and that A ⊂ S is closed. Then, TA is a stopping time w.r.t. (F0

t )t≥0.� �
Proof: We introduce a process Yt

def
= dist(Xt, A), and observe that the following are equivalent.

1) TA ≤ t,

2) ∃s ∈ [0, t], Xs ∈ A.

3) ∃s ∈ [0, t], Ys = 0.

4) inf
r∈[0,t]∩Q

Yr = 0.

1) ⇔ 2): Since A is closed, the set {t ≥ 0 ; Xt ∈ A} ⊂ [0,∞) is also closed, and hence has a
minimum, which is TA. This explains 1) ⇒ 2), while the converse is obvious.
2) ⇔ 3): Since A is closed, Xs ∈ A if and only if Ys = 0.
3) ⇒ 4): Assume 3) and let rn ∈ Q ∩ [0, t] be such that rn → s. Then, by the continuity of
t 7→ Yt, Y (rn) → Y (s) = 0, and hence 4) holds.
3) ⇐ 4): Let rn ∈ Q ∩ [0, t] be such that Y (rn) → 0. Then, there exist s ∈ [0, t] and a
subsequence rn(k) → s. By the continuity of t 7→ Yt, Y (rn(k)) → Y (s) = 0.
The equivalence of 1) and 4) implies that

{TA ≤ t} =

{
inf

r∈[0,t]∩Q
Yr = 0

}
∈ F0

t .

Thus, TA is a stopping time w.r.t. (F0
t )t≥0. \(∧2

∧)/

In what follows, we give a more complete account to Lemma 6.6.10 including the right-
continuous case. We assume that a filtration (Ft)t≥0 is given and that stopping times are
associated with this filtration.

Definition 6.6.12 (Adaptedness, progressive measurability) Suppose that (S,B) is a
measurable space and that X = (Xt)t∈T is a process with values in S.
▶ X is said to be adapted if the map Xt : Ω → S is Ft/B-measurable for all t ≥ 0.
▶ X is said to be progressively measurable if the following map is (B(T ∩ [0, t])⊗ Ft)/B-
measurable for all t ≥ 0.

(s, ω) 7→ Xs(ω) ((T ∩ [0, t])× Ω −→ S)

Clearly, a progressively measurable process is adapted. In the following proposition, we
will see two basic conditions under which the converse is also true.� �
Proposition 6.6.13 Let the process X in Definition 6.6.12 be adapted. Then, under either
of the following conditions a),b), X is progressively measurable.

a) T is at most countable.

b) T = [0,∞), S is a metric space, and that the function t 7→ Xt(ω) is right-continuous
for all ω ∈ Ω, or left-continuous for all ω ∈ Ω.� �
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Proof: a) Let t ≥ 0 and B ∈ B. Since X is adapted, we have for s ∈ T ∩ [0, t],

{s} × {ω ∈ Ω ; Xs(ω) ∈ B} ∈ B(T ∩ [0, t])⊗Ft.

Thus,

{(s, ω) ∈ T ∩ [0, t]× Ω ; Xs(ω) ∈ B}
=

⋃
s∈T∩[0,t]

{s} × {ω ∈ Ω ; Xs(ω) ∈ B} ∈ B(T ∩ [0, t])⊗Ft.

Thus, X is progressively measurable.
b) Suppose that the function t 7→ Xt(ω) is right-continuous for all ω ∈ Ω (The proof is similar
if we suppose the left-continuity). For n ∈ N, let

X(n)(s, ω) =
∞∑
j=0

X((j + 1)/2n, ω)1{s ∈ [j/2n, (j + 1)/2n)}, s ≥ 0.

Then, for t ≥ 0 and B ∈ B,

{(s, ω) ∈ [0, t]× Ω ; X(n)(s, ω) ∈ B}
=

⋃
j∈N

(j+1)/2n≤t

[j/2n, (j + 1)/2n)× {ω ∈ Ω ; X((j + 1)/2n, ω) ∈ B} ∈ B([0, t])⊗Ft.

Thus, X(n) is progressively measurable for all n ∈ N. Moreover, by X(n)(s, ω)
n→∞−→ X(s, ω) by

the right-continuity. Therefore, X is progressively measurable. \(∧2
∧)/� �

Proposition 6.6.14 Let everything be as in Definition 6.6.12, and let T be a stopping
time.

a) The process (Xt∧T )t∈T is adapted. ⇐⇒ The r.v. XT is FT -measurable on {T <∞}.

b) Suppose that the process (Xt)t≥0 is progressively measurable. Then, the process
(Xt∧T )t≥0 is again progressively measurable, hence is adapted. As a consequence,
XT is FT -measurable on {T <∞}.� �

Proof: a) (⇒) Let B ∈ B and t ≥ 0. Then, {Xt∧T ∈ B} ∈ Ft by the assumption. Therefore,

{XT ∈ B} ∩ {T ≤ t} = {Xt∧T ∈ B} ∩ {T ≤ t} ∈ Ft.

(⇐) Let B ∈ B and t ≥ 0. Then,

1) {Xt∧T ∈ B} = {t < T,Xt ∈ B} ∪ {T ≤ t,XT ∈ B}.

Clearly,

2) {t < T,Xt ∈ B} ∈ Ft.

On the other hand, by the assumption, {T <∞, XT ∈ B} = A ∩ {T <∞} for some A ∈ FT ,
and hence
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3) {T ≤ t,XT ∈ B} = A ∩ {T ≤ t} ∈ Ft.

It follows from 1)–3) that {Xt∧T ∈ B} ∈ Ft.
b) For notational simplicity, we consider the case of T = [0,∞). It is easy to see that the
function (s, ω) 7→ s ∧ T is (B([0, t])⊗Ft)/B([0, t])-measurable. In fact, for any u ∈ [0, t],

{(s, ω) ; s ∧ T ≤ u} = {(s, ω) ; s ≤ u} ∪ {(s, ω) ; T ≤ u}
= ([0, u]× Ω) ∪ ([0, t]× {ω ; T ≤ u}) ∈ B([0, t])⊗Ft.

Hence

1) the map (s, ω) 7→ (s ∧ T, ω) is (B([0, t])⊗Ft)/(B([0, t])⊗Ft)-measurable.

On the other hand, by assumption,

2) the map (s, ω) 7→ Xs(ω) is (B([0, t])⊗Ft)/B-measurable.

Since the map (s, ω) 7→ Xs∧T (ω) is the composition of those of 1) and 2), it is (B([0, t])⊗Ft)/B-
measurable. \(∧2

∧)/

Combinning Proposition 6.6.13 and Proposition 6.6.14, we obtain the following� �
Corollary 6.6.15 Let the process X in Definition 6.6.12 be adapted and T be a stop-
ping time. Then, under either of the conditions a),b) in Proposition 6.6.13, (Xt∧T )t∈T is
adapted, and XT is FT -measurable on {T <∞}.� �

6.7 Alternative Formulations of Markov Properties

For the rest of section 6, we will work on a special measurable space (Ω,F) defined by

Ω = {ω = (ωt)t≥0 ∈ (Rd)[0,∞) ; t 7→ ωt is continuous.}, (6.52)

F = σ[ωt ; t ≥ 0]. (6.53)

For ω = (ωt)t≥0 ∈ Ω, we write Bt = Bt(ω) = ωt. Then, we consider the filtration (Ft)t≥0

defined by (6.33). For x ∈ Rd, we let Px denote a unique probability measure on (Ω,F) under
which (Bt)t≥0 is a BMd

x. (cf. Proposition 6.1.12). We denote by Ex the expectation w.r.t. Px.
For x ∈ Rd, let

x+B
def
= (x+Bt)t≥0 ∈ Ω. (6.54)

For s ≥ 0 and ω ∈ Ω, we define

θsω = (Bs+t(ω))t≥0 (6.55)� �
Lemma 6.7.1 The map (s, ω) 7→ θsω, ([0,∞)×Ω −→ Ω) is B([0,∞))⊗F/F-measurable.� �

Proof: By Lemma 1.5.2, it is enough to verify that the map (s, ω) 7→ ωs+t is B([0,∞)) ⊗
F/B(Rd)-measurable for each fixed t ≥ 0. The map ω 7→ ωs+t is clearly F/B(Rd)-measurable.
This, together with the continuity of s 7→ ωs+t, implies that the map (s, ω) 7→ ωs+t is
B([0,∞))⊗F/B(Rd)-measurable. \(∧2

∧)/
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Let µ ∈ P(Rd) be arbitrary. For A ∈ F , the function x 7→ Px(A) is Borel measurable by
Lemma 6.1.14. Therefore, we can define

P (A) =

∫
Rd

Px(A)dµ(x). (6.56)

It follows from the bounded convergence theorem that A 7→ P (A) is a probability measure on
(Ω,F).

� For the rest of this section, P denotes the probability measure (6.56) on (Ω,F), and the
associated expectation will be denoted by E.� �

Theorem 6.7.2 (Markov property II) Let F : Ω → R be bounded, F-measurable, and
G : Ω → R be bounded, Fs-measurable for s ≥ 0. Then,

E[G · F ◦ θs] = E[GEB(s)F ]. (6.57)� �
Remark: Since F is F -measurable, and θsis F/F -measurable (Lemma 6.7.1), F ◦ θs is F -
measurable. Thus, the left-hand side of (6.57) is well defined. On the other hand, the quantity
EB(s)F on the right-hand side of (6.57) should be understood as the value of the function

f(x)
def
= ExF evaluated at x = Bs. Since f is Borel measurable (Lemma 6.1.14), f(Bs) is

σ[Bs]-measurable.

Proof: We see from Proposition 6.1.9 that

1) Fs and (B̂s
t )t≥0 are independent,

2) E[F ((y + B̂s
t )t≥0)] = E0[F ((y +Bt)t≥0)] = EyF for y ∈ Rd.

Let us consider the product space (Ω2,F ⊗F , P ⊗ P ) and denote an element of Ω2 by (ω, ω̂).
Then, by 1),

3) the law of the r.v. G(ω)F ((Bs(ω) + B̂s
t (ω))t≥0) under P (dω) is the same as the law of

G(ω)F ((Bs(ω) + B̂s
t (ω̂))t≥0) under (P ⊗ P )(dωdω̂).

Since Bt ◦ θs = Bs + B̂s
t , we have that

4)


E[G · F ◦ θs] = E[G · F ((Bs + B̂s

t )t≥0)]
3)
=

∫
Ω2

(P ⊗ P )(dωdω̂)G(ω)F ((Bs(ω) + B̂s
t (ω̂))t≥0)

Fubini
=

∫
Ω

G(ω)P (dω)

∫
Ω

P (dω̂)F ((Bs(ω) + B̂s
t (ω̂))t≥0)

On the other hand,

5)

∫
Ω

P (dω̂)F ((Bs(ω) + B̂s
t (ω̂))t≥0)

2)
= EBs(ω)F.
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Putting 4) and 5) together, we obtain

E[G · F ◦ θs] =
∫
Ω

G(ω) EBs(ω)F P (dω) = E[GEB(s)F ].

\(∧2
∧)/

We present a couple of applications of Theorem 6.7.2.

Example 6.7.3 Let t > 0, Tt = σ(Bt+s ; s ≥ 0) and T =
⋂

t>0 Tt (T is the tail σ-algebra for
Brownian motion, cf. Proposition 6.5.5).

a) For any t > 0, x, y ∈ Rd, the measures Px and Py are mutually absolutely continuous on
Tt.

b) P (A) = P0(A) ∈ {0, 1} for any A ∈ T and µ ∈ P(Rd), where the measure P is defined by
(6.56).

Proof: a) Note that
Tt = σ(Bs ◦ θt ; s ≥ 0).

Thus, if A ∈ Tt, then, A = θ−1
t C for some C ∈ F . Therefore, for all x ∈ Rd,

1) Px(A)
(6.57)
= Ex[PB(t)(C)] =

∫
Rd

ht(y − x)Py(C), cf. (6.14).

Suppose that Px(A) = 0 for some x ∈ Rd. Then, it follows from 1) that Py(C) = 0 for almost
all y ∈ Rd, which implies again by 1), that Px(A) = 0 for all x ∈ Rd.
b) It follows from Proposition 6.5.5 and a) above that Px(A) = P0(A) ∈ {0, 1} for all x ∈ Rd.
Thus,

P (A) =

∫
Rd

Px(A)dµ(x) = P0(A) ∈ {0, 1}.

\(∧2
∧)/

Example 6.7.4 Let A ⊂ Rd be either closed or open, and let TA = inf{t ≥ 0 ; Bt ∈ A}.
Suppose that

M
def
= sup

x∈Ac
ExTA <∞.

Then, for any λ ∈ (0, 1/M),

sup
x∈Ac

Ex exp(λTA) ≤ 1/(1− λM) <∞.

Proof: We write T = TA for simplicity. By the power series expansion of the exponential, it is
enough to show that

1) sup
x∈Ac

Ex[T
n] ≤ n!Mn for all n ∈ N\{0}.
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We prove this by induction on n. By assumption, 1) is true for n = 1. Suppose that n ≥ 2
and 1) is true for n− 1. For t ≥ 0, note that

tn = n!

∫
0<s1<s2<...<sn<t

ds1ds2 · · · dsn

and that T = t+ T ◦ θt on the event {T ≥ t}. Hence

Ex[T
n] = n!Ex

∫
0<s1<s2<...<sn<T

ds1ds2 · · · dsn

= n!

∫ ∞

0

ds1Ex

[
1{T > s1}EB(s1)

∫
s1<s2<...<sn<s1+T

ds2 · · · dsn
]

= n!

∫ ∞

0

ds1Ex

[
1{T > s1}EB(s1)

∫
0<s2<...<sn<T

ds2 · · · dsn
]

= n

∫ ∞

0

ds1Ex

[
1{T > s1}EB(s1)[T

n−1]
]

≤ n · (n− 1)!Mn−1

∫ ∞

0

Px(T > s1)ds1 = n!Mn.

\(∧2
∧)/� �

Lemma 6.7.5 Let T be a stopping time. Then, the map ω 7→ (BT (ω)+t(ω))t≥0 is F/F-
measurable on {T <∞}, cf. (6.40).� �

Proof: By Lemma 1.5.2, it is enough to verify that the map ω 7→ BT (ω)+t(ω) is F/B(Rd)-
measurable on {T < ∞} for each fixed t ≥ 0. Since T + t is a stopping time, it follows from
Lemma 6.6.10 that the map ω 7→ BT (ω)+t(ω) is FT+t/B(Rd)-measurable on {T < ∞}, and
hence is F/B(Rd)-measurable on {T <∞} \(∧2

∧)/

Let T be a stopping time. For an ω ∈ Ω with T (ω) <∞, we define

θTω = (BT (ω)+t(ω))t≥0 (6.58)

By Lemma 6.7.5, the map ω 7→ θTω is F/F -measurable on {T <∞}.� �
Theorem 6.7.6 (Strong Markov property II) Let T be a stopping time. Suppose that
F : Ω → R is a bounded, F-measurable, and that G : Ω → R is bounded, FT -measurable.
Then,

E[G · F ◦ θT : T <∞] = E[GEB(T )F : T <∞]. (6.59)� �
Remark: Since F is F -measurable, and θT is F/F -measurable on {T < ∞}, F ◦ θT is F -
measurable on {T < ∞}. Thus, the left-hand sides of (6.59) is well defined. On the other
hand, the quantity EB(T )F on the right-hand side of (6.59) should be understood as the value

of the function f(x)
def
= ExF evaluated at x = BT . Since f is Borel measurable (Lemma

6.1.14), and BT is FT -measurable on {T < ∞} (Lemma 6.6.10), f(BT ) is FT -measurable on
{T <∞}.

Proof: We may assume that P (T <∞) > 0. We write P ′ = P ( · |T <∞) and E ′ = E[ · |T <
∞]. Then, we see from Proposition 6.6.1 that
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1) FT and (B̂T
t )t≥0 are independent under P ′,

2) E ′[F ((y + B̂T
t )t≥0)] = E0[F ((y +Bt)t≥0)] = EyF for y ∈ Rd.

Let us consider the product space (Ω2,F ⊗F , P ′⊗P ′) and denote an element of Ω2 by (ω, ω̂).
Since BT is FT -measurable on {T <∞} (Lemma 6.6.10), it follows from 1) that

3) the law of the r.v. G(ω)F ((BT (ω) + B̂T
t (ω))t≥0) under P ′(dω) is the same as the law of

G(ω)F ((BT (ω) + B̂T
t (ω̂))t≥0) under (P

′ ⊗ P ′)(dωdω̂).

Since Bt ◦ θT = BT + B̂T
t on {T <∞}, we have that

4)


E ′[G · F ◦ θT ] = E ′[G · F ((BT + B̂T

t )t≥0)]
3)
=

∫
Ω2

(P ′ ⊗ P ′)(dωdω̂)G(ω)F ((BT (ω) + B̂T
t (ω̂))t≥0)

Fubini
=

∫
Ω

G(ω)P ′(dω)

∫
Ω

P ′(dω̂)F ((BT (ω) + B̂T
t (ω̂))t≥0)

On the other hand,

5)

∫
Ω

P ′(dω̂)F ((BT (ω) + B̂T
t (ω̂))t≥0)

2)
= EBT (ω)F.

Putting 4) and 5) together, we obtain

E ′[G · F ◦ θT ] =
∫
Ω

G(ω) EBT (ω)F P ′(dω) = E ′[GEB(T )F ].

Multiplying the both hands sides by P (T <∞), we obtain (6.59). \(∧2
∧)/

Exercise 6.7.1 (Khasmin’skii’s lemma) Suppose that f : Rd → [0,∞) is Borel measurable,
0 < t ≤ ∞ and that

M
def
= sup

x∈Rd

Ex

∫ t

0

f(Bs)ds < 1.

Then, prove that

sup
x∈Rd

Ex exp

(∫ t

0

f(Bs)ds

)
≤ 1/(1−M) <∞.

[Hint:Example 6.7.4 ]

6.8 (⋆) The Second Arcsin Law

Throught this subsection, we denote by Mb(Rd) the set of bounded Borel measurable functions
on Rd. For V ∈ Mb(Rd), with inf V > 0, we define the resolvent operator GV : Mb(Rd) →
Mb(Rd) by

GV f(x) = Ex

∫ ∞

0

exp

(
−
∫ t

0

V (Bs)ds

)
f(Bt)dt, f ∈ Mb(Rd), x ∈ Rd. (6.60)
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� �
Lemma 6.8.1 For U ∈ Mb(Rd), with inf U > 0, and V ∈ Mb(Rd → [0,∞)), the operators
GU and GU+V satisfy the resolvent equation:

GU −GU+V = GUV GU+V .� �
Proof: To simplify the notation, we introduce AU

t
def
=
∫ t

0
U(Bs)ds, and similarly, AV

t and AU+V
t .

Note that

1) 1− exp(−AV
t ) = exp(−AV

t )(exp(A
V
t )− 1) =

∫ t

0

V (Bs) exp(−(AV
t − AV

s ))ds.

and that

2)



Ex

[∫ ∞

s

exp(−(AU+V
t − AU+V

s ))f(Bt)dt

∣∣∣∣Fs

]
= Ex

[∫ ∞

0

exp(−(AU+V
s+t − AU+V

s ))f(Bs+t)dt

∣∣∣∣Fs

]
= EBs

[∫ ∞

0

exp(−AU+V
t )f(Bt)dt

]
= GU+V f(Bs).

Therefore,

GUf(x)−GU+V f(x)

= Ex

∫ ∞

0

exp
(
−AU

t

) (
1− exp

(
−AU

t

))
f(Bt)dt

1)
= Ex

∫ ∞

0

exp
(
−AU

t

)
dt

∫ t

0

V (Bs) exp(−(AV
t − AV

s ))f(Bt)ds

=

∫ ∞

0

dsEx

[
exp

(
−AU

s

)
V (Bs)

∫ ∞

s

exp(−(AU+V
t − AU+V

s ))f(Bt)dt

]
2)
=

∫ ∞

0

dsEx

[
exp

(
−AU

s

)
V (Bs)GU+V f(Bs)

]
= GU(V GU+V f)(x).

\(∧2
∧)/

From here on, we focus on the case of d = 1.� �
Lemma 6.8.2 For V ∈ Mb(R) with inf V > 0 and f ∈ Mb(R),

u
def
= GV f ∈ Cb(R).

Suppose in addition that V and f are piecewise continuous, with the respective sets of
discontinuities DV and Df . Then, u ∈ C1(R) ∩ C2(R\(DV ∪Df )) and

1
2
u′′ = V u− f, on R\(DV ∪Df ). (6.61)� �

Proof: Let λ
def
= inf V > 0 and Ṽ

def
= V − λ ∈ Mb(R → [0,∞)). We then have by the resolvent

equation that

1) u = Gλf −Gλ(Ṽ u).
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Let ht(x)
def
= 1√

2πt
exp

(
−x2

2t

)
, t > 0, x ∈ R. We see from Lemma 2.3.4 that

2)

∫ ∞

0

e−λtht(x)dt =
1√
2λ
e−|x|

√
2λ.

Thus,

3)



Gλf(x) =

∫ ∞

0

e−λtExf(Bt)dt =

∫ ∞

0

e−λtdt

∫ ∞

−∞
ht(x− y)f(y)dy

1)
=

1√
2λ

∫ ∞

−∞
e−|x−y|

√
2λf(y)dy

=
e−x

√
2λ

√
2λ

∫ x

−∞
ey

√
2λf(y)dy +

ex
√
2λ

√
2λ

∫ ∞

x

e−y
√
2λf(y)dy.

We see from 3) that Gλf ∈ Cb(R). Similarly, Gλ(Ṽ u) ∈ Cb(R). Hence u ∈ Cb(R) by 1).
We suppose from here on that V and f are piecewise continuous. Then, we see from 3)

that Gλf ∈ C1(R\Df ). Similarly, Gλ(Ṽ u) ∈ C1(R\DV ) (Note that DṼ u ⊂ DV ). Hence
u ∈ C1(R\(DV ∪Df )) by 1). Moreover, for x ∈ R\Df ,

(Gλf)
′(x) = −e

−x
√
2λ

√
2λ

∫ x

−∞
ey

√
2λf(y)dy +

ex
√
2λ

√
2λ

∫ ∞

x

e−y
√
2λf(y)dy.

In particular, we have (Gλf)
′(y−) = (Gλf)

′(y+) for each y ∈ Df . Therefore, we have Gλf ∈
C1(R). Similarly, Gλ(Ṽ u) ∈ C1(R). Hence u ∈ C1(R) by 1). Moreover, we see from 3) that

4) 1
2
(Gλf)

′′ = λGλf − f on R\Df .

Similarly,

5) 1
2
(Gλ(Ṽ u))

′′ = λGλ(Ṽ u)− Ṽ u on R\DV .

We see from 1),4),5) that u ∈ C2(R\(DV ∪Df )) and (6.61). \(∧2
∧)/� �

Lemma 6.8.3 Let α, β > 0 and γ ∈ R. Suppose that u ∈ C1(R)∩C2(R\{0}) is a bounded
solution to the following differerential equation.

1
2
u′′(x) =

{
αu(x)− γ, if x < 0,
βu(x)− γ, if x > 0.

Then,

u(x) =


γ
α

(√
α−

√
β√

β
exp(x

√
2α) + 1

)
, if x < 0,

γ
β

(√
β−

√
α√

α
exp(−x

√
2β) + 1

)
, if x > 0.

In particular, u(0) = γ/
√
αβ.� �

Proof: The solution to the differerential equation in question must be of the form:

u(x) =

{
A+ exp(x

√
2α) + A− exp(−x

√
2α) + γ

α
, if x < 0,

B+ exp(x
√
2β) +B− exp(−x

√
2β) + γ

β
, if x > 0.
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Since u is bounded, we have A− = B+ = 0. Then,

u(0−) = A+ + (γ/α), u′(0−) =
√
2αA+,

u(0+) = B− + (γ/β), u′(0+) = −
√
2βB−.

These, together with u(0−) = u(0+), and u′(0−) = u′(0+) imply that A+ = γ
α

√
α−

√
β√

β
and

B− = γ
β

√
β−

√
α√

α
. \(∧2

∧)/

� �
Proposition 6.8.4 (The Second Arcsin Law) Let B be a BM1

0, t > 0, and

At =

∫ t

0

1{Bs>0}ds.

Then, the r.v. At/t has the arcsin law, i.e., At/t ≈ dx

π
√

x(1−x)
on (0, 1).

� �
Proof: Let α, β > 0 and V (x) = α + β1{x>0}, x ∈ R. Then, by Lemma 6.8.2,

u
def
= GV 1 ∈ C1(R) ∩ C2(R\{0}),

and
1
2
u′′(x) =

{
αu(x)− 1, if x < 0,
(α + β)u(x)− 1, if x > 0.

Thus, by Lemma 6.8.3, we have u(0) = 1/
√
α(α + β), i.e.,

1)

∫ ∞

0

e−αtE exp (−βAt) dt =
1√

α(α + β)
.

We have on the other hand that

2)

∫ ∞

0

e−αtdt

∫ t

0

e−βydy

π
√
y(t− y)

=
1√

α(α + β)
.

To prove 2), we note that

3)

∫ ∞

0

e−αtdt√
t

=

√
π

α
.

Then,

LHS of 2) =
1

π

∫ ∞

0

e−βydy
√
y

∫ ∞

y

e−αtdt√
t− y

=
1

π

∫ ∞

0

e−(α+β)ydy

π
√
y

∫ ∞

0

e−αydt√
t

3)
=

1√
α(α + β)

.

By 1),2) and the uniqueness of the Laplace transform (Example 1.8.3) in the variable α, we
have that

E exp (−βAt) =

∫ t

0

e−βydy

π
√
y(t− y)

,
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and hence

E exp (−βAt/t) =

∫ 1

0

e−βydy

π
√
y(1− y)

.

Then, by the uniqueness of the Laplace transform in the variable β, we arrive at the conclusion.
\(∧2

∧)/

6.9 Filtrations and Stopping Times II

Throughout this subsection, we assume that (Ω,F , P ) is a probability space.

Definition 6.9.1 Let (Ft)t≥0 be a filtration, and T : Ω → [0,∞] be a r.v.
▶ (Ft)t≥0 is said to be right-continuous if⋂

ε>0

Ft+ε = Ft, ∀t ≥ 0. (6.62)

▶ T is said to be an optional time if

{T < t} ∈ Ft for all t > 0. (6.63)� �
Lemma 6.9.2 Let everything be as in Definition 6.9.1.

a) Then, for all t ≥ 0 and A ∈ F ,

A ∩ {T ≤ t} ∈ Ft for all t ≥ 0 =⇒ A ∩ {T < t} ∈ Ft for all t ≥ 0. (6.64)

In particular,

T is a stopping time =⇒ T is an optional time. (6.65)

b) Suppose that (Ft)t≥0 is right-continuous. Then the converse to (6.64) and (6.65) are
also true.� �

Proof: a) It is enough to show (6.64), which can be seen as follows.

A ∩ {T < t} =
⋃
n≥1

(A ∩ {T ≤ t− 1
n
}) ∈ Ft.

b) It is enough to show the converse to (6.64), which can be seen as follows.

A ∩ {T ≤ t} =
⋂
n≥1

(A ∩ {T < t+ 1
n
}) ∈

⋂
n≥1

Ft+ 1
n

(6.62)
= Ft.

\(∧2
∧)/� �

Proposition 6.9.3 Let S be a metric space, X = (Xt : Ω → S)t≥0 be a process, TA, T+
A

and (F0
t )t≥0 be defined as Example 4.2.2. Then, under the one of the following assumptions

a),b), TA and T+
A are optional times w.r.t. (F0

t )t≥0. Moreover, under the assumption b),
TA is a stopping time w.r.t. (F0

t )t≥0.

a) The function t 7→ Xt(ω) is right-continuous for all ω ∈ Ω and that A is open.

b) The function t 7→ Xt(ω) is continuous for all ω ∈ Ω and that A is closed.� �
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Proof: a) We concentrate on the case of the first entry time, since the proof for the the first
hitting time is similar. We start by observing that the following are equivalent.

1) TA < t,

2) ∃s ∈ [0, t), Xs ∈ A.

3) ∃r ∈ [0, t) ∩Q, Xr ∈ A.

1) ⇔ 2): This follows from the definition of TA, and is valid for any A ⊂ Rd.
2) ⇒ 3): Since s 7→ Xs is right-continuous and A is open, s < ∃u < t such that Xr ∈ A for all
r ∈ [s, u]. Thus, we can find r ∈ [s, u] ∩Q such that Xr ∈ A, and hence 3) holds.
2) ⇐ 3): Obvious.
The equivalence of 1) and 3) implies that

{TA < t} =
⋃

r∈[0,t)∩Q

{Xr ∈ A} ∈ σ[(Xr)r∈[0,t)∩Q] ⊂ F0
t .

Thus, TA is an optional time w.r.t. (F0
t )t≥0.

By Lemma 6.6.11, TA is a stopping time w.r.t. (F0
t )t≥0. Next, for r ≥ 0, define

TA,r = inf{t ≥ r ; Xt ∈ A}.

Then, by the same argument as above, we see that TA,r is a stopping time w.r.t. (F0
t )t≥0,

hence by Lemma 6.9.2,

4) {TA,r < t} ∈ F0
t .

Note also that
{t > 0 ; Xt ∈ A} =

⋃
r>0
r∈Q

{t ≥ r ; Xt ∈ A},

and hence that T+
A = inf r>0

r∈Q
TA,r. Therefore,

{T+
A < t} =

⋃
r>0
r∈Q

{TA,r < t}
4)
∈ F0

t .

Thus, T+
A is an optional time w.r.t. (F0

t )t≥0. \(∧2
∧)/

Lemma 6.9.2 can be used to prove� �
Corollary 6.9.4 In Proposition 6.9.3, suppose that X is adapted to a right-continuous
filtration (Ft)t≥0. Then, under the one of the following assumptions a),b), TA and T+

A are
stopping times w.r.t. (Ft)t≥0.

a) The function t 7→ Xt(ω) is right-continuous for all ω ∈ Ω and that A is open.

b) The function t 7→ Xt(ω) is continuous for all ω ∈ Ω and that A is closed.� �
Proof Since X is adapted to (Ft)t≥0, we have F0

t ⊂ Ft for all t ≥ 0. By Proposition 6.9.3,
TA and T+

A are optional times w.r.t. (F0
t )t≥0 and hence w.r.t. (Ft)t≥0. This, together with

Lemma 6.9.2 and the right-continuity of (Ft)t≥0, we see that TA and T+
A are stopping times

w.r.t. (Ft)t≥0. \(∧2
∧)/
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Example 6.9.5 Referring to Proposition 6.9.3, we suppose that t 7→ Xt(ω) is continuous for
all ω ∈ Ω. We show by an example that TA and T+

A for an open A may not be a stopping
time w.r.t. (F0

t )t≥0. This, together with Proposition 6.9.3, shows that the filtration (F0
t )t≥0 is

not right-continuous. Suppose that X0 = 0 and A = (1,∞) × Rd−1. Then, TA = T+
A . Let us

consider an event
E = {Xs = se1, ∀s ∈ [0, 1]} ∈ F0

1 ,

where e1 = (1, 0, . . . , 0). Since all the coordinates Xs, s ∈ [0, 1] are already fixed on E, the set
E does not contain any nonempty proper subset which belong to F0

1 . On the other hand,

E ∩ {TA ≤ 1} = {Xs = se1, ∀s ∈ [0, 1], TA = 1} 6= ∅,
E\{TA ≤ 1} = {Xs = se1, ∀s ∈ [0, 1], TA > 1} 6= ∅.

If we had that {TA ≤ 1} ∈ F0
1 , then, the above two sets would belong to F0

1 , which is a
contradiction.

This example can also be used to construct a sequence of stopping times, whose infimum
is not a stopping time. Let A as above and let An = [n+2

n+1
,∞) × Rd−1, n ∈ N, so that

A =
⋃

n∈NAn. Then, we have TA = infn∈N TAn (Exercise 4.2.3). TAn are stopping times w.r.t.
(F0

t )t≥0, since An are closed (Proposition 6.9.3). However, TA = infn∈N TAn is not a stopping
time w.r.t. (F0

t )t≥0 as we have already seen.

Exercise 6.9.1 Prove that, if Tn, n ∈ N are optional times, then, so is T
def
= inf

n∈N
Tn.

Exercise 6.9.2 Suppose that a filtration (Ft)t≥0 is right-continuous. Prove the following.
i) For a stopping time T , A ∈ FT ⇐⇒ A ∩ {T < t} ∈ Ft for all t ≥ 0. Hint: (6.64).

ii) If Tn, n ∈ N are stopping times, then so is T
def
= inf

n∈N
Tn, and FT =

⋂
n∈N

FTn .

Exercise 6.9.3 Suppose that a filtration (Ft)t≥0 is right-continuous. Then, give an alternative
proof of Lemma 4.2.4 in the case of T = [0,∞), by approximating S + T by SN + TN , where
SN and TN are defined by (5.17).
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7 Brownian Motion and the Related Martingales

7.1 Martingales Related to the Brownian Motion

Definition 7.1.1 Suppose that (Ft)t≥0 is a filtration and that B is a continuous, adapted
process with values in Rd. B is called a Brownian motion (or BMd) w.r.t. (Ft)t≥0 if for any
0 ≤ s < t, Bt − Bs is a mean-zero Gaussian r.v. with covaiance matrix (t− s)(δα β)

d
α,β=1, and

is independent of Fs.

Remark Suppose that B is a BMd w.r.t. (Ft)t≥0. Then, it follows from the above definition
that for any s ≥ 0, the process (Bt+s −Bs)t≥0 is independent of Fs.

The notion of “Brownian motion w.r.t. a filtration” introduced above gives to a Brownian
motion a certain amount of flexibility for the choice of the filtration to be associated with.
Suppose that B is a BMd and that a filtration (Gt)t≥0 satisfies F0

t ⊂ Gt ⊂ Ft for all t ≥ 0,
where (F0

t )t≥0 is the canonical filtration, and (Ft)t≥0 is its right-continuous enlargement, cf.
(6.33). Then, by Proposition 6.5.1, B is a BMd w.r.t. (Gt)t≥0. Moreover, for any α = 1, . . . , d,
the α-th coordinate process Bα is a BM1 w.r.t. (Gt)t≥0

We first present the following simple, but useful characteriztion of the Brownian motion.
This proposition is applied later to Proposition 7.1.3, Proposition 7.9.6 and Theorem 7.8.1.� �
Proposition 7.1.2 Suppose that X = (Xt)t≥0 is a continuous process with values in Rd,
adapted to a filtration (Ft)t≥0, such that X0 = 0. Then, the following conditions are
equivalent.
a) X is a BMd

0 w.r.t. (Ft)t≥0;
b) exp(iθ ·Xt + t|θ|2/2), t ≥ 0 is a martingale for all θ ∈ Rd;
c) exp(θ ·Xt − t|θ|2/2), t ≥ 0 is a martingale for all θ ∈ Rd.� �

Proof: a) ⇔ b): a) is equivalent to that
E[exp (iθ · (Xt −Xs)) |Fs] = exp (−(t− s)|θ|2/2) a.s. for all θ ∈ Rd.

Multiplying the both-hand sides by exp(iθ ·Xs + t|θ|2/2), we see that this is equivalent to
E[exp(iθ ·Xt + t|θ|2/2)|Fs] = exp(iθ ·Xs + s|θ|2/2), a.s. for all θ ∈ Rd,

which is equivalent to b). The equivalence of a) ⇔ c) is obtained in the same way. \(∧2
∧)/

We define the Hermite polynomials Hn : Rd × R → R, n ∈ Nd inductively by

H0(x, t) = 1, Hn+eα(x, t) = xαHn(x, t)− t
∂Hn

∂xα
(x, t), n ∈ Nd, (7.1)

where eα = (δα β)
d
β=1. For example,

Heα(x, t) = xα, Heα+eβ(x, t) = xαxβ − tδα β. (7.2)

On the other hand, we define, for θ ∈ Rd and (x, t) ∈ Rd × R,

gθ(x, t)
def
= exp

(
θ · x− t|θ|2

2

)
. (7.3)

For n = (nα)
d
α=1, we write

(
∂
∂θ

)n
=
(

∂
∂θ1

)n1

· · ·
(

∂
∂θd

)nd

. Then, the functions gθ and Hn are

related as (
∂

∂θ

)n

gθ(x, t) = Hn(x− tθ, t)gθ(x, t) (7.4)

220



for all θ ∈ Rd and (x, t) ∈ Rd × R. In particular,(
∂

∂θ

)n

gθ(x, t)

∣∣∣∣
θ=0

= Hn(x, t). (7.5)

Let B be a BMd
0 w.r.t. a right-continuous filtration (Ft)t≥0.� �

Proposition 7.1.3 Let B be a BMd
0 w.r.t. a filtration (Ft)t≥0 Then, referring to (7.3) and

(7.1), the following processes are martingales w.r.t. (Ft)t≥0 for any θ ∈ Rd and n ∈ Nd.

(Hn(Bt − θt, t)gθ(Bt, t))t≥0, (gθ(Bt, t))t≥0, (Hn(Bt, t))t≥0 (7.6)� �
Proof: Among the three processes in question, the second and the third one are special cases of
the first one (n = 0 and θ = 0). Therefore, we may forcus on the first one. In what follows, we
consider the case of d = 1 for notational simplicity. Let 0 ≤ s < t <∞. Then, by Proposition
7.1.2,

E[exp (θ · (Bt −Bs)) |Fs] = E exp (θ · (Bt −Bs)) , a.s.

= exp
(
(t− s)|θ|2/2

)
.

Multiplying the both-hand sides by exp(θ ·Bs − t|θ|2/2), we see that

1) E[gθ(Bt, t)|Fs] = gθ(Bs, s), a.s.

We see from 1), (7.4) and the dominated convergence theorem for the conditional expectation
(Proposition 4.1.12) that

E
[(

∂
∂θ

)n
gθ(Bt, t)|Fs

]
=
(

∂
∂θ

)n
E[gθ(Bt, t)|Fs] a.s.

This, together with 1), implies that

E
[(

∂
∂θ

)n
gθ(Bt, t)|Fs

]
=
(

∂
∂θ

)n
gθ(Bs, s), a.s.

By (7.4), this proves the desired martingale property. \(∧2
∧)/

Remark See Example 7.6.2 for a representation of the martingales in Proposition 7.1.3 in
terms of the stochastic integral.

Example 7.1.4 (Exit time from a bounded set) Let B be BMd
x. We adopt the notation

introduced at the beginning of section 6.7. Suppose that A ⊂ Rd is bounded, either closed or
open, and let

T = TAc = inf{t ≥ 0 ; Bt ∈ Ac}.

Then, there is λ > 0 such that
sup
x∈A

Ex exp (λT ) <∞. (7.7)

Proof: By Example 6.7.4, it is enough to prove that

1) sup
x∈A

ExT <∞
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Since (B1
t − x1)2 − t is a martingale by Proposition 7.1.3, we have by Theorem 5.3.1 that

Ex[t ∧ T ] = Ex

[
(B1

t∧T − x1)2
]
≤ sup

y∈A
|y − x|2,

from which we obtain 1) by letting t↗ ∞. \(∧2
∧)/

Exercise 7.1.1 Let gλ : R2 → R (λ ∈ R) and Hn : R2 → R (n ∈ N) be from Proposition
7.1.3. Then, prove the following. i) gλ(x, t) =

∑∞
n=0

λn

n!
Hn(x, t). [Hint: (7.5).] ii)

∂
∂x
Hn(x, t) =

nHn−1(x, t). [Hint: ∂gλ
∂x

(x, t) = λgλ(x, t).] iii) ∂Hn

∂t
(x, t) + 1

2
∂2Hn

∂x2 (x, t) = 0. [Hint: ∂gλ
∂t

(x, t) +
1
2
∂2gλ
∂x2 (x, t) = 0.]

7.2 Hitting Times for One-dimensional Brownian Motions with Drift

Let B be BM1
0. We will denote by (Ft)t≥0 the right-continuous enlargement of the canonical

filtration defined by (6.33). For c > 0, we define (Xt)t≥0 by

Xt = Bt − ct.

Let also
g(λ, µ) = µ2 − 2cµ− 2λ, for λ, µ ∈ R. (7.8)

For any fixed λ ≥ −c2/2, the equation g(λ, µ) = 0 has real solutions µ = f+(λ), and µ =
−f−(λ), where

f±(λ)
def
=

√
c2 + 2λ± c. (7.9)

In particular, for λ > 0, we have

f+(λ) > f+(0) = 2c, f−(λ) > f−(0) = 0. (7.10)

� �
Lemma 7.2.1 Let λ ≥ −c2/2, µ ∈ {f+(λ),−f−(λ)}, and Mt = exp(µXt − λt), t ≥ 0
Then, M = (Mt,Ft)t≥0 is a martingale.� �

Proof: Since
µXt − λt = µBt − (cµ+ λ)t = µBt − µ2t/2.

Therefore, M is a martigale by Proposition 7.1.3. \(∧2
∧)/� �

Corollary 7.2.2 Let φ : R → R be defined by φ(x) = x if c = 0 and φ(x) = exp(2cx) if
c 6= 0. Then, (φ(Xt),Ft)t≥0 is a martingale.� �

Proof: If c = 0, then φ(Xt) = Bt is a martingale by Proposition 7.1.3. If c > 0, then
φ(Xt) = exp(2cXt) = exp(f+(0)Xt) is a martingale by Lemma 7.2.1. \(∧2

∧)/

For a ∈ R, let
Ta = inf{t ≥ 0 ; Xt = a}.
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� �
Proposition 7.2.3 For a > 0 and λ > 0,

E exp(−λT−a) = exp(−af−(λ)), E exp(−λTa) = exp(−af+(λ)), (7.11)

P (T−a <∞) = 1, P (Ta <∞) = exp(−2ac). (7.12)

with the convention that exp(−∞) = 0. Moreover, if c > 0, then

ET−a = E[Ta|Ta <∞] = a/c. (7.13)

On the other hand, if c = 0, then

ET−a = ETa = ∞. (7.14)� �
Proof: Let M be as in Lemma 7.2.1. By Theorem 5.3.1, we have for any stopping time T and
t ≥ 0 that,

1 =M0
(5.12)
= EMt∧T . (7.15)

(7.11): To prove the equality for T−a, we apply (7.15) for µ = −f−(λ) < 0 and T = T−a. Note
that −a ≤ X(t ∧ T−a), and hence

1) 0 ≤M(t ∧ T−a) = exp(µX(t ∧ T−a)− λt ∧ T−a) ≤ exp(−µa− λt ∧ T−a) ≤ exp(−µa).

On the other hand, we have

2) M(t ∧ T−a)
t→∞−→ exp(−µa− λT−a).

Indeed, if T−a <∞, then, X(t ∧ T−a)
t→∞−→ X(T−a) = −a, and hence,

M(t ∧ T−a) = exp(µX(t ∧ T−a)− λt ∧ T−a)
t→∞−→ exp(−µa− λT−a).

If T−a = ∞, then, 0 ≤Mt

1)

≤ exp(−µa− λt), ∀t ≥ 0, and hence

M(t ∧ T−a) =Mt
t→∞−→ 0 = exp(−µa− λT−a).

By 1) and 2), we can use BCT in the limit t→ ∞ to conclude from (7.15) that

1 = exp(−µa)E exp(−λT−a)

This proves the equality for T−a. The other equality is obtained in the same way.
(7.12): We have for any r.v. T : Ω → [0,∞] that

lim
λ→0
λ>0

E exp(−λT ) = P (T <∞).

Thus, we see (7.12) from (7.10) and (7.11).
(7.13), (7.14): By Exercise 1.1.6, we have for any r.v. T : Ω → [0,∞] that

3) E[T : T <∞] = − lim
λ→0
λ>0

d

dλ
E exp(−λT )
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On the other hand, the function f± is differentiable on (−c2/2,∞) and

f ′
±(λ) = 1/

√
c2 + 2λ, λ > −c2/2.

Thus,

4) f ′
±(0+)

def
= lim

λ→0
λ>0

f ′
±(λ) =

{
1/c, if c > 0,
∞, if c = 0.

Then, it follows from (7.11) and that

E[Ta : Ta <∞]
3)
= − lim

λ→0
λ>0

d

dλ
E exp(−λT−a)

(7.11)
= − lim

λ→0
λ>0

d

dλ
exp(−af+(λ))

= a exp(−af+(0))f ′
+(0+)

(7.10), 4)
= (a/c) exp(−2ac).

Since P (Ta < ∞) = exp(−2ac) by (7.12), we obtain the second equality of (7.13). The other
equalities can be obtained in the same way. \(∧2

∧)/

Remark 1) If c > 0, then, Y
def
= supt≥0Xt <∞ a.s. Moreover, we see from the equality (7.12)

that the r.v. Y is exponentialy distributed.

P (Y ≥ a) = P (Ta <∞)
(7.12)
= exp(−2ac). (7.16)

2) If c > 0 again, the validity of the first identity of (7.11) extends to all λ ≥ −c2/2. To see
this, we note that exp(cXt+c

2t/2) is a martingale by Lemma 7.2.1. Thus E exp(c2T−a/2) ≤ eca

by Corollary 5.3.3. This implies that E exp(−λT−a) for λ ∈ C, Reλ > −c2/2 is holomorphic.
Therefore, by the unicity theorem, the first identity of (7.11) extends to all λ > −c2/2. Finally,
the case of λ = −c2/2 is obtained by the monotone convergence theorem.

By (7.11) and the uniqueness of the Laplace transform (Example 1.8.3), we can identify
the density of the r.v. Ta for all a ∈ R\{0} (See also Proposition 6.6.4 for the case of c = 0).� �
Corollary 7.2.4 For c ≥ 0 and a ∈ R\{0}, Ta ≈ kt(a, c)dt, where

kt(a, c) =
|a|√
2πt3

exp

(
−(a+ ct)2

2t

)
.

� �
Proof: By (7.11) and the uniqueness of the Laplace transform (Example 1.8.3), it is enough
to verify for all λ > 0 that

1) I
def
=

∫ ∞

0

exp(−λt)kt(a, c)dt =
{

exp(−af+(λ)), a > 0,
exp(af−(λ)), a < 0.

We first consider the case of a > 0. Note that

2) λt+
(a+ ct)2

2t
= ac+

c2 + 2λ

2
t+

a2

2t
.

We also recall from Lemma 2.3.4 with n = 1 that
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3)
a√
2π

∫ ∞

0

t−3/2 exp

(
−b

2t

2
− a2

2t

)
dt = exp(−ab), a, b > 0.

Therefore,

I
2)
= exp(−ac) a√

2π

∫ ∞

0

t−3/2 exp

(
−c

2 + 2λ

2
t− a2

2t

)
dt

3)
= exp(−ac) exp

(
−a

√
c2 + 2λ

)
= exp(−af+(λ)),

which proves 1). The proof for the case of a < 0 is similar. \(∧2
∧)/

Remark Corollary 7.2.4 can also be derived as an application of the Cameron-Martin formula
[LeG16, pp. 140–141].� �
Proposition 7.2.5 For a, b > 0 and λ > 0,

E[exp(−λT−a) : T−a < Tb] =
eac sinh(b

√
c2 + 2λ)

sinh((a+ b)
√
c2 + 2λ)

, (7.17)

E[exp(−λTb) : Tb < T−a] =
e−bc sinh(a

√
c2 + 2λ)

sinh((a+ b)
√
c2 + 2λ)

, (7.18)

with the convention that exp(−∞) = 0. Moreover, if c > 0, then

P (T−a < Tb) =
e2bc − 1

e2bc − e−2ac
, P (Tb < T−a) =

1− e−2ac

e2bc − e−2ac
. (7.19)

On the other hand, if c = 0, then

P (T−a < Tb) =
b

a+ b
, P (Tb < T−a) =

a

a+ b
. (7.20)� �

Proof: (7.17), (7.18): Let M be as in Lemma 7.2.1. We write M = M+ if µ = f+(λ), and
M =M− if µ = −f−(λ). We take T = T−a ∧ Tb. Then, we see from (7.15) that

1) 1 = EM±(t ∧ T ).

On the other hand,

2) 0 ≤M+(t ∧ T ) ≤ exp(µb), 0 ≤M−(t ∧ T ) ≤ exp(−µa).

We now note that

3) T−a 6= Tb a.s.

This can be seen as follows. If T−a = Tb < ∞, then, −a = X(T−a) = X(Tb) = b, which is
impossible. Hence, {T−a = Tb < ∞} = ∅. On the other hand, Tb < ∞ a.s. by (7.12). Thus,
P (T−a = Tb = ∞) = 0.
It follows from 3) that almost surely,

4)

{
M±(t ∧ T ) = M±(t ∧ T−a)1{T−a < Tb}+M±(t ∧ Tb)1{Tb < T−a}

t→∞−→ exp(∓af±(λ)− λT−a)1{T−a < Tb}+ exp(±bf±(λ)− λTb)1{Tb < T−a}.
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Let E1 and E2 be the LHS’s of (7.17) and (7.18), respectively. Then, by 2) and 4), we can
apply BCT for 1) in the limit t→ ∞ to conclude that

1 = exp(∓af±(λ))E1 + exp(±bf±(λ))E2.

By solving the above equation, we have

E1 =
exp(bf+(λ))− exp(−bf−(λ))

exp(bf+(λ) + af−(λ))− exp(−af+(λ)− bf−(λ))
,

E2 =
exp(af−(λ))− exp(−af+(λ))

exp(bf+(λ) + af−(λ))− exp(−af+(λ)− bf−(λ))
,

from which we obtain (7.17) and (7.18).
(7.19),(7.20): These follow from (7.17) and (7.18) by letting λ↘ 0, cf. (7.10). \(∧2

∧)/

Remark Using the function φ, introduced in Corollary 7.2.2, the equalities (7.19) and (7.20)
can be written at the same time as:

P (T−a < Tb) =
φ(b)− φ(0)

φ(b)− φ(−a)
, P (Tb < T−a) =

φ(0)− φ(−a)
φ(b)− φ(−a)

.

The equalities (7.19) and (7.20) tell us the distribution of the r.v. Z
def
= supt≤T−a

Xt (Note that
T−a <∞ a.s. by (7.12)).

P (Z ≥ b) = P (Tb < T−a)
(7.19),(7.20)

=

{
(1− e−2ac/(e2bc − e−2ac) if c > 0,
a/(a+ b) if c = 0.

(7.21)

In particular,

EZ =

∫ ∞

0

P (Z ≥ b) db

{
<∞ if c > 0,
= ∞ if c = 0.

Exercise 7.2.1 Prove that

E[T−a ∧ Tb] =
{

(a+ b)(ebc/c) sinh(ac)/ sinh((a+ b)c) if c > 0,
ab if c = 0.

[Hint: For c > 0, use the martingale Xt + ct = Bt , and for c = 0,use the martingale B2
t − t.]

Remark If we consider BM1
x instead of BM1

0. Then, for c = 0, it follows from Exercise 7.2.1

that mx
def
= E[T−a ∧ Tb] = (a+ x)(b− x) ≤ (a+ b)2/4 if x ∈ [−a, b], and mx = 0 if x 6∈ [−a, b].

Thus, we have by Example 6.7.4 that E exp(λ(T−a ∧ Tb)) <∞ for any λ ∈ (−∞, 4/(a+ b)2).

Exercise 7.2.2 For c = 0, prove that

E exp(−λ(T−a ∧ Tb)) =
cosh

(
(a− b)

√
λ/2
)

cosh
(
(a+ b)

√
λ/2
) .

[Hint: For x, y ∈ R, sinh x+sinh y = 2 sinh
(
x+y
2

)
cosh

(
x−y
2

)
, sinh(x+y) = 2 cosh

(
x+y
2

)
sinh

(
x+y
2

)
.]

Remark By the remark after Exercise 7.2.1, we see from Exercise 7.2.2 and the analytic
continuation that for any λ ∈ (−∞, 4/(a+ b)2),

E exp(λ(T−a ∧ Tb)) =
cos
(
(a− b)

√
λ/2
)

cos
(
(a+ b)

√
λ/2
) .
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Exercise 7.2.3 Let kt(x) = x√
2πt3

exp
(
−x2

2t

)
, x ∈ R, t > 0. Then, for c = 0, prove that

T−a ∧ Tb ≈ kt(a, b)dt, where

kt(a, b) =
∞∑
j=0

(−1)j(kt(a+ (a+ b)j) + kt(b+ (a+ b)j)).

[Hint: Compute the Laplace transform
∫∞
0

exp(−λt)kt(a, b)dt, λ > 0 and compare it with
Exercise 7.2.2.]

7.3 Stochastic Integrals

Let B be BM1 w.r.t. a filtration (Ft)t≥0, cf. Definition 7.1.1. For a suitable class of processes
H = (Ht)t≥0, we will define the integral of the form∫ t

0

HsdBs, t ≥ 0, (7.22)

which is called the stochasic integral with respect to the Brownian motion. The function
s 7→ Bs is not of bounded variation in any interval. Therefore, the above integral cannot be
defined as a Lebesgue-Stieltjes integral.

We start by introducing some classes of integrands for the stochastic integral.

Definition 7.3.1 (Integrands for stochastic integral)
▶ We denote by L the totality of progressive real processes w.r.t. (Ft)t≥0 (cf. Definition
6.6.12).
▶ We define

L2
∞ =

{
H ∈ L ; E

∫ ∞

0

H2
sds <∞

}
,

L2 =

{
H ∈ L ; E

∫ t

0

H2
sds <∞ for all t ∈ (0,∞)

}
,

L2
a.s. =

{
H ∈ L ;

∫ t

0

H2
sds <∞, P -a.s. for all t > 0

}
.

▶ A process H ∈ L is said to be elementary, if it is a finite linear combimations of the
processes of the following form

(1(a,b] ⊗ h)t(ω) = h(ω)1(a,b](t), (t, ω) ∈ [0,∞)× Ω. (7.23)

for some 0 ≤ a < b <∞ and h ∈ L2(Ω,Fa, P ). The totality of elementary processes is denoted
by E .

Remark: Clearly, E ⊂ L2
∞ ⊂ L2 ⊂ L2

a.s. ⊂ L.

Definition 7.3.2 (Spaces of continuous (local) martingales)
▶ We denote by Mc the totality of martingalesM = (Mt,Ft)t≥0 such thatM0 = 0 and t 7→Mt

is a.s. continuous.
▶ We define

M2
c,∞ =

{
M ∈ Mc ; sup

t≥0
E[M2

t ] <∞
}
.

M2
c =

{
M ∈ Mc ; E[M2

t ] <∞ for all t ∈ (0,∞)
}
.
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▶ An adapted process M = (Mt,Ft)t≥0 is called a local martingale, if there exists a nonde-

creasing sequence of finite stopping times (Tn)n≥1 such that Tn
n→∞−→ ∞ a.s. and for any n ≥ 1,

(Mt∧Tn)t≥0 is uniformly integrable martingale. The above sequence (Tn)n≥1 of stopping times
is then called a reduction sequence.
▶ We denote by M2

c,loc the totality of local martingales M = (Mt,Ft)t≥0 such that M0 = 0
and t 7→ Mt is a.s. continuous, and there exists reduction a sequence (Tn)n≥1 such that

M·∧Tn ∈ M2
c,∞ for all n ≥ 1. We identify two elements M, M̃ in M2

c,loc, if Mt = M̃t a.s. for all
t ≥ 0.

Remark: If M ∈ M2
c,∞, then (Mt)t≥0 is uniformly integrable. Indeed, by L2-maximal in-

equality (5.23),

E

[
sup
t≥0

(Mt)
2

]
≤ 4 sup

t≥0
E
[
(Mt)

2
]
<∞.� �

Theorem 7.3.3 There exists a unique map H 7→ H ·B from L2
a.s. to M2

c,loc which satisfies
the following properties.
a) For all H,K ∈ L2

a.s., α, β ∈ L∞(Ω,F0, P ), and t ≥ 0,

((αH + βK) ·B)t = α(H ·B)t + β(K ·B)t. (7.24)

b) Referring to (7.29), for all 0 ≤ a < b <∞ and h ∈ L2(Ω,Fa, P ),

((1(a,b] ⊗ h) ·B)t(ω) = h(ω)(Bt∧b(ω)−Bt∧a(ω)), (t, ω) ∈ [0,∞)× Ω. (7.25)

c) For all H,K ∈ L2, the following processes are martingales w.r.t. (Ft)t≥0.

(H ·B)t and Qt(H,K)
def
= (H ·B)t(K ·B)t −

∫ t

0

HsKsds, t ≥ 0. (7.26)

d) For all H ∈ L2
a.s. and stopping time T ,

(HχT ·B)t = (H ·B)t∧T , , t ≥ 0. (7.27)

where χT (t, ω) = 1[0,T (ω)](t), (t, ω) ∈ [0,∞)× Ω.� �
The process H · B ∈ M2

c,loc stated in Theorem 7.3.3 is called the stochastic integral of
H ∈ L2

a.s. w.r.t. the Brownian motion B and is also denoted also by the integral notation
(7.22). It follows from Theorem 7.3.3 b) that, for H ∈ L2 and t ≥ 0,

E[(H ·B)t] = 0, E[(H ·B)2t ] = E

∫ t

0

H2
sds. (7.28)

The second equality of (7.28) is called Itô’s isometry. We now prove Theorem 7.3.3 in three
successive steps.

Step1 (The case of H ∈ E) We first consider the stochastic integral of an elementary process.
Suppose that H ∈ E is expressed as

H =
N−1∑
j=0

1(cj ,cj+1] ⊗ hj (7.29)
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with a strictly increasing sequence (cj)
N
j=0, c0 = 0 and hj ∈ L2(Ω,Fcj , P ) (0 ≤ j ≤ N − 1).

Then, we define H ·B by

(H ·B)t =
N−1∑
j=0

hj(Bt∧cj+1
−Bt∧cj), t ≥ 0. (7.30)

� �
Lemma 7.3.4 a) The definition (7.30) is well defined, i.e., it does not depend on the way

in which H is expressed as on the right-hand side of (7.29).

b) The properties (7.24) and (7.27) hold for H,K ∈ E� �
Proof: Let H,K ∈ E be such that

Ht =
L−1∑
ℓ=0

1(aℓ,aℓ+1] ⊗ hℓ, Kt =
M−1∑
m=0

1(bm,bm+1] ⊗ km,

where (aℓ)
L
ℓ=0 and (bm)

M
m=0 are strictly increasing sequence, a0 = b0 = 0 and hℓ ∈ L2(Ω,Faℓ , P ),

km ∈ L2(Ω,Fbm , P ) (0 ≤ ℓ < L, 0 ≤ m < M). We define a sequence (cj)
N
j=0 by

{c1 < ... < cN} = {aℓ}Lℓ=1 ∪ {bm}Mm=1, c0 = 0.

As a consequence, there exist 0 = p(0) < p(1) < ... < p(L) ≤ N and 0 = q(0) < p(1) < ... <
q(M) ≤ N such that

aℓ = cp(ℓ) (1 ≤ ℓ ≤ L), and bm = cq(m) (1 ≤ m ≤M).

We then define r.v.’s {h̃j}Nj=1, {k̃j}Nj=1 by

h̃j = hℓ for p(ℓ) ≤ j < p(ℓ+ 1) and k̃j = km for q(m) ≤ j < q(m+ 1).

Then,

1) H =
N−1∑
j=0

1(cj ,cj+1] ⊗ h̃j, K =
N−1∑
j=0

1(cj ,cj+1] ⊗ k̃j,

On the other hand,
2) It = Ĩt and Jt = J̃t,
where

It =
L−1∑
ℓ=0

hℓ(Bt∧aℓ+1
−Bt∧aℓ), Jt =

M−1∑
m=0

km(Bt∧bm+1 −Bt∧bm),

Ĩt =
N∑
j=1

h̃j(Bt∧cj −Bt∧cj−1
), J̃t =

N∑
j=1

k̃j(Bt∧cj −Bt∧cj−1
).

Indeed,

Ĩt =
N−1∑
j=0

h̃j(Bt∧cj+1
−Bt∧cj) =

L−1∑
ℓ=0

hℓ
∑

k(ℓ)≤j<k(ℓ+1)

(Bt∧cj+1
−Bt∧cj)

=
L−1∑
ℓ=0

hℓ(Bt∧aℓ+1
−Bt∧aℓ) = It.
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Similarly Jt = J̃t.
a): To ses (7.24), suppose that H = K. Then, it follows from 1) that h̃j = k̃j for all j = 1, ..., N

and hence Ĩt = J̃t. Thus, we have It = Jt by 2). Therefore, the definition (7.30) does not
depend on the way in which H is expressed as on the right-hand side of (7.29).
b): Let H,K ∈ E be as at the beginning of the proof and α, β ∈ L∞(Ω,F0, P ), then,

αH + βK
1)
=

N−1∑
j=0

1(cj ,cj+1] ⊗ (αh̃j + βk̃j)

Hence

((αH + βK) ·B)t
(7.30)
=

N−1∑
j=0

(αh̃j + βk̃j)(Bt∧cj+1
−Bt∧cj)

= α

N−1∑
j=0

h̃j(Bt∧cj+1
−Bt∧cj) + β

N−1∑
j=0

k̃j(Bt∧cj+1
−Bt∧cj)

2)
= α(H ·B)t + β(K ·B)t.

To see (7.27), suppose that H is expressed as (7.29) and that T is a stopping time. Then,

HχT =
N∑
j=1

1(cj ,cj+1]hjχT .

It follows from (4.41) that hjχT is Fcj -measurable, and hence

(HχT ·B)t =
N∑
j=1

1(cj ,cj+1]hjχT (Bt∧cj+1
−Bt∧cj)

=
N∑
j=1

1(cj ,cj+1]hj(Bt∧T∧cj+1
−Bt∧T∧cj) = (H ·B)t∧T .

\(∧2
∧)/

Next, in order to verify that the processes (7.26) are martingales, we prepare the following
lemma.� �
Lemma 7.3.5 a) Let 0 ≤ a < b ≤ ∞, h ∈ L1(P ) be Fa-measurable. Then, the following

processes are martingales.

Ut = h(Bt∧b −Bt∧a), Vt = h
(
(Bt∧b −Bt∧a)

2 − (t ∧ b− t ∧ a)
)
.

b) Let 0 ≤ a1 < b1 ≤ a2 < b2 ≤ ∞, hj ∈ L2(P ) be Faj -measurable, j = 1, 2. Then, the
following process is a martingale.

Wt = h1h2(Bt∧b1 −Bt∧a1)(Bt∧b2 −Bt∧a2)� �
Proof: a) We first check that Ut, Vt ∈ L1(P ) for all t ≥ 0. Let Lt = Bt∧b − Bt∧a. Then, for
t ≤ a, Lt = 0 and hence Ut = 0. For t ≥ a, h ∈ L1(P ) and Lt ∈ L1(P ) are independent, and
hence Ut = hLt ∈ L1(P ). Similarly, Vt ∈ L1(P ). We next prove that Ut, Vt are martingales.
Since h is Fa-measurable and Lt is a martingale such that Lt = 0 if t ≤ a, it follows from
Exercise 4.3.3 that Ut = hLt is a martingale. On the other hand, it is not difficult to see that
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the process

Mt
def
= (Bt∧b −Bt∧a)

2 − (t ∧ b− t ∧ a), t ≥ 0

is a martingale such that Mt = 0 if t ≤ a. Thus, it follows from Exercise 4.3.3 that Vt = hMt

is a martingale.

b) We first check that Wt ∈ L1(P ) for all t ≥ 0. Nt = Bt∧b2 − Bt∧a2 and Zt
def
= h1h2(Bt∧b1 −

Bt∧a1). Then, Wt = ZtNt. For t ≤ a2, Nt = 0, and hence Wt = 0. Thus, we suppose that
t ≥ a2. Since h1 ∈ L2(P ) and Bb1 −Ba1 ∈ L2(P ) are independent, h1(Bb1 −Ba1) ∈ L2(P ), and
hence h1h2(Bb1 − Ba1) ∈ L1(P ). Moreover, h1h2(Bb1 − Ba1) ∈ L1(P ) and Nt = Bt∧b2 − Ba2 ∈
L1(P ) are independent, and hence Wt ∈ L1(P ). Next, we prove that Wt is a martingale. Since
Nt is a martingale such that Nt = 0 if t ≤ a2, and Zt = Zt∧a2 is Fa2-measurable for all t ≥ 0,
it follows from Exercise 4.3.3 that Wt = ZtNt is a martingale. \(∧2

∧)/

Now, it is easy to prove� �
Lemma 7.3.6 Suppose that H,K ∈ E. Then, H · B ∈ M2

c and the processes (7.26) are
martingales.� �

Proof: It is clear that the process H · B defined by (7.30) is a.s. continuous and that E[(H ·
B)2t ] <∞ for all t > 0. Moreover,

Qt(H,K) =
N∑

i,j=1

hikj
(
(Bt∧ci −Bt∧ci−1

)(Bt∧cj −Bt∧cj−1
)− δi,j((t ∧ ci)− (t ∧ ci−1))

)
.

We see from Lemma 7.3.5, that all the terms on the RHS of (7.30) and that of the above
display are martingales. Hence H ·B ∈ M2

c and the process Qt(H,K) is a martingale. \(∧2
∧)/

Step2: (The case of H ∈ L2
∞) It is convenient to organize the construction in the abstract

framework, concerning the isometry between two Hilbert spaces. For H,K ∈ L2
∞, we define

their inner product by

〈H,K 〉L2
∞ = E

∫ ∞

0

HsKsds. (7.31)

We identify two elements H, H̃ in L2
∞, if Ht(ω) = H̃t(ω), dt⊗P (dω)-a.s. on [0,∞)×Ω. Then,

it is easy to show that L2
∞ is a Hilbert space. We have the following lemma.� �

Lemma 7.3.7 E is dense in L2
∞.� �

Proof: It is enough to show that the ortogonal complement E⊥ contains only of the null
function. For this purpose, suppose that H ∈ E⊥. Then, considering 1(a,b] ⊗ 1A ∈ E , with
0 ≤ a < b <∞ and A ∈ Fa, we have

E

[∫ b

a

Hsds : A

]
= 0.

This implies that the process Mt
def
=
∫ t

0
Hsds, t ≥ 0 is a continuous martingale, and hence

M ≡ 0, a.s., since M is at the same time of bounded variation (cf. Lemma 7.3.12 below).
Consequently, H ≡ 0, a.s. \(∧2

∧)/
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For M ∈ M2
c,∞, we define two norms

ρ2(X) = sup
t≥0

E[X2
t ]

1/2, ρ2(M) = E

[
sup
t≥0

M2
t

]1/2
. (7.32)

By L2-maximal inequality (5.23),

ρ2(M) ≤ ρ2(M) ≤ 2ρ2(M) for M ∈ M2
c,∞,

and hence the norms ρ2 and ρ2 are equivalent on M2
c,∞.� �

Lemma 7.3.8 (M2
c,∞, ρ2) is a Hilbert space.� �

Proof: It is enough to show that (M2
c,∞, ρ2) is a Hilbert space. Suppose that (M (k))k∈N is a

Cauchy sequence in (M2
c,∞, ρ2). To prove that (M (k))k∈N converges in M2

c,∞, it is enough to
find a subsequence which converges in M2

c,∞. Then, by taking a subsequence, we may assume

that ρ2(M
(k+1),M (k)) ≤ 2−k, so that the following series converges w.r.t. ρ2:

Mt =M
(0)
t +

∞∑
k=0

(M
(k+1)
t −M

(k)
t ).

Moreover, we have

ρ2(M,M (k)) ≤
∞∑

j=k+1

2−j k→∞−→ 0.

In particular, for each n ≥ 1,

sup
t≥0

|Mt −M
(k)
t | k→∞−→ 0 in L2(P ).

By taking subsequence again, we may assume that the above convergence takes place a.s., and
hence a.s., M

(k)
t converges to Mt uniformly in t ≥ 0. This implies that M ∈ M2

c,∞. \(∧2
∧)/� �

Lemma 7.3.9 The map H 7→ H · B (E → M2
c,∞) defined by Step1 is uniquely extended

to a linear isometry

H 7→ H ·B (L2
∞, ‖ · ‖L2

∞) −→ (M2
c,∞, ρ2). (7.33)

Moreover for H ∈ L2
∞, the process H · B defined this way satisfies the equality (7.27) for

all stopping time T .� �
Proof: The map H 7→ H · B (E → M2

c,∞) defined by Step1 is a linear operator by (7.24).
Moreover, it follows from the Itô’s isometry (7.28) for E that

ρ2(H ·B) = ‖H‖L2
∞ , H ∈ E .

Therefore, by Lemma 7.3.7, the map H 7→ H · B (E −→ M2
c,∞) can uniquely be extended to

a linear isometry from L2
∞ to M2

c,∞.

To show the equality (7.27) for H ∈ L2
∞, take a sequence H(n) ∈ E which converges in L2

∞ to
H. Then, H(n)χT converges in L2

∞ to HχT . These imply via Lemma 7.3.4 that
1) H(n) ·B n→∞−→ H ·B and H(n)χT ·B n→∞−→ HχT ·B in Mc,∞.
2) (H(n)χT ·B)t = (H(n) ·B)t∧T
Therefore,
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E

[
sup
t≥0

|(H ·B)t∧T − (HχT ·B)t|2
]

1)
= lim

n→∞
E

[
sup
t≥0

|(H ·B)t∧T − (H(n)χT ·B)t|2
]

2)
= lim

n→∞
E

[
sup
t≥0

|(H ·B)t∧T − (H(n) ·B)t∧T |2
]

≤ lim
n→∞

E

[
sup
t≥0

|(H ·B)t − (H(n) ·B)t|2
]

1)
= 0.

\(∧2
∧)/

Step3: (The case of H ∈ L2
a.s.)� �

Lemma 7.3.10 The linear map H 7→ H ·B from L2
∞ → M2

c,∞ defined in Lemma 7.3.9 is
uniquely extended to a linear map from L2

a.s. → M2
c,loc for which the equality (7.27) holds

for all H ∈ L2
a.s. and all stopping time T .� �

Proof: Let H ∈ L2
a.s.. To define a process H ·B, We introduce the stopping times

Sn = Sn(H) = n ∧ inf

{
t > 0 ;

∫ t

0

H2
sds ≥ n

}
. (7.34)

Then, (Sn)n≥1 is a nondecreasing sequence of finite stopping times such that Sn ↗ ∞ and∫ ∞

0

(HχSn)
2
sds =

∫ Sn

0

H2
sds ≤ n for all n ≥ 1.

Hence HχSn ∈ L2
∞. Consequently, HχSn · B ∈ M2

c,∞ by Step2. We define the process H · B
by
1) (H ·B)t = (HχSn ·B)t for t ≤ Sn.
The process is well defined, since if m < n and t ≤ Sm, then, for s ≤ t, χSm(s) = χSn(s) = 1
and hence (HχSm)s = (HχSn)s. Consequently, (HχSm ·B)t = (HχSn ·B)t.

We next prove that H · B ∈ M2
c,loc. By Lemma 7.3.9, the equality (7.27) holds if H is

replaced by HχSn ∈ L2
∞. Thus, if a stopping time S satisfies S ≤ Sn, then,

2) (H ·B)t∧S
1)
= (HχSn ·B)t∧S = (HχS ·B)t for all t ≥ 0.

In particular,
3) (H ·B)t∧Sn = (HχSn ·B)t for all t ≥ 0.
Since HχSn ·B ∈ M2

c,∞, the equality 3) implies that H ·B ∈ M2
c,loc.

We next prove the equality (7.27). We note that the equality 3) determines the values of
of H ·B on the set {Sn ↗ ∞}. Therefore the property 3) characterizes the process H ·B (up
to the identification in the class Mc,loc). Referring to (7.34), we set Un = Sn(HχT ). Then, the
process HχT ·B is characterized by the equality
4) (HχT ·B)t∧Un = (HχT∧Un ·B)t.
Therefore, to prove (7.27), it is enough to verify that

(H ·B)t∧T∧Un = (HχT∧Un ·B)t.
Since Sn → ∞ a.s., the above equality follows from the equality with t replaced by t ∧ Sn,
namely (Note that Sn ≤ Un.),
5) (H ·B)t∧Sn∧T = (HχT∧Un ·B)t∧Sn .
It follows from 2) that

the LHS of 5) = (HχSn∧T ·B)t.
On the other hand, noting that HχT∧Un ∈ L2

∞ and applying Lemma 7.3.9,
the RHS of 5) = (HχSn∧T ·B)t.

Thus, we have proved (7.27).
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Finally prove the linearity (7.24). Let H,K ∈ L2
a.s., α, β ∈ L∞(Ω,F0, P ) and L = αH+βK.

Referring to (7.34), we set Tn = Sn(H) ∧ Sn(K). Then, HχTn , HχTn ∈ L2
∞, and hence by

linearity of the stochastic integral for L2
∞ (Lemma 7.3.9), we have

(LχTn ·B)t = α(HχTn ·B)t + β(KχTn ·B)t.
Therefore,

(L ·B)t∧Tn

(7.27)
= (LχTn ·B)t = α(HχTn ·B)t + β(KχTn ·B)t

(7.27)
= α(H ·B)t∧Tn + β(K ·B)t∧Tn .

Letting n→ ∞, we obtain (7.24). \(∧2
∧)/� �

Lemma 7.3.11 For H,K ∈ L2, the processes (7.26) are martingales.� �
Proof: It is enough to show that the processes (H · B)t∧t0 , Qt∧t0(H,K), t ≥ 0 are martingale
for any fixed t0 > 0. Moreover, if H ∈ L2, then Hχt0 ∈ L2

∞ and
(H ·B)t∧t0 = (Hχt0 ·B)t and Qt∧t0(H,K) = Qt(Hχt0 , Kχt0).

Therefore, it is enough to assume that H,K ∈ L2
∞. The process H · B for H ∈ L2

∞ is a
continuous martingale by Lemma 7.3.9. It only remains to prove that Qt(H,K) is a martingale.
Since E is dense in L2

∞ (Lemma 7.3.7), there exists H(n), K(n) ∈ E such that H(n) n→∞−→ H and
K(n) n→∞−→ K in L2

∞. Since the map (7.33) is continuous, we have that (H(n) ·B)t
n→∞−→ (H ·B)t

and (K(n) ·B)t
n→∞−→ (K ·B)t in L

2(P ), which implies that

1) (H(n) ·B)t(K
(n) ·B)t

n→∞−→ (H ·B)t(K ·B)t in L
1(P ).

On the other hand, it is easy to see that

2)

∫ t

0

H(n)
s K(n)

s ds
n→∞−→

∫ t

0

HsKsds in L1(P ).

By 1) and 2), we have that

3) Qt(H
(n), K(n))

n→∞−→ Qt(H,K) in L1(P ).

Since Qt(H
(n), , K(n)) is a martingale by Lemma 7.3.6, we see from 3) that Qt(H,K) is also a

martingale. \(∧2
∧)/

Complement� �
Lemma 7.3.12 If M is a continuous local martingale with M0 = 0, which is of bounded
variation on any finite interval. Then, Mt = 0 a.s. for all t ≥ 0.� �

Proof: We set
Tk = inf{t ≥ 0 ;Vt > k},

where Vt denotes the total variation of M on the interval [0, t]. Tk is a stopping time, since Vt

is continuous in t. Thus, M
(k)
t

def
= Mt∧Tk

is a local martingale. Note also that
1) |Mt∧Tk

| ≤ Vt∧Tk
≤ k.

Therefore, M (k) is a bounded martingale (Exercise 7.3.1). On the other hand, we have Tk
k→∞−→

∞, since Vt < ∞ for any t > 0. Therefore, it is enough to to prove that M
(k)
t = 0 a.s. for all

fixed k ≥ 1 and t > 0. Let k ≥ 1 and t > 0 be fixed. Since M (k) is a bounded martingale, its
differences

∆M
(k,j)
t

def
= M (k)(jt/n)−M (k)((j − 1)t/n), j = 1, . . . , n
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are orthognal. Thus,

2) E
[
|M (k)

t |2
]
=

n∑
j=1

E
[
|∆M (k,j)

t |2
]
= E

[
n∑

j=1

|∆M (k,j)
t |2

]
.

Moreover,
n∑

j=1

|∆M (k,j)
t |2 ≤ Vt∧Tk

max
1≤j≤n

|∆M (k,j)
t |.

By 1), the RHS of the above display is bounded from above by the constant 2k2, while it
converges to zero as n→ ∞, since M is uniformly continuous on the interval [0, t]. Therefore,
by the bounded convergence theorem, the RHS of the display 2) converges to zero as n→ ∞,

which shows that M
(k)
t = 0, a.s. \(∧2

∧)/

Exercise 7.3.1 Prove the following. i) Suppose that M is a continuous local martingale and
that supt≤t0 |Mt| ∈ L1(P ) for some t0 > 0. Then, (Mt)t∈[0,t0] is a martingale. Hint: Let (Tn)n≥1

be the stopping times in Definition 7.3.2. Then, E [M(t ∧ Tn) : A] = E [M(s ∧ Tn) : A] for all
s < t ≤ t0 and A ∈ Fs. ii) Suppose that H ∈ La.s. and that supt≤t0 |(H · B)t| ∈ L1(P ) for
some t0 > 0. Then, ((H ·B)t)t∈[0,t0] is a martingale.

Exercise 7.3.2 Prove the following for H ∈ L2
a.s.. i)

∫ t

0
H2

sds = 0 a.s. for all t > 0 ⇐⇒∫ t

0
HsdBs = 0 a.s. for all t > 0. Hint: Referring to (7.26) and (7.34), apply the optional

stopping theorem to the uniformly integrable martingale Qt∧Sn(H). ii) Suppose that S and T

are stopping times such that S ≤ T <∞ a.s. Then,
∫ T

S
H2

sds = 0 a.s. ⇐⇒
∫ T

S
HsdBs = 0 a.s.

Hint: Apply i) to Hs1(S,T ](s)

Exercise 7.3.3 Let Mα
t =

∫ t

0
Hα

s dB
α
s , (α = 1, 2), where (B1

t , B
2
t ), t ≥ 0 is a BM2, and

H1, H2 ∈ L2. Then, prove that the processM1
t M

2
t , t ≥ 0 is a martingale. Hint: It is enough to

assume that H1, H2 ∈ L2
∞ (cf. proof of Lemma 7.3.11). Then, reduce the case of H1, H2 ∈ L2

∞
to that of H1, H2 ∈ E , by considering sequences Hα,(n) ∈ E such that Hα,(n) n→∞−→ Hα in L2

∞.

7.4 Itô’s Formula I

In this subsection, we will explain Itô’s formula for the Brownian motion and its applications.
In what follows, Bt = (Bα

t )
d
α=1, t ≥ 0 denotes a BMd w.r.t. a filtration (Ft)t≥0, cf. Definition

7.1.1. We first state the Itô’s formula in its simplest form.� �
Theorem 7.4.1 (Itô’s formula I) Suppose that f ∈ C2(Rd). Then, P -a.s., for all t ≥ 0,

f(Bt)− f(B0) =
d∑

α=1

∫ t

0

∂f

∂xα
(Bs)dB

α
s + 1

2

∫ t

0

∆f(Bs)ds, (7.35)

where ∆f =
∑d

α=1
∂2f
∂x2

α� �
Example 7.4.2 (The Dirichlet problem) Let D ⊂ Rd be a domain, f ∈ C(∂D), and
g ∈ C(D) be given. A classical problem in the theory of partial differential equations is to
show the existence and uniqueness of u ∈ C(D) ∩ C2(D) such that

a) 1
2
∆u = −g in D,

b) u|∂D = f.
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A special case where g ≡ 0 is especially celebrated as Dirichlet problem. Here, we suppose for
simplicity that D is bounded. We will prove the uniqueness of the solution to a) and b) by
running a Brownian motion. We adopt the notation introduced at the beginning of section
6.7. We will represent the solution as follows. Let B be a BMd

x, x ∈ D and

T = TDc = inf{t > 0 ; Bt ∈ Dc}.

By Proposition 6.9.3, T is a stopping time. Moreover, by Example 7.1.4, there exists λ > 0
such that

sup
x∈D

Ex exp(λT ) <∞.

We will then prove that a solution u to a) and b) is represented as

1) u(x) = Exf(BT ) + Ex

∫ T

0

g(Bs)ds,

hence is unique.
Proof: Suppose that x ∈ D and u ∈ C(D) ∩ C2(D) satisfies a) and b). Let

Dn = {y ∈ D ; dist(y,Gc) > 1/n},
Tn = inf{t > 0 ; Bt ∈ Dc

n}.

Then, there exists un ∈ C2
c (Rd) such that un = u on Dn+1. Take n large enough so that x ∈ Dn

and fix it. Then, for each α = 1, ..., d, the process (∂αun(Bt))t≥0 is bounded, progressively
measurable. Thus, by Theorem 7.3.3, the following process is a martingale:

M
(n)
t =

d∑
α=1

∫ t

0

∂αun(Bs)dB
α
s , t ≥ 0.

Thus, (M
(n)
t∧Tn

)t≥0 is also a martingale by Lemma 5.3.5. In particular,

2) EM
(n)
t∧Tn

= 0, ∀t ≥ 0.

On the other hand, we have by Itô’s formula applied to un that,

u(Bt∧Tn)− u(x)−M
(n)
t∧Tn

= un(Bt∧Tn)− un(x)−M
(n)
t∧Tn

=
1

2

∫ t∧Tn

0

∆un(Bs)ds =
1

2

∫ t∧Tn

0

∆u(Bs)ds

a)
= −

∫ t∧Tn

0

g(Bs)ds.

We then take expectation and use 2) to see that

Exu(Bt∧Tn)− u(x) = −Ex

∫ t∧Tn

0

g(Bs)ds.

Since Tn
n→∞−→ T by Exercise 4.2.4, we have by the bounded convergence theorem in the limit

n→ ∞ that

Exu(Bt∧T )− u(x) = −Ex

∫ t∧T

0

g(Bs)ds.
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Finally by the assumption, we can use the bounded convergence theorem in the limit t → ∞
to conclude 1) from the above displayed identity. \(∧2

∧)/

It is also possible to show the existence of the solution u by Brownian moiton. In fact, it
turns out that the function u defined by 1) gives a solution to a) and b). To do so, however,
one has to assume the following regularity condition on ∂D to show the continuity of u at the
boundary:

Px(T = 0) = 1 for all x ∈ ∂D.

See [Dur84, Sections 8.5,8.6], [KS91, Section 4.2] for the proofs and details.

Remark Of course, the existence and uniqueness of u discussed in Example 7.4.2 can be shown
without using Brownian motion.

� Uniqueness is a consequence of the maximal principle for harmonic functions [Fol76,page
93].

� Existence can also be established via the existence of the Green function for the domain
D assuming that D has a smooth boundary [Fol76,pages 112, 343].

Exercise 7.4.1 Let B be a BMd
0 and h ∈ C1([0,∞) → Rd). Then, prove the following. (i)(

Integration by parts formula)∫ t

0

h(s) · dBs = h(t) ·Bt −
∫ t

0

h′(s) ·Bsds.

(ii) Use i) and Theorem 7.6.1 to show that

Dt(h)
def
= exp

(∫ t

0

h(s) · dBs −
1

2

∫ t

0

|h(s)|2ds
)

=

∫ t

0

Ds(h)h(s) · dBs.

Then, use Exercise 7.3.1 that Dt(h) is a martingale. (iii) Suppose that h(t) > 0, ∀t ≥ 0. Then,
the process Yt discussed in Exercise 6.1.9 (Yt is the Ornstein-Uhlenbeck process if h(t) = exp(λt)
with λ > 0) can alternatively be written in terms of the stochastic integral as follows.

Xt = h(t)−1

(
h(0)x+

∫ t

0

h(s)dBs

)
,

which, together with (7.28), implies thatEYt = h(t)−1h(0)x and that E[Y 2
t ] = h(t)−2

∫ t

0
h(s)2ds.

Exercise 7.4.2 Let φ ∈ C2(Rd → R) and suppose that there exists C ∈ [0,∞) such that
φ(x) ≤ C(1 + |x|), ∆φ(x) ≥ −C(1 + |x|).

for all x ∈ Rd. For a BMd
0 denoted by B, we set At =

1

2

∫ t

0

(
|∇φ(Bs)|2 +∆φ(Bs)

)
ds.

Use Theorem 7.4.1 and Theorem 7.6.1 to show that

Dt(φ)
def
= exp

(∫ t

0

∇φ(Bs) · dBs −
1

2

∫ t

0

|∇φ(Bs)|2ds
)

= exp (φ(Bt)− φ(B0)− At) =

∫ t

0

Ds(φ)∇φ(Bs) · dBs.

.

Then, use Exercise 7.3.1 that Dt(φ) is a martingale.

Exercise 7.4.3 Let Zt = Xt + iYt, where (Xt, Yt) is a BM2. For U, V ∈ L2
a.s.. We define∫ t

0

(Us + iVs)dZs =

∫ t

0

UsdXs −
∫ t

0

VsdYs + i

∫ t

0

UsdYs + i

∫ t

0

VsdXs.
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Then, prove the following identity for a holomorphic function f : C → C.

f(Zt)− f(Z0) =

∫ t

0

f ′(Zs)dZs.

Exercise 7.4.4 (A uniformly integral local martingale which is not a martingale)
Let B be BMd

c (d ≥ 3, c 6= 0) and φ(x) = |x|−(d−2), x ∈ Rd. Prove the following. i) φ(Bt) is
a local martingale. Hint: Let Tn = inf{t ≥ 0 ; |Bt| ≤ 1/n}. Then, φ(B(t ∧ Tn)) − φ(c) =

−(d − 2)
∑d

α=1

∫ t∧Tn

0
|Bs|−dBα

s dB
α
s . ii) φ(Bt) is not a martingale. Hint: By Exercise 1.2.10,

E[φ(Bt)] is strictly decreasing in t. iii) For 1 < p < d/(d−2) and ε > 0, supt≥εE[φ(Bt)
p] <∞.

In particular, φ(Bt) (t ≥ ε) is uniformly integrable.

7.5 Semimartingales Generated by a Brownian Motion

Throughout this subsection, we let B denote a BMd w.r.t. a filtration (Ft)t≥0. Recall the
definition of the class of processes L2

a.s. from Definition 7.3.1. We now define

(L2
a.s.)

d = {(H1
t , . . . , H

d
t )t≥0 ; (H

α
t )t≥0 ∈ L2

a.s. for all α = 1, . . . , d}.

For H ∈ (L2
a.s.)

d, we write ∫ t

0

Hs · dBs =
d∑

α=1

∫ t

0

Hα
s dB

α
s .

Definition 7.5.1 (Local martingales generated by a Brownian motion)
▶ A process M is called a local martingale generated by B, if there exists a process
σ = (σt)t≥0 ∈ (L2

a.s.)
d such that

Mt =

∫ t

0

σs · dBs, t ≥ 0. (7.36)

▶ Let M be a local martingale generated by B expressed in the form (7.36), and let H be a
continuous, adapted process. We use the following notation.∫ t

0

HsdMt =

∫ t

0

Hsσs · dBt =
d∑

α=1

∫ t

0

Hsσ
α
s dB

α
s . (7.37)

▶ Suppose that Mµ
t =

∫ t

0
σµ
s · dBs, µ = 1, 2 are local martingales generated by B. Then, we

define the process 〈M1,M2 〉 by

〈M1,M2 〉t =
∫ t

0

σ1
s · σ2

sds, t ≥ 0. (7.38)

The above process is called the quadratic variation ofMµ (µ = 1, 2). WhenM1 =M2 =M ,
we often write 〈M 〉, instead of 〈M,M 〉.� �
Lemma 7.5.2 Suppose that M1,M2 are local martingales generated by B. Then, the
quadratic variation 〈M1,M2 〉 is characterized as the unique process Q = (Q)t≥0 with the
following properties.
Q1) Q is locally of bounded variation.
Q2) Q0 = 0 and M1

t M
2
t −Qt, t ≥ 0 is a local martingale.� �
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Proof: Suppose that Q = 〈M1,M2 〉. We then verify properties Q1) and Q2). Q1) is obvious.
To see Q2), we observe that

M1
t M

2
t −Qt =

d∑
α,β=1

((∫ t

0

σ1,α
s dBα

s

)(∫ t

0

σ2,β
s dBβ

s

)
− δα,β

∫ t

0

σ1,α
s σ2,β

s ds

)
.

By applying Theorem 7.3.3 b) and Exercise 7.3.3 respectively to the diagonal, and the off
digonal terms of the summation on the RHS of the above display, we obtain the property Q2).

Suppose that a process Q satisfies the properties Q1) and Q2). Since
〈M1,M2 〉t −Qt = (M1

t M
2
t −Qt)− (M1

t M
2
t − 〈M1,M2 〉t),

it follows that the process 〈M1,M2 〉t − Qt is a local martingale and is at the same time of
bounded variation. Therefore, by Lemma 7.3.12, 〈Mµ,M ν 〉t = Qt. \(∧2

∧)/

Definition 7.5.3 (Semimartingales generated by a Brownian motion)
▶ A process X is called a semimartingale generated by B, if

Xt = X0 +Mt + At, t ≥ 0, (7.39)

where M is a local martingale generated by B (Definition 7.5.1), and A is an adapted process
with A0 = 0 which is continuous and locally of bounded variation. The processes M and A
are called respectively the local martingale part and bounded variantion part of X, cf.
the remark after the definition.
▶ Let X be a semimartingale generated by B, decomposed in the form (7.39), and let H be a
continuous, adapted process. Then, referring to (7.37), we use the following notation.∫ t

0

HsdXt =

∫ t

0

HsdMs +

∫ t

0

HsdAt. (7.40)

▶ Let Xµ (µ = 1, 2) be semimartingales generated by B and Mµ (µ = 1, 2) be their respective
martingale parts. Then, referring to (7.38), we define their quadratic variation 〈 X1, X2 〉
by 〈X1, X2 〉 = 〈M1,M2 〉.

Remark: Given a semimartingale generated by B, its local martingale part and bounded
variantion part are uniquely determined (Lemma 7.3.12).

7.6 Itô’s Formula II

Although Theorem 7.4.1 is already very useful, the scope of application can considerably be
broadened by generalizing it in the following way.� �
Theorem 7.6.1 (Itô’s formula II) Let Xµ (µ = 1, . . . ,m) be semimartingales generated
by B (Definition 7.5.3) and f ∈ C2(Rm). Then, P -a.s., for all t ≥ 0,

f(Xt)− f(X0)

=
m∑

µ=1

∫ t

0

∂f

∂xµ
(Xs)dX

µ
s ++1

2

m∑
µ,ν=1

∫ t

0

∂2f

∂xµ∂xν
(Xs)d〈Xµ, Xν 〉s. (7.41)

� �
We will prove Theorem 7.6.1 in section 7.7. For the rest of this section, we present appli-

cations of Theorem 7.4.1 and Theorem 7.6.1.
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As an application of Theorem 7.6.1, the martingales in Proposition 7.1.3 are expressed in
terms of the stochastic integral as follows.

Example 7.6.2 Let gλ : R2 → R (λ ∈ R) and Hn : R2 → R (n ∈ N) be from Proposition
7.1.3. Then,

Hn(B
α
t − λt, t)gλ(B

α
t , t)

= Hn(B
α
0 , 0)gλ(B

α
0 , 0) +

∫ t

0

(λHn + nHn−1) (B
α
s − λs, s)gλ(B

α
s , s)dB

α
s . (7.42)

In particular,

gλ(B
α
t , t) = gλ(B

α
0 , 0) + λ

∫ t

0

gλ(B
α
s , s)dB

α
s ,

Hn(B
α
t , t) = Hn(B

α
0 , 0) + n

∫ t

0

Hn−1(B
α
s , s)dB

α
s .

Proof: We have by Exercise 7.1.1 that

1)
∂Hn

∂x
(x, t) = nHn−1(x, t).

On the other hand, it is easy to see that

2)
∂gλ
∂t

(x, t) + 1
2

∂2gλ
∂x2

(x, t) = 0.

Let f(x, t) = Hn(x− λt, t)gλ(x, t) =
(

∂
∂λ

)n
gλ(x, t). Then,

3)


∂f

∂x
(x, t) =

(
∂Hn

∂x
+ λHn

)
(x− λt, t)gλ(x, t)

1)
= (λHn + nHn−1) (x− λt, t)gλ(x, t),

4)

(
∂f

∂t
+ 1

2

∂2f

∂x2

)
(x, t) =

(
∂

∂λ

)n(
∂gλ
∂t

+ 1
2

∂2gλ
∂x2

)
(x, t)

2)
= 0.

Hence (7.42) follows from (7.41) as follows:

f(Bα
t , t)− f(Bα

0 , 0) =

∫ t

0

∂f

∂x
(Bα

s , s)dB
α
s +

∫ t

0

(
∂f

∂t
+ 1

2

∂2f

∂x2

)
(Bα

s , s)ds

3),4)
=

∫ t

0

(λHn + nHn−1) (B
α
s − λs, s)gλ(B

α
s , s)dB

α
s .

\(∧2
∧)/� �

Lemma 7.6.3 Let φ ∈ C([0,∞) → R) with ψ(t) = sup
s≤t

φ(s). Then,

∫
G

dψ = 0, where G = {t ∈ (0,∞) ; φ(t) < ψ(t)}.

� �
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Proof: Let S ⊂ [0,∞) be the support of the measure µ(A)
def
=
∫
A
dψ, A ∈ B([0,∞)) ([0,∞)\S

is the union of all open subsets of [0,∞) on which µ vanishes.) Then, it is enough to prove
that G∩S = ∅. To do so, we take an arbitrary t ∈ G. Since φ(t) < ψ(t), there exists t∗ ∈ (0, t)
such that ψ(t) = φ(t∗). Then, by the continuity of φ, there exists ε > 0 such that t∗ < t − ε
and that φ(s) < ψ(t) for all s ∈ [t − ε, t + ε]. This implies that ψ(t ± ε) = ψ(t), and hence
that

∫
(t−ε,t+ε]

dψ = 0. Therefore, t 6∈ S. \(∧2
∧)/

Example 7.6.4 (Position of the first decrease by length ℓ) Let B be BM1
0, St = sup

u≤t
Bu,

and
T = inf{t ≥ 0 ; Bt = St − ℓ}, ℓ > 0.

Then, the r.v. ST (= BT + ℓ) is exponentially distributed with parameter 1/ℓ.

Proof: We start with a general consideration. Let f ∈ C2(R) and F (x) =
∫ x

0
f . Then,

1) F (St)− (St −Bt)f(St) =

∫ t

0

f(Su)dBu.

To see this, note first that

2) F (St) =

∫ t

0

f(Su)dSu,

which follows from Theorem 7.6.1 without Brownian motion. On the other hand, let g(x, y) =
(y − x)f(y). Then,

gx(x, y) = −f(y), gx,x(x, y) = 0, gy(x, y) = f(y) + (y − x)f ′(y).

Thus, by Theorem 7.6.1,

3) (St −Bt)f(St) = −
∫ t

0

f(Su)dBu +

∫ t

0

f(Su)dSu +

∫ t

0

(Su −Bu)f
′(Su)dSu.

By Lemma 7.6.3, the third term on the right-hand side of 3) vanishes. Therefore, 1) follows
from 2) and 3). By applying 1) for f(x) = −α exp(−αx) with α > 0, we see that the following
process is a bounded martingale:

Xt
def
= (1 + α(St −Bt)) exp(−αSt).

Hence by the optional stopping theorem,

EXT = 1, i.e., E exp(−αST ) =
1

1 + αℓ
.

Then, the result follows from the uniqueness of the Laplace transform (Example 1.8.3). \(∧2
∧)/

Remark: See Exercise 4.5.3 for an analogy in the case of the random walk.

Example 7.6.5 (The heat equation in a domain) LetD ⊂ Rd be a domain. Following the
convention in physics, we denote a point in D×[0,∞) by (x, t) (x ∈ D, t ≥ 0). Accordingly, for
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u : D×(0,∞) → R, we write ∂tu = ∂d+1u. Suppose that u ∈ Cb(D× [0,∞))∩C2,1(D×(0,∞))
is such that

a) ∂tu = 1
2
∆u on D × (0,∞),

b) u = 0 on ∂D × [0,∞).

We adopt the notation introduced at the beginning of section 6.7. We will represent the
solution of a) and b) as follows. Let B be a BMd

x, x ∈ D and

T = TDc = inf{t > 0 ; Bt ∈ Dc}.

By Proposition 6.9.3, T is a stopping time. We will then prove that a solution u to a) and b)
is represented as

1) u(x, t) = Ex[u(Bt, 0) : t < T ].

Proof: Let

Dn = {y ∈ D ; |y − x| < n, dist(y,Dc) > 1/n},
Tn = n ∧ inf{t > 0 ; Bt ∈ Dc

n}.

Let t > 0 be fixed. Then, for ε ∈ (0, t), there exists un ∈ C2,1
c (Rd+1) such that un = u on

Dn+1× [ε, n+1]. Take n large enough so that x ∈ Dn and fix it. Then, for each α = 1, ..., d, the
process (∂αun(Bs, t − s))s≥0 is bounded, progressively measurable. Thus, by Theorem 7.3.3,
the following process is a martingale:

M (t,n)
s =

d∑
α=1

∫ s

0

∂αun(Br, t− r)dBα
r , s ≥ 0.

Thus, (M
(t,n)
s∧Tn

)s≥0 is also a martingale by Lemma 5.3.5. In particular,

2) EM
(t,n)
s∧Tn

= 0, ∀s ≥ 0.

On the other hand, we have by Itô’s formula applied to the function

Rd+1 3 (x, s) 7→ un(x, t− s)

for 0 ≤ s ≤ (t− ε) ∧ Tn that,

u(B(t−ε)∧Tn , t− (t− ε) ∧ Tn)− u(x, t)−M
(t,n)
(t−ε)∧Tn

= un(B(t−ε)∧Tn , t− (t− ε) ∧ Tn)− un(x, t)−M
(t,n)
(t−ε)∧Tn

=

∫ (t−ε)∧Tn

0

(
1
2
∆un(Bs, t− s)− ∂tun(Bs, t− s)

)
ds

=

∫ (t−ε)∧Tn

0

(
1
2
∆u(Bs, t− s)− ∂tu(Bs, t− s)

)
ds

a)
= 0.

We then take expectation and use 2) to see that

u(x, t) = Exu(B(t−ε)∧Tn , t− (t− ε) ∧ Tn).
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Since Tn
n→∞−→ T by Exercise 4.2.4, we have by the bounded convergence theorem in the limit

n→ ∞ that

u(x, t) = Exu(B(t−ε)∧T , t− (t− ε) ∧ T ) b)
= Ex[u(Bt−ε, ε) : t− ε < T ].

Finally, by taking the limit ε→ 0, we conclude 1) from the above displayed identity. \(∧2
∧)/

Example 7.6.6 (The heat equation in a finite interval) Let ht(x) = 1√
2πt

exp
(
−x2

2

)
(x ∈ R, t > 0), ℓ = b− a, and

ha,bt (x, y) =
∑
n∈Z

(ht(x− y − 2ℓn)− ht(x+ y − 2a− 2ℓn)), x, y ∈ R.

Then, for f ∈ C([a, b]) with f(a) = f(b) = 0,

1) Ex[f(Bt) : t < Ta ∧ Tb] =
∫ b

a

ha,bt (x, y)f(y)dy, x ∈ [a, b], t > 0.

Proof: We denote the RHS of 1) by u(x, t). We will verify that

a) ∂tu = 1
2
∂2xu on (a, b)× (0,∞),

b) u(a, t) = u(b, t) = 0 for t > 0,

c) u(x, t)
t→0−→ f(x) for x ∈ [a, b].

Then, by the result of Example 7.6.5, the function u(x, t) is identified with the expectation on
the LHS of 1). It is easy to see that ha,bt (x, y) = 0 if x = a, b, which implies b). Now, we define

a continuous extention f̃ : R → R of f by

f̃(x+ 2ℓn) =

{
f(x) if x ∈ [a, b] and n ∈ Z,
−f(2a− x) if x ∈ [2a− b, a] and n ∈ Z.

Since f ∈ C([a, b]) and f(a) = f(b) = 0, f̃ is indeed a continuous extention of f . Note also

that f̃ has the period 2ℓ. We will show that

2) u(x, t) =

∫ ∞

−∞
ht(x− y)f̃(y)dy,

which implies a) and c). 2) can be seen as follows.∫ b

a

ha,bt (x, y)f(y)dy =
∑
n∈Z

∫ b

a

(ht(x− y − 2ℓn)− ht(x+ y − 2a− 2ℓn)) f(y)dy

=
∑
n∈Z

(∫ b

a

ht(x− y − 2ℓn)f(y)dy +

∫ a

2a−b

ht(x− y − 2ℓn)f(2a− y)dy

)
=

∑
n∈Z

(∫ b

a

ht(x− y − 2ℓn)f̃(y)dy +

∫ a

2a−b

ht(x− y − 2ℓn)f̃(y)dy

)
=

∑
n∈Z

(∫
[a,b]+2ℓn

ht(x− y)f̃(y)dy +

∫
[2a−b,a]+2ℓn

ht(x− y)f̃(y)dy

)
=

∫ ∞

−∞
ht(x− y)f̃(y)dy.

\(∧2
∧)/
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Exercise 7.6.1 Suppose that f ∈ C2([0,∞) → (0,∞)) is nondecreaing, convex, f(0) = 1,
and f ′(0) = 0. We set

g1 = f ′/f , g2 = f ′′/f and h(t, x) = f(t)−d/2 exp
(
−1

2
g1(t)|x|2

)
, (t, x) ∈ [0,∞)× Rd.

Prove the following. i)
∂

∂t
h(t, x) = 1

2
∆xh(t, x) +

1
2
|x|2g2(t)h(t, x). ii) With t > 0 and θ ∈ R

fixed, we define the process (Hs)0≤s≤t by Hs = h(t− s,Bs), where B is a BMd
0. Then,

Hs = f(t)−d/2 −
∫ s

0

Hug1(t− u)Bu · dBu +
1

2

∫ s

0

Hug2(t− u)|Bu|2du, 0 ≤ s ≤ t.

iii) Let Ys = exp
(
−1

2

∫ s

0
g2(t− u)|Bu|2du

)
. Then, the process (HsYs)0≤s≤t is a martingale,

which implies that EYt = f(t)−d/2. In particular, taking f(t) = cosh(θt) (θ ∈ R),

E exp

(
−θ

2

2

∫ t

0

|Bs|2ds
)

= cosh(θt)−d/2 (Cameron-Martin formula I).

vi) Let Zs = exp
(
i
∫ s

0
g2(t− u)σu · dBu

)
, where σ is a continuous process with values in Rd

such that |σs| = |Bs| and σs · Bs = 0 a.s. for all s ∈ [0, t]. Then, the process (HsZs)0≤s≤t is a

martingale, which implies that EZt = f(t)−d/2. In particular, if d = 2 and At =
∫ t

0
B1

sdB
2
s −∫ t

0
B2

sdB
1
s , then, taking f(t) = cosh(θt) (θ ∈ R),

E exp (iθAt) = cosh(θt)−1 (Lévy’s area formula I).

Remark For d = 2, it follows from Cameron-Martin formula I and Exercise 7.2.2 that the r.v.∫ a

0
|Bs|2ds (a > 0) has the same law as the exit time from the interval (−a, a) for a BM1

0. On
the other hand, By it follows from Lévy’s area formula I and Exercise 2.2.7 that At ≈ dx

t cosh(πx
2t )

.

7.7 (⋆) Proof of Theorem 7.6.1

We start by stating a proposition, which the proof of Theorem 7.6.1 is based on. Let t > 0 be
fixed. We divide the interval (0, t] into In,j = (tn,j−1, tn,j] (j = 1, . . . , n) in such a way that

0 = tn,0 < tn,1 < ... < tn,n = t, mn
def
= max

1≤j≤n
|In,j|

n→∞−→ 0, (7.43)

where |In,j| = tn,j − tn,j−1 Let H = (Ht)t≥0 be a continuous process adapted to (Ft)t≥0 such
that,

sup
(s,ω)∈[0,t]×Ω

|Ht(ω)| ≤ C <∞. (7.44)

To simplify the notation, we abbreviate

Xµ(tn,j), H(tn,j),. . . etc. as X
µ
n,j, Hn,j,. . . etc. (7.45)

We also abbreviate

Xµ
n,j −Xµ

n,j−1, A
µ
n,j − Aµ

n,j−1,. . . etc. as ∆X
µ
n,j, ∆A

µ
n,j,. . . etc. (7.46)

Then,
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� �
Proposition 7.7.1 Referring to (7.45) and (7.46), The following convergences take place
in probability.

n∑
j=1

Hn,j−1∆X
µ
n,j

n→∞−→
∫ t

0

HsdX
µ
s , (7.47)

n∑
j=1

Hn,j−1∆X
µ
n,j∆X

ν
n,j

n→∞−→
∫ t

0

Hsd〈Xµ, Xν 〉s, (7.48)

� �
Proof of (7.47): Since

n∑
j=1

Hn,j−1∆X
µ
n,j =

d∑
α=1

n∑
j=1

Hn,j−1

∫
In,j

σµ,α
s dBα

s +
n∑

j=1

Hn,j−1∆A
µ
n,j,

It is enough to prove that for each fixed µ = 1, . . . ,m and α = 1, . . . , d that

1)
n∑

j=1

Hn,j−1

∫
In,j

σµ,α
s dBα

s
n→∞−→

∫ t

0

Hsσ
µ,α
s dBα

s in probability.

and

2)
n∑

j=1

Hn,j−1∆A
µ
n,j

n→∞−→
∫ t

0

HsdA
µ
s a.s.

We write σs = σµ,α
s , Bs = Bα

s and As = Aµ
s in what follows. we define H(n) ∈ L2 by

H(n)
s =

n∑
j=1

Hn,j−11In,j
(s), s ∈ [0, t].

Then,

the LHS of 1) =

∫ t

0

H(n)
s σsdBs, the LHS of 2) =

∫ t

0

H(n)
s dAs.

Therefore, the convergence 2) is a simple consequence of the uniform continuity of Hs on the
interval [0, t]. To see the convergence 1), we introduce, for m ≥ 1, the stopping time

Tm = inf

{
s ≥ 0

∫ s

0

σ2
udu ≥ m

}
.

Then, for m fixed, the process σ
(m)
s = σs1{s<Tm} (s > 0) belongs to L2, hence, by Itô’s isometry

(7.28) and the dominated convergence theorem,

3) E

[∣∣∣∣∫ t

0

(H(n)
s −Hs)σ

(m)
s dBs

∣∣∣∣2
]
= E

[∫ t

0

(H(n)
s −Hs)

2(σ(m)
s )2ds

]
n→∞−→ 0.

Note on the other hand that, on the event {t ≤ Tm}, σ(m)
s = σs for s ∈ [0, t]. Thus, for

arbitrary ε > 0,

P

(∣∣∣∣∫ t

0

(H(n)
s −Hs)σsdBs

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∫ t

0

(H(n)
s −Hs)σ

(m)
s dBs

∣∣∣∣ > ε

)
+ P (Tm > t).

By 3), the first probability on the RHS of the above display converges to zero as n→ ∞, while
the second probability converges to zero as m→ ∞. This proves 1). \(∧2

∧)/

To prove (7.48), we prepare the following lemma.
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� �
Lemma 7.7.2 Suppose that (Sj)

n
j=0 (S0 = 0) is a martingale w.r.t. a filtration (Gj)

n
j=0

and Xj = Sj − Sj−1.

a) If {Sj}nj=0 ⊂ L2(P ), then E[(Sn − Sj−1)
2|Gj−1] =

n∑
k=j

E[X2
k |Gj−1] for j = 1, . . . , n.

b) If {Sj}nj=0 ⊂ L∞(P ), then E

( n∑
j=1

X2
j

)2
 ≤ 12 max

0≤j≤n
‖Sj‖4∞.

� �
Proof: a) We observe that if 1 ≤ j ≤ k < ℓ ≤ n, then,

E[XkXℓ|Gj−1] = E[XkE[Xℓ|Gk]|Gj−1] = 0.

Therefore,

E[(Sn − Sj−1)
2|Gj−1] =

n∑
k,ℓ=j

E[XkXℓ|Gj−1] =
n∑

k=j

E[X2
k |Gj−1].

b)

1) E

( n∑
j=1

X2
j

)2
 =

n∑
j,k=1

E
[
X2

jX
2
k

]
=

n∑
j=1

E
[
X4

j

]
+ 2

∑
1≤j<k≤n

E
[
X2

jX
2
k

]
Let Cn = max0≤j≤n ‖Sj‖∞. Then, the first summation on the RHS of 1) is bounded from
above as follows.

n∑
j=1

E
[
X4

j

]
=

n∑
j=1

E
[
(Sj − Sj−1)

2X2
j

]
≤ 4C2

n

n∑
j=1

E
[
X2

j

] a)
= 4C2

nE
[
S2
n

]
≤ C4

n.

As for the second summation on the RHS of 1),∑
1≤j<k≤n

E
[
X2

jX
2
k

]
=

n−1∑
j=1

E

[
X2

j

n∑
k=j+1

X2
k

]
=

n−1∑
j=1

E

[
X2

jE

[
n∑

k=j+1

X2
k

∣∣∣∣∣Gj

]]
a)
=

n−1∑
j=1

E
[
X2

jE[(Sn − Sj)
2|Gj]

]
≤ 4C2

n

n−1∑
j=1

E
[
X2

j

]
a)
= 4C2

nE
[
S2
n−1

]
≤ 4C4

n.
\(∧2

∧)/

Proof of (7.48): For notational simplicity, we assume d = m = 1 and write accordingly

Xt =Mt + At with Mt =

∫ t

0

σsdBs.

We will then prove that

1) In
def
=

n∑
j=1

Hn,j−1(∆Xn,j)
2 n→∞−→

∫ t

0

Hsσ
2
sds in probability.

After 1) is established, it is routine to obtain (7.48) in the case where d ≥ 2 and/or m ≥ 2.
Case1: We first consider the case of At ≡ 0. It is clear from the dininition of 〈M 〉 that

Jn
def
=

n∑
j=1

Hn,j−1∆〈M 〉n,j
n→∞−→

∫ t

0

Hsσ
2
sds a.s..

Therefore, it is enough to prove that
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2) In − Jn
n→∞−→ 0 in probability.

To do so, we introduce the stopping times

Tℓ = inf{t ≥ 0 ; |Mt|+
∫ t

0

σ2
sds ≥ ℓ}, ℓ ≥ 1.

Then,

M
(ℓ)
t

def
= M(t ∧ Tℓ) =

∫ t

0

1{s≤Tℓ}σsdBs,

〈M (ℓ) 〉t =

∫ t∧Tℓ

0

σ2
sds ≤ ℓ.

Since Tℓ
ℓ→∞−→ ∞ a.s., it is enough to prove 2), with M replaced by M (ℓ) with large enough ℓ.

For this reason, we may and will assume that both sups≤t |Ms| and 〈M 〉t are bounded by a
constant ℓ. Then, by applying Lemma 7.7.2 b) to the martingale (Mn,k)

n
k=0, we have

3) E

( n∑
j=1

(∆Mn,j)
2

)2
 ≤ C,

where C ∈ (0,∞) is a constant independent of n. On the other hand, let
Xn,j = (∆Mn,j)

2 −∆〈M 〉n,j (j = 1, . . . , n).
We then define

Sn,0 = 0, Sn,k =
k∑

j=1

Hn,j−1Xn,j, k = 1, . . . , n.

It is easy to verify that (Sn,k)
n
k=0 is a martingale w.r.t. the filtration (Fn,k)

n
k=0, and hence it

follows from Lemma 7.7.2 a) that

4)

E[|In − Jn|2] = E[S2
n,n] =

n∑
j=1

E
[
(Hn,j−1Xn,j)

2
]
≤ C

n∑
j=1

E
[
X2

n,j

]
,

≤ 2CE

[
n∑

j=1

(∆Mn,j)
4

]
+ 2CE

[
n∑

j=1

(∆〈M 〉n,j)2
]
.

Therefore, it is enough to show that two expectations on the RHS of 4) converge to zero as
n→ ∞. The first one is bounded from above as follows.

E

[
n∑

j=1

(∆Mn,j)
4

]
≤ E[ max

1≤j≤n
(∆Mn,j)

2

n∑
j=1

(∆Mn,j)
2]

≤ E

[
max
1≤j≤n

(∆Mn,j)
4

]1/2
E

( n∑
j=1

(∆Mn,j)
2

)2
1/2

3)

≤ C1/2E

[
max
1≤j≤n

(∆Mn,j)
4

]1/2
.

By the continuity of M and the bounded convergence theorem, the expectation on the RHS
of the above display vanishes as n→ ∞. As for the second expectation on the RHS of 4),

E

[
n∑

j=1

(∆〈M 〉n,j)2
]
≤ E

[
max
1≤j≤n

∆〈M 〉n,j〈M 〉t
]
.

By the continuity of 〈M 〉 and the bounded convergence theorem, the expectation on the RHS
of the above display vanishes as n→ ∞. This finishes the proof of Case1.
Case2: We treat the case of At 6≡ 0. We decompose
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5)

n∑
j=1

Hn,j−1(∆Xn,j)
2 =

n∑
j=1

Hn,j−1(∆Mn,j)
2

+2
n∑

j=1

Hn,j−1(∆Mn,j)(∆An,j) +
n∑

j=1

Hn,j−1(∆An,j)
2.

By Case1, the first term on the RHS of the above display converges in probability to
∫ t

0
Hsd〈X〉s.

Therefore, it is enough to show that the other terms converge in probability to zero. Since the
process H is bounded on [0, t] and the process A is of bounded variation on [0, t], the third
term on the RHS of 5) converges a.s. to zero. The second term on the RHS of 5) is bounded
by a constant multiple of

n∑
j=1

|(∆Mn,j)(∆An,j)| ≤

(
n∑

j=1

|∆Mn,j|2
)1/2( n∑

j=1

|∆An,j|2
)1/2

.

The first summation on the RHS of the above display converges in probability to 〈X 〉t, while
the second summation converges a.s. to zero. Getting things together, we obtain 1). \(∧2

∧)/

Proof of Theorem 7.6.1: Since all the terms in (7.41) is a.s. continuous in t, it is enough
to prove the formula a.s. for any fixed t. For x, x0 ∈ Rm, let

F (x, x0) = F1(x, x0) + F2(x, x0),

where

F1(x, x0) =
m∑

µ=1

∂f

∂xµ
(x0)(x

µ − xµ0), F2(x, x0) =
1
2

d∑
µ,ν=1

∂2f

∂xµ∂xν
(x0)(x

µ − xµ0)(x
ν − xν0).

For δ,M > 0, let

ρ2(δ,M) = 1
2

d∑
µ,ν=1

sup

{∣∣∣∣ ∂2f

∂xµ∂xν
(x)− ∂2f

∂xµ∂xν
(x0)

∣∣∣∣ ; |x− x0| ≤ δ, |x| ∨ |x0| ≤M

}
.

By Taylor’s theorem, there exists a point x1 on the line segment between x and x0 such that,

f(x)− f(x0) = F1(x, x0) +
1
2

ℓ∑
µ,ν=1

∂2f

∂xµ∂xν
(x1)(x

µ − xµ0)(x
ν − xν0)

= F (x, x0)

+1
2

ℓ∑
µ,ν=1

(
∂2f

∂xµ∂xν
(x1)−

∂2f

∂xµ∂xν
(x0)

)
(xµ − xµ0)(x

ν − xν0).

Therefore, if |x− x0| ≤ δ, and |x| ∨ |x0| ≤M , then,

1) |f(x)− f(x0)− F (x, x0)| ≤ ρ2(δ,M)|x− x0|2

For t > 0 fixed, let
0 = tn,0 < tn,1 < ... < tn,n = t

be such that max1≤j≤n(tn,j − tn,j−1)
n→∞−→ 0. We write

δn,X = max
1≤j≤n

|∆Xn,j|, MX = sup
0≤s≤t

|Xs|.

Then, it follows from 1) that
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2)


|f(Xt)− f(X0)−

n∑
j=1

F (Xn,j−1, Xn,j)|

≤
n∑

j=1

|f(Xn,j)− f(Xn,j−1)− F (Xn,j−1, Xn,j)| ≤ ρ2(δn,X ,MX)
n∑

j=1

|∆Xn,j|2.

Since s 7→ Xs is uniformly continuous on [0, t], we have δn,X
n→∞−→ 0, a.s. Then, since the

derivatives of f , which appear in the definition of ρ2(δ,M) are uniformly continuous inside the
closed ball with radius MX , we have

3) ρ2(δn,X ,MX)
n→∞−→ 0 a.s.

Let us assume for a moment that

4) all the first and second derivatives of f and are bounded.

Then, it follows from (7.47) that

5)



n∑
j=1

F1(Xn,j−1, Xn,j) =
d∑

µ=1

n∑
j=1

∂f

∂xµ
(Xn,j−1)(∆X

µ
n,j)

n→∞−→
d∑

µ=1

∫ t

0

∂f

∂xµ
(Xs)dX

µ
s in probability.

On the other hand, we see from (7.48) that

6)



n∑
j=1

F2(Xn,j−1, Xn,j) = 1
2

ℓ∑
µ,ν=1

n∑
j=1

∂2f

∂xµ∂xν
(Xn,j−1)(∆X

µ
n,j)(∆X

ν
n,j)

n→∞−→ 1
2

ℓ∑
µ,ν=1

∫ t

0

∂2f

∂xµ∂xν
(Xs)d〈Xµ

s , X
ν
s 〉s in probability,

and that

7)
n∑

j=1

|∆Xn,j|2 =
ℓ∑

µ=1

n∑
j=1

(∆Xµ
n,j)

2 n→∞−→
ℓ∑

µ=1

〈Xµ, Xµ 〉t in probability.

We can take a subsequence, along which the convergences 5),6) and 7) take place a.s. Thus,
by letting n→ ∞ in 2) along the subsequence, we have (7.41) a.s.

We now get rid of the assumption 4). Let fn ∈ C2
c (Rm) be such that fn(x) = f(x) if

|x| ≤ n+ 1. Then, for t > 0 fixed,

In
def
=

∫ t

0

∂fn
∂xµ

(Xs)dX
µ
s −

∫ t

0

∂f

∂xµ
(Xs)dX

µ
s

n→∞−→ 0 in probability.

In fact, since {sups≤t |Xs| ≤ n} ⊂ { ∂fn
∂xµ (Xs) =

∂f
∂xµ (Xs) for all s ≤ t},

P (In 6= 0) ≤ P (sup
s≤t

|Xs| ≥ n)
n→∞−→ 0.

Similarly,

Jn
def
=

∫ t

0

∂2fn
∂xµ∂xν

(Xs)d〈Xµ, Xν 〉s −
∫ t

0

∂2f

∂xµ∂xν
(Xs)d〈Xµ, Xν 〉s

n→∞−→ 0 in probability.

We can take a subsequence, along which In and Jn converge to zero a.s. Thus, by applying
(7.41) for fn, and then by letting n→ ∞, we have (7.41) a.s. \(∧2

∧)/
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7.8 Girsanov’s Theorem and its Applications

Let B be a BMd
0 w.r.t. a filtration (Ft)t≥0, (cf. Definition 7.1.1). Recall that the definition of

the class of processes L2 and L2
a.s. from Definition 7.3.1. We now define

(L2
a.s.)

d = {(H1
t , . . . , H

d
t )t≥0 ; (H

α
t )t≥0 ∈ L2

a.s. for all α = 1, . . . , d}.

For H ∈ (L2
a.s.)

d, we define (Dt(H))t≥0 by

Dt(H) = exp

(∫ t

0

Hs · dBs −
1

2

∫ t

0

|Hs|2ds
)
, (7.49)

where ∫ t

0

Hs · dBs =
d∑

α=1

∫ t

0

Hα
s dB

α
s .

� �
Theorem 7.8.1 (Girsanov’s theorem) Suppose that H ∈ (L2

a.s.)
d. Then,

a) The following two conditions are equivalent.
a1) D·(H) is a martingale.
a2) There exists a measure Q ∈ P(Ω,F∞) such that

Q(G) = E[Dt(H) : G] for all t > 0 and G ∈ Ft. (7.50)

b) Assuming a2) above, the following two conditions are equivalent.
b1) D·(H + θ) is a martingale for each constant vector θ ∈ Rd.
b2) Under the measure Q, the process B satisfies the following integral equation,

Bt = Wt +

∫ t

0

Hsds for all t ≥ 0,

where W is a BMd
0 and

∫ t

0
Hsds =

(∫ t

0
Hα

s ds
)d
α=1

.� �
Proof: a) a1) ⇒ a2): Let I ⊂ [0,∞) be a nonempty finite set, and let FI = {(BI)

−1(H) ; H ∈
B(RI)}, where the map BI : Ω → RI is defined by BI = (Bt)t∈I . Let also QI be the measure
on (Ω,FI) defined by QI(G) = E [Dt(H) : G] , G ∈ FI , where t ≥ max I. Since D·(H) is
a martingale, the measure QI is independent of the choice of t and it is indeed a probability
measure. Moreover, by the construction, the family {QI} of all such measures are consistent
in the following sense. If I and J are nonempty finite sets of [0,∞) and I ⊂ J , then for all
H ∈ B(RI),

QJ((BJ)
−1(H × RJ\I)) = QI((BI)

−1(H)).
Then, by the Kolmogorov’s extension theorem, there exists a uniquue measure Q ∈ P(Ω,F∞)
such that for all nonempty finite set I ⊂ [0,∞), Q(G) = QI(G), G ∈ FI . The measure Q
satisfies (7.50), since Ft ⊂ F0

t+1 for any t > 0, and F0
t+1 is generated by FI ’s with I ⊂ [0, t+1].

a2) ⇒ a1): This follows from Example 4.3.2.
b) Let

Wt
def
= Bt −

∫ t

0

Hsds, gθ(x, t) = exp(θ · x− t|θ|2/2) (θ, x ∈ Rd, t > 0).

Then,

250



Dt(H + θ) = exp

(∫ t

0

Hs · dBs + θ ·Bt −
1

2

∫ t

0

|Hs|2ds−
∫ t

0

θ ·Hsds−
t|θ|2

2

)
= exp

(∫ t

0

Hs · dBs −
1

2

∫ t

0

|Hs|2ds+ θ ·Wt −
t|θ|2

2

)
= Dt(H)gθ(Wt, t).

Thus b1) is equivalent to
1) E[Dt(H)gθ(Wt, t) : G] = E[Ds(H)gθ(Ws, s) : G] for all 0 ≤ s < t and G ∈ Fs.
By (7.50), 1) is equivalent to
2) EQ[gθ(Wt, t) : G] = EQ[gθ(Ws, s) : G] for all 0 ≤ s < t and G ∈ Fs.
By Proposition 7.1.2, 2) is equivalent to that Wt is a BMd

0 under the measure Q, and this is
equivalent to b2). \(∧2

∧)/

As a special case of Theorem 7.8.1, where the process H is nonrandom, we obtain the
following� �
Corollary 7.8.2 Let h ∈ C1([0,∞) → Rd). For a BMd

0 denoted by B, we set

Dt(h) = exp

(∫ t

0

h(s) · dBs −
1

2

∫ t

0

|h(s)|2ds
)

.

Then,
a) There exists a measure Q ∈ P(Ω,F∞) such that

Q(G) = E [Dt(h) : G] for all t > 0 and G ∈ Ft. (7.51)

b) Under the measure Q,

Bt = Wt +

∫ t

0

h(s)ds for all t ≥ 0, (7.52)

where W is a BMd
0 and

∫ t

0
h(s)ds =

(∫ t

0
hα(s)ds

)d
α=1

.� �
Proof: Let θ ∈ Rd be arbitrary constant vector. Then, by applying Exercise 7.4.1 to h+ θ,

we see that D·(h+θ) is a martingale. Then, this corollary follows from Theorem 7.8.1. \(∧2
∧)/
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� �
Corollary 7.8.3 Let φ ∈ C2(Rd → R) and suppose that there exists C ∈ [0,∞) such that

φ(x) ≤ C(1 + |x|), ∆φ(x) ≥ −C(1 + |x|).
for all x ∈ Rd. For a BMd

0 denoted by B, we set

Dt(φ) = exp

(∫ t

0

∇φ(Bs) · dBs −
1

2

∫ t

0

|∇φ(Bs)|2ds
)

.

Then,
a) There exist a measure Q ∈ P(Ω,F∞) such that

Q(G) = E [Dt(φ) : G] for all t > 0 and G ∈ Ft.
b) Under the measure Q, the process B satisfies the following integral equation.

Bt = Wt +

∫ t

0

∇φ(Bs)ds for all t ≥ 0,

where W is a BMd
0.

c) For t > 0, set At =
1

2

∫ t

0

(
|∇φ(Bs)|2 +∆φ(Bs)

)
ds. Then, for all measurable F :

(Rd)[0,t] → [0,∞),

E [exp (φ(Bt)− φ(0)− At)F (B)] = EQ [F (B)] , (7.53)

E [exp (−At)F (B)] = EQ [exp (φ(0)− φ(Bt))F (B)] . (7.54)� �
Proof: a),b): By applying Exercise 7.4.2 to the function φ(x) + θ · x, we see that the process
Ht = ∇φ(Bt), t ≥ 0 satisfies the condition b1) of Theorem 7.8.1. Thus the assertions a) and
b) of this corollary follows from Theorem 7.8.1.
c) It follows from (7.50) that

E [exp (φ(Bt)− φ(0)− At)F (B)] = E [Dt(φ)F (B)] = EQ [F (B)].
Replacing F (B) by exp (φ(0)− φ(Bt))F (B), we obtain (7.54). \(∧2

∧)/

Example 7.8.4 Let B be a BMd
0. Then, for any t > 0, tht ∈ R and measurable function

f : Rd → [0,∞),

E

[
exp

(
−θ

2

2

∫ t

0

|Bs|2ds
)
f(Bt)

]
= cosh(θt)−d/2E

[
f(τ(t)1/2X)

]
(Cameron-Martin formula II),

where X is a r.v. with d-dimensional standard normal distribution and τ(t) = tanh(θt)/θ.

Proof: Since the both-hand sides of the equality to be shown are even in θ, it is enough to
prove it when θ > 0. Let φ(x) = − θ

2
|x|2 ≤ 0 (x ∈ Rd). Then, ∇φ(x) = −θx, ∆φ(x) = −θd.

Thus, by applying (7.54),

E

[
exp

(
−θ

2

2

∫ t

0

|Bs|2ds+
dθt

2

)
f(Bt)

]
= EQ

[
exp

(
θ

2
|Bt|2

)
f(Bt)

]
,

and hence

1) E

[
exp

(
−θ

2

2

∫ t

0

|Bs|2ds
)
f(Bt)

]
= exp

(
−dθt

2

)
EQ

[
exp

(
θ

2
|Bt|2

)
f(Bt)

]
.

The process B under the measure Q satisfies the following integral equation.

Bt = Wt + θ

∫ t

0

Bsds,

where W is a BM1
0. This integral equation can be solved w.r.t.X, which gives

Bt = Wt − θ exp(−θt)
∫ t

0

exp(θs)Wsds.

Then, it follows from the above expression and Exercise 6.1.5 that Bt is a mean-zero Gaussian
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r.v. such that

covQ(Bα
t , B

β
t ) = σ(t)δα,β with σ(t) =

1− exp(−2θt)

2θ
.

Note that
1/(σ(t)−1 − θ) = tanh(θt)/θ = τ(t) and σ(t)/τ(t) = exp(−θt) cosh(θt).

Therefore,

EQ

[
exp

(
θ

2
|Bt|2

)
f(Bt)

]
= (2πσ(t))−d/2

∫
Rd

exp

(
−1

2

(
σ(t)−1 − θ

)
|x|2
)
f(x)dx

= (σ(t)/τ(t))−d/2(2πτ(t))−d/2

∫
Rd

exp

(
− |x|2

2τ(t)

)
f(x)dx

= exp

(
dθt

2

)
cosh(θt)−d/2E

[
f(τ(t)1/2X)

]
.

Plugging this into 1), we obtain the desired equality. \(∧2
∧)/

7.9 The DDS Representation Theorem

In what follows, we let B denotes a BMd
0 w.r.t. a filtration (Ft)t≥0, cf. Definition 7.1.1.� �

Proposition 7.9.1 Let Mt =
∫ t

0
σs · dB be a local martingale generated by B (Definition

7.5.1), where σ ∈ (L2
a.s.)

d. Then,

a)
Dt

def
= exp

(
Mt − 1

2
〈M 〉t

)
= 1 +

∫ t

0

Dsσs · dBs,

Et
def
= exp

(
iMt +

1
2
〈M 〉t

)
= 1 + i

∫ t

0

Esσs · dBs.

In particular, Dt and Et are local martingales.
b) Suppose that there exists t0 > 0 such that

E exp

(
sup

0≤s≤t0

|Ms|
)
<∞.

Then, (Dt)0≤t≤t0 is a martingale.
c) Suppose that there exists t0 > 0 such that

E exp

(
1

2
〈M 〉t0

)
<∞ (Novikov’s condition).

Then, (Et)0≤t≤t0 is a martingale.� �
Proof: a) To prove the first equality, we apply Itô’s formula II to a function f(x, y) = exp(x−
1
2
y) of (x, y) ∈ R2, and the process (Mt, 〈M 〉t). Then,

Dt = 1 +

∫ t

0

∂f

∂x
(Ms, 〈M 〉s)dMs +

∫ t

0

∂f

∂y
(Ms, 〈M 〉s)d〈M 〉s

+
1

2

∫ t

0

∂2f

∂x2
(Ms, 〈M 〉s)d〈M 〉s

= 1 +

∫ t

0

DsdMs −
1

2

∫ t

0

Dsd〈M 〉s +
1

2

∫ t

0

Dsd〈M 〉s

= 1 +

∫ t

0

Dsσs · dBs.

The proof of the second equality is similar.
b) Since Dt is a local martingale, it is enough to verify the condition of Exercise 7.3.1. Note
that 〈M 〉t ≥ 0, and hence
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Dt ≤ exp

(
sup

0≤s≤t0

|Ms|
)

∈ L1(P ).

Therefore, by Exercise 7.3.1, (Dt(M))0≤t≤t0 is a martingale.
c) Since Et is a local martingale, it is enough to verify the condition of Exercise 7.3.1. For
t ≤ t0,

|Et| = exp

(
1

2
〈M 〉t

)
≤ exp

(
1

2
〈M 〉t0

)
∈ L1(P ).

Therefore, by Exercise 7.3.1, (Et)0≤t≤t0 is a martingale. \(∧2
∧)/

Remark: It is known that Novikov’s condition also implies that (Et(M))0≤t≤t0 is a martingale.

Setting 7.9.2 Let Mµ
t =

∫ t

0
σµ
s · dB (µ = 1, . . . ,m) be local martingales generated by B

(Definition 7.5.1), where σµ ∈ (L2
a.s.)

d (µ = 1, . . . ,m). We consider the process Mt = (Mµ
t )

d
µ=1,

t ≥ 0 with values in Rm.

Let M be defined in Setting 7.9.2. Then, for θ ∈ Rm, the inner product θ ·Mt is again a
local martingales generated by B. Applying Proposition 7.9.1 to θ ·Mt, we obtain the following� �
Corollary 7.9.3 Let M be defined in Setting 7.9.2 and θ ∈ Rm. Then, the following
processes are local martingales generated by B.

exp
(
θ ·Mt − 1

2
〈 θ ·M 〉t

)
, exp

(
iθ ·Mt +

1
2
〈 θ ·M 〉t

)
.� �

By combining Proposition 7.1.2, Proposition 7.1.3, and Corollary 7.9.3, we obtain� �
Corollary 7.9.4 (Lévy’s chracterization of the Brownian motion) Let M be defined
in Setting 7.9.2. Then, the following conditions are equivalent.
a) M is a BMm

0 ;
b) (Mµ

t M
ν
t − δµ,νt)t≥0 is a local martingale for all µ, ν = 1, . . . ,m;

c) {σµ
t }mµ=1 are a.s. orthonormal (σµ

t · σν
t = δµ,ν, µ, ν = 1, . . . ,m) for all t > 0.� �

Proof: Hint: a) ⇒ b):This follows from Proposition 7.1.3.
b) ⇒ c):Suppose b). Then, it follows from Lemma 7.5.2 that 〈 Mµ,M ν 〉t = δµ,νt, for all
µ, ν = 1, . . . ,m, which implies c).
c) ⇒ a): It follows from the condition c) that 〈Mµ,M ν 〉t = δµ νt, and hence by Corollary

7.9.3, exp
(
iθ ·Mt +

t|θ|2
2

)
is a martingale. Thus, a) follows from Proposition 7.1.2. \(∧2

∧)/

Example 7.9.5 (Bessel process) For a BMd
0, denoted by B, the following process is a BM1

0.

B+
t =

∫ t

0

|Bs|−1Bs · dBs, t ≥ 0.

Moreover, for d ≥ 2, p > 0, and t ≥ 0,

|Bt|p = p

∫ t

0

|Bs|p−2Bs · dBs +
p(d+ p− 2)

2

∫ t

0

|Bs|p−2ds, (7.55)

σ(|Bs| ; s ≤ t) = σ(B+
s ; s ≤ t). (7.56)

Proof: Since the process (|Bt|−1Bt)t≥0 ∈ (L2
a.s.)

d cosists of unit vectors, it follows from Corollary
7.9.4 that B+ is a BM1

0. We next turn to (7.55). We first verify that two integrals on the
RHS are well-defined. Indeed, it follows from Exercise 6.1.4 that |B·|p−2Bα

· ∈ L2([0, t] × Ω)
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(α = 1, 2) and |B·|p−2 ∈ L1([0, t] × Ω). Therefore, the stochastic integral
∫ t

0
|Bs|p−2Bs · dBs

and the integral
∫ t

0
|Bs|p−2ds exists. We would like to apply Itô’s formula to conclude (7.55).

However, for p < 2, the function |x|p fails to be twice differentiable at x = 0. To circumvent
this obstacle, we fix 0 < b < a <∞ and define

Sa = inf{t > 0 ; |Bt| ≥ a}, Ta,b = inf{t > 0 ; |B(t+ Sa)| ≤ b}.
Then, (FSa+·) is a filtration w.r.t which B(Sa + ·) is a BMd, and Ta,b is a stopping time. Note
that, outside the closed ball |x| ≤ b, the function |x|p is smooth. We apply Itô’s formula
(Theorem 7.4.1) to this function and the stopped Brownian motion (B(Sa + t ∧ Ta,b))t≥0 to
obtain

1)

|B(Sa + t ∧ Ta,b)|p

= |a|p + p

∫ Sa+t∧Ta,b

Sa

|Bs|p−2Bs · dBs +
p(d+ p− 2)

2

∫ Sa+t∧Ta,b

Sa

|Bu|p−2du, t ≥ 0.

Then, we see from 1) with p = 1 and Lemma 7.9.8 that
2) σ(|B(Sa + s ∧ Ta,b)| ; s ≤ t) = σ

(
B+(Sa + s ∧ Ta,b)−B+(Sa) ; s ≤ t

)
.

We now let b tend to zero. then, Ta,b
b→0−→ ∞ a.s. Consequently, it follows from 1) and 2) that

|B(Sa + t)|p = |a|p + p

∫ Sa+t

Sa

|Bs|p−2Bs · dBs +
p(d+ p− 2)

2

∫ Sa+t

Sa

|Bu|p−2du, t ≥ 0,

σ(|B(Sa + s)| ; s ≤ t) = σ
(
B+(Sa + s)−B+(Sa) ; s ≤ t

)
.

Then, by letting a tend to zero, and noting that Sa
a→0−→ 0 a.s., we obtain (7.55) and (7.56).

\(∧2
∧)/

Finally, we present the following representation theorem due to Dambis, Dubins, Schwartz
(for m = 1) and Knight (m ≥ 2).� �
Proposition 7.9.6 (The DDS Representation Theorem) Referring to Setting 7.9.2,
suppose that for all µ, ν = 1, . . . ,m,

σµ
t · σν

t = 0 a.s. for t > 0, (7.57)∫ ∞

0

|σµ
s |2ds = ∞ a.s. (7.58)

Then, there exist m independdent BM1
0’s denoted by W µ, (µ = 1, . . . ,m) such that for all

µ = 1, . . . ,m and t ≥ 0,

Mµ
t = W µ(〈Mµ 〉t), where 〈Mµ 〉t =

∫ t

0

|σµ
s |2ds. (7.59)

More precisely, W µ, (µ = 1, . . . ,m) are defined as follows.

W µ
t =Mµ

Tµ(t), where T µ(t) = inf{s ≥ 0 ; 〈Mµ 〉s > t}. (7.60)� �
Proof: Step1: We first prove that the process W µ defined by (7.60) is continuous and satisfies
(7.59). The coordinate µ is fixed throughtout Step1 and hence is dropped from the notation.
We write At = 〈M 〉t for simplify the notation. Define

S(t) = inf{s ≥ 0 ; 〈M 〉s ≥ t} and T (t) = inf{s ≥ 0 ; 〈M 〉s > t}.
Then, they have the following properties.
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1) S(·) (resp. T (·)) is left-continuous (resp. right-continuous).
2) For all t ≥ 0, S(t) ≤ T (t), 〈M 〉S(t) = 〈M 〉T (t) = t, S(t) = T (t−). Moreover, S(〈M 〉t) =

T (〈M 〉t) = t, since 〈M 〉· is continuous.
3) For all t ≥ 0, S(t) and T (t) are stopping times.

We have W⟨M ⟩t =MT (⟨M ⟩t) =Mt by 2). Thus, it only remains to prove that W is continuous.
W is right-continuous, because of the right-continuity of T . Its left-continuity can be seen as
follows. Let t > 0. Then, 〈M 〉Sµ(t) = 〈M 〉T (t) = t by 2). This implies, via Exercise 7.3.2 that
MSµ(t) =MT (t), and hence

Wt− =MT (t−) =MS(t) =MT (t) = Wt.
Step2: We next prove that W µ (µ = 1, . . . ,m) are independent BM1’s. By Step1, the

process W µ is continuous each µ = 1, . . . ,m. Therefore, it is enough to show that for each
fixed 1 ≤ µ < ν ≤ m, the process (W µ,W ν) is a BM2

0. Thus we assume henceforce that m = 2
and set At = 〈M1 〉t ∨ 〈M2 〉t. Then, it is not difficult to see that

4) T (t)
def
= T 1(t) ∨ T 2(t) = inf{s ≥ 0 ; As > t}.

Then, W = (W 1,W 2) is continuous and adapted to the filtration (FT (·)). Therefore, by Propo-
sition 7.1.2, it is enough to prove that, for all θ ∈ R2,

5) Et(θ)
def
= exp

(
θ ·Wt +

1

2
|θ|2t

)
, t ≥ 0 is an (FT (·))-martingale.

For s ≥ 0, As is an (FT (·))-stopping time. Moreover, it follows from 4) that T (t ∧ A(s)) =
T (t) ∧ s. Therefore, for µ = 1, 2,

W µ(t ∧ A(s)) =
d∑

α=1

∫ T (t)∧s

0

σµ,α
u dBα

u =
d∑

α=1

∫ s

0

1{u≤T (t)}σ
µ,α
u dBα

u .

The above display shows that, with t ≥ 0 fixed, the process Nµ,t
s

def
= W µ(t ∧A(s)), s ≥ 0 is an

(F·)-local martingale generated by B with the quadratic variation

〈Nµ,t, N ν,t 〉s =

∫ s

0

1{u≤T (t)}σ
µ
u · σν

udu = δµ,ν

∫ s

0

1{u≤T (t)}|σµ
u |2du

= δµ,νA(T (t) ∧ s) = δµ,ν(t ∧ A(s)).
Hence,

iθ ·W (t ∧ A(s)) + 1

2
|θ|2(t ∧ A(s)) = i

2∑
µ=1

θµN
µ,t
s +

1

2

2∑
µ=1

θµθν〈Nµ,t, N ν,t 〉s

It follows from the above display and Corollary 7.9.3 that
6) Et∧A(s)(θ), s ≥ 0

is an (F·)-local martingale. Moreover, since |Et∧A(s)(θ)| ≤ exp(|θ|2t/2), the process 5) is a
bounded (F·)-martingale. Therefore, by applying the optional stopping theorem to the mar-
tingale 6) and the pair T (s) ≤ T (t) of stopping times, we obtain

E[Et(θ)|FT (s)] = E[Et∧A(T (t))(θ)|FT (s)] = Et∧A(T (s))(θ) = Es(θ),
which proves 5). \(∧2

∧)/

Example 7.9.7 (Stochastic area, revisited) Let B be a BM2
0 and

A(p)
t =

∫ t

0

|B|p−2(B2
sdB

1
s −B1

sdB
2
s ), p > 0.

In particular, A(2) is the stochastic area (Exercise 7.6.1). Then, there exists a BM1
0, denoted

by X such that

A(p)
t = X

(∫ t

0

|Bs|2p−2ds

)
, t ≥ 0.
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Moreover, for θ ∈ R,

E
[
exp

(
iθA(p)

t

)
|F |B|

t

]
= exp

(
−θ

2

2

∫ t

0

|Bs|2p−2ds

)
, (7.61)

E
[
exp

(
iθA(2)

t

)]
= cosh(θt)−1, (7.62)

where F |B|
t = σ(|Bs| ; s ≤ t).

Proof: Let B+
t =

∫ t

0
|Bs|−1(B1

sdB
1
s +B2

sdB
2
s ), t ≥ 0. Then,

〈 A(p) 〉t =
∫ t

0

|Bs|2p−2ds, 〈B+ 〉t = t, and 〈 A(p), B+ 〉t = 0.

Therefore, by Proposition 7.9.6, there exist independent BM1
0, denoted by X and Y such that

A(p)
t = X

(∫ t

0

|Bs|2p−2ds

)
and B+

t = Yt, t ≥ 0.

In particular, X is independent of B+. On the other hand, we know from Example 7.9.5 that
σ(B+

s ; s ≤ t) = F |B|
t .

Therefore X is independent of |B|. As a consequence,

E
[
exp

(
iθA(p)

t

)
|F |B|

t

]
= E

[
exp

(
iθX

(∫ t

0

|Bs|2p−2ds

))
|F |B|

t

]
= exp

(
−θ

2

2

∫ t

0

|Bs|2p−2ds

)
.

This proves (7.61). For p = 2, by taking the expectation of both-hand sides of the above
display and recalling Example 7.8.4, we obtain (7.62). \(∧2

∧)/

Remark See Exercise 7.9.1 for a generalization of (7.62).

Complement� �
Lemma 7.9.8 Suppose that X and Y are continuous process with values in Rd, that b :
Rd → Rd is a bounded Lipchitz continuous function such that

(∗) Yt = Xt +

∫ t

0

b(Ys)ds for all t > 0.

Then, FX
t = σ(Xs ; s ≤ t) and FY

t = σ(Ys ; s ≤ t) are the same for all t > 0.� �
Proof: Since Xt = Yt +

∫ t

0
b(Ys)ds, it is obvious that FX

t ⊂ FY
t . The opposite inclusion can be

shown by express the process Y as a limit of Picard approximation as follows. Let Y
(0)
t = Xt,

t ≥ 0, and for n ≥ 1,

Y
(n)
t = Xt +

∫ t

0

b(Y (n−1)
s )ds, t ≥ 0.

Then, by induction, it is easy to see that there exists a constant C such that

sup
s≤t

|Y (n)
s − Y (n−1)

s | ≤ (Ct)n

n!
,

which implies that the processes Y (n) converge locally uniformly, and hence that the limit, say
Ỹ , solves the equation (∗). Then, Y = Ỹ , since the soltion to the equation (∗) is unique, as

can easily be seen from the Gronwall inequality. Since F Ỹ
t ⊂ FX

t by the way Ỹ is obtained, it

follows that FY
t = F Ỹ

t ⊂ FX
t . \(∧2

∧)/

257



Exercise 7.9.1 Let f : R2 → R be bounded and Borel measurable. Prove the following. i)
Suppose that a function F : (R2)[0,∞) → R satisfies the following properties. F (B) ∈ L1(P )
for each BM2

0 denoted by B, and that F (R(α)B) = F (B) a.s. for all α ∈ R, where R(α) =(
cosα −sinα
sinα cosα

)
. Then,

E [F (B)f(Bt)] = E
[
E[F (B)|F |B|

t ]f̃(Bt)
]
,

where F |B|
t = σ(|Bs| ; s ≤ t) and f̃(x) = 1

2π

∫ π

−π
f(R(α)x)dα. Hint: For all α ∈ R,

E [F (B)f(Bt)] = E [F (R(−α)B)f(Bt)] = E [F (B)f(R(α)Bt)] .

Hence, E [F (B)f(Bt)] = E
[
F (B)f̃(Bt)

]
. Moreover, f̃ ◦R(α) = f̃ . ii) The formula (7.62) can

be generalized as follows.

E
[
exp

(
iθA(2)

t

)
f(Bt)

]
= cosh(θt)−1E

[
f(τ(t)1/2X)

]
,

where X is a r.v. with 2-dimensional standard normal distribution and τ(t) = tanh(θt)/θ.
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8 Appendix to Section 1

8.1 Some Fundamental Inequalities� �
Proposition 8.1.1 (Hölder’s inequality) Suppose that (S,A, µ) is a measure space, and
that p, q ∈ (1,∞), 1

p
+ 1

q
= 1. Then, for f ∈ Lp(µ) and g ∈ Lq(µ),

∫
S

|fg|dµ ≤
(∫

S

|f |pdµ
)1/p(∫

S

|g|qdµ
)1/q

. (8.1)

� �
Proof: We recall that for s, t ≥ 0,

1) st ≤ sp

p
+
tq

q
.

Thus, for ε > 0,

2)
|fg|

(‖f‖p + ε)(‖g‖q + ε)

1)

≤ |f |p

p(‖f‖p + ε)p
+

|g|q

q(‖g‖q + ε)q
.

Therefore,

1

(‖f‖p + ε)(‖g‖q + ε)

∫
S

|fg|dµ
2)

≤
‖f‖pp

p(‖f‖p + ε)p
+

‖g‖qq
q(‖g‖q + ε)q

≤ 1.

Multiplying the both hands sides of the above inequality by (‖f‖p + ε)(‖g‖q + ε), and letting
ε→ 0, we get (8.1). \(∧2

∧)/� �
Proposition 8.1.2 (Jensen’s inequality) Let I ⊂ R be an open interval and φ : I → R
be convex. Suppose that X be a r.v. with values in I such that X,φ(X) ∈ L1(P ). Then,

φ (EX) ≤ E[φ(X)]. (8.2)� �
Proof: Let m = EX. As is well known, for y ∈ I, the limit

φ′
+(y)

def
= lim

h→0
h>0

φ(y + h)− φ(y)

h

exists and is non decreasing in y. Moreover,

φ(x) ≥ φ(y) + φ′
+(y)(x− y), for all x, y ∈ I.

Thus,
φ(X) ≥ φ(m) + φ′

+(m)(X −m), a.s.

By taking the expectation, we have that

E[φ(X)] ≥ φ(m) + φ′
+(m)(EX −m) = φ(m).

\(∧2
∧)/
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8.2 Polar Decomposition of a Matrix

Notation:

� S+
d denotes the totality of symmetric, non-negative definite d× d real matrices.

� Od denotes the totality of d× d real orthogonal matrices.

� For a real matrix A, A∗ denotes its transposition.

We recall that for a symmetric, d× d real matrix S, there exists a U ∈ Od such that

SU = UD(s1, . . . , sd), (8.3)

where s1 ≥ ... ≥ sd are eigenvalues of S and D(s1, . . . , sd) = (sαδα,β)
d
α,β=1. Let u1, . . . , ud be

column vectors of U , so that U = (u1, . . . , ud). Then, (8.3) reads

Suα = sαuα, α = 1, . . . , d. (8.4)� �
Lemma 8.2.1 For S ∈ S+

d , there exists a unique R ∈ S+
d such that S = R2. The matrix

R is called the square root of S and is denoted by
√
S.� �

Proof: We take U ∈ Od so that (8.3), or equivalently (8.4) holds. Note that sα ≥ 0 (α =
1, . . . , d).

Existence of R: R
def
= UD(

√
s1, . . . ,

√
sd)U

∗ satisfies the desired property.
Uniqueness of R: Let R ∈ S+

d be such that S = R2. We will show that

1) Ruα =
√
sαuα, (α = 1, . . . , d),

which implies that R = UD(
√
s1, . . . ,

√
sd)U

∗. If sα = 0, then Ruα = 0, since

|Ruα|2 = Ruα ·Ruα = Suα · uα = sα|uα|2 = 0.

Suppose on the other hand that sα > 0. Then,

(R +
√
sαI)(R−

√
sαI) = R2 − sαI = S − sαI,

and hence

2) (R +
√
sαI)(R−√

sαI)uα = 0.

R +
√
sαI is strictly positive definite and hence invertible. Thus, 2) implies 1). \(∧2

∧)/

For d, k ∈ N\{0}, we define a subset Od,k of d× k real matrices as follows.

V ∈ Od,k ⇐⇒
{

The colomn vectors of V are orthonormal, if d ≥ k,
The raw vectors of V are orthonormal, if d ≤ k.� �

Lemma 8.2.2 Let V ∈ Od,k.

d ≥ k =⇒ V ∗V = Ik, (V V ∗ − Id)|RanV = 0, (8.5)

d ≤ k =⇒ Ran(V ∗V − Ik) ⊂ KerV, V V ∗ = Id, (8.6)

U ∈ Ok =⇒ V U ∈ Od,k. (8.7)� �
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Proof: (8.5): The first identity is equivalent to the definition of Od,k for d ≥ k. Using the first
identity, we have

(V V ∗)V = V (V ∗V ) = V Ik = IdV,

which implies the second identity.
(8.6): The second identity is equivalent to the definition of Od,k for d ≤ k. Using the second
identity, we have

V (V ∗V ) = (V V ∗)V = IdV = V Ik,

which implies the first identity.
(8.7): Let u1, ..., uk ∈ Rk be the column vectors of U and v1, ..., vd ∈ Rk be the raw vectors of
V ∗. Then,

V U = V (u1, ..., uk) = (V u1, ..., V uk), (V U)∗ = U∗V ∗ = U∗(v∗1, ..., v
∗
k) = (U∗v∗1, ..., U

∗v∗k).

For d ≥ k, we have V ∗V = Ik and hence for α, β = 1, ..., k,

V uα · V uβ = V ∗V uα · uβ = uα · uβ = δα,β.

Thus, the column vectors of V U are orthonormal. For d ≤ k, we have v∗α · v∗β = δα,β for
α, β = 1, ..., d,

U∗v∗α · U∗v∗β = UU∗v∗α · v∗β = v∗α · v∗β = δα,β.

Thus, the column vectors of (V U)∗ are orthonormal, i.e., the raw vectors of V U are orthonor-
mal. \(∧2

∧)/� �
Lemma 8.2.3 Let A be a d× d real matrix, s1 ≥ ... ≥ sk be the eigenvalues of A∗A, and
D = D(

√
s1, . . . ,

√
sk). Then, there exist U ∈ Ok and V ∈ Od,k such that

AU = V D, (8.8)

V ∗V =

(
Id 0
0 0

)
if d < k. (8.9)

� �
Proof: Let S = A∗A, and we take U ∈ Od so that (8.3), or equivalently (8.4) holds. We then
note that for α, β = 1, . . . , d,

1) Auα · Auβ = Suα · uβ = sαδα,β.

Let m
def
= max{α ; sα > 0} = rank S ≤ d ∧ k. Then, we see from 1) that

vα
def
= Auα/

√
sα ∈ Rd, α = 1, . . . ,m

are orthonormal and that Auα = 0 for α > m. If m = d∧k, then, v1, . . . , vd∧k are orthonormal.
If m < d ∧ k, then, we add orthonormal vectors vm+1, . . . , vd∧k ∈ Rd so that v1, . . . , vd∧k
are orthonormal. In particular, if d < k, we define vd+1 = ... = vk = 0. Finally, we set
V = (v1, ..., vk). Then, V ∈ Od,k and Auα =

√
sαvα for all α = 1, . . . , k. Therefore,

AU = (Au1, . . . , Auk) = (
√
s1v1, . . . ,

√
skvk) = V D.

\(∧2
∧)/
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Remark: Referring to Lemma 8.2.3 and its proof, we see that rankA∗A = m and RanA =⊕m
α=1 Rvα, and hence rankA∗A = rankA. By interchanging the role of A and A∗, and recalling

that rankA∗ = rankA, we have rankAA∗ = rankA∗ = rankA = rankA∗A. Combinning
this with obvious inclusions RanAA∗ ⊂ RanA, RanA∗A ⊂ RanA∗, we obtain also RanA =
RanAA∗, RanA∗ = RanA∗A.� �
Proposition 8.2.4 Let A be a d× k real matrix, Q ∈ S+

d , and
√
Q be the square root of

Q (Lemma 8.2.1). If d ≤ k, then

Q = AA∗ ⇐⇒ There exists T ∈ Od,k such that A =
√
QT.

If d > k, then

Q = AA∗ ⇐⇒ There exists T ∈ Od,k such that A =
√
QT and RanQ ⊂ RanT .� �

Proof: We treat the two cases (d ≤ k and d > k) at the same time.
(⇒) For A, we take U ∈ Ok, V ∈ Od,k and D as in Lemma 8.2.3. Then,

1) A = V DU∗ and A∗ = UDV ∗,

and hence

2) Q = AA∗ = V D2V ∗.

We verify that

3) D = DV ∗V .

This is obvious if d ≥ k, since V ∗V
(8.5)
= Ik. If d < k, then, as is mentioned in the proof of

Lemma 8.2.3, sα = 0 for α > d, and hence by denoting D0 = (
√
sαδα,β)

d
α,β=1,

DV ∗V
(8.9)
=

(
D0 0
0 0

)(
Id 0
0 0

)
=

(
D0 0
0 0

)
= D.

We use 3) to prove that

4)
√
Q = V ∗DV .

Note that V DV ∗ ∈ S+
d . Thus, by the uniqueness of the square root (Lemma 8.2.1), it is

enough to show that Q = (V DV ∗)2.

(V DV ∗)2 = V DV ∗V DV ∗ 3)
= V D2V ∗ 2)

= Q.

Finally, with T
def
= V U∗ (8.7)

∈ Od,k,

A
1)
= V DU∗ 3)

= V DV ∗V U∗ 4)
=
√
QT.

Moreover, if d > k, then RanQ
Q=AA∗
= RanA

1)
⊂ RanV = RanT .

(⇐) We verify that
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5)
√
Q = TT ∗√Q.

This is obvious if d ≤ k, since TT ∗ (8.6)
= Id. Suppose that d > k. Then, RanQ ⊂ RanT by

the assumption. Moreover, Ran
√
Q = RanQ, as can be seen from the proof of Lemma 8.2.1.

Thus, Ran
√
Q ⊂ RanT . Since (TT ∗ − Id)|RanT

(8.5)
= 0, we have (TT ∗ − Id)|Ran

√
Q = 0, which

implies 5). Using 5) we conclude that

AA∗ =
√
QTT ∗

√
Q

5)
= (
√
Q)2 = Q.

\(∧2
∧)/

8.3 Uniform Distribution and an Existence Theorem for Independent Random
Variables

To define a random walk (cf. Definition 3.1.1 below), we will need countably many independent
r.v’s. A question24 then arises: “Do such independent r.v’s exist?” This subsection is devoted
to answer this question. Throughout this subsection, we fix a probability sapce (Ω,F , P ) and
r.v. U with the uniform distribution on [0, 1), i. e., P{U ∈ B} =

∫
B
dt for all B ∈ B([0, 1)).

The simplest example is provided by Ω = [0, 1), F = B([0, 1)) and U(ω) = ω. We will prove
the following existence theorem for independent r.v.’s;� �
Proposition 8.3.1 Consider a sequence of probability spaces {(Sn,Bn, µn)}n≥1 where for
each n, Sn is a complete separable metric space and Bn is the Borel σ-algebra. Then, there
is a sequence of independent r.v.’s {Xn : Ω → Sn}n≥1 such that µn(B) = P (Xn ∈ B) for
all n ≥ 1 and B ∈ Bn.� �

Remark: Proposition 8.3.1 can be considered as a special case of Kolmogorov’s extension
theorem (See e.g., [Dur95, page 26 (4.9)] for the case Sn = Rd). Kolmogorov’s extension
theorem is so powerful that it allows us to construct not only independent r.v.’s but also any
r.v.’s which exsit at all. However, the proof usually requires another extention theorem in
measure theory (e.g., Carathéodory’s extention theorem). Here, to make the exposition more
self-contained, we restrict our attention only to independent cases and give an elementary
proof of Proposition 8.3.1 without relying on any big theorem from measure theory.

We begin with examples:

Example 8.3.2 Let us now construct an i.i.d. sequence {Un}n≥1 of [0, 1)-valued r.v.’s with the
uniform distribution. By Example 1.9.4, there is an i.i.d. sequence {Xn,k}n,k≥1 of {0, 1}-valued
r.v.’s with P{Xn,k = 1} = 1/2. We define {Un}n≥1 by

Un =
∑
k≥1

2−kXn,k.

Then, each Un is uniformly distributed by Lemma 8.5.1. Moreover, {Un}n≥1 are independent
by Exercise 1.6.9.

24This may be a question which a physicist would not care about. Those who do not worry about this
question can skip this subsection.
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To prove Proposition 8.3.1, we will use Example 1.9.4, Example 8.3.2 and the following
lemma.� �
Lemma 8.3.3 Suppose that (S,B, µ) is a probability space where S is a complete separable
metric space and B is the Borel σ-algebra. Then, there is a measurable map φ : [0, 1) → S
such that

P{φ(U) ∈ B} = µ(B), for all B ∈ B, (8.10)

where U : Ω → [0, 1) is a uniformly distributed r.v.� �
Lemma 8.3.3 is quite surprising in the sense that it claims any r.v. with values in a complete

separable metric space can be constructed just by using a single uniformly distributed r.v. The
proof of Lemma 8.3.3 will be presented in subsection 8.4.

We now prove Proposition 8.3.1.

Proof of Proposition 8.3.1: Let {Un}n≥1 be [0, 1)-valued r.v.’s with the uniform distribution
constructed in Example 8.3.2. For each µn ∈ P(Sn,Bn), we can find a measurable map
φn : [0, 1) → Sn such that P{φn(Un) ∈ ·} = µn by Lemma 8.3.3. We also see that {φn(Un)}n≥1

are independent since {Un}n≥1 are. Therefore the r.v.’s Xn = φn(Un) (n ≥ 1) have desired
properties claimed in Proposition 8.3.1. \(∧2

∧)/

Exercise 8.3.1 For µ ∈ P(R,B(R)), define

f(s) = µ(−∞, s], s ∈ R,
f−1
− (t) = inf{s ∈ R | t ≤ f(s) }

= sup{s ∈ R | f(s) < t }, t ∈ R.

Prove the following; (i) f(s) is right-continuous at any s ∈ R. (ii) f−1
− (t) is left-continuous at

all t ∈ (0, 1). (iii) For s ∈ R and t ∈ (0, 1), f−1
− (t) ≤ s ⇐⇒ t ≤ f(s)

Exercise 8.3.2 Let µn ∈ P(R,B(R)) (n = 1, . . .) be a sequence of probability measures. Use
Example 8.3.2 and Exercise 8.3.1 to construct a sequence of independent r.v.’sXn : Ω → R such
that P (Xn ∈ ·) = µn for all n ≥ 1. Hint: Define fn(s) = µn(−∞, s] and φn(θ) = (fn)

−1
− (θ).

Then, for all s ∈ R,
P{φn(Un) ≤ s} = P{Un ≤ fn(s)} = fn(s).

Then, recall Exercise 1.3.2.

8.4 Proof of Lemma 8.3.3

The proof of Lemma 8.3.3 is not very difficult and the argument involved there is a rather
standard way to take advantage of the completeness and the separability of the metric space
S. However, the proof may look a little complicated at first sight. We therefore present also
a proof for the case of S = Rd, which is less abstract and which is the only case we need in
this course. The proof for this special case might be useful to understand the idea behind the
proof of general case.

Those who are interested only in the case S = Rd can skip the proof for the general case.
On the other hand, it is also possible to skip the proof for the case S = Rd to proceed directly
to that in general case.
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Proof of Lemma 8.3.3 in the case S = Rd:
Step 1: We begin by constructing a sequence of intervals (in Rd)

Qs1 ⊃ Qs1s2 ⊃ . . . ⊃ Qs1···sn ⊃ . . . ,

inductively, where the running indices s1, s2, . . . are diadic rational points. As the first step of
the induction, we find a subset C ⊂ 2−1Zd and disjoint intervals {Qs1}s1∈C such that

Qs1 3 s1 for all s1 ∈ C,

µ(N) = 0, where N
def.
= S\ ∪s1∈C Qs1 , (8.11)

µ(Qs1) > 0, for all s1 ∈ C.

In fact, this can be done just by setting

Qs1 =
∏d

j=1[s
j
1, s

j
1 + 2−1), for s1 = (sj1)

d
j=1 ∈ 2−1Zd,

C = {s1 ∈ 2−1Zd ; µ(Qs1) > 0}. (8.12)

The second step of the induction is as follows. For each s1 ∈ C, we repeat the same argument
as in the first step of the induction to find a subset C(s1) ⊂ Qs1 ∩ 2−2Zd and disjoint intervals
{Qs1,s2}s2∈C(s1) with the side-length 2−2 such that

Qs1 ⊃ Qs1s2 3 s2 for all s2 ∈ C(s1),

µ(Ns1) = 0, where Ns1
def.
= Qs1\ ∪s2∈C(s1) Qs1,s2 ,

µ(Qs1s2) > 0 for all s2 ∈ C(s1).

Suppose as the nth step of the induction that we have an interval Qs1···sn with non-zero µ-
measure and the side-length 2−n for s1 ∈ C, . . ., sn ∈ C(s1 · · · sn−1). Then, we can find
C(s1 · · · sn) ⊂ Qs1···sn ∩ 2−(n+1)Zd and intervals Qs1···sn+1 for sn+1 ∈ C(s1 · · · sn) such that

Qs1···sn ⊃ Qs1···sn+1 3 sn+1 for all sn+1 ∈ C(s1, . . . , sn). (8.13)

µ(Ns1···sn) = 0, where Ns1···sn
def.
= Qs1···sn\ ∪sn+1∈C(s1,...,sn) Qs1···sn+1 , (8.14)

µ(Qs1···sn+1) > 0 for all sn+1 ∈ C(s1, . . . , sn).

Step 2: We next construct a sequence

Is1 ⊃ Is1s2 ⊃ . . . ⊃ Is1···sn ⊃ . . . ,

of sub-intervals of [0, 1) with positive lengths, where Is1···sn corresponds to Qs1···sn in a way as is
explained below. We first split [0, 1) into disjoint intervals {Is1}s1∈C with length |Is1 | = µ(Qs1)
for each s1 ∈ C. Then, for each s1 ∈ C, we split Is1 into disjoint intervals {Is1,s2}s2∈C(s1) with
length |Is1,s2| = µ(Qs1,s2) for each s2 ∈ C(s1). We then inductively iterate this procedure to
get {Is1···sn} such that

[0, 1) = ∪s1∈CIs1 , (8.15)

Is1···sn−1 = ∪sn∈C(s1,...,sn−1)Is1···sn , (8.16)

|Is1···sn| = µ(Qs1···sn). (8.17)
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Step 3: We now define φn : [0, 1) → S by

φn(θ) = sn if θ ∈ Is1···sn .

Let us check the following;

φn : [0, 1) → S is well defined and measurable for all n ≥ 1. (8.18)

(φn(θ))n≥1 is a Cauchy sequence for for all θ ∈ [0, 1). (8.19)

By (8.15) and (8.16), any θ ∈ [0, 1) belongs to a unique interval Is1···sn . Therefore, φn is well
defined. The measurability is obvious, since φn is a constant sn on each measurable set Is1···sn .
To see (8.19), just observe that

φm+n(θ) ∈ Qφ1(θ),...,φm+n(θ) ⊂ Qφ1(θ),...,φn(θ),

and hence that
|φm+n(θ)− φn(θ)| ≤ 2−n

√
d.

Step 4: By, (8.19) and (8.19), we can define a measurable map φ : [0, 1) → Rd by φ(θ) =
limn→∞ φn(θ) for all θ ∈ [0, 1). Let us see that φ satisfies (8.10). To do so, define a set

N0 = ∪n≥1 ∪s1∈C ∪s2∈C(s1) . . . ∪sn∈C(s1,...,sn−1) N ∪Ns1 ∪Ns1s2 ∪ . . . ∪Ns1...sn

which is µ-measure zero by (8.11) and (8.14). Moreover, for each x ∈ Rd\N0 and n ≥ 1,
there is a unique Qs1,...,sn such that x ∈ Qs1,...,sn . Therefore, for any f ∈ Cb(Rd) we can define
function fn : Rd\N0 → R by

fn(x) =
∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)1{x ∈ Qs1...sn}.

We see that
lim
n→∞

fn(x) = f(x) for all x ∈ S\N0, (8.20)

since |x− sn| ≤ 2−n
√
d if x ∈ Qs1...sn . Therefore,

Ef(φ(U)) = lim
n→∞

Ef(φn(U)) by definition of φ,

= lim
n→∞

∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)|Is1,...,sn| by definition of φn,

= lim
n→∞

∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)µ(Qs1,...,sn) by (8.27),

= lim
n→∞

∫
fndµ by definition of fn,

=

∫
fdµ by (8.20).

This proves (8.10) (cf. Lemma 1.3.2). \(∧2
∧)/

Proof of Lemma 8.3.3 in general case: Most of the arguments presented below are repetitions
of the ones in the case of S = Rd. However, we do repeat the every detail, so that this proof
for the general case can be read independently.
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Step 1: We begin by constructing a sequence of measurable subsets

Qs1 ⊃ Qs1s2 ⊃ . . . ⊃ Qs1···sn ⊃ . . . ,

inductively, where the running indices s1, s2, . . . are elements in S. The first step of the
induction is as follows. Since S is separable, we can find a countable subset C ⊂ S and
disjoint measurable subsets {Qs1}s1∈C such that

Qs1 3 s1 for all s1 ∈ C,

µ(N) = 0, where N
def.
= S\ ∪s1∈C Qs1 , (8.21)

diam(Qs1) ≤ 2−1,

µ(Qs1) > 0,

In fact, let {Bn}n≥1 be a covering of S by balls (open or closed) with the diameter 2−1 and
define {Bn}n≥1 by B1 = B1 and

Bn = Bn\ ∪n−1
j=1 Bj n=1,2,. . . .

Then, {Bn}n≥1 are covering of S by disjoint measurable sets and diam(Bn) ≤ 2−1. Now let
{Qn}n≥1 be a subsequence of {Bn}n≥1 which is obtained by throwing away all Bn’s which
have µ-measure zero. Finally, we take sn ∈ Qn for each n ≥ 1 and define Qsn = Qn and
C = {sn}n≥1.

The second step of the induction is as follows. Since any subset in S is separable, we
can find a countable subset C(s1) ⊂ Qs1 for each s1 ∈ C, and disjoint measurable subsets
{Qs1,s2}s2∈C(s1) such that

Qs1 ⊃ Qs1s2 3 s2 for all s2 ∈ C(s1).

µ(Ns1) = 0, where Ns1
def.
= Qs1\ ∪s2∈C(s1) Qs1,s2 ,

diam(Qs1s2) ≤ 2−2,

µ(Qs1s2) > 0.

Suppose as the nth-step of the induction that we have a measurable set Qs1···sn with non-
zero µ-measure and the diameter ≤ 2−n for s1 ∈ C, . . ., sn ∈ C(s1 · · · sn−1). Then, we can
find a countable subset C(s1 · · · sn) ⊂ Qs1···sn and disjoint measurable sets {Qs1···sn+1} for
sn+1 ∈ C(s1 · · · sn) such that

Qs1···sn ⊃ Qs1···sn+1 3 sn+1 for all sn+1 ∈ C(s1, . . . , sn). (8.22)

µ(Ns1···sn) = 0, where Ns1···sn
def.
= Qs1···sn\ ∪sn+1∈C(s1,...,sn) Qs1···sn+1 , (8.23)

diam(Qs1···sn) ≤ 2−n, (8.24)

µ(Qs1···sn+1) > 0 for all sn+1 ∈ C(s1, . . . , sn).

Step 2: We next construct a sequence

Is1 ⊃ Is1s2 ⊃ . . . ⊃ Is1···sn ⊃ . . . ,

of sub-intervals of [0, 1) with positive lengths, where Is1···sn corresponds to Qs1···sn in a way as is
explained below. We first split [0, 1) into disjoint intervals {Is1}s1∈C with length |Is1| = µ(Qs1)
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for each s1 ∈ C. Then, for each s1 ∈ C, we split Is1 into disjoint intervals {Is1,s2}s2∈C(s1) with
length |Is1,s2| = µ(Qs1,s2) for each s2 ∈ C(s1). We then inductively iterate this procedure to
get {Is1···sn} such that

[0, 1) = ∪s1∈CIs1 , (8.25)

Is1···sn−1 = ∪sn∈C(s1,...,sn−1)Is1···sn , (8.26)

|Is1···sn| = µ(Qs1···sn). (8.27)

Step 3: We now define φn : [0, 1) → S by

φn(θ) = sn if θ ∈ Is1···sn .

Let us check the following;

φn : [0, 1) → S is well defined and measurable for all n ≥ 1. (8.28)

(φn(θ))n≥1 is a Cauchy sequence for for all θ ∈ [0, 1). (8.29)

By (8.25) and (8.26), any θ ∈ [0, 1) belongs to a unique interval Is1···sn . Therefore, φn is well
defined. The measurability is obvious, since φn is a constant sn on each measurable set Is1···sn .
To see (8.29), just observe that

φm+n(θ) ∈ Qφ1(θ),...,φm+n(θ) ⊂ Qφ1(θ),...,φn(θ),

and hence by (8.24) that
dist.(φm+n(θ), φn(θ)) ≤ 2−n.

Step 4: By, (8.29) and (8.29), we can define a measurable map φ : [0, 1) → S by φ(θ) =
limn→∞ φn(θ) for all θ ∈ [0, 1). Let us see that φ satisfies (8.10). To do so, take f ∈ Cb(S)
and define a set

N0 = ∪n≥1 ∪s1∈C ∪s2∈C(s1) . . . ∪sn∈C(s1,...,sn−1) N ∪Ns1 ∪Ns1s2 ∪ . . . ∪Ns1...sn

which is µ-measure zero, and function fn : S\N0 → R by

fn(x) =
∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)1{x ∈ Qs1,...,sn},

which is well defined, by (8.21) and (8.23). Moreover, we see from (8.24) that

lim
n→∞

fn(x) = f(x) for all x ∈ S\N0. (8.30)

Therefore,

Ef(φ(U)) = lim
n→∞

Ef(φn(U)) by definition of φ,

= lim
n→∞

∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)|Is1,...,sn| by definition of φn,

= lim
n→∞

∑
s1∈C

∑
s2∈C(s1)

. . .
∑

sn∈C(s1,...,sn−1)

f(sn)µ(Qs1,...,sn) by (8.27),

= lim
n→∞

∫
fndµ by definition of fn,

=

∫
fdµ by (8.30).

This proves (8.10) (cf. Lemma 1.3.2). \(∧2
∧)/
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8.5 Complement to Section 1.9� �
Lemma 8.5.1 Suppose that q ≥ 2 is an integer and that V =

∑
k≥1 q

−kYk, where {Yk}k≥1

are {0, 1, . . . , q−1}-valued r.v. and V is a [0, 1)-valued r.v. Then, the following conditions
are related as “ (a1) & (a2) ⇐⇒ (b)”;

a1) {Yk}k≥1 are i.i.d.

a2) Yk is uniformly distributed, i.e., P{Yk = s} = q−1 for any s = 1, . . . , q − 1.

b) V is uniformly distributed on [0, 1).� �
Proof: (a1) & (a2) ⇒ (b) : Suppose that (a1) & (a2) holds. Then, (Xn)n≥1 in Example

1.9.1 and (Yn)n≥1 have the same distribution. Therefore, U and V have the same distribution,
which proves (b).

(b) ⇒ (a1) & (a2) : Suppose that (b) holds. Then, outside an event

∪n≥1 ∪0≤s≤qn−1 {V = sq−n},
and therefore for P -almost all ω ∈ Ω, Yk(ω) is uniquely determied as the kth digit of the q-adic
expansion of the number V (ω). We therefore see from (1.75) that (Xn)n≥1 in Example 1.9.1
and (Yn)n≥1 have the same distribution, which proves (a1) & (a2). \(∧2

∧)/

Exercise 8.5.1 Check an alternative proof of Lemma 8.5.1, (a1) & (a2) ⇒ (b) presented
below. It is enough to prove that for any t ∈ [0, 1)

P{V ≤ t} = t (8.31)

(cf. Exercise 1.3.2). Let us expand t ∈ [0, 1) as t =
∑∞

k=1 q
−ksk (sk ∈ {0, . . . , q − 1}) and

denote the left-hand side of (8.31) by f(s1, s2, . . .). We will prove that

f(s1, s2, . . .) = q−1s1 + q−1f(s2, s3, . . .). (8.32)

We have that

{U ≤ t} = {Y1 < s1} ∪

{
Y1 = s1,

∞∑
k=2

q−kYk ≤
∞∑
k=2

q−ksk

}

= {Y1 < s1} ∪

{
Y1 = s1,

∞∑
k=1

q−kYk+1 ≤
∞∑
k=1

q−ksk+1

}
. (8.33)

We are now going to use the two facts;

i) Y1 and (Yk+1)
∞
k=1 are independent,

ii) (Yk+1)
∞
k=1 and (Yk)

∞
k=1 have the same distribution.

Facts (i),(ii) and (8.33) imply that

P{V ≤ t} = P{Y1 < s1}+ P{Y1 = s1}P

{
∞∑
k=1

q−kYk+1 ≤
∞∑
k=1

q−ksk+1

}
by (i)

= s1q
−1 + q−1P

{
∞∑
k=1

q−kYk ≤
∞∑
k=1

q−ksk+1

}
by (ii)

= s1q
−1 + q−1f(s2, s3, . . .), (8.34)
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which proves (8.32).
With (8.32) in hand, proof of (8.31) is easy. In fact, we have for any n = 1, 2, . . .

f(s1, s2, . . .) =
n∑

k=1

q−ksk + q−nf(sn+1, sn+2, . . .) (8.35)

by induction. Then (8.32) follows by letting n↗ ∞. \(∧2
∧)/

8.6 Convolution

Definition 8.6.1 For Borel finite measures {µj}nj=1 on Rd, their convolution µ1 ∗ · · · ∗ µn is a
Borel finite measure defined by

(µ1 ∗ · · · ∗ µn)(B) =
(
⊗n

j=1µj

) {
(xj)

n
j=1 ∈ (Rd)n ; x1 + . . .+ xn ∈ B

}
, B ∈ B(Rd). (8.36)

Suppose that Rd-valued r.v.’s {Xj}nj=1 are independent and P{Xj ∈ ·} = µj. We then have
by Proposition 1.6.1 that

P (X1 + . . .+Xn ∈ ·) = µ1 ∗ · · · ∗ µn. (8.37)� �
Lemma 8.6.2 (a) For Borel finite measures µ1, µ2 on Rd,

(µ1 ∗ µ2)
∧(θ) = µ̂1(θ)µ̂2(θ) for all θ ∈ Rd. (8.38)

(b) Suppose that µj (j = 1, 2) are Borel finite measures on Rd with density fj with respect
to the Lebesgue measure (j = 1, 2). Then µ1 ∗ µ2 has a density

(f1 ∗ f2)(x) =
∫
f1(x− y)f2(y)dy (8.39)

with respect to the Lebesgue measure.

(c) Suppose that µj (j = 1, 2) are Borel finite measures on Rd such that µj(B) =∑
x∈Zd∩B fj(x) for some fj : Zd → [0,∞) for all B ∈ B(Rd). Then, µ1 ∗ µ2(B) =∑
x∈Zd∩B(f1 ∗ f2)(x) for all B ∈ B(Rd), where

(f1 ∗ f2)(x) =
∑
y∈Zd

f1(x− y)f2(y)dy. (8.40)

� �
Proof: It is easy to see (8.38). (8.39) can be seen as follows;

µ1 ∗ µ2(B) =

∫
µ1 ⊗ µ2(dzdy)1B(z + y)

=

∫
f1(z)f2(y)dzdy1B(z + y)

=

∫
f1(x− y)f2(y)dxdy1B(x)

=

∫
B

(f1 ∗ f2)(x)dx. (8.41)
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The proof of (8.40) is similar to that of (8.39). \(∧2
∧)/

Example 8.6.3 Let χ1 and χ2 be independent Gaussian r.v.’s such that P (χj ∈ ·) = νVj

(j = 1, 2). Then, by Exercise 2.2.4,

P (χ1 + χ2 ∈ ·) = νV1 ∗ νV2 = νV1+V2 . (8.42)

Example 8.6.4 Let X and Y be independent real r.v.’s such that P ((X,Y ) ∈ ·) = γr,a⊗ γr,b.
Then, by Example 1.7.5,

P (X + Y ∈ ·) = γr,a ∗ γr,b = γr,a+b. (8.43)

Example 8.6.5 Then, by (1.65),

P (N1 +N2 ∈ ·) = πr1 ∗ πr2 = πr1+r2 . (8.44)

Exercise 8.6.1 Suppose that r.v.’s Uj (j = 1, 2) are independent and have the uniform dis-
tribution on an interval [a, b], i. e., P{Uj ∈ B} =

∫
B
u(t)dt for all B ∈ B(R) (j = 1, 2), where

u(t) = (b − a)−11[a,b](t). Prove then that the r.v.U1 + U2 has the triangular distribution on
[2a, 2b], i. e.,

P{U1 + U2 ∈ B} =

∫
B

v(t)dt, (8.45)

where

v(t) = (u ∗ u)(t) = t− 2a

(b− a)2
1[2a,a+b](t) +

2b− t

(b− a)2
1[a+b,2b](t).

Then, conclude from (2.7) and (8.45) that

v̂(θ) = û(θ)2 =
(

exp(iθb)−exp(iθa)
(b−a)θ

)2
. (8.46)

Exercise 8.6.2 Suppose that Xj (j ≥ 1) are r.v.’s with P{Xj ∈ ·} = µj ∈ P(Rd,B(Rd)) and
that N is a r.v. with (r)-Poisson distribution (cf. (1.18)). Suppose also that {N,X1, X2, . . .}
are independent. Prove then that

P{X1 + . . .+XN ∈ ·} =
∑
n≥1

e−rrn(µ1 ∗ · · · ∗ µn)/n! (8.47)

The distribution on the right-hand side of (8.47) is called the compound Poisson distribution.
Poisson distribution is a compound Poisson distribution with Xj ≡ 1.

8.7 Independent Families of Random Variables

Definition 8.7.1 a) Independent events: Suppose that A ⊂ F . Then, A said to be inde-
pendent, if

P (∩A∈A0A) =
∏
A∈A0

P (A) for any finite subset A0 in A. (8.48)

b) Independence for families of events: Suppose that Aλ ⊂ F for each λ ∈ Λ. Then, the
families {Aλ}λ∈Λ are said to be quasi-independent, if

{Aλ}λ∈Λ ⊂ F is independent in the sense of (a) for any Aλ ∈ Aλ (λ ∈ Λ). (8.49)

The families {Aλ}λ∈Λ are said to be independent if the σ-algebras {σ[Aλ]}λ∈Λ are quasi-
independent.
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Remark: 1) The condition (8.49) does not imply that {σ[Aλ]}λ∈Λ are independent σ-algebras
(cf. Exercise 8.7.2). This is the reason we do not define it as the “independence” for the families
{Aλ}λ∈Λ. If {Aλ}λ∈Λ are σ-algebras, then the notion of independence and quasi-indpendence
coincide.

2) The terminology “quasi independence” does not appear in standard text books in prob-
ability theory. It is introduced by the author of this notes for the convenience.

Exercise 8.7.1 Prove the following: (i) σ[{A}] = {∅,Ω, A,Ac} for a set A. (ii) ForA ⊂ F , the
following conditions (a)–(c) are equivalent. (a):A is independent. (b):{1A}A∈A are independent
r.v.’s. (c):{σ[{A}]}A∈A are independent σ-algebras.

Exercise 8.7.2 In the setting of Definition 8.7.1(a), events in A ⊂ F are (or A is) said to be
pairwise independent, if any two events in A are independent. Consider a probability space
(Ω,F , P ) defined by Ω = {0, 1, 2, 3}, F = 2S and P ({i}) = 1/4 for i ∈ Ω. Check the following
statements for events A1 = {1, 2}, A2 = {2, 3} and A3 = {3, 1}.
i) {Ai}3i=1 are pairwise independent, but not independent in the sense of Definition 8.7.1 (a).
ii) A1 = {A1} and A23 = {A2, A3} are quasi-independent in the sense of Definition 8.7.1 (b).
iii) σ(A1) = {∅,Ω, A1, A

c
1} and σ(A23) = F . In particular, σ(A1) and σ(A23) are not indepen-

dent while A1 and A23 are quasi-independent.

Remark: In Exercise 8.7.2, P (B|A1) = P (B) for all B ∈ A23, but not for all B ∈ σ(A23). In
particlar, {B ∈ F ; P (B|A1) = P (B)} is not a σ-algebra. cf. Lemma 1.3.1.

Throughout this subsection, we consider the following items;

� A probability space (Ω,F , P ),

� Measurable spaces {(Sλ,Bλ)}λ∈Λ indexed by a set Λ,

� R.v. Xλ : Ω → Sλ for each λ ∈ Λ.

Definition 8.7.2 A σ-algebra:

σ
[
X−1

λ (Bλ) ; Bλ ∈ Bλ, λ ∈ Λ
]

(8.50)

is called the σ-algebra generated by maps {Xλ}λ∈Λ and is denoted by

σ [{Xλ}λ∈Λ] or σ [Xλ ; λ ∈ Λ] .

The σ-algebra σ [{Xλ}λ∈Λ] (cf. (8.50)) is all the information needed to know how the values
of {Xλ}λ∈Λ for all λ are distributed at the same time.
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� �
Proposition 8.7.3 For a disjoint decomposition Λ = ∪γ∈ΓΛ(γ) of the index set Λ, the
following conditions are equivalent:

a) The σ-algebras
σ[Xλ ; λ ∈ Λ(γ)], γ ∈ Γ

are independent (cf. Definition 8.7.1(b)).

b) R.v.’s {X̃}γ∈Γ defined by

X̃γ : ω 7→ (Xλ(ω))λ∈Λ(γ) ∈
∏

λ∈Λ(γ)

Sλ, γ ∈ Γ. (8.51)

are independent.� �
Definition 8.7.4 Families of r.v.’s

{Xλ ; λ ∈ Λ(γ)}, γ ∈ Γ (8.52)

in Proposition 8.7.3 are said to be independent if they satisfy one of (therefore all of) conditions
in the corollary.

Proof of Proposition 8.7.3: The equivalence is a consequence of Proposition 1.6.1 and an
identity σ[X̃γ] = σ[Xλ ; λ ∈ Λ(γ)], which can be seen from Lemma 1.5.2. \(∧2

∧)/

Remarks:
1) The independence of the families of r.v.’s (Definition 8.7.4) can be considered as is a special

case of the independence of r.v.’s (Proposition 1.6.1), if we consider r.v.’s {X̃}γ∈Γ defined by
(8.51).

2) In the setting of Proposition 8.7.3, let us consider the following condition:

{Xλ(γ)}γ∈Γ are independent r.v.’s for any choice of λ(γ) ∈ Λ(γ) (γ ∈ Γ). (8.53)

This condition follows from the independence of the families (8.52). However, the converse is
not true. A counterexample is again provided by Exercise 8.7.2. Consider {1A1} and {1A2 , 1A3}
there. Since, {Ai}3i=1 are pairwise independent, we have (8.53) by Exercise 8.7.1. However,
{1A1} and {1A2 , 1A3} are not independent, since σ[{A1, A2}] = 2Ω.

Exercise 8.7.3 Suppose that (Xn)n≥1 are Rd-valued independent r.v.’s and let Sn = X1 +
· · ·+Xn. Prove then that, for each fixed m ≥ 1, two families of r.v.’s

{Sn}mn=1, {Sn+m − Sm}n≥1

are independent. Hint: Note that σ({Sn}mn=1) = σ({Xn}mn=1) and that σ({Sn+m − Sm}n≥1) =
σ({Xn+m}n≥1). Then, use Exercise 1.6.9.
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8.8 (⋆) Order Statistics

Example 8.8.1 X1, . . . , Xn be real i.i.d. such that F (t) = P (Xi ≤ t) is continuous in t ∈
R. Define Xn,k to be the k-th smallest number in {X1, . . . , Xn} (k = 1, . . . n). Then the
distribution of Xn,k can be computed as:

P{Xn,k ∈ A} = n

(
n− 1
k − 1

)
E
[
F (X1)

k−1 (1− F (X1))
n−k 1{X1 ∈ A}

]
A ∈ B(R).

Proof: An rough explanation can be given as follows. First of all, there are n ways to choose
Xn,k form X1, ..., Xn and the probability of all such selections are the same (This explains the

first factor n). Now, suppose that X1 = Xn,k. Then, there are

(
n− 1
k − 1

)
ways to choose k−1

numbers from X2, ..., Xn which are smaller than X1 and again by symmetry, these selections

have equal probability (This explains the factor

(
n− 1
k − 1

)
). Finally, once such k−1 numbers

are choosen, say, X2, ..., Xk, then, the probability that

X2, ..., Xk < X1 < Xk+1, ...., Xn, and X1 ∈ A

is E[F (X1)
k−1 (1− F (X1))

n−k : X1 ∈ A].
We now present a less intuitive, but mathematically clearer proof. Let Sn denote the set

of all permutation of {1, 2, ..., n}. Then,

P{Xn,k ∈ A}
=

∑
σ∈Sn

P{Xσ(1) < Xσ(2) < ... < Xσ(k) < ... < Xσ(n), Xσ(k) ∈ A}

=
∑
σ∈Sn

∫
A

P{Xσ(k) ∈ dx}P{Xσ(1) < Xσ(2) < ... < Xσ(k−1) < x < Xσ(k+1) < ... < Xσ(n)}

=
∑
σ∈Sn

∫
A

P{Xσ(k) ∈ dx}P{Xσ(1) < Xσ(2) < ... < Xσ(k−1) < x}P{x < Xσ(k+1) < ... < Xσ(n)}

=
∑
σ∈Sn

∫
A

P{Xσ(k) ∈ dx}F (x)
k−1

(k − 1)!

(1− F (x))n−k

(n− k)!

= n!

∫
A

P{X1 ∈ dx}F (x)
k−1

(k − 1)!

(1− F (x))n−k

(n− k)!

= n

(
n− 1
k − 1

)
E
[
F (X1)

k−1 (1− F (X1))
n−k 1{X1 ∈ A}

]
.

\(∧2
∧)/

Exercise 8.8.1 Let U1, . . . , Un be i.i.d. with uniform distribution on [0, 1] and X1, . . . , Xn+1

be i.i.d. with P (Xi ∈ ·) = γr,1, cf. (1.27). Define Un,k to be the k th smallest number in

{U1, . . . , Un} (k = 1, . . . n). Prove then that (Un,k)
n
k=1 and (

∑k
j=1Xj/

∑n+1
j=1 Xj)

n
k=1 have the

same distribution on Rn. In particular, P (Un,k ∈ ·) = βk,n+1−k by Example 1.7.5.
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8.9 Proof of the Law of Large Numbers: L1 Case

We may and will assume that Xn ≥ 0. In fact, X+
n = max{Xn, 0} and X−

n = max{−Xn, 0}
satisfy the assumption of the theorem and Xn = X+

n −X−
n . Therefore, it is enough to prove

the theorem for X±
n separately. Define r.v.’s Yn and Tn by :

Yn = Xn1{Xn ≤ n}, Tn = Y1 + . . .+ Yn.

We first observe that

1)
∑
n≥1

1{Xn 6= Yn} <∞ a.s.

This can be seen as follows;

E
∑
n≥1

1{Xn 6= Yn}
Fubini
=

∑
n≥1

P{Xn 6= Yn}

≤
∑
n≥1

P{Xn > n} =
∑
n≥1

P{X1 > n}

≤
∑
n≥1

∫ n

n−1

dtP{X1 > t} =

∫ ∞

0

dtP{X1 > t}

(1.11)
= EX1 <∞,

which in particular implies (1).
We see from (1) that Theorem 1.10.2 follows from:

2) lim
n→∞

Tn
n

= E[X1] a.s.

We first prove (2) along the subsequence l(n) = bqnc, where q > 1:

3) lim
n→∞

Tl(n)
l(n)

= E[X1] a.s.

Since
EYn = EXn1{Xn ≤ n} = EX11{X1 ≤ n} → EX1,

we have

lim
n→∞

E[Tn]

n
= EX1.

Thus, (3) follows from:

4) lim
n→∞

Tl(n) − E[Tl(n)]

l(n)
= E[X1] a.s.

To show (4), we prepare the following estimate:

5) var (Tn) ≤ nE[X2
11{X1 ≤ n}]
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Indeed,

var (Tn)
(1.54)
=

n∑
j=1

var (Yj) ≤
n∑

j=1

E[Y 2
j ]

=
n∑

j=1

E[X2
11{X1 ≤ j}] ≤ nE[X2

11{X1 ≤ n}].

We next observe that

6)
∑

n:l(n)≥x

1

l(n)
≤ 2q

(q − 1)x
for any x > 0.

In fact, let M be the smallest n ∈ N such that l(n) ≥ x. Then, qM ≥ x. Note also that
l(n) ≥ qn/2 for all n ∈ N. Thus,∑

n:l(n)≥x

1

l(n)
≤ 2

∑
n≥M

q−n = 2q−M
∑
n≥0

q−n ≤ 2q

(q − 1)x
.

With (5) and (6), we proceed as follows:

E
∑
n≥1

∣∣∣∣Tl(n) − E[Tl(n)]

l(n)

∣∣∣∣2 =
∑
n≥1

l(n)−2var (Sl(n))
(5)

≤ E

[
X2

1

∑
n≥1

l(n)−11{X1 ≤ n}

]
(6)

≤ 2q

q − 1
E[X1] <∞.

This implies that
∑

n≥1

∣∣∣Tl(n)−E[Tl(n)]

l(n)

∣∣∣2 <∞, P -a.s. and therefore (4).

Finally, we get rid of the subsequence in (3). For any n, there is a unique integer k such
that

l(k) ≤ n < l(k + 1).

We have by the positivity of {Xm} that

l(k + 1)−1Tl(k) ≤ n−1Tn ≤ l(k)−1Tl(k+1).

By letting n↗ ∞, we see from (3) that

q−1EX1 ≤ lim
n↗∞

n−1Tn ≤ lim
n↗∞

n−1Tn,≤ qEX1,

which conclude the proof, since q > 1 is arbitrary. \(∧2
∧)/
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9 Appendix to Sections 2

We prepare

1) ht ∗ f −→ f in L1(Rd) as t→ 0, where ht(x) = (2πt)−d/2 exp(−|x|2/2t)

We have that

|ht ∗ f − f |(x) ≤
∫
Rd

ht(y)|f(x− y)− f(x)|dy =

∫
Rd

h1(y)|f(x−
√
ty)− f(x)|dy

and hence

2)

∫
Rd

|ht ∗ f − f |(x)dx ≤
∫
Rd

h1(y)gt(y)dy where gt(y) =

∫
Rd

|f(x−
√
ty)− f(x)|dx.

We have for any y ∈ Rd that

lim
t→0

gt(y) = 0 and 0 ≤ gt(y) ≤ 2

∫
Rd

|f(x)|dx.

Thus, by (2) and the dominated convergence theorem,

lim
t→0

∫
Rd

|ht ∗ f − f |(x)dx = 0.

We set f∨(x) = (2π)−df̂(−x) (x ∈ Rd). We will next show that:

3) f ∗ ht = (f∧h∧t )
∨, where ht(x) = (2πt)−d/2 exp(−|x|2/2t) (x ∈ Rd, t > 0).

By (2.10),

4) h∧t (θ) = exp(−t|θ|2/2).

Using (2.10) again, we see that ht = h∧∨t . Therefore,

f ∗ ht(x) = f ∗ h∧∨t (x)

= (2π)−d

∫
f(x− y)dy

∫
exp(−iθ · y)︸ ︷︷ ︸

=exp(−iθ·x) exp(i(θ·(x−y)))

h∧t (θ)dθ

Fubini
= (2π)−d

∫
exp(−iθ · x)h∧t (θ)dθ

∫
f(x− y) exp(i(θ · (x− y)))dy︸ ︷︷ ︸

=f∧(θ)

= (f∧h∧t )
∨(x).

We see from (4) and the dominated convergence theorem that

lim
t→0

(f∧h∧t )
∨(x) = f∧∨(x) for all x ∈ Rd.

Combining this, (1) and (3), we arrive at f∧∨ = f ,a.e., which is (2.37). \(∧2
∧)/
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9.1 Weak Convergence of Finite Measures on a Metric Space� �
Theorem 9.1.1 Let S is a metric space with the metric ρ, and let µn (n = 0, 1, ..) be
finite Borel measures on S. Then, the following conditions are equivalent.

a1) ∫
fdµn

n→∞−→
∫
fdµ0 (9.1)

for any bounded Borel f : S → R for which the set of discontinuities is a µ0-null set.

a2) (9.1) holds for all f ∈ Cb(S).

a3) (9.1) holds for all bounded, Lipschitz continuous f : S → R.

b1)
µ0(B

◦) ≤ lim
n→∞

µn(B) ≤ lim
n→∞

µn(B) ≤ µ0(B) for any Borel B ⊂ S. (9.2)

b2) µn(B)
n→∞−→ µ0(B) for any Borel B ⊂ S such that µ0(∂B) = 0.� �

Proof: a1) ⇒ a2) ⇒ a3), and b1) ⇒ b2) are obvious.
a3) ⇒ b1): We see from the proof of Lemma 1.3.2 that

1) for any closed F ⊂ S, there is a sequence of Lipschitz continuous fm : S → [0, 1] such that
fm ↘ 1F .

and hence that

2) for any open G ⊂ S, there is a sequence of Lipschitz continuous gm : S → [0, 1] such that
gm ↗ 1G.

By taking F = B in 1), we have that

µ0(B)
1)
= lim

m→∞

∫
fmdµ0

a3)
= lim

m→∞
lim
n→∞

∫
fmdµn ≥ lim

n→∞
µn(B) ≥ lim

n→∞
µn(B).

Similarly, by taking G = B◦ in 2), we have that

µ0(B
◦)

2)
= lim

m→∞

∫
gmdµ0

a3)
= lim

m→∞
lim
n→∞

∫
gmdµn ≤ lim

n→∞
µn(B

◦) ≤ lim
n→∞

µn(B).

b2) ⇒ a1): Let Df = {x ∈ S ; f is discontinuous at x}, which is a µ0-null set. We first verify
that

3) ∂f−1(A) ⊂ Df ∪ f−1(∂A) for any A ⊂ R.

Let us show 3) in the form ∂f−1(A)\Df ⊂ f−1(∂A). Indeed, if x ∈ ∂f−1(A)\Df , there are
sequences xn → x, yn → x such that f(xn) ∈ A and f(yn) 6∈ A. Since f is continuous at x, we
have

f(x) = lim
n→∞

f(xn) ∈ A, f(x) = lim
n→∞

f(yn) 6∈ A◦,
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hence f(x) ∈ ∂A.
We next note that the set

Ef = {t ∈ R ; µ(f−1(t)) > 0}

is at most countable, since Ef is exactly the set of discontinuities of the bounded monotone
function t 7→ µ(f−1([0, t])). We see from this observation that, for any ε > 0 there are
c1, ..., ck ∈ R\Ef such that

f(S) ⊂ [c1, ck), 0 < cj+1 − cj < ε, j = 1, ..., k − 1.

Let fε : S → R be defined by

fε =
k−1∑
j=1

cj1f−1(Ij), with Ij = [cj, cj+1).

Then, supS |f − fε| ≤ ε. Note also that

∂f−1(Ij)
3)
⊂ Df ∪ f−1({cj, cj+1}),

and hence that µ0(∂f
−1(Ij)) = 0. Therefore, as n→ ∞,

∆n,ε
def
=

∣∣∣∣∫ fεdµn −
∫
fεdµ0

∣∣∣∣ ≤ k−1∑
j=1

|cj|µn(f
−1(Ij))− µ0(f

−1(Ij))|
b2)−→ 0.

Finally, we write∣∣∣∣∫ fdµn −
∫
fdµ0

∣∣∣∣ ≤ ∫ |f − fε|dµn +∆n,ε +

∫
|f − fε|dµ0 ≤ ∆n,ε + 2ε.

By letting n→ ∞ first, and then ε↘ 0, we get (9.1). \(∧2
∧)/

9.2 Some Results from Fourier Transform� �
Theorem 9.2.1 (Lévy’s convergence theorem) Let µn ∈ P(Rd) (n ∈ N) and f : Rd →
C. Suppose that lim

n→∞
µ∧
n(θ) = f(θ) for all θ ∈ Rd and that the convergence is uniform in

|θ| ≤ δ for some δ > 0. Then, there exists a µ ∈ P(Rd) such that f = µ∧.� �� �
Theorem 9.2.2 (Bochner’s theorem) Let f ∈ Cb(Rd → C). Then, the following are
equivalent:

a) There exists a finite measure µ on Rd such that f = µ∧.

b) For any N ∈ N\{0} and x1, ..., xN ∈ Rd, the N × N matrix (f(xi − xj))
N
i,j=1 is non-

negative definite.� �
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10 Appendix to Section 3

10.1 True d-dimensionality and Aperiodicity

Definition 10.1.1 A random walk in Rd is said to be truly d-dimensional if

Θ1
def.
= {θ ∈ Rd ; θ ·X1 = 0, P -a.s.} = {0}. (10.1)

Condition (10.1) says that the random walk is not confined in a subspace with positive codi-
mension.� �
Lemma 10.1.2 Consider a random walk such that E[|X1|2] < ∞, and denote its mean
vector by m and the covariance matrix by V .

a)

Θ2
def
= {θ ∈ Rd ; θ · V θ = 0}
= {θ ∈ Rd ; θ · (X1 −m) = 0, P -a.s.}
= {θ ∈ Rd ; θ · (X1 −X2) = 0, P -a.s.}.

b) If detV > 0, then the random walk is truly d-dimensional.

c) If the random walk is truly d-dimensional and m = 0, then detV > 0.� �
Proof: a): It is easy to see that for θ ∈ Rd,

θ · V θ = E
[
|(X1 −m) · θ|2

]
= 1

2
E
[
|(X1 −X2) · θ|2

]
,

from which the equalities follow.
b): detV > 0 is equivalent to that Θ2 = {0}. Hence, it is enough to prove that Θ1 ⊂ Θ2. But
this is clear from a).
c): If m = 0, then a) shows that Θ1 = Θ2. \(∧2

∧)/

Example 10.1.3 Suppose that P (X1 ∈ {0,±e1, ...,±ed}) = 1 and set p(x) = P (X1 = x)
(x ∈ Zd). Then, the random walk is truely d-dimensional iff

p(eα) ∨ p(−eα) > 0 for all α = 1, ..., d. (10.2)

(See also Example 3.2.3.)

Proof: Suppose (10.2) and define, for α = 1, ..., d,

ẽα =

{
eα if p(eα) > 0,
−eα if p(eα) = 0 and p(−eα) > 0.

Then, {ẽα}dα=1 is a basis of Rd. Now, take any θ ∈ Θ1. Then, θ · ẽα = 0 for all α = 1, ..., d,
since p(ẽα) > 0. Hence θ = 0.　
Suppose on the contrary that (10.2) fails. Then, there is an α = 1, ..., d such that p(±eα) = 0.
Then, eα ∈ Θ1. \(∧2

∧)/
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� �
Proposition 10.1.4 Let (Sn)n≥0 be a truly d-dimensional random walk with ν = P{X1 ∈
·}. Then,

a) There exist δi > 0, i = 1, 2 such that

1− Reν̂(θ) ≥ δ1|θ|2 if |θ| ≤ δ2. (10.3)

b) The random walk is transient if d ≥ 3.� �
Proof: a) The proof is based on the observation that the expectation E [|σ ·X1|2] (can be

+∞, but) can never be zero for σ 6= 0. Recall that

1− cos t = 2 sin2(t/2) ≤ t2/2, t ∈ R, (10.4)

| sin t| ≥ 2

π
|t|, |t| ≤ π

2
. (10.5)

We now use (10.4) and (10.5) as follows;

1− Reν̂(θ) = E[1− cos(θ ·X1)]

= 2E[sin2(θ ·X1/2)]

≥ 2E

[
4

π2

|θ ·X1|2

4
: |θ ·X1| ≤ π

]
=

2|θ|2

π2
F (|θ|, θ/|θ|),

where on the last line, we have introduced

F (δ, σ) = E
[
|σ ·X1|2 : |σ ·X1| ≤ π/δ

]
,

δ > 0, σ ∈ Sd−1 = {y ∈ Rd ; |y| = 1}.

Hence it is enough to show that there exists δ2 > 0 such that

inf{F (δ, σ) ; δ < δ2, σ ∈ Sd−1} > 0. (10.6)

Since F (δ, σ) is decreasing in δ, (10.6) is equivalent to;

inf{F (δ, σ) ; σ ∈ Sd−1} > 0 for some δ > 0. (10.7)

We prove (10.7) by contradiction. Suppose that (10.7) is false. Then, there is δn ↘ 0 and
{σn}n≥1 ⊂ Sd−1 such that lim

n→∞
F (δn, σn) = 0. By the compactness of Sd−1 and by taking a

subsequence, we may assume that lim
n→∞

σn = σ for some σ ∈ Sd−1. Then, by Fatou’s lemma,

lim
n→∞

F (δn, σn) ≥ E
[
|σ ·X1|2

]
6= 0,

which is a contradiction.
b) This follows from (10.3) and Proposition 3.4.1 with α = 2. \(∧2

∧)/

Definition 10.1.5 � For Zd-valued random walk, we define

Rn = {z ∈ Zd ; P{Sn = z} > 0}. (10.8)
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� A Zd-valued random walk is said to be aperiodic if

{x− y ; x, y ∈ ∪n≥1Rn} = Zd. (10.9)

If otherwise, the random walk is called periodic.

Remark 1) The left-hand side of (10.9) is nothing but the Abelian subgroup of Zd generated
by R1.
2) The definition of aperiodicity is the same as that in [Spi76, page 20]. However, the aperiodic-
ity defined here is weaker notion than the “aperiodicity” as a Markov chain. The “aperiodicity”
as a Markov chain is called “strong aperiodicity” in [Spi76, page 42].� �
Lemma 10.1.6 Let (Sn)n≥0 be a Zd-valued random walk.

(a)
Rn = {x1 + ...+ xn ; xi ∈ R1}. (10.10)

(b) (Sn)n≥0 is truly d-dimensional if and only if R1 contains a linear basis of Rd.

(c) Aperiodicity implies true d-dimensionality.� �
Proof: (a) & (b): Obvious from the definitions.

(c): This follows from (a),(b) and simple linear algebra. \(∧2
∧)/

Example 10.1.7 If {e1, ..., ed} ⊂ R1, where ei = (δij)
d
i=1 ∈ Zd, we then see from (10.10) that

the random walk is aperiodic. In particular, the simple random walk is aperiodic.

� �
Proposition 10.1.8 Let (Sn)n≥0 be an aperiodic random walk with with ν = P{X1 ∈ ·}.
Then,

a)
{θ ∈ Rd ; ν̂(θ) = 1} = {2πm ; m ∈ Zd}. (10.11)

b) There exists δ > 0 such that

1− Reν̂(θ) ≥ δ|θ|2 if θ ∈ [−π, π]d. (10.12)

c) The random walk is transient if d ≥ 3.� �
Proof: a) Let (S ′

n)n≥0 be an independent copy of (Sn)n≥0. We first observe that

∪n,n′≥0{x ∈ Zd ; P{Sn − S ′
n′ = x} > 0} = Zd. (10.13)

This can be seen as follows. For any x ∈ Zd, there are n, n′ ≥ 0 and y ∈ Rn, y
′ ∈ Rn′ such

that x = y − y′. Then,

P{Sn − S ′
n′ = x} ≥ P{Sn = y, S ′

n′ = y′}
= P{Sn = y}P{S ′

n′ = y′} > 0.
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We also observe that for t ∈ R and a real r.v. X,

E exp(iX) = exp(it) ⇐⇒ E cos(X − t) = 1 ⇐⇒ X ∈ {t+ 2πm}m∈Z, P -a.s. (10.14)

Let S ′
n = X ′

1 + ...+X ′
n. We then have that

ν̂(θ) = 1 ⇐⇒ E exp(iθ ·X1) = E exp(iθ ·X ′
1) = 1

⇐⇒ E exp(iθ · Sn) = E exp(iθ · S ′
n′) = 1, for all n, n′ ≥ 1,

⇒ E exp(iθ · (Sn − S ′
n′)) = 1, for all n, n′ ≥ 1,

⇐⇒ θ · (Sn − S ′
n′) ∈ {2πm}m∈Z, P -a.s. for all n, n′ ≥ 1, by (10.14)

⇐⇒ θ · x ∈ {2πm}m∈Z, for all x ∈ Zd, by (10.13)

⇐⇒ θ ∈ {2πm}m∈Zd

b) We see from (10.3) that (10.12) is valid for |θ| ≤ δ2. We next prove (10.3) for the case
|θ| ≥ δ2. By (10.11), {θ ∈ πI ; ν̂(θ) = 1 } = {0}. Therefore, if we set K = {θ ∈ πI ; |θ| ≥ δ2},
then θ ∈ K 7→ 1− Reν̂(θ) attains a positive minimum =: δ3 > 0. Hence for |θ| ≥ δ2,

1− Reν̂(θ) ≥ δ3 ≥ δ3δ
−1
2 |θ|2.

c) This follows from (10.12) and Proposition 3.4.1 with α = 2.
\(∧2

∧)/

10.2 Strong Markov Property for IID Sequence� �
Lemma 10.2.1 (Strong Markov Property) Let (S,B) be a measurable space and Xn :
Ω → S, n ∈ N\{0} be i.i.d. Suppose that T is a stopping time such that P (T < ∞) > 0.
Then, under the measure P (·|T <∞),

a) FT and (XT+n)n≥1 are independent,

b) (XT+n)n≥1 is an i.i.d. ≈ X1.� �
Proof: It is enough to prove that

1) P (A ∩ {(XT+k)
n
k=1 ∈ B} | T <∞) = P (A | T <∞)P ((Xk)

n
k=1 ∈ B)

for all A ∈ FT , n ≥ 1 and B ∈ B (Sn). This can be seen as follows,

P ({T <∞} ∩ A ∩ {(XT+k)
n
k=1 ∈ B})

=
∑
m≥1

P ({T = m} ∩ A ∩ {(Xm+k)
n
k=1 ∈ B})

=
∑
m≥1

P ({T = m} ∩ A)P ((Xm+k)
n
k=1 ∈ B)

= P ({T <∞} ∩ A)P ((Xk)
n
k=1 ∈ B).

which is equivalent to 1). \(∧2
∧)/
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Exercise 10.2.1 The purpose of this exercise is to illustrate that property (a) in Lemma
10.2.1 is not true in general if we assume {Xn}n≥1 just to be independent (not necessarily
identically distributed). Consider Sn = X1 + . . . + Xn where {Xn}n≥1 are {1, 2}-valued in-
dependent r.v.’s such that P (Xj = 1) = 1/2, (j ≤ 2) P (Xk = 1) = p (k ≥ 3). We set
t = inf{n ≥ 1 |Sn ≥ 2 }. Prove then that two events {T = 1} and {XT+1 = 1} are indepen-
dent if and only if p = 1/2.

10.3 Green Function and Hitting Times

Exercise 10.3.1 Prove that for any x, y ∈ Rd,

1− h(x+ y) ≥ max{P{Tx < Tx+y}(1− h(y)), P{Ty < Tx+y}(1− h(x))}. (10.15)

Hint: Let us prove that 1 − h(x + y) ≥ P{Tx < Tx+y}(1 − h(y)). To do so, we may assume
that h(x) > 0 (P{Tx < Tx+y} = 0 if otherwise). Since h(x) = P{Tx <∞}, we have

1− h(x+ y) = P{Tx+y = ∞}
≥ P{Tx < Tx+y, T̃y = ∞},

where
T̃y = inf{n ≥ 1 ; XTx+1 + . . .+XTx+n = y}.

Therefore, by Lemma 10.2.1,

P{Tx <∞, T̃y = ∞} = P{Tx < Tx+y}P{T̃y = ∞ | Tx <∞}
= P{Tx < Tx+y}P{Ty = ∞}
= P{Tx < Tx+y}(1− h(y)).

By exchanging the role of x and y, we also see that 1− h(x+ y) ≥ P{Ty < Tx+y}(1− h(x)).

Exercise 10.3.2 Use a similar argument in the proof (10.15) to show that

h(x+ y) ≥ h(x)h(y) for any x, y ∈ Rd. (10.16)

Exercise 10.3.3 Generalize (3.13) by showing

hs(z) = s(1− hs(0))P{X1 = z}+ sPhs(z −X1), z ∈ Rd, 0 ≤ s < 1. (10.17)

Exercise 10.3.4 Consider a symmetric, Zd-valued, aperiodic random walk such thatE[|X1|2] <
∞.

i) Use (3.29) to prove that

P{Sn = x} = (2π)−d

∫
πI

dθ cos(θ · x)ν̂(θ)n (10.18)

Hint: P{Sn = x} = 1
2
P{Sn = x}+ 1

2
P{Sn = −x} by symmetry.
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ii) Use (10.18) to show that the following for any d ≥ 1;

a(x)
def.
= lim

n→∞

n∑
k=0

{P (Sk = 0)− P (Sk = x)} (10.19)

= (2π)−d

∫
πI

dθ
1− cos(θ · x)

1− ν̂(θ)
, (10.20)

= lim
s↗1

(gs(0)− gs(x)). (10.21)

The function a(x) is called the potential kernel of the random walk. Hint: Use (10.12) and an
inequality 1− cos(θ · x) ≤ (θ · x)2/2 to prove∫

πI

dθ sup
0≤s≤1

∣∣∣∣1− cos(θ · x)
1− sν̂(θ)

∣∣∣∣ <∞. (10.22)

Then, use (10.18), (10.22) and the dominated convergence theorem to prove (10.20) and
(10.21).

Remark 10.3.1 i) We will see in (10.24) that a(z) has the following probabilistic meaning;

a(z) = E

[
Tz−1∑
n=0

1{Sn = 0}

]
/(1 + h(z)).

ii) The symmetry we have assumed to prove the existence of the limit (10.19) is not essential,
but to simplify the discussion for d = 1. In fact, for d ≥ 2, we can prove the existence of
the limit (10.19) and (10.21) without symmetry by (3.29), since |1− exp(iθ ·x)| ≤ |θ ·x|.
Even for d = 1, it is known that the limit (10.19) exists without symmetry [Spi76, page
352].

Exercise 10.3.5 Consider a Z-valued random walk such that P{X1 = 0} = r and P{X1 =
±1} = 1−r

2
. Use Exercise 3.4.3 and (10.21) to compute a(x) in Exercise 10.3.4 explicitly;

a(x) = |x|/(1− r).

Exercise 10.3.6 Consider a symmetric, Zd-valued, aperiodic random walk such thatE[|X1|2] <
∞. Use (10.21) and (3.43) to prove that

g
Zd\{z}
1 (x, y) = a(z − x) + h(z − x)a(y − z)− a(y − x). (10.23)

and in particular (x = y = 0 6= z) that

a(z) = g
Zd\{z}
1 (0, 0)/(1 + h(z)). (10.24)

Exercise 10.3.7 Consider a symmetric, Zd-valued, aperiodic random walk such thatE[|X1|2] <
∞. Use (10.21) and (3.43) to prove that, if A ⊂ Zd is finite, then

a(y − x) = −gA1 (x, y) +
∑

z∈Zd\A

HA
1 (x, z)a(y − z), x, y ∈ A. (10.25)

cf. [Law91, Proposition 1.6.3] for the simple random walk case.
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