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Abstract

Friendly walkers is a stochastic model obtained from independent one-

dimensional simple random walks {Sk
j }j≥0, k = 1, 2, . . . , d by introducing

“non-crossing condition”: S1
j ≤ S2

j ≤ . . . ≤ Sd
j , j = 1, 2, . . . , n and “re-

ward for collisions” characterized by parameters β2, . . . , βd ≥ 0. Here, the

reward for collisions is described as follows. If, at a given time n, a site in

Z is occupied by exactly m ≥ 2 walkers, then the site increases the prob-

abilistic weight for the walkers by multiplicative factor exp(βm) ≥ 1. We

study the localization transition of this model in terms of the positivity

of the free energy and describe the location and the shape of the critical

surface in the (d − 1)-dimensional space for the parameters (β2, . . . , βd).
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1 Introduction

1.1 The model

Friendly walkers is a stochastic model studied in connection with the Domany-

Kinzel model, directed percolation, wetting and various other models; See [2, 5, 7]

and references therein. Roughly speaking, the d-friendly walkers (of the length

n) is obtained from independent one-dimensional simple random walks {Sk
j }j≥0,

k = 1, 2, . . . , d by introducing the following additional rules:

• Non-crossing condition; the walkers are conditioned to preserve the order

S1
j ≤ S2

j ≤ . . . ≤ Sd
j , j = 1, 2, . . . , n. This restriction makes the walkers

repel each other to avoid violating the order.

• Reward for collisions; We introduce an attractive interaction among the

walkers characterized by parameters β2, . . . , βd ≥ 0 as follows. If, at a

given time n, a site in Z is occupied by exactly m ≥ 2 walkers, then

the site increases the probabilistic weight for the walkers by multiplicative

factor exp(βm) ≥ 1.
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The localization transition we will be discussing in this paper is the consequence

of the above two competing effects.

To give a precise definition of this model, we start by introducing a d-

dimensional random walk (Sj, P
x
d ) such that the coordinates {Sk

j }j≥0, k = 1, 2, . . . , d,

are independent simple random walks on Z. To be consistent with the non-

crossing condition and to ensure the possibility of collisions for d ≥ 2, we always

take the starting point x from the set;

Zd
≤

def.
= {x = (xk)d

k=1 ∈ Zd ;
xk+1 − xk

2
∈ N, j = 1, . . . , d}, (1.1)

where N = {0, 1, 2, . . .}. For d = 1, we agree with the convention: Z1
≤ = Z1. We

will refer to the number d as the “dimension” of the model.

The reward for collisions is described by a parameter β = (β2, β3, . . . , βd) ∈
[0,∞)d−1 and the parameter comes into play with the random walk (Sj, P

x
d ) as

follows. We define the multiplicity of a site z ∈ Z for a state x ∈ Zd by

m(x, z) = ]{1 ≤ k ≤ d : xk = z}. (1.2)

We then define

β2 β3

β2

S3S3

S1

S2

β2

β2

Figure 1: An example of 3-friendly walkers.
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χj =
∑

z∈Z : m(Sj ,z)≥2

βm(Sj ,z), (1.3)

Ln =
n−1∑
j=0

χj, n ≥ 1, (1.4)

zn,d(β) = exp(Ln)1{Sj ∈ Zd
≤, j = 1, 2, . . . , n}, n ≥ 1, (1.5)

z0,d(β) = 1, (1.6)

where 1{· · · } denotes the indicator function.

In this paper, we are concerned with the existence and the the positivity of

the free energy:

ψd(β) = lim
n→∞

1

n
ln Zx

n,d(β),

where Zx
n,d(β) is the partition function

Zx
n,d(β) = P x

d [zn,d(β)]. (1.7)

Note that zn,1 ≡ 1 for d = 1 and hence trivially, ψ1 ≡ 0. We sometimes drop

parameters d and β from the notations, if it does not generate confusion.

Definition 1.1 The system is said to be localized if ψd(β) > 0 and delocalized

if ψd(β) = 0.

Plausibility of this terminology might be explained as follows. Consider a prob-

ability measure µx
n, x ∈ Zd

≤, defined by

µx
n(dω) =

1

Zx
n,d(β)

P x
d [zn,d(β) : dω]. (1.8)

We look at the paths under this probability measure. Then, as is usual the case

with models in statistical mechanics, we see competition of energy (=−Ln, in

this case) and entropy.

• The entropy is maximized when the walkers travel separately as they would

do if β2 = . . . = βd = 0, with only a small number of collisions which can

be ignored in a macroscopic scale. In this case, the “width” Sj+1
n − Sj

n,

1 ≤ j ≤ d − 1, should diverge as n ↗ ∞ (delocalization). On the other
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hand, this strategy does not let the walkers pick up much reward, and

therefore, can be optimal only when βk’s are small so that the gain in

entropy makes up the loss in energy.

• The strategy for walkers to minimize the energy (i.e., maximize the reward)

is to travel together, so that they can collect as much reward as possible.

In this case, the “width” of the group of walkers should remain small as

n ↗ ∞ (localization). On the other hand, this strategy lowers the entropy

considerably, and therefore, can be optimal only when βk’s are large so that

the gain in energy exceeds the loss in entropy.

Then problem now is to determine which strategy becomes “typical” depending

on the choice of βk’s. The answer to this question is believed to be given by the

positivity of the free energy mentioned above. In fact, it is known [3, 4] for d = 2

that

ψ2(β2) =

0, if β2 ≤ ln 4
3
,

ln{ eβ2

4
(1 +

√
eβ2

eβ2−1
)} > 0, if β2 > ln 4

3
.

(1.9)

The corresponding pathwise descriptions are obtained by Isozaki and Yoshida [4]

as follows;

• For β2 ≤ ln(4/3), the width (S2
j −S1

j )
n
j=1 diverges like

√
n, and, if properly

scaled (i.e., divided by
√

n), converges to Brownian meander if β2 < ln(4/3)

and to reflecting Brownian motion if β2 = ln(4/3).

• For β2 > ln(4/3), the profile of the width (S2
j − S1

j )
n
j=1 remains bounded

and converges to an exponentially mixing Markov chain.

For higher dimensions, we have a set of thermodynamic parameters (β2, . . . , βd),

so that we should have a critical surface in [0,∞)d−1 as the boundary between the

delocalization and localization region. In this paper, we describe the shape and

the location of the critical surface (Theorem 1.2) by studying how the free energy

depends on the parameters (Theorem 1.1). In some situation, the information

we obtain on the critical surface is good enough to determine exactly when

localization occurs, e.g., in d = 3 (cf. Figure2) and in Corollary 1.1 below.
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Remark 1.1 Consider the mesure µn without the reward for collisions, i.e.,

β2 = . . . = βd = 0. In this setting, Katori and Tanemura [6] recently prove a

functional central limit theorem for the process (Sj)1≤j≤n for arbitrary d ≥ 2

with the non-intersecting Brownian motion as the scaling limit. We expect the

same limit theorem for all β in the interior of the delocalized region.

Remark 1.2 Our original formulation of the friendly walkers was based on

a d-dimensional random walk conditioned to stay above diagonal. We remark

that the model can be reformulated in terms of a (d − 1)-dimensional nearest

neighbor random walk conditioned to stay in the first quadrant Nd−1. Define a

map Υd : Rd −→ Rd−1 by

Υd(y
1, y2, . . . , yd) = (

y2 − y1

2
,
y3 − y2

2
, . . . ,

yd+1 − yd

2
).

Then (ΥdSj)j≥1 is a (d − 1)-dimensional nearest neighbor random walk. The

non-crossing condition reads:

ΥdSj ∈ Nd−1, j = 1, 2, . . . , n. (1.10)

In this way, the friendly walkers model can be translated into a random walk

in the first quadrant with attractive interactions with the boundary ∂Nd−1 =

∪d−1
i=1 {x ∈ Nd−1 ; xi = 0}.

1.2 Main Results

For d ≥ 2 and n ≥ 1, a vector k = (ku)
n
u=1 ∈ {1, 2, . . . , d}n is said to be a

partition of d with length n, if
∑

1≤u≤n ku = d. The length of a partition k is

denoted by n(k). In particular, the number d in itself can be considered as an

partition of d with n(d) = 1. For a partition k of d, we introduce an event

∆n,k =

n(k)∩
α=1

{Si
n = Si′

n if
α−1∑
u=1

ku + 1 ≤ i ≤ i′ ≤
α∑

u=1

ku}. (1.11)

In particular, ∆n,d = {S1
n = S2

n = . . . = Sd
n}.

Theorem 1.1 Let d ≥ 2 and β = (β2, β3, . . . , βd) ∈ [0,∞)d−1.
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(a) The following limit exists and is independent of a partition k of d and an

initial configuration x ∈ Zd
≤;

ψd(β) = lim
n→∞

1

n
ln P x

n,d[zn,d(β) : ∆n,k]. (1.12)

In particular,

ψd(β) = lim
n→∞

1

n
ln Zx

n,d(β). (1.13)

(b) It holds for any partition k of d that

ψd(β) ≥
n(k)∑
α=1

ψkα(β2, β3, . . . , βkα). (1.14)

Although ψk, 1 ≤ k ≤ d is a function of (β2, β3, . . . , βk), we often regard them as

functions of β = (β2, β3, . . . , βd).

Inequality (1.14) is the main point in this paper. It enables us to describe

the shape and location of the critical surface as follows. Let η be the first hitting

time to the diagonal set;

η = inf{n ≥ 1 : Sn ∈ Zd
diag.}, (1.15)

where Zd
diag. = {x ∈ Zd x1 = x2 = . . . = xd}. We then introduce the following

power series in s ∈ [0, 1];

Ŵs,d(β2, . . . , βd−1) =
∑
n≥1

snP 0
d [zn,d(β2, . . . , βd−1, 0) : η = n] ∈ (0,∞]. (1.16)

Theorem 1.2 For d ≥ 2, define a concave, decreasing function βcrit
d : [0,∞)d−2 −→

[−∞,∞) by

βcrit
d (β2, . . . , βd−1) =

 ln 4
3
, if d = 2,

− ln
(
Ŵ1,d(β2, . . . , βd−1)

)
∈ [−∞,∞), if d ≥ 3.

(1.17)

Then, it enjoys the following properties;

(a)

βcrit
d (β∗

2 , . . . , β
∗
d−1) ≥ β∗

d , where β∗
d = ln

2d

d + 1
> 0. (1.18)
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(b) ψd(β2, . . . , βd) > 0 if and only if βd > βcrit
d (β2, . . . , βd−1).

(c) ψd(β2, . . . , βd) > 0 if βk > βcrit
k (β2, . . . , βk−1) for some k = 2, . . . , d.

Remark 1.3 The important point here is not just the existence of the lo-

calization transition, but the information we get on the precise location and the

shape of the critical surface. In fact, it is not difficult to prove by a simple per-

turbative argument that, if all βk’s are small (resp. large), then ψd(β) = 0 (resp.

ψd(β) > 0). The argument of this kind, however, does not seem to provide any

information on the precise location or the shape of the critical surface.

Remark 1.4 The meaning of β∗
d can best be explained by the following iden-

tity whose proof is elementary:

P
(x1,...,xd)
d {S1 ∈ Zd

≤} =
∏
z∈Zd

m(x, z) + 1

2m(x,z)
. (1.19)

We see from (1.19) that, in Zn with β = (β∗
k)

d
k=2, the amount of the mass an-

nihilated by non-crossing restriction is exactly compensated by the creation due

to Ln.

Remark 1.5 Part (a) of the above theorem can be made more precise;

βcrit
d (β∗

2 , . . . , β
∗
d−1)

{
= β∗

d if d = 2, 3,

> β∗
d if d ≥ 4.

The proof is based on the following observation. If β = (β∗
k)

d
k=2, then the process

(ΥdS̃j)j≥1 referred to in Remark 1.2 is a reversible Markov chain under the the

measure (1.8). It is not difficult to see that the Markov chain is recurrent for

d = 2, 3 and is transient for d ≥ 4.

Consider now a special case βk = (k−1)β2, k = 2, . . . , d, in which the reward for

a collision is propotional to the multiplicity. This is in fact the “friendly walkers”

in the sense of [5] (with p = exp(−β2) and τ = 1 in notations there), for which

we have the following.
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βcrit
3 (β2)

ln2

β2

β3

ln4
3

delocalized

Figure 2: The delocalized phase for 3-friendly walkers.

Corollary 1.1

ψd (β2, 2β2, . . . , (d − 1)β2) > 0 if and only if β2 > ln(4/3). (1.20)

Proof. The “if” part follows immediately from Theorem 1.2 (c). Suppose that

β2 ≤ β∗
2 . Since β∗

k > (k − 1)β∗
2 ≥ (k − 1)β2, we see that

βcrit
d (β2, 2β2, . . . , (d − 2)β2) ≥ βcrit

d (β∗
2 , . . . , β

∗
d−1)

≥ β∗
d

> (d − 1)β2,

and hence that ψd (β2, 2β2, . . . , (d − 1)β2) = 0 by Theorem 1.2(b). ¤

2 Proof of Theorems

2.1 Proof of Theorem 1.1(a)

Since 1 =
∑

k 1∆n,k
, (1.13) follows from (1.12). To prove (1.12), we will use the

following notations;

Zx
n,d(A) = P x

d [zn,d : A], for an event A,

Zx,y
n,d = P x

d [zn,d : Sn = y] for y ∈ Zd
≤.
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Step1: We first prove that lim
n→∞

1

n
ln Z0

n,d(∆n,d) exists. Note first that Zx
n,d(∆n,d) =

Z0
n,d(∆n,d) for any x ∈ Zd

diag.. We use this to show that n 7→ Z0
n,d(∆n,d) is super-

multiplicative; for any m, n ≥ 1,

Z0
m+n,d(∆m+n,d) ≥

∑
y∈Zd

diag.

Z0,y
m,dZ

y
n,d(∆n,d)

= Z0
m,d(∆m,d)Z

0
n,d(∆n,d).

Step2: We next show that

lim
n→∞

(
1

n
ln Zx

n,d(∆n,k) −
1

n
ln Z0

n,d(∆n,k)

)
= 0, (2.1)

for any x ∈ Zd
≤. Note first that

Rx
m

def.
= {z ∈ Zd

≤ ; Zx,z
m,d > 0} 3 0 for some m ≥ 1.

If n > m, we have

Zx
n,d(∆n,k) =

∑
z∈Rx

m

Zx,z
m Zz

n−m,d(∆n−m,k)

≥
(

min
z∈Rx

m

Zx,z
m,d

)
Z0

n−m,d(∆n−m,k).

This, together with the similar argument with the role of x and 0 exchanged,

proves (2.1).

Step3: Lastly, we show that for any partition k of d,

lim
n→∞

1

n
ln Z0

n,d(∆n,k) = lim
n→∞

1

n
ln Z0

n,d(∆n,d).

Since ∆n,k ⊃ ∆n,d, it is enough to prove that

lim
n→∞

1

n
ln Z0

n,d = lim
n→∞

1

n
ln Z0

n,d(∆n,d). (2.2)

Clearly, lim inf
n→∞

1

n
ln Z0

n,d ≥ lim
n→∞

1

n
ln Z0

n,d(∆n,d). We have on the other hand that

Z0
2n,d(∆2n,d) ≥ Zy

2n,d(S2n = 0)

≥ max
y∈Zd

≤

Z0,y
n,dZ

y
n,d(Sn = 0)

≥ e−βd max
y∈Zd

≤

(Z0,y
n,d)

2

≥ e−βdn−2d(Z0
n,d)

2,
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which implies lim sup
n→∞

1

n
ln Z0

n,d ≤ lim
n→∞

1

n
ln Z0

n,d(∆n,d). ¤

2.2 Proof of Theorem 1.1(b)

We will use the following notation in what follows;

Λ`,n(I, {aj}, {bj}) = {|Si
j − aj| < bj, ` ≤ ∀j ≤ n, i ∈ I},

for sequences {aj}, {bj}, ` ≥ 1, and a subset I ⊂ Id ≡ {1, 2, . . . , d}.

Lemma 2.1 Let {aj}j≥1 ⊂ N be such that a0 = 0 and aj − aj−1 ∈ {0, 1}. Then,

Pd[zn,d : Λ0,n(Id, {aj}, {bj}) ∩ ∆n,d]

≥
(
2−d

)an
Pd[zn−an,d : Λ0,n−an(Id, {0}, {bj}) ∩ ∆n−an,d], (2.3)

for any increasing positive sequence {bj}j≥1

Proof: Let {tj}j≥1 = {1 ≤ j ≤ n ; aj − aj−1 = 0}. We define a random walk U

by

Uj = (St1 − St1−1) + . . . + (Stj − Stj−1).

On an event defined by

Ξn = {Sj − Sj−1 = (1, 1, . . . , 1) if 1 ≤ j ≤ n and aj − aj−1 = 1},

we have

Sj = Uj−aj
+ aj(1, 1, . . . , 1), 1 ≤ j ≤ n.

Therefore,

zn,d[S] ≥ zn−an,d[U ] on Ξn,

∆n,d ∩ Ξn = {U1
n−an

= U2
n−an

. . . = Ud
n−an

} ∩ Ξn,

Λ0,n(Id, {aj}, {bj}) ∩ Ξn = {|U i
j−aj

| < bj, 1 ≤ ∀j ≤ n, i ∈ Id} ∩ Ξn

⊃ {|U i
j | < bj, 1 ≤ ∀j ≤ n − an, i ∈ Id} ∩ Ξn.

Since U is independent of Ξn and has the same law as S, (2.3) follows from the

observation above. ¤
We will also use the following lemma whose proof is given in Section 2.4.
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Lemma 2.2 For any d ≥ 2, β ∈ [0,∞)d−1 and γ > 1
2
,

lim
`→∞

lim
n→∞

1

n
ln P 0

d [zn,d(β) : ∆n,d ∩ Λ0,n (Id, {0}, {(j + `)γ})] = ϕd(β). (2.4)

Proof of Theorem 1.1(b): We introduce sequences {Rα
j }j≥0, α = 1, 2, . . . , n(k) of

N such that

R1
j ≡ 0, Rα

0 ≡ 0, Rα
j+1 − Rα

j ∈ {0, 1}, 1 ≤ α ≤ n(k), j ≥ 1

Rα
j+1 − Rα

j ≤ Rα+1
j+1 − Rα+1

j , 1 ≤ α ≤ n(k) − 1, j ≥ 1

2jγ + 2 ≤ Rα+1
j − Rα

j ≤ 2jγ + 3, j ≥ L, 1 ≤ α ≤ n(k) − 1,

for some L ≥ 1 and γ ∈ (1
2
, 1). Note that for j ≥ L and 1 ≤ α < α′ ≤ n(k),

{z ∈ Z : |Rα
j − z| < jγ + 1} ∩ {z ∈ Z : |Rα′

j − z| < jγ + 1} = ∅. (2.5)

We now introduce index sets Iα
k =

{∑α−1
u=1 ku + j

}kα

j=1
, 1 ≤ α ≤ n(k). Then by

the Markov proprety, we have

P 0
d [zn,d(β) : ∆n,k]

≥ P 0
d

zn,d(β) : ∆n,k ∩
n(k)∩
α=1

Λ`,n

(
Iα
k , {Rα

j }, {jγ + 1}
)

= P 0
d

z`,d(β)P S`
d

zn−`,d(β) : ∆n−`,k ∩
n(k)∩
α=1

Λ0,n−`

(
Iα
k , {Rα

j+`}, {(j + `)γ + 1}
) .

By (2.5) and independence of {Si}, i = 1, 2, . . . , d, for ` ≥ L

P x
d

zn−`,d(β) : ∆n−`,k ∩
n(k)∩
α=1

Λ0,n−`

(
Iα
k , {Rα

j+`}, {(j + `)γ + 1}
)

=

n(k)∏
α=1

P
Γα
kx

kα

[
zn−`,kα(β) : ∆n−`,kα ∩ Λ0,n−`

(
Ikα , {Rα

j+`}, {(j + `)γ + 1}
)]

,

where Γα
kx = (xi)i∈Iα

k
∈ Zkα . For any ` > L we can take y ∈ Zd

≤ such that

P 0
d [S` = y] > 0 and

Γα
ky = (Rα

` , Rα
` , . . . , Rα

` ) or (Rα
` + 1, Rα

` + 1, . . . , Rα
` + 1), (2.6)

12



1 ≤ α ≤ n(k). Hence

P 0
d [zn,d(β) : ∆n,k] ≥ P 0

d [z`,d(β) : S` = y]

×
n(k)∏
α=1

P
Γα
ky

kα

[
zn−`,kα(β) : ∆n−`,kα ∩ Λ0,n−`

(
Ikα , {Rα

j+`}, {(j + `)γ + 1}
)]

.

By shifting the space by −Γα
ky1, from (2.6) we have

P
Γα
ky

kα

[
zn−`,kα(β) : ∆n−`,kα ∩ Λ0,n−`

(
Ikα , {Rα

j+`}, {(j + `)γ + 1}
)]

≥ P 0
kα

[
zn−`,kα(β) : ∆n−`,kα ∩ Λ0,n−`

(
Ikα , {Rα

`+j,`}, {(j + `)γ}
)]

, (2.7)

where Rα
n,` = Rα

n − Rα
` . By (2.3), applied to aj = Rα

`+j,`, we see that the last

displayed expectation is bounded from below by(
2−d

)Rα
n,` P 0

kα

[
zn−`−Rα

n,`
(β) : ∆n−`−Rα

n,`,kα ∩ Λ0,n−`−Rα
n,`

(Ikα , {0}, {(j + `)γ})
]
.

Noting that γ < 1 and Rα
n,`/n → 0, n → ∞, form the inequalities above we have

lim inf
n→∞

1

n
ln P 0

d [zn,d(β) : ∆n,k]

≥
n(k)∑
α=1

lim inf
n→∞

1

n
ln P 0

kα
[zn,kα(β) : ∆n,kα ∩ Λ0,n (Ikα , {0}, {(j + `)γ})] ,

for any ` > L. Therefore, (1.14) follows from Lemma 2.2. ¤

2.3 Proof of Theorem 1.2

We first show the following expansion formula for the generating function of

P 0
n,d[zn,d(β) : ∆n,d], n ≥ 1.

Lemma 2.3 ∑
n≥1

snP 0
n,d[zn,d(β) : ∆n,d] =

∑
m≥1

[eβdŴs,d(β)]m, (2.8)

where Ŵs,d(β) is defined by (1.16). In particular, ψd(β) is characterized by the

relation;

exp (−ψd(β)) = sup{s : eβdŴs,d(β) < 1}. (2.9)
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Proof. We set

η0 ≡ 0 and ηj = inf{k > ηj−1 : Sk ∈ Zd
diag.}, j ≥ 1. (2.10)

We then see that if x ∈ Zd
diag., then

Wn(β)
def.
= P x[zn,d(β2, β3, . . . , βd−1, 0) : η1 = n]

does not depend on x. Therefore, by the Markov property,

P 0
n,d[zn,d(β) : ∆n,d]

=
n∑

m=1

∑
0=i0<i1<···<im−1<im=n

P 0[zn(β) : η1 = i1, η2 = i2, . . . , ηm = im]

=
n∑

m=1

eβdm
∑

0=i0<i1<···<im−1<im=n

m∏
k=1

P 0[zik−ik−1
(β2, . . . , βd−1, 0) : η1 = ik − ik−1]

=
n∑

m=1

eβdm
∑

j1,j2,...,jm≥1
j1+j2+···+jm=n

Wj1(β)Wj2(β) . . .Wjm(β).

The desired equality (2.8) is now immediately obtained by computing the gener-

ating function of the right-hand-side. By Theorem 1.1, exp(−ψd) gives the radius

of convergence of the power series on the left-hand-side of (2.8). We therefore

see (2.9) from (2.8). ¤
Proof of Theorem 1.2: (b): By (2.9), the positivity of ψd(β) is equivalent to

that

Ŵs(β) > exp (−βd) for some s < 1. (2.11)

On the other hand, we have by monotone convergence theorem that

lim
s↗1

Ŵs(β) = Ŵ1(β) = exp
(
−βcrit

d (β2, . . . , βd−1)
)
. (2.12)

If βd > βcrit
d (β2, . . . , βd−1), then we see from (2.12) that (2.11) holds. Conversely,

if (2.11) holds true, then Ŵ1(β) > exp(−βd), and hence βd > βcrit
d (β2, . . . , βd−1).

(a): It is not difficult to see from (1.19) that

Zx
n(β∗

2 , . . . , β
∗
d) = Zx

1 (β∗
2 , . . . , β

∗
d), n ≥ 1

and hence that ψd(β
∗
2 , . . . , β

∗
d) = 0. We therefore have β∗

d ≤ βcrit
d (β∗

2 , . . . , β
∗
d−1)

by part (b).

(c): This follows from part (b) and (1.14). ¤
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2.4 Proof of Lemma 2.2

We first introduce an event

Θn,M = ∆n,d ∩ {ηm − ηm−1 ≤ M, 0 ≤ m ≤ τn} (2.13)

where ηm, m ≥ 0 are stopping times defined by (2.10) and

τn(S) = max{m : ηm ≤ n}. (2.14)

We will use the following lemma which relates ψd(β) with P 0
d [zn,d(β) : Θn,M ].

Lemma 2.4

ψd(β) = lim
M→∞

lim
n→∞

1

n
ln P 0

d [zn,d(β) : Θn,M ]. (2.15)

Proof. The first limit (in n) on the right-hand-side exists by the superadditivity

while the second one (in M) by monotonicity. To identify the limit, take any

c < ψd(β). Then, by Lemma 2.3, we can take a positive integer M = M(c) such

that
M(c)∑
n=1

e−cnP 0[zn,d(β2, β3, . . . , βd−1, 0) : η1 = n]eβd ≥ 1.

By the same procedure to show Lemma 2.3 we have

lim
n→∞

1

n
ln P 0

d [zn,d(β) : Θn,M ] ≥ c.

This proves (2.15). ¤
Proof of Lemma 2.2: We write Λ0,n,` = Λ0,n(Id, {0}, (j + `)γ) for simplicity.

By Lemma 2.4, our task is reduced to proving the following statement: for given

M > 0, there exists a constant L(M) such that if ` > L(M), then

P 0[zn,d(β) : ∆n ∩ Λ0,n,`] ≥
1

2
P 0

d [zn,d(β) : Θn,M ], n ≥ 1. (2.16)

Proof of (2.16): First we introduce spaces of d-dimensional finite paths W(n),

W+(n), n ≥ 1 defined by

W(n) = {w = {wj}n
j=1 : |wi

j − wi
j−1| = 1, 1 ≤ j ≤ n, 1 ≤ i ≤ d,

w0, wn ∈ Zd
diag.},

W+(n) = {w ∈ W(n) : w0 = 0, wj 6∈ Zd
diag., 1 ≤ j ≤ n − 1}.
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For w′ ∈ W(n1) and w′′ ∈ W(n2), n1, n2 ≥ 1, w′ · w′′ represent the path in

W(n1 + n2) defined by

(w′ · w′′)j =

w′
j, if 0 ≤ j ≤ n1,

w′
n1

+ w′′
j−n1

− w′′
0 , if n1 ≤ j ≤ n1 + n2.

Recall that we have defined stopping times ηm by (2.10) and suppose that Sn = 0.

Then we define w(m) ∈ W+(ηm − ηm−1), 1 ≤ m ≤ τn as

w(m)j = Sηm−1+j − Sηm−1 , 0 ≤ j ≤ ηm − ηm−1.

It is clear that Sj = (w(1) · w(2) · · ·w(τn))j, for 0 ≤ j ≤ n. We introduce a map

r from W+(n) to W+(n) defined by

(rw)j = wn−j − wn, 0 ≤ j ≤ n, w ∈ W+(n).

(0,0)

(n,−w1
n)

rw

(n,w1
n)

(0,0)

w

Figure 3: Examples of w and rw.

For ξ = (ξm) ∈
∏

m≥1{−1, +1}, we define Sξ inductively by

Sξ
j =


Sξ

ηm−1
+ w(m)j−ηm−1 , if ηm−1 ≤ j ≤ ηm, ξm = 1, 1 ≤ m ≤ τn,

Sξ
ηm−1

+ (rw(m))j−ηm−1 , if ηm−1 ≤ j ≤ ηm, ξm = −1, 1 ≤ m ≤ τn,

Sξ
n + Sj − Sn, if j > n.
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w(1)

w(3)

w(2)

S

w(1)

w(3)rw(2)

Sξ

Figure 4: Examples of S and Sξ, in the case that τn = 3, ξ1 = 1, ξ2 = −1 and

ξ3 = 1.

Now, let ξ1, ξ2, . . . be i.i.d. random variable on a probability space (Ξ,G, Q)

such that Q(ξm = ±1) = 1/2. Note that zn(β)[S·] = zn(β)[Sξ
· ] and that S ∈

Θn,M ⇐⇒ Sξ ∈ Θn,M . We therefore have that

P 0
d [zn,d(β) : ∆n ∩ Λ0,n,`] ≥ P 0

d [zn,d(β) : Θn,M ∩ Λ0,n,`]

=

∫
Q(dξ)P 0

d [zn,d(β) : Θn,M ∩ {Sξ ∈ Λ0,n,`}].

In what follows, we will assume that `γ > 4M . We define Um(S) = Sd
ηm

for

m = 1, . . . , τn. We then see that

Θn,M ⊂
n∩

j=1

d∩
α=1

{|(Sξ)α
j − Uτj

(Sξ)| ≤ M}.

and hence that
τn∩

m=1

{|Um(Sξ)| ≤ (m + `)γ − M} ∩ Θn,M ⊂ {Sξ ∈ Λ0,n,`} ∩ Θn,M .

This implies that∫
Q(dξ)P 0

d [zn,d(β) : Θn,M ∩ {Sξ ∈ Λ0,n,`}] ≥ P 0
d [zn,d(β)ρ`(S) : Θn,M ], (2.17)

where

ρ`(S) = Q

(
τn∩

m=1

{|Um(Sξ)| ≤ (m + `)γ − M}

)
.
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Since

Um(Sξ) − Um−1(S
ξ) = (Um(S) − Um−1(S)) ξi,

the process (Um(Sξ))τn
m=1 is of independent increments bounded by M . We can

therefore use Azuma’s inequality [1, page85] together with observation (m+`)γ−
M ≥ (mγ ∨ `γ)/2 and |Um(Sξ)| ≤ mM to conclude that

1 − ρ`(S) ≤
τn∑

m=1

Q{|Um(Sξ)| > (m + `)γ − M}

≤
τn∑

m=[`γ/2M ]

Q{|Um(Sξ)| > mγ/2}

≤
∑

m≥[`γ/2M ]

exp
(
−m2γ−1/8

)
≤ 1/2,

if ` is large enough. We now obtain (2.4) by plugging this into (2.17). ¤

3 Remarks

By the free energies we define the following regions;

D0 = {β ∈ [0,∞)d−1 : ψd(β) = 0},

Dd = {β ∈ [0,∞)d−1 : ψd(β) > ψk(β), for any partition k 6= d of d},

where ψk =
∑n(k)

i=1 ψki
. We call D0 the delocalized phase in accordance with

Definition 1.1 and Dd the completely localized phase. For a partition k 6= d of d,

we define intermediate phase Dk as the interior of

{β ∈ [0,∞)d−1 \ D0 : ψd(β) = ψk(β)}.

It is a very interesting problem to study the phases Dk, k 6= d.

In the case d = 3, there is one intermediate phase D(2,1) = D(1,2). We call the

region the phase of 2-walkers collision. D(2,1) 6= ∅ if and only if

∂

∂β3

ψ3(β2, β3) = 0, (3.1)
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for some β2 > βcrit
2 and β3 ≥ 0. We expect the condition holds for (β2, β3) in a

small neighborhood of (βcrit
2 , 0).

In the case d = 4, there are two intermediate phases D(2,2), D(3,1) = D(1,3).

D(2,2) 6= ∅ if and only if

∂

∂β3

ψ4(β2, β3, β4) =
∂

∂β4

ψ4(β2, β3, β4) = 0, (3.2)

for some β2 > βcrit
2 and β3, β4 ≥ 0. D(3,1) 6= ∅ if and only if

∂

∂β2

ψ4(β2, β3, β4) =
∂

∂β4

ψ4(β2, β3, β4) = 0, (3.3)

for some (β2, β3, β4) with ψ3(β2, β3) > 2ψ2(β2) and β4 ≥ 0. We also expect that

the condition (3.2) holds for (β2, 0, 0) ∈ D(2,2), for sufficiently large β2, and the

condition (3.3) holds for (0, β3, β4) in a small neighborhood of (0, βcrit
3 (0), 0).
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