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Abstract

Let µ̂ be the Fourier transform of a Borel probability measure µ on Rd. We look at
the closed abelian subgruop Γ(µ) of Rd, which consists of the periods of the function µ̂.
We prove the following dichotomy: i) The support of µ is non-degenerate if and only if
Γ(µ) is a lattice. ii) The support of µ is degenerate if and only if Γ(µ) contains a linear
subspace 6= {0} of Rd. A similar dichotomy is also discussed for the period group of the
function |µ̂|.

1 Introduction

1.1 Definitions and background

In this article, we address a fundamental question of understanding the characteristic function
of a probability measure, perhaps from slightly different perspective from conventional ones.
For a Borel probability measure µ on Rd, we write its Fourier transform by:

µ̂(θ) =

∫
Rd

exp(iθ · x)µ(dx), θ ∈ Rd, (1.1)

where θ · x denotes the standard inner product of Rd. In the context of probability theory,
the above function is referred to as the characteristic function. There, the speed at which
the function µ̂(θ) approaches to µ̂(0) = 1 as θ → 0 is of great interest, in connection with
various limit theorems and recurrence/transience criteria. On the other hand, depending on
the measure µ, there exist non-zero θ’ s for which µ̂(θ) = 1, for example, the law for the each
step of the simple symmetric random walk. This brings our attention to the following set:

Γ(µ) = {θ ∈ Rd ; µ̂(θ) = 1}. (1.2)

In this article, we investigate the structure of this set in connection with the support of µ,
denoted by supp [µ] in the sequel. Clearly, θ ∈ Γ(µ) if and only if Re µ̂(θ) = 1. In addition,

1− Re µ̂(θ) =

∫
Rd

(1− cos(θ · x))µ(dx).

Therefore,

θ ∈ Γ(µ) ⇐⇒ θ · x ∈ 2πZ, µ-a.e. ⇐⇒ exp(iθ · x) = 1, µ-a.e. (1.3)
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This shows that Γ(µ) is an abelian subgroup of Rd, which consists exactly of the periods of
the function µ̂.

To explain the content of this article, let us introduce some definitions. A subset Γ of Rd is
said to be non-degenerate, if it contains a linear basis of Rd. Otherwise, the set Γ is said to be
degenerate. A subset Γ of Rd is said to be a lattice, if there exist linearly independent vectors
γ1, . . . , γk ∈ Rd such that

Γ = Zγ1 + · · ·+ Zγk. (1.4)

We prove the following dichotomy:

• The support of µ is non-degenerate if and only if Γ(µ) is a lattice

(Proposition 1.2.1); (1.5)

• The support of µ is degenerate if and only if Γ(µ) contains a linear subspace 6= {0}
of Rd (Proposition 1.2.2). (1.6)

We are also interested in the following set:

Γ2(µ) = {θ ∈ Rd ; |µ̂(θ)| = 1}, (1.7)

for which we obtain a similar dichotomy as follows:

• The set supp [µ]− a is non-degenerate for all a ∈ Rd if and only if Γ2(µ)

is a lattice (Proposition 1.2.3); (1.8)

• There exists an a ∈ Rd such that the set supp [µ]− a is degenerate if

and only if Γ2(µ) contains a linear subspace 6= {0} of Rd (Proposition 1.2.4). (1.9)

These statements seem quite fundamental. Therefore, we naturally believed that these should
be somewhere in the literature. To our perplexity, though, we were not able to dig out any
systematic study of this kind, except some fragmentary examples, e.g., [1, PROBLEM 26.1 on
p.353], [2, T1 on p. 67]. Thus, we finally decided to write them down ourselves, instead of
pursuing the effort of searching for them in the literature.

We now look at the set Γ2(µ) more in detail. For this purpose, it is convenient to introduce
a Borel probability measure µ2 on Rd by:

µ2(dx) = µ⊗2((x1, x2) ∈ (Rd)2 ; x1 − x2 ∈ dx), (1.10)

where µ⊗2 denotes the direct product. Then,

Γ2(µ) = Γ(µ2), (1.11)

since
|µ̂(θ)|2 = µ̂(θ)µ̂(−θ) = µ̂2(θ) (1.12)

for all θ ∈ Rd. We see from (1.11) and (1.12) that the set Γ2(µ) consists of the period of the
function |µ̂|. We write

D(µ) = supp [µ]− supp [µ] = {x1 − x2 ; x1, x2 ∈ supp [µ]}. (1.13)

Then, we have
supp [µ2] = D(µ), (1.14)
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which shows in particular that

the set supp [µ2] is degenerate if supp [µ] is. (1.15)

To prove (1.14), it is enough to verify that

D(µ) ⊂ supp [µ2] ⊂ D(µ). (1.16)

To prove the first inclusion of (1.16), suppose that x1, x2 ∈ supp [µ]. Then, µ(B(xj, r/2)) > 0
for any r > 0 (j = 1, 2). Thus,

µ2(B(x1 − x2, r)) ≥ µ⊗2(B(x1, r/2)× B(x2, r/2)) = µ(B(x1, r/2))µ(B(x2, r/2)) > 0.

Hence x1 − x2 ∈ supp [µ2]. To prove the second inclusion of (1.16), suppose that z 6∈ D(µ).
Then, there exists r ∈ (0,∞) such that B(z, r) ⊂ Rd\D(µ). This implies that

µ2(B(z, r)) =

∫
supp [µ]2

1B(z,r)(x1 − x2)µ
⊗2(dx1dx2) = 0.

Hence z 6∈ supp [µ2].
The converse to (1.15) is not true in general (for example µ = (δe1 + · · · + δed)/d, where
e1, . . . , ed are canonical basis). By applying Lemma 2.3.1 f2) for A = supp [µ], we see that the
converse to (1.15) is true under the following extra assumption:∫

Rd

|x|µ(dx) < ∞,

∫
Rd

xµ(dx) = 0. (1.17)

We conclude this introduction with the following simple consequence of the relation (1.3) (cf.
[1, PROBLEM 26.1 on p.353] for the case of d = 1):

If the set Γ(µ) is non-degenerate, then the measure µ concentrates on a lattice. (1.18)

This can be seen as follows. Suppose that γ1, . . . , γd ∈ Γ(µ) are linearly independent. We write
γα = (γα,β)

d
β=1 (α = 1, . . . , d). Then the matrix C = (γα,β)1≤α,β≤d is invertible and satisfies

Cx ∈ 2πZd, µ-a.e. Thus, the measure µ concentrates on the lattice 2πC−1Zd.

1.2 Results

For x ∈ Rd and r ∈ (0,∞), we denote by B(x, r) the open ball in Rd centered at x, with radius
r.

Proposition 1.2.1 The following are equivalent:

a) The support of µ is non-degenerate.

b) The set Γ(µ) has no accumulation point.

c) The set Γ(µ) is a lattice.

Proposition 1.2.2 The following are equivalent:

a’) The support of µ is degenerate.
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b’) The set Γ(µ) has an accumulation point.

c’) The set Γ(µ) contains a linear subspace 6= {0} of Rd.

Proposition 1.2.3 The following are equivalent:

a2) The set supp [µ]− a is non-degenerate for all a ∈ Rd.

b2) The set Γ2(µ) has no accumulation point.

c2) The set Γ2(µ) is a lattice.

Proposition 1.2.4 The following are equivalent:

a2’) There exists an a ∈ Rd µ such that the set supp [µ]− a is degenerate.

b2’) The set Γ2(µ) has an accumulation point.

c2’) The set Γ2(µ) contains a linear subspace 6= {0} of Rd.

2 Proofs

2.1 Proof of Proposition 1.2.1

a) ⇒ b): We use Lemma 2.1.2 below to prove this part. It follows from (2.4) that there exists
δ > 0 such that for all γ ∈ Γ and all θ ∈ B(γ, δ)\{γ}, Re µ̂(θ) < 1. This implies b).
b) ⇒ c): This part follows from Lemma 2.1.3 below.
c) ⇒ a): We show this implication by showing a’) ⇒ c’) of Proposition 1.2.2. By assumption
there exists a unit vector u such that u ·x = 0 for all x ∈ supp [µ]. Since the function x 7→ u ·x
is continuous, this implies that u · x = 0, µ-a.a. x and hence µ̂(tu) = 1 for all t ∈ R. Thus,
Ru ⊂ Γ(µ). 2

Lemma 2.1.1 Suppose that supp [µ] is non-degenerate. Then, for any n = 1, . . . , d,

µ⊗n (An) > 0,

where
An = {(x1, . . . , xn) ∈ (Rd)n ; x1, . . . , xn are linearly independent}. (2.1)

Proof: We proceed by induction on n. µ(A1) > 0, since µ 6= δ0. Let (x1, . . . , xn−1) ∈ (Rd)n−1

be arbitrary. Since the support of µ contains a linear basis of Rd, we have that

f(x1, . . . , xn−1)
def
= µ

(
Rd\(Rx1 + . . .+ Rxn−1)

)
> 0.

Therefore, if µ⊗n−1 (An−1) > 0, then,

µ⊗n (An) =

∫
An−1

f(x1, . . . , xn−1)µ
⊗n−1(dx1 · · · dxn−1) > 0.

2

Lemma 2.1.2 The following conditions a), d), e) are related as a) ⇐⇒ d) =⇒ e).
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a) The support of µ is non-degenerate.

d) There exists a Borel subset B of supp [µ] with µ(B) > 0 such that∫
B

|x|2µ(dx) < ∞, (2.2)

The matrix
(∫

B
xαxβµ(dx)

)
α,β=1,...,d

is strictly positive definite. (2.3)

e) There exist positive constants c, r such that for all γ ∈ Γ(µ) and θ ∈ B(γ, r),

Re µ̂(θ) ≤ 1− c|θ − γ|2. (2.4)

Proof: a) ⇒ d): Let B = B(0, r) ∩ supp [µ]. If r > 0 is large enough, then, B contains a
linear basis of Rd, µ(B) > 0, and (2.2) holds. To prove (2.3), suppose that θ ∈ Rd satisfies∫
B
(θ · x)2µ(dx) = 0. Let µB be the measure defined by µB(A)

def
= 1

µ(B)
µ(A ∩ B). Then, µB is

non-degenerate by the choice of B. Hence, by applying Lemma 2.1.1 to µB, the set Ad ⊂ (Rd)d

has positive measure with respect to µ⊗d
B . Moreover,∫

Bn

(
(θ · x1)

2 + · · ·+ (θ · xd)
2
)
µ⊗d
B (dx1 · · · dxd) = d

∫
B

(θ · x)2µ(dx) = 0.

In particular, the integrand of the left-hand side integral vanishes µ⊗d
B -a.e. on the set Ad. This

implies that θ = 0.
a) ⇐ d): Suppose that d) holds and that the set supp [µ] is degenerate. Then, there exists
θ ∈ Rd\{0} which is orthogonal to all vectors in supp [µ]. Hence

∫
B
(θ · x)2µ(dx) = 0, a

contradiction.
a) ⇒ e): Since γ ∈ Γ(µ) is a period of µ̂, it is enough to prove (2.4) for γ = 0. By the proof of
a) ⇒ d), the condition d) holds for B = B(0, r)∩ supp [µ] with large enough r > 0. Let λ > 0
be such that ∫

B

(θ · x)2µ(dx) ≥ λ|θ|2, ∀θ ∈ Rd.

Note on the other hand that 1 − cos t ≥ 2t2

π2 for |t| ≤ π. Thus, for θ ∈ B(0, π/r),

1− Re µ̂(θ) ≥
∫
B

(1− cos(θ · x))µ(dx)

≥ 2

π2

∫
B(0,r)

(θ · x)2µ(dx) ≥ 2λ

π2
|θ|2.

2

Remark: By the proof of Proposition 1.2.1, the condition e) of Lemma 2.1.2 implies c) of
Proposition 1.2.1. Therefore, it is also one of the equivalent conditions to the non-degeneracy
of supp [µ].

Lemma 2.1.3 Suppose that Γ is an abelian subgroup of Rd without accumulation point. Then,
Γ is a lattice.

Proof: Starting from k = 1, and then, by a successive procedure explained below, we will find
linearly independent vectors γ1, . . . , γk ∈ Γ such that
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1) Γ ∩ (Rγ1 + . . .+ Rγk) = Zγ1 + . . .+ Zγk.

By repeating this procedure up to some k ≤ d for which the set on the left-hand side of 1)
coincides with Γ, we conclude that Γ is a lattice.

It follows from the assumption that the origin is an isolated point of Γ, and that Γ\{0} is
closed. Thus, there exists γ1 ∈ Γ such that

|γ1| = min{|γ| ; γ ∈ Γ\{0}}.

Similarly, we can find γk ∈ Γ (k = 2, 3, . . .) such that

|γk| = min{|γ| ; γ ∈ Γ\{0,±γ1, . . . ,±γk−1}}.

We write
∆(γ1, . . . , γk) = {t1γ1 + . . .+ tkγk ; (t1, . . . , tk) ∈ [0, 1)k}.

If Γ = Zγ1, we are done. If not, we proceed as follows. Clearly, Γ ∩∆(γ1) = {0}. This implies
that

2) Γ ∩ Rγ1 = Zγ1.

Indeed, suppose that γ ∈ (Γ ∩Rγ1)\Zγ1. Then there exists n ∈ Z such that γ ∈ nγ1 +∆(γ1).
Then 0 6= γ − nγ1 ∈ Γ ∩∆(γ1), which is a contradiction.
By 2), we have γ2 6∈ Rγ1, hence γ1 and γ2 is linearly independent. If Γ = Zγ1 + Zγ2, we are
done. If not, we proceed as follows. Note that

3) Γ ∩∆(γ1, γ2) = {0}.

Indeed, suppose that γ
def
= t1γ1 + t2γ2 ∈ Γ\{0,±γ1,±γ2} for some (t1, t2) ∈ [0, 1)2. Suppose

first that t1 + t2 ≤ 1. Then,
|γ| < |γ1| ∨ |γ2| ≤ |γ2|,

which contradicts the definition of γ2. Suppose on the other hand that t1 + t2 > 1. Then,
γ1 − γ = (1− t1)γ1 + t2(−γ2) ∈ Γ\{0,±γ1,±γ2} and

|γ1 − γ| < |γ1| ∨ |γ2| ≤ |γ2|,

which again contradicts the definition of γ2.

4) Γ ∩ (Rγ1 + Rγ2) = Zγ1 + Zγ2.

Indeed, suppose that γ ∈ (Γ ∩ (Rγ1 + Rγ2))\(Zγ1 + Zγ2). Then there exist n1, n2 ∈ Z such
that v ∈ n1γ1 + n2γ2 + ∆(γ1, γ2). Then 0 6= γ − n1γ1 − n2γ2 ∈ Γ ∩ ∆(γ1, γ2), which is a
contradiction.
Repeating this procedure, we obtain linearly independent vectors γ1, . . . , γk ∈ Γ for some
k ∈ {1, 2, . . . , d} such that 1) holds true. 2

6



2.2 Proof of Proposition 1.2.2

a’) ⇒ c’): This part is already shown in the proof of Proposition 1.2.1.
c’) ⇒ b’): This is obvious.
b’) ⇒ a’): This follows from the part: a) ⇒ b) of Proposition 1.2.1. 2

Remark: The proof of b’) ⇒ c’) can alternatively be given by the following lemma. Note
that the set Γ(µ) is closed, since the function µ̂ is continuous.

Lemma 2.2.1 Suppose that Γ is a closed abelian subgroup of Rd with an accumulation point.
Then, Γ contains a linear subspace 6= {0} of Rd.

Proof: By translation, the origin is also an accumulation point of Γ. Thus, there exists a
sequence γn ∈ Γ\{0} which converges to the origin. Then, by taking a subsequence if necessary,

we may assume that un
def
= γn/|γn| converges to a unit vector u. We have for any t ∈ R that

tn
def
= |γn|bt/|γn|c

n→∞−→ t. Hence

Γ 3 bt/|γn|cγn = tnun
n→∞−→ tu.

Since Γ is closed, we see that tu ∈ Γ. Thus, Ru ⊂ Γ. 2

2.3 Proof of Proposition 1.2.3 and Proposition 1.2.4

Proposition 1.2.3 and Proposition 1.2.4 are reduced to Proposition 1.2.1 and Proposition 1.2.2,
thanks to the following

Lemma 2.3.1 The following are equivalent:

a2) The set supp [µ]− a is non-degenerate for all a ∈ Rd.

d2) There exists an a ∈ supp [µ] such that set supp [µ]− a is non-degenerate.

e2) The set supp [µ2] is non-degenerate.

f2) There exists a closed set A ⊂ supp [µ] with µ(A) > 0 such that∫
A

|x|µ(dx) < ∞ and A−mA is non-degenerate,

where mA = 1
µ(A)

∫
A
xµ(dx).

Proof: a2) ⇒ d2): Obvious.
d2) ⇒ e2): By definition of the set D(µ), we have D(µ) ⊃ supp [µ] − a for all a ∈ supp [µ].
Thus, d2) implies that the set D(µ) is non-degenerate, and hence so is supp [µ2] by (1.14).
e2) ⇒ a2): We prove the contrapositive. Suppose that there exists an a ∈ supp [µ] such that
the set supp [µ]− a is degenerate. Then, D(µ) is degenerate, since

D(µ) = (supp [µ]− a)− (supp [µ]− a).

Thus, supp [µ2] is degenerate by (1.14).
e2) ⇒ f2): We already have conditions a2) and d2) at our disposal. Let a ∈ supp [µ] be as in
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condition d2). We take r > 0 large enough so that (B(a, r)∩supp [µ])−a is nondegenerate and
set A = B(a, r) ∩ supp [µ]. Then, A is closed, µ(A) = µ(B(a, r)) > 0 (since a ∈ supp [µ]), and
A−a is non-degenerate. We then set µA(dx) = µ(A∩dx)/µ(A). Then, a ∈ A = supp [µA] and
A− a is non-degenerate. Thus, the measure µA satisfies condition d2), which is equivalent to
a2). Therefore, A−m is non-degenerate for all m ∈ Rd, and hence in particular for m = mA.
f2) ⇒ e2): Suppose that supp [µ2] is degenerate and that A ⊂ supp [µ] be any closed set
with µ(A) > 0 such that

∫
A
|x|µ(dx) < ∞. Since supp [µ2] is degenerate, so is supp [(µA)2].

Therefore by a2), there exists an a ∈ Rd a linear subspace L ⊂ Rd with positive codimension
such that A = supp [µA] ⊂ a+ L. This implies that mA ∈ a+ L, and hence

A−mA ⊂ A− a+ (a−mA) ⊂ L.

Therefore, A−mA is degenerate. 2

Proof of Proposition 1.2.3: a2) is equivalent to the condition e2) of Lemma 2.3.1. Thus,
applying Proposition 1.2.1 to the measure µ2, we see the equivalence stated in the proposition.
2

Proof of Proposition 1.2.4: By Lemma 2.3.1, the condition a2’) is equivalent to the de-
generacy of the set supp [µ2]. Thus, applying Proposition 1.2.2 to the measure µ2, we see the
equivalence stated in the proposition. 2
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