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Abstract

We consider directed polymers in random environment. Under some mild assump-
tions on the environment, we prove here: (i) equivalence between the decay rate of the
partition function and some natural localization properties of the path, (ii) some quan-
titative estimates of the decay of the partition function in dimensions one or two, or at
sufficiently low temperature, (iii) the existence of quenched free energy. In particular, we
generalize to general environments, the results recently obtained by P. Carmona and Y.
Hu for a Gaussian environment. Our approach is based on martingale decomposition and
martingale analysis. It leads to a natural, asymptotic relation between the partition func-
tion, and the probability that two polymers in the same environment, but independent
otherwise, end up at the same point.
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1 Introduction and Main Results

1.1 Directed Polymers in Random Environment

The models we consider in this paper are defined in terms of a random walk and of a random
environment, which we introduce now:

• The random walk: ({Sn}n≥0, {P x}x∈Zd) is a simple random walk on the d-dimensional
integer lattice Zd. More precisely, let Ω be the path space Ω = {ω = (ωn)n≥0; ωn ∈
Zd, n ≥ 0}, let F be the cylindric σ-field on Ω, and, for all n ≥ 0, Sn : ω 7→ ωn the
projection map. For any x ∈ Zd we consider the unique probability measure P x on
(Ω,F) such that S1 − S0, . . . , Sn − Sn−1 are independent and

P x{S0 = x} = 1, P x{Sn−Sn−1 = ±δj} = (2d)−1, j = 1, 2, . . . , d,

where δj = (δkj)
d
k=1 is the j-th vector of the canonical basis of Zd. For x = 0 we will

write simply P by P 0.

• The random environment: ξ = {ξ(x, n) : x ∈ Zd, n ≥ 1} is a sequence of random
variables which are real valued, non-constant, and i.i.d. defined on a probability space
(Ξ, E , Q) such that

Q[exp(βξ(x, n))] < ∞ for all β ∈ R. (1.1)

(Throughout, Q[Y ] denotes the Q-expectation of a r.v. Y .) Let λ(β) be the logarithmic
moment generating function of ξ(x, n),

λ(β) = ln Q[exp(βξ(x, n))], β ∈ R. (1.2)

For any n > 0, define the probability measure µn on the path space (Ω,F)

µn(dω) = P [en]−1en P (dω), (1.3)

where

en = en(ξ, S) = exp

( ∑
1≤j≤n

(βξ(Sj, j)− λ(β))

)
(1.4)

with a parameter β ∈ R. Here, the graph {(Sj, j)}j≥0 may be interpreted as a polymer chain
living in the (d + 1)-dimensional space, constrained to stretch in the (d + 1)-th direction, and
governed by the Hamiltonian

−β
∑
j≥1

ξ(Sj, j) ,

i.e. the so-called directed polymer in the environment ξ. Note that the term λ(β), from the
exponent in (1.4), cancels out in definition (1.3) of µn. The reason why to add it in (1.4),
is to normalize P [en], which has now expectation equal to 1. If β > 0, then the parameter
β > 0 plays the role of the inverse temperature in this interpretation. Since this Hamiltonian is
parametrized by ξ, the polymer measure µn is random. The polymer is attracted to sites where
the random environment is large and positive, and repelled by sites where the environment is
large and negative. Here are two standard choices for ξ.
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Example 1.1 Gaussian environment (Carmona and Hu, 2001) This is the case in which
ξ(x, n) is a standard normal random variable, so that λ(β) = 1

2
β2.

Example 1.2 Bernoulli environment (Bolthausen 1989, Imbrie and Spencer 1988, Song
and Zhou 1996): This is the case in which ξ(x, n) takes two different values a and b with
probability p > 0 and 1 − p > 0, respectively, so that λ(β) = ln(peβa + (1− p)eβb). As
discussed by Johansson (2000, Remark 1.8), directed percolation can be understood as the
case of 0 = a > b and zero-temperature (β → ∞), which however is outside the scope of this
paper.

We are interested in the large time behavior of the path {Sk}n
k=1 under the (sequence of)

polymer measures µn. As is the case in many other models in statistical mechanics, one of the
fundamental questions is the asymptotic behavior of the partition function

Zn = Zn(ξ) = P [en] . (1.5)

Since Zn is a positive martingale on (Ξ, E , Q), the following limit exists Q-a.s.:

Z∞
def.
= lim

n↗∞
Zn . (1.6)

The event {Z∞ = 0} is measurable with respect to the tail σ-field

⋂
n≥1

σ[ξ(x, j) ; j ≥ n, x ∈ Zd]

and therefore by Kolmogorov’s 0-1 law

Q{Z∞ = 0} = 0 or 1. (1.7)

We refer to the former case as weak disorder and the latter as strong disorder. It is known
(e.g., Song and Zhou 1996) that for d ≥ 3,

Q{Z∞ = 0} = 0 if γ1(β)
def.
= λ(2β)− 2λ(β) < − ln(1− q) (1.8)

where q = P{Sn 6= 0 for all n ≥ 1}; similar results for weak disorder were obtained by Bolthausen
(1989) and Sinai (1995). Note that γ1(β) is decreasing on (−∞, 0], increasing on [0,∞) and
γ1(0) = 0 so that the condition in (1.8) does hold if |β| is small. In dimension d ≥ 3, this
condition amounts to L2-convergence in (1.6), and it allows using the so-called second moment
method: for small β and d ≥ 3, Imbrie and Spencer (1988) first, then Bolthausen (1989) with
martingales techniques, proved that the polymer is diffusive, i.e., µn[S2

n] ∼ n as n ↗∞; more
recently Albeverio and Zhou (1996) showed that the invariance principle holds for almost every
environment. On the other hand, for the strong disorder, it can be seen that

Q{Z∞ = 0} = 1 if γ2(β)
def.
= βλ′(β)− λ(β) ≥ ln(2d). (1.9)
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This was shown by Kahane and Peyrière (1976) for a different model called Mandelbrot martin-
gale (or, equivalently, multiplicative chaos), where graphs {(Sj, j)}j≥0 are replaced by infinite
paths, without loops and starting from the root, on the d-ary tree. Although the directed
polymer we are considering here is more intricate due to correlations, the same argument ap-
plies as far as to deduce (1.9). Note that γ2(β) is decreasing on (−∞, 0], increasing on [0,∞)
and γ2(0) = 0 so that the condition in (1.9) roughly says that |β| is large enough. Recently,
P. Carmona and Y. Hu (2001) proved for Gaussian environment that for all β 6= 0,

Q{Z∞ = 0} = 1, d = 1, 2, (1.10)

which, together with (1.8) and (1.9), displays a non-trivial dependence on the dimension.

In the present paper, we consider general environments and present some results mainly
for the strong disorder case: Q{Z∞ = 0} = 1, including the extension of (1.10) to non-
Gaussian case. Using martingale analysis, we also obtain natural localization properties which
characterize the strong disorder regime. More precisely, the decay of the partition function
is equivalent to concentration of the path on favourite sites. We present the proofs in a self-
contained way, except for that of Proposition 1.4(b).

Among other interesting subjects related to the directed polymer are superdiffusivity and
critical exponents. Although we will not discuss about them here, we refer to Johansson (2000),
Licea et al (1996), Petermann (2000) and Piza (1997) for rigorous results in this direction.

1.2 Results

On the product space (Ω2,F⊗2), we consider the probability measure µ⊗2
n = µ⊗2

n (dω, dω̃), that

we will view as the distribution of the couple (S, S̃) with S̃ = {S̃k}k≥0 an independent copy of
S = {Sk}k≥0 with law µn. An important role in the analysis is played by the random sequence

In = µ⊗2
n−1(Sn = S̃n) , (1.11)

which conveys some information on the localization of paths under µn, see (1.18) below.
Roughly, large values of In ∈ (0, 1] indicate that the polymer concentrates, at time n, on
a few significant sites, though small values indicate that it spreads out on a large number of
sites. Our basic result relates the partition function Zn and the expected intersection time∑

j≤n Ij of two independent polymers in the same environment.

Theorem 1.1 Let β 6= 0. Then,

{Z∞ = 0} =

{∑
n≥1

In = ∞
}

, Q-a.s. (1.12)

Moreover, if Q{Z∞ = 0} = 1, then there exist c1, c2 ∈ (0,∞) such that

−c1 ln Zn ≤
∑

1≤j≤n

Ij ≤ −c2 ln Zn for large enough n’s, Q-a.s. (1.13)
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We make a brief comment on the result. On the one hand, we recall the definition – below
(1.7) – of weak and strong disorder, which is natural in view of the high temperature behavior
(in high dimension) (1.8) and the low temperature behavior (1.9). On the other hand, when
the polymer strongly feels the environment, it is strongly attracted to sites with favourable
environment and it follows from the definition (1.11) that In takes large values. Our result
is a rigourous statement of equivalence of these two properties. The decay property of Zn is
reflected in some specific localization property of the path {Sn}n≥1 under the random mea-
sure (1.3). The proof of Theorem 1.1 is based on a general estimate for the summation of
i.i.d.random variable (Lemma 2.1 below) and martingale analysis.

The most interesting case relative to the following, straightforward corollary is an = n,
n ≥ 1.

Corollary 1.2 For β 6= 0 and a sequence an ↗ ∞ of positive numbers, the following
properties are equivalent:

(Z1) There exists c > 0 such that

Q

{
lim

n↗∞
− 1

an

ln Zn ≥ c

}
= 1. (1.14)

(I1) There exists c > 0 such that

Q

{
lim

n↗∞

1

an

∑
1≤j≤n

Ij ≥ c

}
= 1. (1.15)

Remark 1.1 The equivalence presented in Theorem 1.1 was shown first by Carmona and
Hu (2001, Theorem 1.1 and Proposition 5.1) in the Gaussian case.

Some sufficient conditions for (Z1) and (I1) in Corollary 1.2 are provided by the following
result.

Theorem 1.3 (a) (Z1) in Corollary 1.2 holds for an = n if γ2(β) > ln(2d) (cf. (1.9)).

(b) If β 6= 0, then for Q-a.s.,

Zn

{
= O (

exp(−c1n
1/3)

)
, as n ↗∞ if d = 1

−→ 0, as n ↗∞ if d = 2,

where c1 is a positive constant.

The proof of Theorem 1.3 is carried out by estimating fractional moment: Q[Zθ
n], 0 < θ < 1;

see Lemma 3.1 below. Beside the quantitative bound for the rate of decay for d = 1 presented
above, we also give quantitative bound for the fractional moment for d = 1, 2 in the course of
the proof.

Remark 1.2 Theorem 1.3(b) generalizes Theorem 1.1 in Carmona and Hu (2001) to non-
gaussian environments. Moreover, the proof in this paper shed more light on the decay rate.
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We now go on to discuss sufficient conditions for another localization property of the polymer
chain, described in terms of In;

Proposition 1.4 Consider the following property:

(I2) There is a constant c ∈ (0,∞) such that

lim
n↗∞

In ≥ c, Q-a.s. (1.16)

Then,

(a) (I2) holds true if Property (Z1) in Corollary 1.2 holds with an = n, in particular if
γ2(β) > ln(2d) (cf. (1.9) and Theorem 1.3(a)).

(b) (I2) holds true if d = 1, 2.

(c) If Q{Z∞ > 0} = 1, then, in contrast with (I2),

lim
n↗∞

In = 0, Q-a.s.

Assume moreover that γ1(β) < − ln(1 − q) (cf.(1.8)). Then, there is a constant c > 0
such that

In = O(n−c) in Q-probability. (1.17)

A natural quantity of interest here, related to localization phenomenon, is the favorite site for
the path at time n. First observe that

max
x∈Zd

µn−1(Sn = x)2 ≤ In ≤ max
x∈Zd

µn−1(Sn = x) . (1.18)

Therefore, all statements we obtained for In can be translated into those for maxx∈Zd µn−1(Sn =
x). In particular, we showed in Proposition 1.4 that the probability of the favorite site vanishes
for weak disorder, but does not vanish for strong disorder. In the latter case the polymer
localizes (in a set of lattice points depending on the evironment), though in the former it
spreads out somewhat similarly to the usual simple random walk.

Remark 1.3 Proposition 1.4(b) generalizes Theorem 1.2 in Carmona and Hu (2001) to
non-gaussian environments. To prove this, and only there, we refer the readers to some of the
arguments in Carmona and Hu (2001).

Finally, we remark that the “quenched free energy”

lim
n↗∞

1

n
ln Zn

exists Q-a.s. under our assumption (1.1).
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Proposition 1.5 The limit

ψ(β) = lim
n↗∞

1

n
Q[ln Zn] ∈ (−∞, 0]

exists. Moreover, for any ε > 0, there is an n0 = n0(β, ε) < ∞ such that

Q

{∣∣∣∣
1

n
ln Zn −Q

[
1

n
ln Zn

]∣∣∣∣ > ε

}
≤ exp

(
−ε2/3n1/3

4

)
, n ≥ n0. (1.19)

As a consequence,

lim
n↗∞

1

n
ln Zn = ψ(β), Q-a.s.

Remark 1.4 The inequality (1.19) is a concentration inequality with the stretched expo-
nential decay rate. An inspection of our proof reveals that an exponential concentration result
can be obtained by a slightly stronger assumption. In fact, if we assume that there is δ > 0
such that

Q
[
exp(δ|ξ(x, n)|2)] < ∞, (1.20)

then, we obtain the following; for any ε > 0, there is an n0 = n0(β, ε) < ∞ such that

Q

{∣∣∣∣
1

n
ln Zn −Q

[
1

n
ln Zn

]∣∣∣∣ > ε

}
≤ exp

(
−ε2n

c

)
, n ≥ n0. (1.21)

where c = c(β) > 0. See Remark 5.1 below for the proof. Note also that (1.20) is true if ξ(x, n)
is a Gaussian or Bernoulli r.v. as in Example 1.1 or Example 1.2.

Remark 1.5 We can define a similar model by considering a Markov chain ({Sn}n≥0, {P x}x∈Γ)
on a certain state space Γ instead of the random walk on Zd. The proofs presented in this
paper apply without change to this generalization.

2 Proof of Theorem 1.1

We first state some technical estimates.

Lemma 2.1 Let ηi, 1 ≤ i ≤ m be positive, non-constant i.i.d. random variables on a
probability space (Ξ, E , Q) such that

Q[η1] = 1, Q[η3
1 + ln2 η1] < ∞.

For {αi}1≤i≤m ⊂ [0,∞) such that
∑

1≤i≤m αi = 1, define a centered random variable U > −1
by U =

∑
1≤i≤m αiηi − 1. Then, there exists a constant c ∈ (0,∞), independent of {αi}1≤i≤m

such that

1

c

∑
1≤i≤m

α2
i ≤ Q

[
U2

2 + U

]
, (2.1)

1

c

∑
1≤i≤m

α2
i ≤ −Q [ln(1 + U)] ≤ c

∑
1≤i≤m

α2
i , (2.2)

Q
[
ln2(1 + U)

] ≤ c
∑

1≤i≤m

α2
i . (2.3)
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Remark 2.1 These estimates are proved in Carmona and Hu (2001) for the Gaussian case
with the help of Brownian motion and making use of Itô’s formula. Here, we present a simple
argument which works in the general case.

We postpone the proof of Lemma 2.1 to the end of the section, and, assuming the lemma, we
start to prove Theorem 1.1. To conclude (1.12) and (1.13), it is enough to show the following
(2.4) and (2.5):

{Z∞ = 0} ⊂
{∑

n≥1

In = ∞
}

, Q-a.s. (2.4)

There are c1, c2 ∈ (0,∞) such that

{∑
n≥1

In = ∞
}
⊂

{
−c1 ln Zn ≤

∑
1≤j≤n

Ij ≤ −c2 ln Zn for large enough n’s.

}
, Q-a.s. (2.5)

The proof of (2.4) and (2.5) is based on Doob’s decomposition for the process − ln Zn. It
is convenient to introduce some more notations. For a sequence (an)n≥0 (random or non-
random), we set ∆an = an − an−1 for n ≥ 1. We denote by En the σ-field generated by
{ξ(x, j) ; 1 ≤ j ≤ n, x ∈ Zd}, and we denote by Qξ

n the conditional expectation with respect
to Q given En. Let us now recall Doob’s decomposition in this context; any (En)-adapted
process X = {Xn}n≥0 ⊂ L1(Q) can be decomposed in a unique way as

Xn = Mn(X) + An(X), n ≥ 1,

where M(X) is an (En)-martingale and

A0 = 0, ∆An = Qξ
n−1[∆Xn], n ≥ 1.

Mn(X) and An(X) are called respectively, the martingale part and compensator of the process
X. If X is a square integrable martingale, then the compensator An(X2) of the process
X2 = {(Xn)2}n≥0 ⊂ L1(Q) is denoted by 〈X 〉n and is given by the following formula;

∆〈X 〉n = Qξ
n−1[(∆Xn)2]

Here, we are interested in the Doob’s decomposition of Xn = − ln Zn, whose martingale part
and the compensator will be henceforth denoted Mn and An respectively;

− ln Zn = Mn + An. (2.6)

To compute Mn and An, we introduce

Un = µn−1[exp(βξ(Sn, n)−λ(β))]− 1 .

It is then clear that
Zn/Zn−1 = 1 + Un (2.7)
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and hence that

∆An = −Qξ
n−1 ln(1 + Un), ∆Mn = − ln(1 + Un) + Qξ

n−1 ln(1 + Un). (2.8)

In particular,
∆〈M 〉n ≤ Qξ

n−1 ln2(1 + Un). (2.9)

On the other hand, we have that

In =
∑

|z|1≤n

µn−1(Sn = z)2.

We now claim that there is a constant c ∈ (0,∞) such that

1

c
In ≤ ∆An ≤ cIn, (2.10)

∆〈M 〉n ≤ cIn. (2.11)

Indeed, both follow from (2.8), (2.9) and Lemma 2.1; {ηi}, {αi} and Q in the lemma play the
roles of {exp(βξ(z, n)− λ(β))}|z|1≤n, {µn−1(Sn = z)}|z|1≤n and Qξ

n−1.
We now conclude (2.4) from (2.10), (2.11) as follows (the equalities and the inclusions here

being understood as Q-a.s.):

{∑
n≥1

In < ∞
}

= {A∞ < ∞}

= {A∞ < ∞, 〈M 〉∞ < ∞}
⊂ {A∞ < ∞, lim

n↗∞
Mn exists and is finite}

⊂ {Z∞ > 0}.

Here, on the third line, we have used a well-known property for martingales, e.g. (4.9) page
255 in Durrett (1995) or Neveu (1975).

Finally we prove (2.5). By (2.10), it is enough to show that

{A∞ = ∞} ⊂
{

lim
n↗∞

− ln Zn

An

= 1

}
, Q-a.s. (2.12)

Thus, let us suppose that A∞ = ∞. If 〈M 〉∞ < ∞, then again by (4.9) page 255 in Durrett
(1995) or Neveu (1975). lim

n↗∞
Mn exists and is finite and therefore (2.12) holds. If, on the

contrary, 〈M 〉∞ = ∞, then

− ln Zn

An

=
Mn

〈M 〉n
〈M 〉n

An

+ 1 → 1 Q-a.s.

by (2.10), (2.11) and the law of large numbers for martingales, see (4.10) page 255 in Durrett
(1995) or Neveu (1975). This completes the proof of Theorem 1.1. 2
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Proof of Lemma 2.1: In this proof, we let c1, c2, . . . stand for constants which are independent
of {αi}1≤i≤m. We have by direct computations that

Q[U2] = c1

∑
1≤i≤m

α2
i , Q[U3] ≤ c2

∑
1≤i≤m

α2
i .

Then, (2.1) is obtained as follows;

c1

∑
1≤i≤m

α2
i = Q

[
U√

2 + U
U
√

2 + U

]

≤ Q

[
U2

2 + U

]1/2

Q
[
2U2 + U3

]1/2

≤ c3Q

[
U2

2 + U

]1/2
( ∑

1≤i≤m

α2
i

)1/2

.

To prove the other inequalities, it is convenient to define a function ϕ : (−1,∞) → [0,∞) by
ϕ(u) = u− ln(1 + u), so that

−Q [ln(1 + U)] = Q [ϕ(U)] .

Since 1
4

u2

2+u
≤ ϕ(u), u > −1, the left-hand-side inequality of (2.2) follows from (2.1). The

right-hand-side inequality can be seen as follows. We have for any ε ∈ (0, 1),

Q [ϕ(U)] = Q[ϕ(U) : 1 + U ≥ ε] + Q[ϕ(U) : 1 + U ≤ ε]

≤ Q[ϕ(U) : 1 + U ≥ ε]−Q[ln(1 + U) : 1 + U ≤ ε].

Since ϕ(u) ≤ 1
2
(u/ε)2 if 1 + u ≥ ε,

Q[ϕ(U) : 1 + U ≥ ε] ≤ 1
2
ε−2Q[U2]

= 1
2
ε−2c1

∑
1≤i≤m

α2
i . (2.13)

We now set γ = −Q[ln η1] ≥ 0 and choose ε > 0 so small that ln(1/ε)− γ ≥ 1. We introduce
another centered random variable V =

∑
1≤i≤m αi(ln ηi + γ). We then see from Jensen’s

inequality that

{1 + U ≤ ε} = {V − γ ≤ ln(1 + U) ≤ ln ε}
⊂ {− ln(1 + U) ≤ −V + γ} ∩ {1 ≤ −V }.

Hence we have

−Q[ln(1 + U) : 1 + U ≤ ε] ≤ Q[−V : 1 ≤ −V ] + γQ{1 ≤ −V }
≤ (1 + γ)Q[V 2]

= c4

∑
1≤i≤m

α2
i .
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This, together with (2.13) proves the right-hand-side inequality of (2.2). The proof of (2.3) is
similar. Indeed, since | ln(1 + u)| ≤ ε−1 ln(ε−1)|u| if ε ≤ 1 + u, we have that

Q[ln2(1 + U) : ε ≤ 1 + U ] ≤ ε−2 ln2(ε−1)Q[U2].

We see on the other hand that

{1 + U ≤ ε} = {V − γ ≤ ln(1 + U) ≤ ln ε}
⊂ {ln2(1 + U) ≤ 2V 2 + 2γ2} ∩ {1 ≤ −V }.

Therefore, we obtain

Q[ln2(1 + U) : 1 + U ≤ ε] ≤ 2Q[V 2] + 2γ2Q{1 ≤ −V }
≤ c5

∑
1≤i≤m

α2
i .

2

3 Proof of Theorem 1.3

3.1 A sufficient condition for (Z1) via fractional moment

Lemma 3.1 Suppose that there exist constants c ∈ (0,∞), θ ∈ (0, 1) and a sequence
an ↗∞ such that

Q[Zθ
n] ≤ c exp(−an), n ≥ 1. (3.1)

Then Q{Z∞ = 0} = 1. If moreover

∑
n≥1

exp(−δan) < ∞ for some δ ∈ (0, 1),

then (Z1) in Corollary 1.2 holds true.

Proof: The first statement follows from Fatou’s lemma and the second from the Borel-Cantelli
lemma. 2

3.2 Proof of part (a)

We will check (3.1) with an = cn for some c > 0. Set η(x, j) = exp(βξ(x, j)− λ(β)) and

Zx
n,m = P x

[
exp

( ∑
1≤j≤m

(βξ(Sj, j + n)− λ(β))

)]
, n,m ≥ 1. (3.2)

For θ ∈ (0, 1), by the subadditive estimate (u + v)θ ≤ uθ + vθ, u, v > 0, we get

Zθ
n ≤ (2d)−θ

∑

x,|x|1=1

(η(x, 1)Zx
1,n−1)

θ.
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Since Zx
1,n−1 has the same law as Zn−1,

Q[Zθ
n] ≤ r(θ)Q[Zθ

n−1],

where r(θ) = (2d)1−θQ[η(x, 1)θ]. Note that θ 7→ ln r(θ) is convex, continuously differentiable,
and that ln(2d) = ln r(0) > ln r(1) = 0. Therefore r(θ) < 1 for some θ ∈ (0, 1) if and only if

0 < d ln r(θ)
dθ

∣∣∣
θ=1

, which is equivalent to γ2(β) > ln(2d). 2

3.3 Proof of part (b)

We will check (3.1) with

an =

{
c1n

1/3 if d = 1

c2

√
ln n if d = 2

(3.3)

where c1, c2 ∈ (0,∞) are some constants. In this respect, we first prove an auxiliary lemma.

Lemma 3.2 For θ ∈ [0, 1] and Λ ⊂ Zd,

Q
[
Zθ

n−1In

] ≥ 1

|Λ|Q
[
Zθ

n−1

]− 2

|Λ|P (Sn 6∈ Λ)θ. (3.4)

Proof: Repeating the argument in Liggett (1985, page 453), we see that

In ≥
∑
z∈Λ

µn−1(Sn = z)2

≥ 1

|Λ|µn−1(Sn ∈ Λ)2

=
1

|Λ| (1− µn−1(Sn 6∈ Λ))2

≥ 1

|Λ| (1− 2µn−1(Sn 6∈ Λ))

≥ 1

|Λ|
(
1− 2µn−1(Sn 6∈ Λ)θ

)
.

Note also that

Q
[
Zθ

n−1µn−1(Sn 6∈ Λ)θ
] ≤ Q [Zn−1µn−1(Sn 6∈ Λ)]θ

= P (Sn 6∈ Λ)θ.

We therefore see that

Q
[
Zθ

n−1In

] ≥ 1

|Λ|Q
[
Zθ

n−1

]− 2

|Λ|Q
[
Zθ

n−1µn−1(Sn 6∈ Λ)θ
]

≥ 1

|Λ|Q
[
Zθ

n−1

]− 2

|Λ|P (Sn 6∈ Λ)θ.
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2

Assume now that θ ∈ (0, 1), and define a function f : (−1,∞) → [0,∞) by

f(u) = 1 + θu− (1 + u)θ.

It is then clear that there are constants c1, c2 ∈ (0,∞) such that

c1u
2

2 + u
≤ f(u) ≤ c2u

2 for all u ∈ (−1,∞). (3.5)

We see from (2.7), (3.5) and (2.1) that

Qξ
n−1∆Zθ

n = Zθ
n−1Q

ξ
n−1

(
(1 + Un)θ − 1

)

= −Zθ
n−1Q

ξ
n−1f(Un)

≤ −c3Z
θ
n−1In.

We therefore have by (3.4) that

QZθ
n ≤

(
1− c3

|Λ|
)

Q
[
Zθ

n−1

]
+

2c3

|Λ|P (Sn 6∈ Λ)θ. (3.6)

For d = 1, set Λ = (−n2/3, n2/3]. Then,

P (Sn 6∈ Λ) = P

(∣∣∣∣
Sn

n1/2

∣∣∣∣ ≥ n1/6

)
≤ 2 exp(−n1/3

2
),

so that (3.6) reads,

QZθ
n ≤

(
1− c3

2n2/3

)
Q

[
Zθ

n−1

]
+ 4c3 exp(−n1/3

2
).

It is not difficult to conclude (3.1) with an = c1n
1/3 from the above.

For d = 2, we set
Λ = (−n1/2 ln1/4 n, n1/2 ln1/4 n]2

to get (3.1) with an = c2

√
ln n in a similar way as above. 2

4 Proof of Proposition 1.4

4.1 Proof of part (a)

This follows directly from (1.15). 2

13



4.2 Proof of part (b)

We now state the following lemma which corresponds to Lemma 2.2 in Carmona and Hu
(2001).

Lemma 4.1 Let ηi, 1 ≤ i ≤ m be positive, non-constant i.i.d. random variables on a
probability space (Ξ, E , Q) such that

mθ
def
= Q[ηθ

1] < ∞ for θ = ±4 and m1 = 1.

For {αi}1≤i≤m ⊂ [0,∞)m such that
∑

1≤i≤m αi = 1, define a centered random variable U > −1
by U =

∑
1≤i≤m αiηi − 1. Then,

1− 2(m2 − 1)(α1 + α2) +
1

C

∑
1≤i≤m

α2
i ≤ Q

[
η1η2

(1 + U)2

]
≤ m2

√
m−4, (4.1)

m2 − 2(m3 −m2)α1 +
1

C

∑
1≤i≤m

α2
i ≤ Q

[
η2

1

(1 + U)2

]
≤ √

m4m−4, (4.2)

where C > 0 is a constant which depends only on m4.

Proof: Since the proofs of (4.1) and (4.2) are similar, we present that of (4.1) only.

Q
[
η1η2(1 + U)−2

]2 ≤ m2
2Q

[
(1 + U)−4

]

≤ m2
2Q

[ ∑
1≤i≤m

αiη
−4
i

]

= m2
2m−4,

where, on the second line, we have used the Jensen inequality for the measure {αi}.
To prove the other inequalities, it is convenient to define a function ϕ : (−1,∞) → [0,∞)

by ϕ(u) = (1 + u)−2 − 1 + 2u. By an elementary inequality: cu2

2+u
≤ ϕ(u), u > −1, we have

Q
[
η1η2(1 + U)−2

] ≥ 1− 2Q[η1η2U ] + c1Q

[
η1η2U

2

2 + U

]
. (4.3)

On the other hand, we have by direct computations that

Q[η1η2U ] = (m2 − 1)(α1 + α2),
1

c

∑
1≤i≤m

α2
i ≤ Q[η1η2U

2] ≤ c
∑

1≤i≤m

α2
i ,

Q[η1η2U
3] ≤ c

∑
1≤i≤m

α2
i .

14



Therefore,

1

c

∑
1≤i≤m

α2
i ≤ Q[η1η2U

2]

= Q

[√
η1η2U√
2 + U

√
η1η2U

√
2 + U

]

≤ Q

[
η1η2U

2

2 + U

]1/2

Q
[
2η1η2U

2 + η1η2U
3
]1/2

≤ cQ

[
η1η2U

2

2 + U

]1/2
( ∑

1≤i≤m

α2
i

)1/2

.

Putting things together, we get (4.1) 2

With Lemma 4.1 established, Proposition 1.4(b) is obtained merely by following the argu-
ment in Carmona and Hu (2001, Section 6). In doing so, we use Lemma 4.1 above in place
of Lemma 2.2 in that paper. In fact, Carmona and Hu used the specific properties of the
Gaussian random variable only in the proof of Lemma 2.2. 2

4.3 Proof of part (c)

The first statement is derived using the convergence of In to 0. We now prove (1.17). Since
Q{Z∞ > 0} = 1 in the present case -see (1.8)-,it is enough to show that

Z2
n−1In = O(n−c) (4.4)

in Q-probability. With γ = λ(2β)− 2λ(β) < − ln(1− q), we compute

Q
[
Z2

n−1In

]
= Q

[
P⊗2(en−1(ξ, S)en−1(ξ, S̃) : Sn = S̃n)

]

= P⊗2(Q[en−1(ξ, S)en−1(ξ, S̃)] : Sn = S̃n)

= P⊗2

(
exp

{
γ

n−1∑
j=1

1Sj=eSj

}
: Sn = S̃n

)

≤ P⊗2

(
exp

{
αγ

n−1∑
j=1

1Sj=eSj

})1/α

P⊗2(Sn = S̃n)1/α′ ,

using Hölder’s inequality with the conjugate exponents α, α′. Since
∑

j≥1 1Sj=eSj
is geometri-

cally distributed with failure probability 1 − q ∈ (0, 1) with q as in (1.8), the first factor on
the right-hand side is bounded for αγ < − ln(1− q). The second factor is O(n−d/(2α′)). From
this we obtain (1.17) for arbitrary c < d[1 + γ/ ln(1− q)]/2. 2
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5 Proof of Proposition 1.5

Though the first statement is well known, we give a proof here for completeness. Recall the
notation Zx

n,m introduced by (3.2) and note that for m,n ≥ 1,

Zn+m = Zn

∑
x

µn{Sn = x}Zx
n,m ,

Since Zx
n,m has the same law as Zm, we have by Jensen’s inequality that

ln Zn+m ≥ ln Zn +
∑

x

µn{Sn = x} ln Zx
n,m .

Recall also the notation En and Qξ
n introduced in the proof of Theorem 1.1. Taking expectation

and using independence, we obtain

Q[ln Zn+m] ≥ Q[ln Zn] + Q[
∑

x

µn{Sn = x}Qξ
n[ln Zx

n,m]]

= Q[ln Zn] + Q[ln Zm] ,

i.e., Q[ln Zn] is super-additive. From the super-additive Lemma we see that

lim
n↗∞

1

n
Q[ln Zn] = sup

n

1

n
Q[ln Zn] = ψ(β).

In order to prove the second statement (1.19), we write ln Zn−Q[ln Zn] as a sum of (Ej)1≤j≤n-
martingale differences,

ln Zn −Q[ln Zn] =
n∑

j=1

Vn,j

with Vn,j = Qξ
j [ln Zn]−Qξ

j−1[ln Zn]. Set

ên,j = exp

( ∑

1≤k≤n,k 6=j

(βξ(Sk, k)− λ(β))

)
, Ẑn,j = P [ên,j].

Clearly Qξ
j [ln Ẑn,j] = Qξ

j−1[ln Ẑn,j], and hence,

Vn,j = Qξ
j

[
ln

Zn

Ẑn,j

]
−Qξ

j−1

[
ln

Zn

Ẑn,j

]
.

By (2.2) in Lemma 2.1 with η· = η(·, j) = exp(βξ(·, j)−λ(β)) and α· =
P [ben,j :Sj=·]bZn,j

, we see that

−Qξ
j−1

[
ln

Zn

Ẑn,j

]
= −Qξ

j−1

[
Q

[
ln

(∑
x

αxη(x, j)

)∣∣∣∣∣ En,j

]]

∈ [0, c] ,
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where En,j = σ[ξ(·, k) ; 1 ≤ k ≤ n, k 6= j]; note that η(x, j) is independent of En,j and that α·
is En,j-measurable. Therefore, for θ ∈ R, we have by Jensen’s inequality that

Q[exp θVn,j| En,j] ≤ ecθ+

Q

[
exp θQξ

j

[
ln

Zn

Ẑn,j

]∣∣∣∣∣ En,j

]

≤ ecθ+

Q




(
Zn

Ẑn,j

)θ
∣∣∣∣∣∣
En,j




= ecθ+

Q




(∑
x

αxη(x, j)

)θ
∣∣∣∣∣∣
En,j


 ,

where θ+ = max{0, θ}. For θ ∈ (0, 1), the function x 7→ xθ is concave on (0,∞) and hence

Q[exp θVn,j| En,j] ≤ ecθQ

[∑
x

αxη(x, j)

∣∣∣∣∣ En,j

]θ

= ecθ.

For θ 6∈ (0, 1), the function x 7→ xθ is convex on (0,∞) and hence

Q[exp θVn,j| En,j] ≤ ecθ+
∑

x

αxQ
[
η(x, j)θ

∣∣ En,j

]

= ecθ+
∑

x

αxQ[η(x, 1)θ]

= exp{cθ+ + λ(θβ)− θλ(β)},
Finally we conclude that

Q[exp |Vn,j|] ≤ Q[exp(Vn,j) + exp(−Vn,j)] ≤ c1 < ∞ .

Therefore, the large deviation estimate for sum of martingale-differences of Lesigne and Volný
(2001, Theorem 3.2) applies to our case, yielding (1.19). The final statement in Proposition
1.5 is now a simple consequence of the Borel-Cantelli lemma. 2

Remark 5.1 Let us remark that the stronger assumption (1.20) implies the exponential
concentration (1.21). In what follows, ci = ci(δ) (i = 1, 2) and ci = ci(β, δ) (i = 3, 4, . . .) are
positive constants. Note first that (1.20) implies that λ(β) ≤ c1 + c2β

2 for all β ∈ R and hence
that

Q [exp(θVn,j)|En,j] ≤ exp
(
c3 + c4θ

2
)
, for all θ ∈ R, (5.1)

by the computations in our proof of Proposition 1.5. By expanding the exponential and using
the fact Q[Vn,j|En,j] = 0, we can improve (5.1) into the following stronger form;

Q [exp(θVn,j)|En,j] ≤ exp
(
c5θ

2
)
, for all θ ∈ R. (5.2)

It is then not difficult to conclude (1.21) by (5.2) and a standard Gaussian estimate for a
martingale.
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