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Abstract

We consider branching random walks in d-dimensional integer lattice with time-space
i.i.d. offspring distributions. This model is known to exhibit a phase transition: If d ≥ 3
and the environment is “not too random”, then, the total population grows as fast as
its expectation with strictly positive probability. If, on the other hand, d ≤ 2, or the
environment is “random enough”, then the total population grows strictly slower than its
expectation almost surely. We show the equivalence between the slow population growth
and a natural localization property in terms of “replica overlap”. We also prove a certain
stronger localization property, whenever the total population grows strictly slower than
its expectation almost surely.

Key words and phrases: branching random walk, random environment, localization, phase
transition.
MSC 2000 subject classifications. Primary 60K37; secondary 60J80, 60K35, 82D30.

1 Introduction

1.1 Branching random walks in random environment (BRWRE)

We begin by introducing the model. We write N = {0, 1, 2, ...}, N∗ = {1, 2, ...} and Z =
{±x ; x ∈ N}. For x ∈ Zd, |x| = (|x1|2 + .. + |xd|2)1/2. The following formulation is an
analogue of [10, section 4.2], where non-random offspring distributions are considered. See
also [3, section 5] for the random offspring case.
Let X = {Xν

t,x}(t,x,ν)∈N×Zd×N∗ be Zd-valued independent random variables defined on a
probability space (ΩX ,FX , PX) such that

PX(Xν
t,x = y) = p(x, y) def=

{
1
2d if |x − y| = 1,
0 if |x − y| 6= 1.

(1.1)

For each (t, x) ∈ N × Zd, let

qt,x = (qt,x(k))k∈N ∈ [0, 1]N,
∑
k∈N

qt,x(k) = 1

be a probability measure on N, which we refer to as the offspring distribution. We consider
a measurable space (ΩK ,FK) and, for each fixed q = (qt,x)(t,x)∈N×Zd , a probability measure
P q

K such that N-valued random variables K = {Kν
t,x}(t,x,ν)∈N×Zd×N∗ defined on (ΩK ,FK , P q

K)
are independent with the laws:

P q
K(Kν

t,x = k) = qt,x(k), k ∈ N. (1.2)

For each fixed q = (qt,x)(t,x)∈N×Zd , we realize the families X and K of random variables
simultaneously on the probability space

(ΩX × ΩK ,FX ⊗FK , P q) where P q = PX ⊗ P q
K . (1.3)

Then, the branching random walk (BRW) with the fixed offspring distributions q = (qt,x)(t,x)∈N×Zd

is described as the following dynamics:
1Corresponding author, Partially supported by JSPS Grant-in-Aid for Scientific Research, Kiban (C)
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• At time t = 0, there is one particle at the origin x = 0.

• Suppose that there are Nt,x particles at each site x ∈ Zd at time t. At time t + 1, the
ν-th particle at a site x (ν = 1, .., Nt,x) jumps to a site Xν

t,x. At arrival, it dies, leaving
Kν

t,x new particles there.

We now go on to define the branching random walk in random environment (BRWRE). We set
Ωq = P(N)N×Zd

, where P(N) denotes the set of probability measures on N. Thus, each q ∈ Ωq

is a function (t, x) 7→ qt,x = (qt,x(k))k∈N from N × Zd to P(N). The set P(N) is equipped
with the natural Borel σ-field induced from that of [0, 1]N. We denote by Fq the product
σ-field on Ωq.We fix a probability measure Q on (Ωq,Fq), under which {qt,x}(t,x)∈N×Zd are
i.i.d. offspring distributions. Finally, we define the probability space (Ω,F , P ) by

Ω = ΩX × ΩK × Ωq, F = FX ⊗FK ⊗Fq,

P (A) =
∫

A
Q(dq)P q(dω), A ∈ F .

(1.4)

In this setup, we consider the dynamics explained as before. In particular, we look at the
population Nt,x at time-space location (t, x) ∈ N × Zd, which is defined inductively by

N0,x = δ0,x, Nt,x =
∑
y∈Zd

Nt−1,y∑
ν=1

δx(Xν
t−1,y)K

ν
t−1,y, t ≥ 1. (1.5)

We consider the filtration:

F0 = {∅, Ω}, Ft = σ(X ·
s,·,K

·
s,·, qs,· ; s ≤ t − 1) t ≥ 1, (1.6)

which the process t 7→ (Nt,x)x∈Zd is adapted to. The total population at time t is then given
by

Nt =
∑
x∈Zd

Nt,x =
∑
y∈Zd

Nt−1,y∑
ν=1

Kν
t−1,y. (1.7)

We remark that the total population is exactly the classical Galton-Watson process if qt,x ≡ q,
where q ∈ P(N) is non-random. On the other hand, if Zd is replaced by a singleton, then Nt

is the population of the Smith-Wilkinson model [11].
For p > 0, we write

m(p) = Q[m(p)
t,x ] with m

(p)
t,x =

∑
k∈N

kpqt,x(k), (1.8)

m = m(1). (1.9)

Note that for p ≥ 1,
mp ≤ Q[mp

t,x] ≤ m(p)

by Hölder’s inequality. We set

N t,x = Nt,x/mt and N t = Nt/mt. (1.10)

N t = Nt/mt is a martingale, and therefore the following limit always exists:

N∞ = lim
t

N t, P -a.s. (1.11)
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We denote the density of the population by:

ρt,x =
Nt,x

Nt
=

N t,x

N t

, t ∈ N, x ∈ Zd (1.12)

Interesting objects related to the density would be

ρ∗t = max
x∈Zd

ρt,x, and Rt =
∑
x∈Zd

ρ2
t,x. (1.13)

ρ∗t is the density at the most populated site, while Rt is the probability that two particles
picked up randomly from the total population at time t are at the same site. We call
Rt the replica overlap, in analogy with the spin glass theory. Clearly, (ρ∗t )

2 ≤ Rt ≤ ρ∗t .
These quantities convey information on localization/delocalization of the particles. Roughly
speaking, large values of ρ∗t or Rt indicate that the most of the particles are concentrated on
small numbers of “favorite sites” (localization), whereas small values of them imply that the
particles are spread out over large number of sites (delocalization).

Remark: The BRWRE we discuss in this paper is closely related to the directed polymers
in random environment (DPRE) [4, 6, 7]. In fact, it is easy to see that

P q[Nt,x] = Zt,x
def=

∑
x1,...xt−1∈Zd

t∏
u=1

mu−1,xu−1p(xu−1, xu), with x0 = 0 and xt = x, (1.14)

which is exactly the partition function of the DPRE with the end point x. Roughly speaking,
the study of DPRE consists in analyzing the large time behavior of Zt,·. In this respect, our
main object Nt,· in this paper is “more random”, since it is inside P q-expectation in (1.14).

1.2 The phase transition in terms of the population growth

Due to the random environment, the population Nt has much more fluctuation as compared
with the non-random environment case, e.g.,[10, section 4.2]. This fluctuation results from
“disastrous locations” in time-space, where the offspring distribution qt,x(k) happens to assign
extremely high probability to small k’s. Thanks to the random walk, on the other hand, some
of the particles are lucky enough to avoid those disastrous locations. Therefore, the spatial
motion component of the model has the effect of moderate the fluctuation, while the random
environment intensifies it. These competing factors in the model give rise to a phase transition
as we will discuss below.
We first look at the case where the randomness of the offspring distribution is well moderated
by that of the random walk.
Let (St) be a simple symmetric random walk on Zd, starting from 0. We denote by πd the
probability of the event ∪t≥1{St = 0}. As is well known πd < 1 if and only if d ≥ 3. πd equals
the probability of the event ∪t≥1{S(1)

t = S
(2)
t }, where (S(1)

t ) and (S(2)
t ) are two independent

simple symmetric random walks on Zd, both starting from 0. To see this, note that S
(1)
t −S

(2)
t

and S2t have the same distribution for each t and that 1/(1 − πd) =
∑

t≥0 P (S2t = 0).

Proposition 1.2.1 (a) There exists a constant α∗ > 1
πd

such that, if

m > 1, m(2) < ∞, d ≥ 3, and α
def.=

Q[m2
t,x]

m2
< α∗, (1.15)

then P (N∞ > 0) > 0.
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(b) If one assumes the stronger assumption

m > 1, m(2) < ∞, d ≥ 3, and α <
1
πd

, (1.16)

then
RT = O(T−d/2) in P

(
·|N∞ > 0

)
-probability,

i.e., the laws P
(
T d/2RT ∈ ·|N∞ > 0

)
, T ≥ 1 are tight.

Conditions (1.15) and (1.16) control the randomness of the environment in terms of the
random walk. Proposition 1.2.1(a) says that, under (1.15), the total population grows as
fast as its expectation with strictly positive probability. This was obtained in [3, Theorem
4]. Proposition 1.2.1(b) is a quantitative statement for delocalization under (1.16) in terms
of the replica overlap [12, Proposition 1.2.3].
Next, we turn to the case where the randomness of the environment dominates:

Proposition 1.2.2 Suppose one of the following conditions:

(a1) d = 1, Q(mt,x = m) 6= 1.

(a2) d = 2, Q(mt,x = m) 6= 1.

(a3) d ≥ 3, Q
[mt,x

m
ln

mt,x

m

]
> ln(2d).

Then, P (N∞ = 0) = 1. Moreover, in cases (a1) and (a3), there exists a non-random number
c > 0 such that

lim
t

lnN t

t
< −c, a.s. (1.17)

Proposition 1.2.2 says that the total population grows strictly slower than its expectation
almost surely, in low dimensions or in “random enough” environment. The result is in
contrast with the non-random environment case, where P (N∞ = 0) = 1 only for offspring
distributions with very heavy tails, more precisely, if and only if P [Kν

t,x lnKν
t,x] = ∞ [1, page

24, Theorem 1]. Here, we can have P (N∞ = 0) = 1 even when Kν
t,x is bounded. Also, (1.17)

is in sharp contrast with the non-random environment case, where it is well known –see e.g.,
[1, page 30, Theorem 3] –that

{N∞ > 0} a.s.= {lim
t

lnN t

t
= 0} whenever m > 1.

Proposition 1.2.2 was obtained in [3, Theorem 4] without (1.17), and in [12, Corollary 3.3.2]
with (1.17).

1.3 The results: the localization/delocalization transition

In this paper, we aim at the localization problem for the branching random walk in random
environment. We shall prove that for d = 1, 2 and for “random enough environment” in
d ≥ 3, almost surely, there exists a sequence of time t’s such that both the maximal density
ρ∗t and overlap Rt are bigger than some positive constant.

We first characterize the event {N∞ = 0} in terms of the replica overlap. Thanks to this
characterization, we can rigorously identify the phase transition in terms of population growth
as discussed in section 1.2 with the localization/delocalization transition in terms of the
replica overlap.
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Theorem 1.3.1 Suppose that

m(3) < ∞, Q(mt,x = m) 6= 1, Q(qt,x(0) = 0) = 1. (1.18)

Then,

P (N∞ = 0) = P (
∞∑

s=0

Rs = ∞) ∈ {0, 1}, (1.19)

where (Rt)t≥0 is defined by (1.13). Moreover, if the probabilities in (1.19) are one, then there
exist constants c1, c2 ∈ (0,∞) such that,

−c1 lnN t ≤
t−1∑
s=0

Rs ≤ −c2 lnN t for large enough t’s, a.s. (1.20)

We will prove Theorem 1.3.1 in section 2.

As we referred to before, the large values of the replica overlap, or the maximal density,
indicate the localization of the particles to a small number of sites. We have the following
lower bound for the replica overlap and the maximal density:

Theorem 1.3.2 Suppose (1.18) and that P (N∞ = 0) = 1. Then, there exists a non-random
number c ∈ (0, 1) such that

lim
t↗∞

ρ∗t ≥ lim
t↗∞

Rt ≥ c, a.s., (1.21)

where (ρ∗t )t≥0 and (Rt)t≥0 are defined by (1.13). In particular, (1.21) holds true if we assume
any one of (a1) – (a3) in Proposition 1.2.2.

(1.21) says that the replica overlap persists, in contrast with Proposition 1.2.1(b), where the
replica overlap RT decays like O(T−d/2). The proof of Theorem 1.3.2 will be presented in
section 3. Some more remarks on Theorem 1.3.2 are in order:

1) In cases (a1) and (a3) in Proposition 1.2.2, (1.21) follows easily from (1.17) and (1.20).
However, the proof we present does not rely on (1.17), so that we can cover two-dimensional
case (a2) as well.

2) We prove (1.21) by way of the following stronger estimate:

lim
t↗∞

∑t
s=0 R

3/2
s∑t

s=0 Rs

≥ c1, a.s. (1.22)

for some non-random number c1 > 0. This in particular implies the following quantative
lower bound on the number of times, at which the replica overlap is larger than a certain
positive number:

lim
t↗∞

∑t
s=0 1{Rs≥c2}∑t

s=0 Rs

≥ c3, a.s.

where c2 and c3 are non-random positive numbers.

3) For both Theorem 1.3.1 and Theorem 1.3.2, similar results are known for the directed
polymers in random environment (DPRE) [4, 6, 7]. In fact, we have used ideas and techniques
from the DPRE case. However, the results for DPRE do not seem to directly imply our
results.
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2 Proof of Theorem 1.3.1

2.1 Lemmas

For sequences (at)t∈N and (bt)t∈N (random or non-random), we write at ¹ bt if there exists a
non-random constant c ∈ (0,∞) such that at ≤ cbt for all t ∈ N. We write at ³ bt if at ¹ bt

and bt ¹ at.

Lemma 2.1.1 (a) If m(2) < ∞ and Q(mt,x = m) 6= 1, then, P [(Nt − mNt−1)2|Ft−1] ³
∑
x∈Zd

N2
t−1,x.

(b) If m(3) < ∞, then
∣∣P [(Nt − mNt−1)3|Ft−1]

∣∣ ¹ ∑
x∈Zd

N3
t−1,x.

Proof: (a): Since

Nt − mNt−1 =
∑

x

Nt−1,x∑
ν=1

(Kν
t−1,x − m),

we have (Nt − mNt−1)2 =
∑

x1,x2
Fx1,x2 , where

Fx1,x2 =
Nt−1,x1∑

ν1=1

Nt−1,x2∑
ν2=1

(Kν1
t−1,x1

− m)(Kν2
t−1,x2

− m).

If x1 6= x2, then Kν1
t−1,x1

and Kν2
t−1,x2

are mean m independent random variables under
P (·|Ft−1), and hence

P [Fx1,x2 |Ft−1] = 0.

We may therefore focus on the expectation of Fx1,x2 with x1 = x2 = x. In this case,
{Kν

t−1,x}
Nt−1,x

ν=1 are independent under P (·|F̃t−1), where

F̃t−1 = σ(Ft−1, (qt−1,x)x∈Zd).

Thus,

P [Fx,x|F̃t−1] = Nt−1,x(Nt−1,x − 1)(mt−1,x − m)2 + Nt−1,xP q[(Kν
t−1,x − m)2].

The first and second terms on the right-hand-side come respectively from off-diagonal and
diagonal terms in Fx,x. We now set α

def.= Q[m2
t,x]/m2. Then, α > 1 (since Q(mt,x = m) 6= 1)

and

P [Fx,x|Ft−1] = (α − 1)m2Nt−1,x(Nt−1,x − 1) + (m(2) − m2)Nt−1,x

= (α − 1)m2N2
t−1,x + (m(2) − αm2)Nt−1,x.

Therefore,

P [(Nt − mNt−1)2|Ft−1] = (α − 1)m2
∑

x

N2
t−1,x + (m(2) − αm2)Nt−1,

which implies the desired bound.
(b): We have (Nt − mNt−1)3 =

∑
x1,x2,x3

Fx1,x2,x3 , where

Fx1,x2,x3 =
Nt−1,x1∑

ν1=1

Nt−1,x2∑
ν2=1

Nt−1,x3∑
ν3=1

(Kν1
t−1,x1

− m)(Kν2
t−1,x2

− m)(Kν3
t−1,x3

− m).
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If, for example, x1 6∈ {x2, x3}, then Kν1
t−1,x1

is independent of {Kν2
t−1,x2

,Kν3
t−1,x3

} under
P (·|Ft−1), and hence P [Fx1,x2,x3 |Ft−1] = 0. This implies that

P [(Nt − mNt−1)3|Ft−1] =
∑

x

P [Fx,x,x|Ft−1].

On the other hand, we have that

P [Fx,x,x|F̃t−1] = Nt−1,xP q[(Kν
t−1,x − m)3]

+3Nt−1,x(Nt−1,x − 1)P q[(Kν
t−1,x − m)2]P q[Kν

t−1,x − m]

+Nt−1,x(Nt−1,x − 1)(Nt−1,x − 2)P q[Kν
t−1,x − m]3,

and therefore that ∣∣∣P [Fx,x,x|F̃t−1]
∣∣∣ ≤ N3

t−1,xP q[|Kν
t−1,x − m|3].

Putting things together, we obtain∣∣P [(Nt − mNt−1)3|Ft−1]
∣∣ ≤ c

∑
x

N3
t−1,x, with c = Q[|Kν

t−1,x − m|3].

2

Let us now recall Doob’s decomposition in our settings. An (Ft)-adapted process X =
(Xt)t≥0 ⊂ L1(P ) can be decomposed in a unique way as

Xt = Mt(X) + At(X), t ≥ 1,

where M(X) is an (Ft)-martingale and

A0 = 0, ∆At = P [∆Xt|Ft−1], t ≥ 1.

Here, and in what follows, we write ∆at = at−at−1 (t ≥ 1) for a sequence (at)t∈N (random or
non-random). Mt(X) and At(X) are called respectively, the martingale part and compensator
of the process X. If X is a square-integrable martingale, then the compensator At(X2) of
the process X2 = (X2

t )t≥0 ⊂ L1(P ) is denoted by 〈X 〉t and is given by the following formula:

∆〈 X 〉t = P [(∆Xt)2|Ft−1].

Now, we turn to the Doob’s decomposition of Xt = − lnN t, whose martingale part and the
compensator will be henceforth denoted Mt and At respectively;

− lnN t = Mt + At, ∆At = −P [∆ ln N t|Ft−1] (2.1)

Lemma 2.1.2 Suppose (1.18). Then, ∆〈 M 〉t ¹ Rt−1 ³ ∆At.

Proof: We set Ut = ∆Nt

Nt−1
to simplify the notation. We first note the following:

(1) Ut ≥
1
m

− 1 > −1.

(2) |∆lnN t| ≤ m |Ut|.

(3) P
[
U2

t |Ft−1

]
³ P [ϕ (Ut) |Ft−1] ³ Rt−1, where ϕ(x) = x − ln(1 + x).
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In fact, Nt−1 ≤ Nt by (1.18), and hence (1/m)N t−1 ≤ N t. These imply (1). (2) follows
directly from (1) since

| lnx − ln y| ≤ m|x − y|
y

if x, y > 0 and x/y ≥ 1/m.

As for (3), we have by Lemma 2.1.1(a) that

P
[
U2

t |Ft−1

]
=

P
[
|∆N t|2|Ft−1

]
N

2
t−1

³ Rt−1.

We now note that there exists c ∈ (0,∞), which depends only on m such that

x2

4(2 + x)
≤ ϕ(x) ≤ cx2 for all x ≥ 1

m − 1.

This, together with (1) implies that

P [ϕ (Ut) |Ft−1] ≤ cP
[
U2

t |Ft−1

]
³ Rt−1.

On the other hand, we have by Lemma 2.1.1(b) that∣∣P [
U3

t |Ft−1

]∣∣ =
1

N3
t−1

∣∣P [(Nt − mNt−1)3|Ft−1]
∣∣ ¹ 1

N3
t−1

∑
x∈Zd

N3
t−1,x ≤ Rt−1.

Thus,

Rt−1 ³ P
[
U2

t |Ft−1

]
= P

[
Ut√

2 + Ut
Ut

√
2 + Ut|Ft−1

]
≤ P

[
U2

t

2 + Ut
|Ft−1

]1/2

P
[
2U2

t + U3
t |Ft−1

]1/2 ¹ P [ϕ(Ut)|Ft−1]
1/2 R1/2

t−1,

and hence Rt−1 ¹ P [ϕ(Ut)|Ft−1].
The rest of the proof is easy. We have by (3) that

∆At = −P [∆ ln N t|Ft−1] = −P [ln (1 + Ut) |Ft−1] = P [ϕ (Ut) |Ft−1] ³ Rt−1.

Similarly, by (2) and Lemma 2.1.1,

P [(∆ ln N t)2|Ft−1] ¹ P
[
U2

t |Ft−1

]
³ Rt−1.

This, together with ∆At ³ Rt−1 implies that

∆〈 M 〉t = P [(∆Mt)2|Ft−1] ≤ 2P [(∆ ln N t)2|Ft−1] + 2(∆At)2 ¹ Rt−1.

2

Lemma 2.1.3 Suppose Q(qt,x(0) = 0) = 1. Then, P (N∞ > 0) ∈ {0, 1}.

The proof we present is due to Yuval Peres (private communication). We prepare some
notation. For (s, y) ∈ N × Zd, we define the (s, y)-branch (N s,y

t,x )x∈Zd , t ∈ N of the branching
random walk as follows:

N s,y
0,x = δx,y, N s,y

t,x =
∑
z∈Zd

Ns,y
t−1,z∑
ν=1

δx(Xν
s+t−1,z)K

ν
s+t−1,z, t ∈ N∗. (2.2)
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N s,y
t,x can be thought of as the number of particles at time-space (s + t, x) ∈ N × Zd which

descend from a single particle at time-space (s, y) ∈ N × Zd. In particular, Nt,x = N0,0
t,x in

this notation. We define the set of occupied sites Os,y
t of the (s, y)-branch by

Os,y
t = {x ∈ Zd ; N s,y

t,x ≥ 1}, Ot = O0,0
t .

Note that Os,y
t ⊂ Zd

e , if y ∈ Zd
e and t − s ∈ 2N, where

Zd
e = {x ∈ Zd ; x1 + ... + xd ∈ 2Z}.

Proof of Lemma 2.1.3: We fix ` ∈ N and define an event Es,y
t (s, t ∈ 2N, y ∈ Zd

e) by:

Es,y
t =

∪
v∈Zd

e

{
([−`, `]d + v) ∩ Zd

e ⊂ Os,y
t

}
, Et = E0,0

t ,

that is, the set of occupied sites of the (s, y)-branch at time t contains a cube with the
side-length 2`. We first note that for any ` ∈ N,

(1) T
def= inf {t ∈ 2N ; Et occurs} < ∞, a.s.

To prove (1), we take s ∈ 2N large enough so that

P (Es) > 0.

We then define a sequence 0 = y0, y1, ... ∈ Zd
e inductively by

yk = maxO(k−1)s,yk−1

ks , k ∈ N∗,

where the maximum is relative to the lexicographical order of Zd. By the assumption,
O(k−1)s,yk−1

ks 6= ∅ for all k ∈ N∗. Now,

P (T > ks) ≤ P
(
(Es)c, (Es,y1

s )c, ..., (E(k−1)s,yk−1
s )c

)
= P

(
(Es)c, (Es,y1

s )c, ..., (E(k−2)s,yk−2
s )c

)
(1 − P (Es))

= (1 − P (Es))k.

This implies that P [exp (cT )] < ∞ for some c > 0 and hence (1).
Let T be defined by (1) and

vT = max{v ∈ Zd
e ; ([−`, `]d + v) ∩ Zd

e ⊂ O0,0
T }.

We then have that

P (N∞ > 0|FT ) ≥ P

 ∪
y∈OT

{NT,y
∞ > 0}

∣∣∣∣∣∣FT


≥ P

 ∪
y∈([−`,`]d+vT )∩Zd

e

{NT,y
∞ > 0}

∣∣∣∣∣∣FT


= P

 ∪
y∈[−`,`]d∩Zd

e

{N0,y
∞ > 0}

 ,

9



where we have used the invariance under the time-space shift on the last line. Hence, by
taking expectations and letting ` → ∞,

P (N∞ > 0) ≥ P

 ∪
y∈Zd

e

{N0,y
∞ > 0}

 .

The above inequality is in fact an equality, since N
0,0
∞ = N∞. Moreover, the event on the

right-hand-side is invariant under the shift by x ∈ Zd
e , which is ergodic with respect to P . It

is thus, zero or one depending on whether P (N∞ > 0) is zero or positive. 2

2.2 Proof of Theorem 1.3.1

The proof is based on the decomposition (2.1). By Lemma 2.1.3, it is enough to prove the
following:

(1) {N∞ = 0}
a.s.
⊂ {A∞ = ∞} = {

∑∞
s=0 Rs = ∞}.

(2) {
∑∞

s=0 Rs = ∞}
a.s.
⊂ { −c1 lnN t ≤

∑t−1
s=0 Rs ≤ −c2 lnN t for large enough t’s.}.

To prove these, we recall the following general facts on square-integrable martingales–see for
example [9, page 252, (4.9) and page 253, (4.10)]:

(3) {〈 M 〉∞ < ∞}
a.s.
⊂ {lim

t
Mt converges.}.

(4) {〈 M 〉∞ = ∞}
a.s.
⊂ {lim

t

Mt

〈 M 〉t
= 0}.

By (3) and Lemma 2.1.2, we get (1) as follows:{
t−1∑
s=0

Rs < ∞

}
= {A∞ < ∞} = {A∞ < ∞, 〈 M 〉∞ < ∞}

a.s.
⊂ {A∞ < ∞, lim

t
Mt converges.} ⊂ {N∞ > 0}.

We now turn to (2). Since {A∞ = ∞} = {
∑∞

s=0 Rs = ∞} and

− lnN t∑t−1
s=0 Rs

³ − lnN t

At
=

Mt

At
+ 1,

by Lemma 2.1.2, (2) is a consequence of:

(5) {A∞ = ∞}
a.s.
⊂

{
Mt
At

−→ 0
}

.

Let us suppose that A∞ = ∞. If 〈 M 〉∞ < ∞, then again by (3), lim
t

Mt converges and

therefore (5) holds. If, on the contrary, 〈 M 〉∞ = ∞, then by (4) and Lemma 2.1.2,

Mt

At
=

Mt

〈 M 〉t
〈 M 〉t

At
−→ 0 a.s.

Thus, (5) is true in this case as well. 2
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3 Proof of Theorem 1.3.2

We shall prove Theorem 1.3.2 in the same spirit as that of [4]. In the following subsection,
we give some preliminary estimates and the final proof is given in the last subsection.

3.1 Lemmas

A technical result at first:

Lemma 3.1.1 Let ηi, 1 ≤ i ≤ n (n ≥ 2) be positive independent random variables on a
probability space with the probability measure P, such that P[η3

i ] < ∞ for i = 1, .., n.Then,

P
[

η1η2

(
∑n

i=1 ηi)2

]
≥ m1m2

M2
− 2

m2var(η1) + m1var(η2)
M3

, (3.1)

P
[

η2
1

(
∑n

i=1 ηi)2

]
≥ P[η2

1]
M2

(
1 +

2m1

M

)
− 2

P[η3
1]

M3
, (3.2)

where mi = P[ηi] and M =
∑n

i=1 mi.

Proof: We set

U =
n∑

i=1

(ηi − mi) =
n∑

i=1

ηi − M > −M.

Note that (u + M)−2 ≥ M−2(1 − 2u
M ) for u ∈ (−M,∞). Thus, we have that

P
[

η1η2

(
∑n

i=1 ηi)2

]
= P

[
η1η2

(U + M)2

]
≥ M−2

(
m1m2 −

2
M

P [η1η2U ]
)

P [η1η2U ] = P [η1η2(η1 − m1)] + P [η1η2(η2 − m2)] = m2var(η1) + m1var(η2).

These prove (3.1). Similarly,

P
[

η2
1

(
∑n

i=1 ηi)2

]
= P

[
η2
1

(U + M)2

]
≥ M−2

(
P

[
η2
1

]
− 2

M
P

[
η2
1U

])
,

P
[
η2
1U

]
= P

[
η2
1(η1 − m1)

]
= P

[
η3
1

]
− m1P

[
η2
1

]
.

These prove (3.2). 2

As an immediate consequence, we have (by applying Lemma 3.1.1 to αiηi instead of ηi):

Corollary 3.1.2 Let ηi, 1 ≤ i ≤ n (n ≥ 2) be as in Lemma 3.1.1. Then, for any αi ≥ 0
satisfying

∑n
i=1 αi = 1, we have

P
( η1η2

(
∑n

i=1 αiηi)
2

)
≥ 1 − (P(η̃2

1) − 1)(α1 + α2), (3.3)

P
( (η1)2

(
∑n

i=1 αiηi)
2

)
≥ (1 + 2α1)P(η̃2

1) − 2α1P(η̃3
1), (3.4)

where η̃1 := η1/P[η1].
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Lemma 3.1.3 Assume Q(qt,x(0) = 0) = 1 and Q(qt,x(1) = 1) < 1. Then,

lim
t→∞

1
t

lnNt ≥ c0, a.s. (3.5)

where c0 = − lnQ[
∑

k≥1 k−1qt,x] > 0.

Proof: For any (t, y, ν), Kν
t,y is independent of Ft, hence

P
(
(Kν

t,y)
−1 | Ft

)
= P

(
(Kν

t,y)
−1

)
= e−c0 .

It follows by Jensen’s inequality that

P

(
1
Nt

| Ft−1

)
= P

∑
y

Nt−1,y∑
ν=1

Kν
t−1,y

−1

| Ft−1


=

1
Nt−1

P

 1
Nt−1

∑
y

Nt−1,y∑
ν=1

Kν
t−1,y

−1

| Ft−1


≤ 1

Nt−1
P

 1
Nt−1

∑
y

Nt−1,y∑
ν=1

(
Kν

t−1,y

)−1
| Ft−1


=

e−c0

Nt−1
.

Hence P
(

1
Nt

)
≤ e−c0t, and (3.5) follows from the Borel-Cantelli lemma. 2

We denote by (Pt, t = 0, 1, ...) the semigroup of a simple symmetric random walk on Zd,
namely, Ptf(x) :=

∑
y Pt(x, y)f(y) where Pt(x, y) is the probability that the random walk

starting from x resides at y on the t-th step. Plainly, P1(x, y) = p(x, y). We write P = P1.
Let for any z ∈ Zd,

rt := P2t(z, z) = P2t(0, 0) ∼ c t−d/2, t → ∞.

For the sake of notational convenience, we write ρt(x) ≡ ρt,x, so that ρt stands for a function
on Zd.

Lemma 3.1.4 Assume (1.18). For any (y1, ν1) and (y2, ν2), t ≥ 1, we have

P
(Kν1

t,y1
Kν2

t,y2

N2
t+1

| Ft

)
≥ 1

N2
t

[
(α − 1)1(y1=y2) − c1ρt(y1) − c1ρt(y2) −

c2

Nt

]
, (3.6)

on the event {Nt,y1 ∧ Nt,y2 ≥ 1}, where α =
Q[m2

t,x]

m2 and c1 and c2 are some constants.
Consequently,

P
(
ρt+1(y1)ρt+1(y2)| Ft

)
≥ (1 − c2

Nt
)Pρt(y1)Pρt(y2) + (α − 1)

∑
z

ρ2
t (z)p(z, y1)p(z, y2)

−c1

[
Pρt(y1)P(ρ2

t )(y2) + Pρt(y2)P(ρ2
t )(y1)

]
− α

Nt

∑
z

p(z, y1)p(z, y2)ρt(z). (3.7)
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Proof: Firstly, we consider (3.6) in the case (y1, ν1) 6= (y2, ν2). Let A ∈ Ft and A ⊂
{Nt,y1∧Nt,y2 ≥ 1}. Under P q, {Kν

t,y}y,ν are independent (but not identically distributed) and

independent of Ft. Since Nt+1 =
∑

y

∑Nt,y

ν=1 Kν
t,y, we have Mt

def.= P q[Nt+1|Ft] =
∑

y mt,yNt,y.
Thus, by applying (3.1) to η1 = Kν1

t,y1
and η2 = Kν2

t,y2
, we get

P q
(
1A

Kν1
t,y1

Kν2
t,y2

N2
t+1

)
≥ P q

(
1A

mt,y1mt,y2

M2
t

)
− 2P q

(
1A

mt,y2m
(2)
t,y1

+ mt,y1m
(2)
t,y2

N3
t

)
,

since Mt ≥ Nt. Therefore, by taking Q-expectation,

P
(
1A

Kν1
t,y1

Kν2
t,y2

N2
t+1

)
≥ P

(
1A

mt,y1mt,y2

M2
t

)
− 2P

(
1A

mt,y2m
(2)
t,y1

+ mt,y1m
(2)
t,y2

N3
t

)
.

Observe that under P , mt,· are i.i.d. and independent of Ft. It turns out from (3.3) and
(3.4), with α· and η· playing the roles of ρt(·) and mt,· respectively, that

P

(
mt,y1mt,y2

M2
t

| Ft

)
=

1
N2

t

P

(
mt,y1mt,y2

(
∑

y ρt(y)mt,y)2
| Ft

)
≥ 1

N2
t

[
1 + (α − 1)1(y1=y2) − c1ρt(y1) − c1ρt(y2)

]
.

On the other hand, we have

P
(
mt,y2m

(2)
t,y1

+ mt,y1m
(2)
t,y2

| Ft

)
≤ 2m(3) < ∞

by our integrability assumption. Hence, with c2 = 4m(3),

P
(
1A

Kν1
t,y1

Kν2
t,y2

N2
t+1

)
≥ P

(
1A

N2
t

[
1 + (α − 1)1(y1=y2) − c1ρt(y1) − c1ρt(y2) −

c2

Nt

])
,

yielding (3.6) in the case (y1, ν1) 6= (y2, ν2). The case (y1, ν1) = (y2, ν2) is obtained in the
same way by applying (3.2) instead of (3.1) and by eventually modifying the constants.
To obtain (3.7), we have that

P
(
ρt+1(y1)ρt+1(y2)| Ft

)
=

∑
z1,z2

Nt,z1∑
ν1=1

Nt,z2∑
ν2=1

P

(
δy1(X

ν1
t,z1

)δy2(X
ν2
t,z2

)Kν1
t,z1

Kν2
t,z2

N2
t+1

| Ft

)

=
∑
z1,z2

Nt,z1∑
ν1=1

Nt,z2∑
ν2=1

h1,2 P

(
Kν1

t,z1
Kν2

t,z2

N2
t+1

| Ft

)
(3.8)

by means of the independence between (Xν1
t,z1

, Xν2
t,z2

) and (Ft, Nt+1,K
ν1
t,z1

Kν2
t,z2

), and the func-
tion h1,2 is defined as follows:

h1,2 := P
(
δy1(X

ν1
t,z1

)δy2(X
ν2
t,z2

)
)

= 1((z1,ν1)=(z2,ν2))p(z1, y1)1(y1=y2) + 1((z1,ν1)6=(z2,ν2))p(z1, y1)p(z2, y2) (3.9)
≥ 1((z1,ν1)6=(z2,ν2))p(z1, y1)p(z2, y2).
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Applying (3.6) we get

P
(
ρt+1(y1)ρt+1(y2)| Ft

)
≥

∑
z1,z2

∑
ν1,ν2

h1,2
1

N2
t

[
1 + (α − 1)1(z1=z2) − c1ρt(z1) − c1ρt(z2) −

c2

Nt

]
≥

∑
(z1,ν1)6=(z2,ν2)

p(z1, y1)p(z2, y2)
1

N2
t

[
gt(z1, z2) + (α − 1)1(z1=z2)

]
,

with gt(z1, z2) = 1 − c1ρt(z1) − c2ρt(z2) − c2
Nt

. Let us compute explicitly the above sum∑
(z1,ν1) 6=(z2,ν2) · · ·:∑

(z1,ν1) 6=(z2,ν2)

=
∑

z1 6=z2

Nt,z1Nt,z2p(z1, y1)p(z2, y2)
1

N2
t

gt(z1, z2)

+
∑

z

(N2
t,z − Nt,z)p(z, y1)p(z, y2)

1
N2

t

[gt(z, z) + α − 1],

by removing the diagonal terms. Using the definition of ρt(z) = Nt,z/Nt, we get∑
(z1,ν1)6=(z2,ν2)

=
∑
z1,z2

ρt(z1)ρt(z2)p(z1, y1)p(z2, y2) gt(z1, z2)

+(α − 1)
∑

z

ρt(z)2p(z, y1)p(z, y2) −
∑

z

p(z, y1)p(z, y2)
ρt(z)
Nt

[gt(z, z) + α − 1]

≥ (1 − c2

Nt
)Pρt(y1)Pρt(y2) + (α − 1)

∑
z

ρt(z)2p(z, y1)p(z, y2)

−c1

[
Pρt(y1)P(ρ2

t )(y2) + Pρt(y2)P(ρ2
t )(y1)

]
− α

Nt

∑
z

p(z, y1)p(z, y2)ρt(z),

as desired. 2.

Recall that Rt =
∑

x ρ2
t (x). Let t ≥ 2. The following lemma shows the role played by the

semigroup in analyzing Rt.

Lemma 3.1.5 Assume (1.18). There exists a constant c3 > 0 such that for all 1 ≤ s ≤ t−1,

P

(∑
x

(Pt−(s+1) ρs+1(x))2 | Fs

)
≥

∑
x

(Pt−sρs(x))2 + (α − 1) rt−sRs − 2c1R3/2
s − c3

Ns
.

Proof: Observe that∑
x

(Pt−(s+1) ρs+1(x))2 =
∑

x

∑
y1,y2

Pt−(s+1)(x, y1)Pt−(s+1)(x, y2)ρs+1(y1)ρs+1(y2).

Applying (3.7) gives

P

(∑
x

(Pt−(s+1) ρs+1(x))2 | Fs

)
≥ (1 − c2

Ns
)I2 + (α − 1)I3 − c1I4 −

α

Ns
I5,

with

I2 :=
∑

x

∑
y1,y2

Pt−(s+1)(x, y1)Pt−(s+1)(x, y2)Pρs(y1)Pρs(y2),
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I3 :=
∑

x

∑
y1,y2

Pt−(s+1)(x, y1)Pt−(s+1)(x, y2)
∑

z

ρ2
s(z)p(z, y1)p(z, y2),

I4 :=
∑

x

∑
y1,y2

Pt−(s+1)(x, y1)Pt−(s+1)(x, y2)
[
Pρs(y1)P(ρ2

s)(y2) + Pρs(y2)P(ρ2
s)(y1)

]
,

I5 :=
∑

x

∑
y1,y2

Pt−(s+1)(x, y1)Pt−(s+1)(x, y2)
∑

z

p(z, y1)p(z, y2)ρs(z).

Using the semigroup property and noting that
∑

x (Pt−s(x, z))2 = P2t−2s(z, z) = rt−s for any
z, we obtain

I2 =
∑

x

(Pt−sρs(x))2,

I3 =
∑

x

∑
z

(Pt−s(x, z))2ρ2
s(z) =

∑
z

∑
x

(Pt−s(x, z))2ρ2
s(z) = rt−s

∑
z

ρ2
s(z),

I4 = 2
∑

x

Pt−sρs(x)Pt−s(ρ2
s)(x),

I5 =
∑

x

∑
z

(Pt−s(x, z))2ρs(z) =
∑

z

ρs(z)rt−s = rt−s.

By the translation invariance and the Cauchy-Schwarz inequality, we see that

Rs =
∑

x

Pt−s(ρ2
s)(x) ≥

∑
x

(Pt−s(ρs)(x))2 ≥ max
x

Pt−s(ρs)(x)2,

and hence that I4 ≤ 2R3/2
s . This implies the lemma with c3 = α + c2. 2

Define

Vt =
t∑

s=1

Rs, t = 1, 2, ...

Lemma 3.1.6 Assume (1.18). Fix j ≥ 0. The martingale Zj(·) defined by

Zj(t) :=
t∑

s=1

(∑
x

(Pjρs(x))2 − P
( ∑

x

(Pjρs(x))2 | Fs−1

))
, t ≥ 1.

satisfies the following law of large numbers:

{V∞ = ∞}
a.s.
⊂ {Zj(t)

Vt
→ 0, t → ∞, }.

Proof: Let us compute the increasing process 〈Zj〉· associated to Zj . By the Cauchy-Schwarz
inequality, (

∑
x Pjρs(x))2 ≤

∑
x Pjρ

2
s(x) = Rs ≤ 1. It follows that

(Zj(s) − Zj(s − 1))2 ≤ 2

(∑
x

(Pjρs(x))2
)2

+ 2

(
P

( ∑
x

(Pjρs(x))2 | Fs−1

))2

≤ 2R2
s + 2P (Rs | Fs−1)

2

≤ 2Rs + 2P
(
Rs | Fs−1

)
.

Hence,
〈Zj〉s − 〈Zj〉s−1 = P

(
(Zj(s) − Zj(s − 1))2 | Fs−1

)
≤ 4P

(
Rs | Fs−1

)
.
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We will prove that
P

(
Rs | Fs−1

)
≤ 2m(2)Rs−1. (3.10)

Then, 〈 Zj 〉t ≤ 8m(2)Vt−1, and the lemma follows from the standard law of large numbers
for a square-integrable martingale, cf. section 2.2,(4).
It remains to show (3.10). Using (3.8) and (3.9) to y1 = y2 = y, we have

P
(
Rs | Fs−1

)
=

∑
y

P
(
ρ2

s(y) | Fs−1

)

=
∑

y

∑
z1,z2

Ns−1,z1∑
ν1=1

Ns−1,z2∑
ν2=1

h1,2 P

(
Kν1

s−1,z1
Kν2

s−1,z2

N2
s

| Fs−1

)

≤
∑

y

∑
z1,z2

Ns−1,z1∑
ν1=1

Ns−1,z2∑
ν2=1

h1,2
m(2)

N2
s−1

.

To obtain the last inequality, we used Ns ≥ Ns−1 and the independence between K ·
s−1,· and

Fs−1. We divide the last summation into the summation over (z1, ν1) = (z2, ν2) and that
over (z1, ν1) 6= (z2, ν2), to see that

∑
y

∑
z1,z2

Ns−1,z1∑
ν1=1

Ns−1,z2∑
ν2=1

h1,2

N2
s−1

≤ 1
Ns−1

+
∑

x

(Pρs−1(x))2 ≤ 1
Ns−1

+ Rs−1 ≤ 2Rs−1.

Here, we used Rs−1 =
∑

x N2
s−1,x/N2

s−1 ≥ 1/Ns−1 to see the last inequality. Putting things
together, we have (3.10) and the proof of the lemma is now complete. 2

3.2 Proof of Theorem 1.3.2:

We first note that there are ε > 0 and t0 ∈ N such that

t0∑
s=1

rs ≥
1 + ε

α − 1
, (3.11)

where the constant α is from Proposition 1.2.1. For d = 1, 2, we take ε = 1. Then, (3.11)
holds for t0 large enough, since

∑∞
s=1 rs = ∞. For d ≥ 3, our assumption P (N∞ = 0) = 1

implies α ≥ α∗ > 1/πd by Proposition 1.2.1. Since
∑∞

s=1 rs = πd
1−πd

, (3.11) holds for small
enough ε > 0 and large enough t0.
Let t > t0. Applying Lemma 3.1.5 to s = t − 1, t − 2, ..., t − t0 and taking the sum on s, we
get

t−1∑
s=t−t0

(2c1R3/2
s +

c3

Ns
)

≥
t−1∑

s=t−t0

(∑
x

(Pt−sρs(x))2 − P
( ∑

x

(Pt−(s+1) ρs+1(x))2 | Fs

))
+ (α − 1)

t−1∑
s=t−t0

rt−sRs

=
t−1∑

s=t−t0

(∑
x

(Pt−(s+1) ρs+1(x))2 − P
( ∑

x

(Pt−(s+1) ρs+1(x))2 | Fs

))
+

t−1∑
s=t−t0

(∑
x

(Pt−sρs(x))2 −
∑

x

(Pt−(s+1) ρs+1(x))2
)

+ (α − 1)
t−1∑

s=t−t0

rt−sRs
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=
t−1∑

s=t−t0

[
Zt−(s+1)(s + 1) − Zt−(s+1)(s)

]
+

∑
x

(Pt0 ρt−t0(x))2 −Rt + (α − 1)
t−1∑

s=t−t0

rt−sRs,

where we recall that the martingale Zj(·) are defined in Lemma 3.1.6. By change of variable
s = t − j, we have proven that

t0∑
j=1

(2c1R3/2
t−j +

c3

Nt−j
) ≥

t0∑
j=1

[
Zj−1(t − j + 1) − Zj−1(t − j)

]
−Rt + (α − 1)

t0∑
j=1

rjRt−j .

Taking the sum of these inequalities for t = t0 + 1, ..., T , we obtain that

T∑
t=t0+1

t0∑
j=1

(2c1R3/2
t−j +

c3

Nt−j
) ≥

t0∑
j=1

[
Zj−1(T − j + 1) − Zj−1(t0 − j + 1)

]
− (VT − Vt0)

+(α − 1)
t0∑

j=1

rj(VT−j − Vt0−j).

Since Rs ≤ 1,

VT−j − Vt0−j ≥ VT − j − (t0 − j) = VT − t0,

(α − 1)
t0∑

j=1

rj(VT−j − Vt0−j) ≥ (α − 1)
t0∑

j=1

rjVT − c9 ≥ (1 + ε)VT − c9,

with constant c9 = (α − 1)t0
∑t0

j=1 rj . Hence,

T∑
t=t0+1

t0∑
j=1

(2c1R3/2
t−j +

c3

Nt−j
) ≥

t0∑
j=1

[
Zj−1(T − j + 1) − Zj−1(t0 − j + 1)

]
+ εVT − c9. (3.12)

Recall from Lemma 3.1.3 that
∑∞

t=1
1

Nt
< ∞, a.s., which combined with Lemma 3.1.6 implies

that the two sums involving respectively c3
Nt−j

and Zj−1(T − j + 1) in (3.12) are negligible,
relative to VT . It follows that

lim inf
T→∞

1
VT

T∑
t=t0+1

t0∑
j=1

R3/2
t−j ≥

ε

2c1
, a.s.

Consequently,

lim inf
T→∞

1
VT

T∑
t=1

R3/2
t ≥ ε

2c1 t0
, a.s.,

which implies that
lim sup

t→∞
Rt ≥ (

ε

2c1 t0
)2, a.s.

This completes the proof of theorem. 2
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