Localization for Branching Random Walks in Random Environment

Yueyun Hu and Nobuo Yoshida ${ }^{1}$
Université Paris 13 and Kyoto University

Abstract

We consider branching random walks in d-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d \geq 3$ and the environment is "not too random", then, the total population grows as fast as its expectation with strictly positive probability. If, on the other hand, $d \leq 2$, or the environment is "random enough", then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of "replica overlap". We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.

Key words and phrases: branching random walk, random environment, localization, phase transition.
MSC 2000 subject classifications. Primary 60K37; secondary 60J80, 60K35, 82D30.

1 Introduction

1.1 Branching random walks in random environment (BRWRE)

We begin by introducing the model. We write $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{N}^{*}=\{1,2, \ldots\}$ and $\mathbb{Z}=$ $\{ \pm x ; x \in \mathbb{N}\}$. For $x \in \mathbb{Z}^{d},|x|=\left(\left|x_{1}\right|^{2}+. .+\left|x_{d}\right|^{2}\right)^{1 / 2}$. The following formulation is an analogue of [10, section 4.2], where non-random offspring distributions are considered. See also $[3$, section 5$]$ for the random offspring case.
Let $X=\left\{X_{t, x}^{\nu}\right\}_{(t, x, \nu) \in \mathbb{N} \times \mathbb{Z}^{d} \times \mathbb{N}^{*}}$ be \mathbb{Z}^{d}-valued independent random variables defined on a probability space ($\Omega_{X}, \mathcal{F}_{X}, P_{X}$) such that

$$
P_{X}\left(X_{t, x}^{\nu}=y\right)=p(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{cc}
\frac{1}{2 d} & \text { if }|x-y|=1, \tag{1.1}\\
0 & \text { if }|x-y| \neq 1 .
\end{array}\right.
$$

For each $(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}$, let

$$
q_{t, x}=\left(q_{t, x}(k)\right)_{k \in \mathbb{N}} \in[0,1]^{\mathbb{N}}, \quad \sum_{k \in \mathbb{N}} q_{t, x}(k)=1
$$

be a probability measure on \mathbb{N}, which we refer to as the offspring distribution. We consider a measurable space $\left(\Omega_{K}, \mathcal{F}_{K}\right)$ and, for each fixed $q=\left(q_{t, x}\right)_{(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}}$, a probability measure P_{K}^{q} such that \mathbb{N}-valued random variables $K=\left\{K_{t, x}^{\nu}\right\}_{(t, x, \nu) \in \mathbb{N} \times \mathbb{Z}^{d} \times \mathbb{N}^{*}}$ defined on $\left(\Omega_{K}, \mathcal{F}_{K}, P_{K}^{q}\right)$ are independent with the laws:

$$
\begin{equation*}
P_{K}^{q}\left(K_{t, x}^{\nu}=k\right)=q_{t, x}(k), \quad k \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

For each fixed $q=\left(q_{t, x}\right)_{(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}}$, we realize the families X and K of random variables simultaneously on the probability space

$$
\begin{equation*}
\left(\Omega_{X} \times \Omega_{K}, \mathcal{F}_{X} \otimes \mathcal{F}_{K}, P^{q}\right) \text { where } P^{q}=P_{X} \otimes P_{K}^{q} \tag{1.3}
\end{equation*}
$$

Then, the branching random walk (BRW) with the fixed offspring distributions $q=\left(q_{t, x}\right)_{(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}}$ is described as the following dynamics:

[^0]- At time $t=0$, there is one particle at the origin $x=0$.
- Suppose that there are $N_{t, x}$ particles at each site $x \in \mathbb{Z}^{d}$ at time t. At time $t+1$, the ν-th particle at a site $x\left(\nu=1, . ., N_{t, x}\right)$ jumps to a site $X_{t, x}^{\nu}$. At arrival, it dies, leaving $K_{t, x}^{\nu}$ new particles there.

We now go on to define the branching random walk in random environment (BRWRE). We set $\Omega_{q}=\mathcal{P}(\mathbb{N})^{\mathbb{N} \times \mathbb{Z}^{d}}$, where $\mathcal{P}(\mathbb{N})$ denotes the set of probability measures on \mathbb{N}. Thus, each $q \in \Omega_{q}$ is a function $(t, x) \mapsto q_{t, x}=\left(q_{t, x}(k)\right)_{k \in \mathbb{N}}$ from $\mathbb{N} \times \mathbb{Z}^{d}$ to $\mathcal{P}(\mathbb{N})$. The set $\mathcal{P}(\mathbb{N})$ is equipped with the natural Borel σ-field induced from that of $[0,1]^{\mathbb{N}}$. We denote by \mathcal{F}_{q} the product σ-field on Ω_{q}. We fix a probability measure Q on $\left(\Omega_{q}, \mathcal{F}_{q}\right)$, under which $\left\{q_{t, x}\right\}_{(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}}$ are i.i.d. offspring distributions. Finally, we define the probability space (Ω, \mathcal{F}, P) by

$$
\begin{align*}
& \Omega=\Omega_{X} \times \Omega_{K} \times \Omega_{q}, \quad \mathcal{F}=\mathcal{F}_{X} \otimes \mathcal{F}_{K} \otimes \mathcal{F}_{q}, \\
& P(A)=\int_{A} Q(d q) P^{q}(d \omega), \quad A \in \mathcal{F} . \tag{1.4}
\end{align*}
$$

In this setup, we consider the dynamics explained as before. In particular, we look at the population $N_{t, x}$ at time-space location $(t, x) \in \mathbb{N} \times \mathbb{Z}^{d}$, which is defined inductively by

$$
\begin{equation*}
N_{0, x}=\delta_{0, x}, \quad N_{t, x}=\sum_{y \in \mathbb{Z}^{d}} \sum_{\nu=1}^{N_{t-1, y}} \delta_{x}\left(X_{t-1, y}^{\nu}\right) K_{t-1, y}^{\nu}, t \geq 1 . \tag{1.5}
\end{equation*}
$$

We consider the filtration:

$$
\begin{equation*}
\mathcal{F}_{0}=\{\emptyset, \Omega\}, \quad \mathcal{F}_{t}=\sigma\left(X_{s,}, K_{s,}, q_{s, \cdot} ; s \leq t-1\right) \quad t \geq 1, \tag{1.6}
\end{equation*}
$$

which the process $t \mapsto\left(N_{t, x}\right)_{x \in \mathbb{Z}^{d}}$ is adapted to. The total population at time t is then given by

$$
\begin{equation*}
N_{t}=\sum_{x \in \mathbb{Z}^{d}} N_{t, x}=\sum_{y \in \mathbb{Z}^{d}} \sum_{\nu=1}^{N_{t-1, y}} K_{t-1, y}^{\nu} . \tag{1.7}
\end{equation*}
$$

We remark that the total population is exactly the classical Galton-Watson process if $q_{t, x} \equiv q$, where $q \in \mathcal{P}(\mathbb{N})$ is non-random. On the other hand, if \mathbb{Z}^{d} is replaced by a singleton, then N_{t} is the population of the Smith-Wilkinson model [11].

For $p>0$, we write

$$
\begin{align*}
m^{(p)} & =Q\left[m_{t, x}^{(p)}\right] \text { with } m_{t, x}^{(p)}=\sum_{k \in \mathbb{N}} k^{p} q_{t, x}(k), \tag{1.8}\\
m & =m^{(1)} . \tag{1.9}
\end{align*}
$$

Note that for $p \geq 1$,

$$
m^{p} \leq Q\left[m_{t, x}^{p}\right] \leq m^{(p)}
$$

by Hölder's inequality. We set

$$
\begin{equation*}
\bar{N}_{t, x}=N_{t, x} / m^{t} \text { and } \bar{N}_{t}=N_{t} / m^{t} . \tag{1.10}
\end{equation*}
$$

$\bar{N}_{t}=N_{t} / m^{t}$ is a martingale, and therefore the following limit always exists:

$$
\begin{equation*}
\bar{N}_{\infty}=\lim _{t} \bar{N}_{t}, \quad P-\mathrm{a} . \mathrm{s} . \tag{1.11}
\end{equation*}
$$

We denote the density of the population by:

$$
\begin{equation*}
\rho_{t, x}=\frac{N_{t, x}}{N_{t}}=\frac{\bar{N}_{t, x}}{\bar{N}_{t}}, \quad t \in \mathbb{N}, x \in \mathbb{Z}^{d} \tag{1.12}
\end{equation*}
$$

Interesting objects related to the density would be

$$
\begin{equation*}
\rho_{t}^{*}=\max _{x \in \mathbb{Z}^{d}} \rho_{t, x}, \text { and } \mathcal{R}_{t}=\sum_{x \in \mathbb{Z}^{d}} \rho_{t, x}^{2} . \tag{1.13}
\end{equation*}
$$

ρ_{t}^{*} is the density at the most populated site, while \mathcal{R}_{t} is the probability that two particles picked up randomly from the total population at time t are at the same site. We call \mathcal{R}_{t} the replica overlap, in analogy with the spin glass theory. Clearly, $\left(\rho_{t}^{*}\right)^{2} \leq \mathcal{R}_{t} \leq \rho_{t}^{*}$. These quantities convey information on localization/delocalization of the particles. Roughly speaking, large values of ρ_{t}^{*} or \mathcal{R}_{t} indicate that the most of the particles are concentrated on small numbers of "favorite sites" (localization), whereas small values of them imply that the particles are spread out over large number of sites (delocalization).

Remark: The BRWRE we discuss in this paper is closely related to the directed polymers in random environment (DPRE) [4, 6, 7]. In fact, it is easy to see that

$$
\begin{equation*}
P^{q}\left[N_{t, x}\right]=Z_{t, x} \stackrel{\text { def }}{=} \sum_{x_{1}, \ldots x_{t-1} \in \mathbb{Z}^{d}} \prod_{u=1}^{t} m_{u-1, x_{u-1}} p\left(x_{u-1}, x_{u}\right), \quad \text { with } x_{0}=0 \text { and } x_{t}=x \tag{1.14}
\end{equation*}
$$

which is exactly the partition function of the DPRE with the end point x. Roughly speaking, the study of DPRE consists in analyzing the large time behavior of $Z_{t, .}$ In this respect, our

1.2 The phase transition in terms of the population growth

Due to the random environment, the population N_{t} has much more fluctuation as compared with the non-random environment case, e.g.,[10, section 4.2]. This fluctuation results from "disastrous locations" in time-space, where the offspring distribution $q_{t, x}(k)$ happens to assign extremely high probability to small k 's. Thanks to the random walk, on the other hand, some of the particles are lucky enough to avoid those disastrous locations. Therefore, the spatial motion component of the model has the effect of moderate the fluctuation, while the random environment intensifies it. These competing factors in the model give rise to a phase transition as we will discuss below.
We first look at the case where the randomness of the offspring distribution is well moderated by that of the random walk.
Let $\left(S_{t}\right)$ be a simple symmetric random walk on \mathbb{Z}^{d}, starting from 0 . We denote by π_{d} the probability of the event $\cup_{t \geq 1}\left\{S_{t}=0\right\}$. As is well known $\pi_{d}<1$ if and only if $d \geq 3 . \pi_{d}$ equals the probability of the event $\cup_{t \geq 1}\left\{S_{t}^{(1)}=S_{t}^{(2)}\right\}$, where $\left(S_{t}^{(1)}\right)$ and $\left(S_{t}^{(2)}\right)$ are two independent simple symmetric random walks on \mathbb{Z}^{d}, both starting from 0 . To see this, note that $S_{t}^{(1)}-S_{t}^{(2)}$ and $S_{2 t}$ have the same distribution for each t and that $1 /\left(1-\pi_{d}\right)=\sum_{t \geq 0} P\left(S_{2 t}=0\right)$.

Proposition 1.2.1 (a) There exists a constant $\alpha^{*}>\frac{1}{\pi_{d}}$ such that, if

$$
\begin{equation*}
m>1, \quad m^{(2)}<\infty, \quad d \geq 3, \text { and } \alpha \stackrel{\text { def. }}{=} \frac{Q\left[m_{t, x}^{2}\right]}{m^{2}}<\alpha^{*}, \tag{1.15}
\end{equation*}
$$

then $P\left(\bar{N}_{\infty}>0\right)>0$.
(b) If one assumes the stronger assumption

$$
\begin{equation*}
m>1, \quad m^{(2)}<\infty, \quad d \geq 3, \quad \text { and } \alpha<\frac{1}{\pi_{d}} \tag{1.16}
\end{equation*}
$$

$$
\begin{aligned}
& \text { then } \\
& \qquad \mathcal{R}_{T}=O\left(T^{-d / 2}\right) \quad \text { in } P\left(\cdot \mid \bar{N}_{\infty}>0\right) \text {-probability, }
\end{aligned}
$$

i.e., the laws $P\left(T^{d / 2} \mathcal{R}_{T} \in \cdot \mid \bar{N}_{\infty}>0\right), T \geq 1$ are tight.

Conditions (1.15) and (1.16) control the randomness of the environment in terms of the random walk. Proposition 1.2.1(a) says that, under (1.15), the total population grows as fast as its expectation with strictly positive probability. This was obtained in $[3$, Theorem 4]. Proposition $1 \cdot 2 \cdot 1(\mathrm{~b})$ is a quantitative statement for delocalization under (1.16) in terms of the replica overlap [12, Proposition 1.2.3].
Next, we turn to the case where the randomness of the environment dominates:
Proposition 1.2.2 Suppose one of the following conditions:
(a1) $d=1, Q\left(m_{t, x}=m\right) \neq 1$.
(a2) $d=2, Q\left(m_{t, x}=m\right) \neq 1$.
(a3) $d \geq 3, Q\left[\frac{m_{t, x}}{m} \ln \frac{m_{t, x}}{m}\right]>\ln (2 d)$.
Then, $P\left(\bar{N}_{\infty}=0\right)=1$. Moreover, in cases (a1) and (a3), there exists a non-random number $c>0$ such that

$$
\begin{equation*}
\varlimsup_{t} \frac{\ln \bar{N}_{t}}{t}<-c, \quad \text { a.s. } \tag{1.17}
\end{equation*}
$$

Proposition 1.2 .2 says that the total population grows strictly slower than its expectation almost surely, in low dimensions or in "random enough" environment. The result is in contrast with the non-random environment case, where $P\left(\bar{N}_{\infty}=0\right)=1$ only for offspring distributions with very heavy tails, more precisely, if and only if $P\left[K_{t, x}^{\nu} \ln K_{t, x}^{\nu}\right]=\infty$ [1, page 24, Theorem 1]. Here, we can have $P\left(\bar{N}_{\infty}=0\right)=1$ even when $K_{t, x}^{\nu}$ is bounded. Also, (1.17) is in sharp contrast with the non-random environment case, where it is well known -see e.g., [1, page 30, Theorem 3] -that

$$
\left\{N_{\infty}>0\right\} \stackrel{\text { a.s. }}{=}\left\{\lim _{t} \frac{\ln \bar{N}_{t}}{t}=0\right\} \quad \text { whenever } m>1
$$

Proposition 1.2.2 was obtained in [3, Theorem 4] without (1.17), and in [12, Corollary 3.3.2] with (1.17).

1.3 The results: the localization/delocalization transition

In this paper, we aim at the localization problem for the branching random walk in random environment. We shall prove that for $d=1,2$ and for "random enough environment" in $d \geq 3$, almost surely, there exists a sequence of time t 's such that both the maximal density ρ_{t}^{*} and overlap \mathcal{R}_{t} are bigger than some positive constant.

We first characterize the event $\left\{\bar{N}_{\infty}=0\right\}$ in terms of the replica overlap. Thanks to this characterization, we can rigorously identify the phase transition in terms of population growth as discussed in section 1.2 with the localization/delocalization transition in terms of the replica overlap.

Theorem 1.3.1 Suppose that

$$
\begin{equation*}
m^{(3)}<\infty, \quad Q\left(m_{t, x}=m\right) \neq 1, \quad Q\left(q_{t, x}(0)=0\right)=1 \tag{1.18}
\end{equation*}
$$

Then,

$$
\begin{equation*}
P\left(\bar{N}_{\infty}=0\right)=P\left(\sum_{s=0}^{\infty} \mathcal{R}_{s}=\infty\right) \in\{0,1\} \tag{1.19}
\end{equation*}
$$

where $\left(\mathcal{R}_{t}\right)_{t \geq 0}$ is defined by (1.13). Moreover, if the probabilities in (1.19) are one, then there exist constants $c_{1}, c_{2} \in(0, \infty)$ such that,

$$
\begin{equation*}
-c_{1} \ln \bar{N}_{t} \leq \sum_{s=0}^{t-1} \mathcal{R}_{s} \leq-c_{2} \ln \bar{N}_{t} \quad \text { for large enough } t \text { 's, a.s. } \tag{1.20}
\end{equation*}
$$

We will prove Theorem 1.3.1 in section 2.
As we referred to before, the large values of the replica overlap, or the maximal density, indicate the localization of the particles to a small number of sites. We have the following lower bound for the replica overlap and the maximal density:

Theorem 1.3.2 Suppose (1.18) and that $P\left(\bar{N}_{\infty}=0\right)=1$. Then, there exists a non-random number $c \in(0,1)$ such that

$$
\begin{equation*}
\varlimsup_{t \nearrow \infty} \rho_{t}^{*} \geq \varlimsup_{t \nearrow \infty} \mathcal{R}_{t} \geq c, \quad \text { a.s. } \tag{1.21}
\end{equation*}
$$

where $\left(\rho_{t}^{*}\right)_{t \geq 0}$ and $\left(\mathcal{R}_{t}\right)_{t \geq 0}$ are defined by (1.13). In particular, (1.21) holds true if we assume any one of (a1) - (a3) in Proposition 1.2.2.
(1.21) says that the replica overlap persists, in contrast with Proposition 1.2.1(b), where the replica overlap \mathcal{R}_{T} decays like $O\left(T^{-d / 2}\right)$. The proof of Theorem 1.3 .2 will be presented in section 3. Some more remarks on Theorem 1.3.2 are in order:

1) In cases (a1) and (a3) in Proposition 1.2.2, (1.21) follows easily from (1.17) and (1.20). However, the proof we present does not rely on (1.17), so that we can cover two-dimensional case (a2) as well.
2) We prove (1.21) by way of the following stronger estimate:

$$
\begin{equation*}
\underline{\lim }_{t / \infty} \frac{\sum_{s=0}^{t} \mathcal{R}_{s}^{3 / 2}}{\sum_{s=0}^{t} \mathcal{R}_{s}} \geq c_{1}, \quad \text { a.s } \tag{1.22}
\end{equation*}
$$

for some non-random number $c_{1}>0$. This in particular implies the following quantative lower bound on the number of times, at which the replica overlap is larger than a certain positive number:

$$
\underline{\lim }_{t / \infty} \frac{\sum_{s=0}^{t} 1_{\left\{\mathcal{R}_{s} \geq c_{2}\right\}}}{\sum_{s=0}^{t} \mathcal{R}_{s}} \geq c_{3}, \quad \text { a.s. }
$$

where c_{2} and c_{3} are non-random positive numbers.
3) For both Theorem 1.3.1 and Theorem 1.3.2, similar results are known for the directed polymers in random environment (DPRE) [4, 6, 7]. In fact, we have used ideas and techniques from the DPRE case. However, the results for DPRE do not seem to directly imply our results.

2 Proof of Theorem 1.3.1

2.1 Lemmas

For sequences $\left(a_{t}\right)_{t \in \mathbb{N}}$ and $\left(b_{t}\right)_{t \in \mathbb{N}}$ (random or non-random), we write $a_{t} \preceq b_{t}$ if there exists a non-random constant $c \in(0, \infty)$ such that $a_{t} \leq c b_{t}$ for all $t \in \mathbb{N}$. We write $a_{t} \asymp b_{t}$ if $a_{t} \preceq b_{t}$ and $b_{t} \preceq a_{t}$.
Lemma 2.1.1 (a) If $m^{(2)}<\infty$ and $Q\left(m_{t, x}=m\right) \neq 1$, then, $P\left[\left(N_{t}-m N_{t-1}\right)^{2} \mid \mathcal{F}_{t-1}\right] \asymp \sum_{x \in \mathbb{Z}^{d}} N_{t-1, x}^{2}$.
(b) If $m^{(3)}<\infty$, then $\left|P\left[\left(N_{t}-m N_{t-1}\right)^{3} \mid \mathcal{F}_{t-1}\right]\right| \preceq \sum_{x \in \mathbb{Z}^{d}} N_{t-1, x}^{3}$.

Proof: (a): Since

$$
N_{t}-m N_{t-1}=\sum_{x} \sum_{\nu=1}^{N_{t-1, x}}\left(K_{t-1, x}^{\nu}-m\right)
$$

we have $\left(N_{t}-m N_{t-1}\right)^{2}=\sum_{x_{1}, x_{2}} F_{x_{1}, x_{2}}$, where

$$
F_{x_{1}, x_{2}}=\sum_{\nu_{1}=1}^{N_{t-1, x_{1}}} \sum_{\nu_{2}=1}^{N_{t-1, x_{2}}}\left(K_{t-1, x_{1}}^{\nu_{1}}-m\right)\left(K_{t-1, x_{2}}^{\nu_{2}}-m\right)
$$

If $x_{1} \neq x_{2}$, then $K_{t-1, x_{1}}^{\nu_{1}}$ and $K_{t-1, x_{2}}^{\nu_{2}}$ are mean m independent random variables under $P\left(\cdot \mid \mathcal{F}_{t-1}\right)$, and hence

$$
P\left[F_{x_{1}, x_{2}} \mid \mathcal{F}_{t-1}\right]=0
$$

We may therefore focus on the expectation of $F_{x_{1}, x_{2}}$ with $x_{1}=x_{2}=x$. In this case, $\left\{K_{t-1, x}^{\nu}\right\}_{\nu=1}^{N_{t-1, x}}$ are independent under $P\left(\cdot \mid \widetilde{\mathcal{F}}_{t-1}\right)$, where

$$
\widetilde{\mathcal{F}}_{t-1}=\sigma\left(\mathcal{F}_{t-1},\left(q_{t-1, x}\right)_{x \in \mathbb{Z}^{d}}\right)
$$

Thus,

$$
P\left[F_{x, x} \mid \widetilde{\mathcal{F}}_{t-1}\right]=N_{t-1, x}\left(N_{t-1, x}-1\right)\left(m_{t-1, x}-m\right)^{2}+N_{t-1, x} P^{q}\left[\left(K_{t-1, x}^{\nu}-m\right)^{2}\right]
$$

The first and second terms on the right-hand-side come respectively from off-diagonal and diagonal terms in $F_{x, x}$. We now set $\alpha \stackrel{\text { def. }}{=} Q\left[m_{t, x}^{2}\right] / m^{2}$. Then, $\alpha>1\left(\right.$ since $\left.Q\left(m_{t, x}=m\right) \neq 1\right)$ and

$$
\begin{aligned}
P\left[F_{x, x} \mid \mathcal{F}_{t-1}\right] & =(\alpha-1) m^{2} N_{t-1, x}\left(N_{t-1, x}-1\right)+\left(m^{(2)}-m^{2}\right) N_{t-1, x} \\
& =(\alpha-1) m^{2} N_{t-1, x}^{2}+\left(m^{(2)}-\alpha m^{2}\right) N_{t-1, x}
\end{aligned}
$$

Therefore,

$$
P\left[\left(N_{t}-m N_{t-1}\right)^{2} \mid \mathcal{F}_{t-1}\right]=(\alpha-1) m^{2} \sum_{x} N_{t-1, x}^{2}+\left(m^{(2)}-\alpha m^{2}\right) N_{t-1}
$$

which implies the desired bound.
(b): We have $\left(N_{t}-m N_{t-1}\right)^{3}=\sum_{x_{1}, x_{2}, x_{3}} F_{x_{1}, x_{2}, x_{3}}$, where

$$
F_{x_{1}, x_{2}, x_{3}}=\sum_{\nu_{1}=1}^{N_{t-1, x_{1}}} \sum_{\nu_{2}=1}^{N_{t-1, x_{2}}} \sum_{\nu_{3}=1}^{N_{t-1, x_{3}}}\left(K_{t-1, x_{1}}^{\nu_{1}}-m\right)\left(K_{t-1, x_{2}}^{\nu_{2}}-m\right)\left(K_{t-1, x_{3}}^{\nu_{3}}-m\right)
$$

If, for example, $x_{1} \notin\left\{x_{2}, x_{3}\right\}$, then $K_{t-1, x_{1}}^{\nu_{1}}$ is independent of $\left\{K_{t-1, x_{2}}^{\nu_{2}}, K_{t-1, x_{3}}^{\nu_{3}}\right\}$ under $P\left(\cdot \mid \mathcal{F}_{t-1}\right)$, and hence $P\left[F_{x_{1}, x_{2}, x_{3}} \mid \mathcal{F}_{t-1}\right]=0$. This implies that

$$
P\left[\left(N_{t}-m N_{t-1}\right)^{3} \mid \mathcal{F}_{t-1}\right]=\sum_{x} P\left[F_{x, x, x} \mid \mathcal{F}_{t-1}\right] .
$$

On the other hand, we have that

$$
\begin{aligned}
P\left[F_{x, x, x} \mid \widetilde{\mathcal{F}}_{t-1}\right]= & N_{t-1, x} P^{q}\left[\left(K_{t-1, x}^{\nu}-m\right)^{3}\right] \\
& +3 N_{t-1, x}\left(N_{t-1, x}-1\right) P^{q}\left[\left(K_{t-1, x}^{\nu}-m\right)^{2}\right] P^{q}\left[K_{t-1, x}^{\nu}-m\right] \\
& +N_{t-1, x}\left(N_{t-1, x}-1\right)\left(N_{t-1, x}-2\right) P^{q}\left[K_{t-1, x}^{\nu}-m\right]^{3},
\end{aligned}
$$

and therefore that

$$
\left|P\left[F_{x, x, x} \mid \widetilde{\mathcal{F}}_{t-1}\right]\right| \leq N_{t-1, x}^{3} P^{q}\left[\left|K_{t-1, x}^{\nu}-m\right|^{3}\right] .
$$

Putting things together, we obtain

$$
\left|P\left[\left(N_{t}-m N_{t-1}\right)^{3} \mid \mathcal{F}_{t-1}\right]\right| \leq c \sum_{x} N_{t-1, x}^{3}, \quad \text { with } c=Q\left[\left|K_{t-1, x}^{\nu}-m\right|^{3}\right] .
$$

Let us now recall Doob's decomposition in our settings. An $\left(\mathcal{F}_{t}\right)$-adapted process $X=$ $\left(X_{t}\right)_{t \geq 0} \subset \mathbb{L}^{1}(P)$ can be decomposed in a unique way as

$$
X_{t}=M_{t}(X)+A_{t}(X), \quad t \geq 1,
$$

where $M(X)$ is an $\left(\mathcal{F}_{t}\right)$-martingale and

$$
A_{0}=0, \quad \Delta A_{t}=P\left[\Delta X_{t} \mid \mathcal{F}_{t-1}\right], \quad t \geq 1
$$

Here, and in what follows, we write $\Delta a_{t}=a_{t}-a_{t-1}(t \geq 1)$ for a sequence $\left(a_{t}\right)_{t \in \mathbb{N}}$ (random or non-random). $M_{t}(X)$ and $A_{t}(X)$ are called respectively, the martingale part and compensator of the process X. If X is a square-integrable martingale, then the compensator $A_{t}\left(X^{2}\right)$ of the process $X^{2}=\left(X_{t}^{2}\right)_{t \geq 0} \subset \mathbb{L}^{1}(P)$ is denoted by $\langle X\rangle_{t}$ and is given by the following formula:

$$
\Delta\langle X\rangle_{t}=P\left[\left(\Delta X_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right]
$$

Now, we turn to the Doob's decomposition of $X_{t}=-\ln \bar{N}_{t}$, whose martingale part and the compensator will be henceforth denoted M_{t} and A_{t} respectively;

$$
\begin{equation*}
-\ln \bar{N}_{t}=M_{t}+A_{t}, \quad \Delta A_{t}=-P\left[\Delta \ln \bar{N}_{t} \mid \mathcal{F}_{t-1}\right] \tag{2.1}
\end{equation*}
$$

Lemma 2.1.2 Suppose (1.18). Then, $\Delta\langle M\rangle_{t} \preceq \mathcal{R}_{t-1} \asymp \Delta A_{t}$.
Proof: We set $U_{t}=\frac{\Delta \bar{N}_{t}}{\bar{N}_{t-1}}$ to simplify the notation. We first note the following:
(1) $U_{t} \geq \frac{1}{m}-1>-1$.
(2) $\left|\Delta \ln \bar{N}_{t}\right| \leq m\left|U_{t}\right|$.
(3) $P\left[U_{t}^{2} \mid \mathcal{F}_{t-1}\right] \asymp P\left[\varphi\left(U_{t}\right) \mid \mathcal{F}_{t-1}\right] \asymp \mathcal{R}_{t-1}$, where $\varphi(x)=x-\ln (1+x)$.

In fact, $N_{t-1} \leq N_{t}$ by (1.18), and hence ($\left.1 / m\right) \bar{N}_{t-1} \leq \bar{N}_{t}$. These imply (1). (2) follows directly from (1) since

$$
|\ln x-\ln y| \leq \frac{m|x-y|}{y} \quad \text { if } x, y>0 \text { and } x / y \geq 1 / m .
$$

As for (3), we have by Lemma 2.1.1(a) that

$$
P\left[U_{t}^{2} \mid \mathcal{F}_{t-1}\right]=\frac{P\left[\left|\Delta \bar{N}_{t}\right|^{2} \mid \mathcal{F}_{t-1}\right]}{\bar{N}_{t-1}^{2}} \asymp \mathcal{R}_{t-1} .
$$

We now note that there exists $c \in(0, \infty)$, which depends only on m such that

$$
\frac{x^{2}}{4(2+x)} \leq \varphi(x) \leq c x^{2} \quad \text { for all } x \geq \frac{1}{m}-1
$$

This, together with (1) implies that

$$
P\left[\varphi\left(U_{t}\right) \mid \mathcal{F}_{t-1}\right] \leq c P\left[U_{t}^{2} \mid \mathcal{F}_{t-1}\right] \asymp \mathcal{R}_{t-1} .
$$

On the other hand, we have by Lemma 2.1.1(b) that

$$
\left|P\left[U_{t}^{3} \mid \mathcal{F}_{t-1}\right]\right|=\frac{1}{N_{t-1}^{3}}\left|P\left[\left(N_{t}-m N_{t-1}\right)^{3} \mid \mathcal{F}_{t-1}\right]\right| \preceq \frac{1}{N_{t-1}^{3}} \sum_{x \in \mathbb{Z}^{d}} N_{t-1, x}^{3} \leq \mathcal{R}_{t-1} .
$$

Thus,

$$
\begin{aligned}
\mathcal{R}_{t-1} & \asymp P\left[U_{t}^{2} \mid \mathcal{F}_{t-1}\right]=P\left[\frac{U_{t}}{\sqrt{2+U_{t}}} U_{t} \sqrt{2+U_{t}} \mathcal{F}_{t-1}\right] \\
& \leq P\left[\left.\frac{U_{t}^{2}}{2+U_{t}} \right\rvert\, \mathcal{F}_{t-1}\right]^{1 / 2} P\left[2 U_{t}^{2}+U_{t}^{3} \mid \mathcal{F}_{t-1}\right]^{1 / 2} \preceq P\left[\varphi\left(U_{t}\right) \mid \mathcal{F}_{t-1}\right]^{1 / 2} \mathcal{R}_{t-1}^{1 / 2},
\end{aligned}
$$

and hence $\mathcal{R}_{t-1} \preceq P\left[\varphi\left(U_{t}\right) \mid \mathcal{F}_{t-1}\right]$.
The rest of the proof is easy. We have by (3) that

$$
\Delta A_{t}=-P\left[\Delta \ln \bar{N}_{t} \mid \mathcal{F}_{t-1}\right]=-P\left[\ln \left(1+U_{t}\right) \mid \mathcal{F}_{t-1}\right]=P\left[\varphi\left(U_{t}\right) \mid \mathcal{F}_{t-1}\right] \asymp \mathcal{R}_{t-1} .
$$

Similarly, by (2) and Lemma 2.1.1,

$$
P\left[\left(\Delta \ln \bar{N}_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right] \preceq P\left[U_{t}^{2} \mid \mathcal{F}_{t-1}\right] \asymp \mathcal{R}_{t-1} .
$$

This, together with $\Delta A_{t} \asymp \mathcal{R}_{t-1}$ implies that

$$
\Delta\langle M\rangle_{t}=P\left[\left(\Delta M_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right] \leq 2 P\left[\left(\Delta \ln \bar{N}_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right]+2\left(\Delta A_{t}\right)^{2} \preceq \mathcal{R}_{t-1} .
$$

Lemma 2.1.3 Suppose $Q\left(q_{t, x}(0)=0\right)=1$. Then, $P\left(\bar{N}_{\infty}>0\right) \in\{0,1\}$.
The proof we present is due to Yuval Peres (private communication). We prepare some notation. For $(s, y) \in \mathbb{N} \times \mathbb{Z}^{d}$, we define the (s, y)-branch $\left(N_{t, x}^{s, y}\right)_{x \in \mathbb{Z}^{d}}, t \in \mathbb{N}$ of the branching random walk as follows:

$$
\begin{equation*}
N_{0, x}^{s, y}=\delta_{x, y}, \quad N_{t, x}^{s, y}=\sum_{z \in \mathbb{Z}^{d}} \sum_{\nu=1}^{N_{t-1, z}^{s, y}} \delta_{x}\left(X_{s+t-1, z}^{\nu}\right) K_{s+t-1, z}^{\nu}, \quad t \in \mathbb{N}^{*} . \tag{2.2}
\end{equation*}
$$

$N_{t, x}^{s, y}$ can be thought of as the number of particles at time-space $(s+t, x) \in \mathbb{N} \times \mathbb{Z}^{d}$ which descend from a single particle at time-space $(s, y) \in \mathbb{N} \times \mathbb{Z}^{d}$. In particular, $N_{t, x}=N_{t, x}^{0,0}$ in this notation. We define the set of occupied sites $\mathcal{O}_{t}^{s, y}$ of the (s, y)-branch by

$$
\mathcal{O}_{t}^{s, y}=\left\{x \in \mathbb{Z}^{d} ; N_{t, x}^{s, y} \geq 1\right\}, \quad \mathcal{O}_{t}=\mathcal{O}_{t}^{0,0}
$$

Note that $\mathcal{O}_{t}^{s, y} \subset \mathbb{Z}_{\mathrm{e}}^{d}$, if $y \in \mathbb{Z}_{\mathrm{e}}^{d}$ and $t-s \in 2 \mathbb{N}$, where

$$
\mathbb{Z}_{\mathrm{e}}^{d}=\left\{x \in \mathbb{Z}^{d} ; x_{1}+\ldots+x_{d} \in 2 \mathbb{Z}\right\}
$$

Proof of Lemma 2.1.3: We fix $\ell \in \mathbb{N}$ and define an event $E_{t}^{s, y}\left(s, t \in 2 \mathbb{N}, y \in \mathbb{Z}_{\mathrm{e}}^{d}\right)$ by:

$$
E_{t}^{s, y}=\bigcup_{v \in \mathbb{Z}_{\mathrm{e}}^{d}}\left\{\left([-\ell, \ell]^{d}+v\right) \cap \mathbb{Z}_{\mathrm{e}}^{d} \subset \mathcal{O}_{t}^{s, y}\right\}, \quad E_{t}=E_{t}^{0,0}
$$

that is, the set of occupied sites of the (s, y)-branch at time t contains a cube with the side-length 2ℓ. We first note that for any $\ell \in \mathbb{N}$,

$$
\begin{equation*}
T \stackrel{\text { def }}{=} \inf \left\{t \in 2 \mathbb{N} ; E_{t} \text { occurs }\right\}<\infty, \text { a.s. } \tag{1}
\end{equation*}
$$

To prove (1), we take $s \in 2 \mathbb{N}$ large enough so that

$$
P\left(E_{s}\right)>0
$$

We then define a sequence $0=y_{0}, y_{1}, \ldots \in \mathbb{Z}_{\mathrm{e}}^{d}$ inductively by

$$
y_{k}=\max \mathcal{O}_{k s}^{(k-1) s, y_{k-1}}, \quad k \in \mathbb{N}^{*}
$$

where the maximum is relative to the lexicographical order of \mathbb{Z}^{d}. By the assumption, $\mathcal{O}_{k s}^{(k-1) s, y_{k-1}} \neq \emptyset$ for all $k \in \mathbb{N}^{*}$. Now,

$$
\begin{aligned}
P(T>k s) & \leq P\left(\left(E_{s}\right)^{\mathrm{c}},\left(E_{s}^{s, y_{1}}\right)^{\mathrm{c}}, \ldots,\left(E_{s}^{(k-1) s, y_{k-1}}\right)^{\mathrm{c}}\right) \\
& =P\left(\left(E_{s}\right)^{\mathrm{c}},\left(E_{s}^{s, y_{1}}\right)^{\mathrm{c}}, \ldots,\left(E_{s}^{(k-2) s, y_{k-2}}\right)^{\mathrm{c}}\right)\left(1-P\left(E_{s}\right)\right) \\
& =\left(1-P\left(E_{s}\right)\right)^{k}
\end{aligned}
$$

This implies that $P[\exp (c T)]<\infty$ for some $c>0$ and hence (1).
Let T be defined by (1) and

$$
v_{T}=\max \left\{v \in \mathbb{Z}_{\mathrm{e}}^{d} ;\left([-\ell, \ell]^{d}+v\right) \cap \mathbb{Z}_{\mathrm{e}}^{d} \subset \mathcal{O}_{T}^{0,0}\right\}
$$

We then have that

$$
\begin{aligned}
P\left(\bar{N}_{\infty}>0 \mid \mathcal{F}_{T}\right) & \geq P\left(\bigcup_{y \in \mathcal{O}_{T}}\left\{\bar{N}_{\infty}^{T, y}>0\right\} \mid \mathcal{F}_{T}\right) \\
& \geq P\left(\bigcup_{y \in\left([-\ell, \ell]^{d}+v_{T}\right) \cap \mathbb{Z}_{e}^{d}}\left\{\bar{N}_{\infty}^{T, y}>0\right\} \mid \mathcal{F}_{T}\right) \\
& =P\left(\bigcup_{y \in[-\ell, \ell]^{d} \cap \mathbb{Z}_{e}^{d}}\left\{\bar{N}_{\infty}^{0, y}>0\right\}\right)
\end{aligned}
$$

where we have used the invariance under the time-space shift on the last line. Hence, by taking expectations and letting $\ell \rightarrow \infty$,

$$
P\left(\bar{N}_{\infty}>0\right) \geq P\left(\bigcup_{y \in \mathbb{Z}_{e}^{d}}\left\{\bar{N}_{\infty}^{0, y}>0\right\}\right)
$$

The above inequality is in fact an equality, since $\bar{N}_{\infty}^{0,0}=\bar{N}_{\infty}$. Moreover, the event on the right-hand-side is invariant under the shift by $x \in \mathbb{Z}_{\mathrm{e}}^{d}$, which is ergodic with respect to P. It is thus, zero or one depending on whether $P\left(\bar{N}_{\infty}>0\right)$ is zero or positive.

2.2 Proof of Theorem 1.3.1

The proof is based on the decomposition (2.1). By Lemma 2.1.3, it is enough to prove the following:
(1) $\left\{\bar{N}_{\infty}=0\right\} \subset$ a.s. $\left\{A_{\infty}=\infty\right\}=\left\{\sum_{s=0}^{\infty} \mathcal{R}_{s}=\infty\right\}$.
(2) $\left\{\sum_{s=0}^{\infty} \mathcal{R}_{s}=\infty\right\} \stackrel{\text { a.s. }}{\subset}\left\{-c_{1} \ln \bar{N}_{t} \leq \sum_{s=0}^{t-1} \mathcal{R}_{s} \leq-c_{2} \ln \bar{N}_{t}\right.$ for large enough t 's. $\}$.

To prove these, we recall the following general facts on square-integrable martingales-see for example [9, page $252,(4.9)$ and page $253,(4.10)]$:
(3) $\left\{\langle M\rangle_{\infty}<\infty\right\} \stackrel{\text { a.s. }}{\subset}\left\{\lim _{t} M_{t}\right.$ converges. $\}$.
(4) $\left\{\langle M\rangle_{\infty}=\infty\right\} \stackrel{\text { a.s. }}{\subset}\left\{\lim _{t} \frac{M_{t}}{\langle M\rangle_{t}}=0\right\}$.

By (3) and Lemma 2.1.2, we get (1) as follows:

$$
\begin{aligned}
\left\{\sum_{s=0}^{t-1} \mathcal{R}_{s}<\infty\right\} & =\left\{A_{\infty}<\infty\right\}=\left\{A_{\infty}<\infty,\langle M\rangle_{\infty}<\infty\right\} \\
& \stackrel{\text { a.s. }}{\subset}\left\{A_{\infty}<\infty, \lim _{t} M_{t} \text { converges. }\right\} \subset\left\{\bar{N}_{\infty}>0\right\}
\end{aligned}
$$

We now turn to (2). Since $\left\{A_{\infty}=\infty\right\}=\left\{\sum_{s=0}^{\infty} \mathcal{R}_{s}=\infty\right\}$ and

$$
-\frac{\ln \bar{N}_{t}}{\sum_{s=0}^{t-1} \mathcal{R}_{s}} \asymp-\frac{\ln \bar{N}_{t}}{A_{t}}=\frac{M_{t}}{A_{t}}+1
$$

by Lemma 2.1.2, (2) is a consequence of:
(5) $\left\{A_{\infty}=\infty\right\} \stackrel{\text { a.s. }}{\subset}\left\{\frac{M_{t}}{A_{t}} \longrightarrow 0\right\}$.

Let us suppose that $A_{\infty}=\infty$. If $\langle M\rangle_{\infty}<\infty$, then again by (3), $\lim _{t} M_{t}$ converges and therefore (5) holds. If, on the contrary, $\langle M\rangle_{\infty}=\infty$, then by (4) and Lemma 2.1.2,

$$
\frac{M_{t}}{A_{t}}=\frac{M_{t}}{\langle M\rangle_{t}} \frac{\langle M\rangle_{t}}{A_{t}} \longrightarrow 0 \quad \text { a.s. }
$$

Thus, (5) is true in this case as well.

3 Proof of Theorem 1.3.2

We shall prove Theorem 1.3.2 in the same spirit as that of [4]. In the following subsection, we give some preliminary estimates and the final proof is given in the last subsection.

3.1 Lemmas

A technical result at first:
Lemma 3.1.1 Let $\eta_{i}, 1 \leq i \leq n(n \geq 2)$ be positive independent random variables on a probability space with the probability measure \mathbb{P}, such that $\mathbb{P}\left[\eta_{i}^{3}\right]<\infty$ for $i=1, . ., n$. Then,

$$
\begin{align*}
& \mathbb{P}\left[\frac{\eta_{1} \eta_{2}}{\left(\sum_{i=1}^{n} \eta_{i}\right)^{2}}\right] \geq \frac{m_{1} m_{2}}{M^{2}}-2 \frac{m_{2} \operatorname{var}\left(\eta_{1}\right)+m_{1} \operatorname{var}\left(\eta_{2}\right)}{M^{3}}, \tag{3.1}\\
& \mathbb{P}\left[\frac{\eta_{1}^{2}}{\left(\sum_{i=1}^{n} \eta_{i}\right)^{2}}\right] \geq \frac{\mathbb{P}\left[\eta_{1}^{2}\right]}{M^{2}}\left(1+\frac{2 m_{1}}{M}\right)-2 \frac{\mathbb{P}\left[\eta_{1}^{3}\right]}{M^{3}}, \tag{3.2}
\end{align*}
$$

where $m_{i}=\mathbb{P}\left[\eta_{i}\right]$ and $M=\sum_{i=1}^{n} m_{i}$.
Proof: We set

$$
U=\sum_{i=1}^{n}\left(\eta_{i}-m_{i}\right)=\sum_{i=1}^{n} \eta_{i}-M>-M .
$$

Note that $(u+M)^{-2} \geq M^{-2}\left(1-\frac{2 u}{M}\right)$ for $u \in(-M, \infty)$. Thus, we have that

$$
\begin{aligned}
\mathbb{P}\left[\frac{\eta_{1} \eta_{2}}{\left(\sum_{i=1}^{n} \eta_{i}\right)^{2}}\right] & =\mathbb{P}\left[\frac{\eta_{1} \eta_{2}}{(U+M)^{2}}\right] \geq M^{-2}\left(m_{1} m_{2}-\frac{2}{M} \mathbb{P}\left[\eta_{1} \eta_{2} U\right]\right) \\
\mathbb{P}\left[\eta_{1} \eta_{2} U\right] & =\mathbb{P}\left[\eta_{1} \eta_{2}\left(\eta_{1}-m_{1}\right)\right]+\mathbb{P}\left[\eta_{1} \eta_{2}\left(\eta_{2}-m_{2}\right)\right]=m_{2} \operatorname{var}\left(\eta_{1}\right)+m_{1} \operatorname{var}\left(\eta_{2}\right) .
\end{aligned}
$$

These prove (3.1). Similarly,

$$
\begin{aligned}
\mathbb{P}\left[\frac{\eta_{1}^{2}}{\left(\sum_{i=1}^{n} \eta_{i}\right)^{2}}\right] & =\mathbb{P}\left[\frac{\eta_{1}^{2}}{(U+M)^{2}}\right] \geq M^{-2}\left(\mathbb{P}\left[\eta_{1}^{2}\right]-\frac{2}{M} \mathbb{P}\left[\eta_{1}^{2} U\right]\right), \\
\mathbb{P}\left[\eta_{1}^{2} U\right] & =\mathbb{P}\left[\eta_{1}^{2}\left(\eta_{1}-m_{1}\right)\right]=\mathbb{P}\left[\eta_{1}^{3}\right]-m_{1} \mathbb{P}\left[\eta_{1}^{2}\right] .
\end{aligned}
$$

These prove (3.2).
As an immediate consequence, we have (by applying Lemma 3.1.1 to $\alpha_{i} \eta_{i}$ instead of η_{i}):
Corollary 3.1.2 Let $\eta_{i}, 1 \leq i \leq n(n \geq 2)$ be as in Lemma 3.1.1. Then, for any $\alpha_{i} \geq 0$ satisfying $\sum_{i=1}^{n} \alpha_{i}=1$, we have

$$
\begin{align*}
\mathbb{P}\left(\frac{\eta_{1} \eta_{2}}{\left(\sum_{i=1}^{n} \alpha_{i} \eta_{i}\right)^{2}}\right) & \geq 1-\left(\mathbb{P}\left(\widetilde{\eta}_{1}^{2}\right)-1\right)\left(\alpha_{1}+\alpha_{2}\right) \tag{3.3}\\
\mathbb{P}\left(\frac{\left(\eta_{1}\right)^{2}}{\left(\sum_{i=1}^{n} \alpha_{i} \eta_{i}\right)^{2}}\right) & \geq\left(1+2 \alpha_{1}\right) \mathbb{P}\left(\widetilde{\eta}_{1}^{2}\right)-2 \alpha_{1} \mathbb{P}\left(\widetilde{\eta}_{1}^{3}\right), \tag{3.4}
\end{align*}
$$

where $\widetilde{\eta}_{1}:=\eta_{1} / \mathbb{P}\left[\eta_{1}\right]$.

Lemma 3.1.3 Assume $Q\left(q_{t, x}(0)=0\right)=1$ and $Q\left(q_{t, x}(1)=1\right)<1$. Then,

$$
\begin{equation*}
\varliminf_{t \rightarrow \infty} \frac{1}{t} \ln N_{t} \geq c_{0}, \quad \text { a.s. } \tag{3.5}
\end{equation*}
$$

where $c_{0}=-\ln Q\left[\sum_{k \geq 1} k^{-1} q_{t, x}\right]>0$.
Proof: For any $(t, y, \nu), K_{t, y}^{\nu}$ is independent of \mathcal{F}_{t}, hence

$$
P\left(\left(K_{t, y}^{\nu}\right)^{-1} \mid \mathcal{F}_{t}\right)=P\left(\left(K_{t, y}^{\nu}\right)^{-1}\right)=e^{-c_{0}}
$$

It follows by Jensen's inequality that

$$
\begin{aligned}
P\left(\left.\frac{1}{N_{t}} \right\rvert\, \mathcal{F}_{t-1}\right) & =P\left(\left[\sum_{y} \sum_{\nu=1}^{N_{t-1, y}} K_{t-1, y}^{\nu}\right]^{-1} \mid \mathcal{F}_{t-1}\right) \\
& =\frac{1}{N_{t-1}} P\left(\left.\left[\frac{1}{N_{t-1}} \sum_{y} \sum_{\nu=1}^{N_{t-1, y}} K_{t-1, y}^{\nu}\right]^{-1} \right\rvert\, \mathcal{F}_{t-1}\right) \\
& \leq \frac{1}{N_{t-1}} P\left(\left.\frac{1}{N_{t-1}} \sum_{y} \sum_{\nu=1}^{N_{t-1, y}}\left(K_{t-1, y}^{\nu}\right)^{-1} \right\rvert\, \mathcal{F}_{t-1}\right) \\
& =\frac{e^{-c_{0}}}{N_{t-1}} .
\end{aligned}
$$

Hence $P\left(\frac{1}{N_{t}}\right) \leq e^{-c_{0} t}$, and (3.5) follows from the Borel-Cantelli lemma.
We denote by $\left(\mathcal{P}_{t}, t=0,1, \ldots\right)$ the semigroup of a simple symmetric random walk on \mathbb{Z}^{d}, namely, $\mathcal{P}_{t} f(x):=\sum_{y} \mathcal{P}_{t}(x, y) f(y)$ where $\mathcal{P}_{t}(x, y)$ is the probability that the random walk starting from x resides at y on the t-th step. Plainly, $\mathcal{P}_{1}(x, y)=p(x, y)$. We write $\mathcal{P}=\mathcal{P}_{1}$. Let for any $z \in \mathbb{Z}^{d}$,

$$
r_{t}:=\mathcal{P}_{2 t}(z, z)=\mathcal{P}_{2 t}(0,0) \sim c t^{-d / 2}, \quad t \rightarrow \infty .
$$

For the sake of notational convenience, we write $\rho_{t}(x) \equiv \rho_{t, x}$, so that ρ_{t} stands for a function on \mathbb{Z}^{d}.

Lemma 3.1.4 Assume (1.18). For any $\left(y_{1}, \nu_{1}\right)$ and $\left(y_{2}, \nu_{2}\right), t \geq 1$, we have

$$
\begin{equation*}
P\left(\left.\frac{K_{t, y_{1}}^{\nu_{1}} K_{t, y_{2}}^{\nu_{2}}}{N_{t+1}^{2}} \right\rvert\, \mathcal{F}_{t}\right) \geq \frac{1}{N_{t}^{2}}\left[(\alpha-1) 1_{\left(y_{1}=y_{2}\right)}-c_{1} \rho_{t}\left(y_{1}\right)-c_{1} \rho_{t}\left(y_{2}\right)-\frac{c_{2}}{N_{t}}\right] \tag{3.6}
\end{equation*}
$$

on the event $\left\{N_{t, y_{1}} \wedge N_{t, y_{2}} \geq 1\right\}$, where $\alpha=\frac{Q\left[m_{t, x}^{2}\right]}{m^{2}}$ and c_{1} and c_{2} are some constants. Consequently,

$$
\begin{align*}
& P\left(\rho_{t+1}\left(y_{1}\right) \rho_{t+1}\left(y_{2}\right) \mid \mathcal{F}_{t}\right) \geq\left(1-\frac{c_{2}}{N_{t}}\right) \mathcal{P} \rho_{t}\left(y_{1}\right) \mathcal{P} \rho_{t}\left(y_{2}\right)+(\alpha-1) \sum_{z} \rho_{t}^{2}(z) p\left(z, y_{1}\right) p\left(z, y_{2}\right) \\
&-c_{1}\left[\mathcal{P} \rho_{t}\left(y_{1}\right) \mathcal{P}\left(\rho_{t}^{2}\right)\left(y_{2}\right)+\mathcal{P} \rho_{t}\left(y_{2}\right) \mathcal{P}\left(\rho_{t}^{2}\right)\left(y_{1}\right)\right] \\
&-\frac{\alpha}{N_{t}} \sum_{z} p\left(z, y_{1}\right) p\left(z, y_{2}\right) \rho_{t}(z) . \tag{3.7}
\end{align*}
$$

Proof: Firstly, we consider (3.6) in the case $\left(y_{1}, \nu_{1}\right) \neq\left(y_{2}, \nu_{2}\right)$. Let $A \in \mathcal{F}_{t}$ and $A \subset$ $\left\{N_{t, y_{1}} \wedge N_{t, y_{2}} \geq 1\right\}$. Under $P^{q},\left\{K_{t, y}^{\nu}\right\}_{y, \nu}$ are independent (but not identically distributed) and independent of \mathcal{F}_{t}. Since $N_{t+1}=\sum_{y} \sum_{\nu=1}^{N_{t, y}} K_{t, y}^{\nu}$, we have $M_{t} \stackrel{\text { def. }}{=} P^{q}\left[N_{t+1} \mid \mathcal{F}_{t}\right]=\sum_{y} m_{t, y} N_{t, y}$. Thus, by applying (3.1) to $\eta_{1}=K_{t, y_{1}}^{\nu_{1}}$ and $\eta_{2}=K_{t, y_{2}}^{\nu_{2}}$, we get

$$
P^{q}\left(1_{A} \frac{K_{t, y_{1}}^{\nu_{1}} K_{t, y_{2}}^{\nu_{2}}}{N_{t+1}^{2}}\right) \geq P^{q}\left(1_{A} \frac{m_{t, y_{1}} m_{t, y_{2}}}{M_{t}^{2}}\right)-2 P^{q}\left(1_{A} \frac{m_{t, y_{2}} m_{t, y_{1}}^{(2)}+m_{t, y_{1}} m_{t, y_{2}}^{(2)}}{N_{t}^{3}}\right)
$$

since $M_{t} \geq N_{t}$. Therefore, by taking Q-expectation,

$$
P\left(1_{A} \frac{K_{t, y_{1}}^{\nu_{1}} K_{t, y_{2}}^{\nu_{2}}}{N_{t+1}^{2}}\right) \geq P\left(1_{A} \frac{m_{t, y_{1}} m_{t, y_{2}}}{M_{t}^{2}}\right)-2 P\left(1_{A} \frac{m_{t, y_{2}} m_{t, y_{1}}^{(2)}+m_{t, y_{1}} m_{t, y_{2}}^{(2)}}{N_{t}^{3}}\right)
$$

Observe that under P, m_{t}, are i.i.d. and independent of \mathcal{F}_{t}. It turns out from (3.3) and (3.4), with α. and η. playing the roles of $\rho_{t}(\cdot)$ and $m_{t,}$. respectively, that

$$
\begin{aligned}
P\left(\left.\frac{m_{t, y_{1}} m_{t, y_{2}}}{M_{t}^{2}} \right\rvert\, \mathcal{F}_{t}\right) & =\frac{1}{N_{t}^{2}} P\left(\left.\frac{m_{t, y_{1}} m_{t, y_{2}}}{\left(\sum_{y} \rho_{t}(y) m_{t, y}\right)^{2}} \right\rvert\, \mathcal{F}_{t}\right) \\
& \geq \frac{1}{N_{t}^{2}}\left[1+(\alpha-1) 1_{\left(y_{1}=y_{2}\right)}-c_{1} \rho_{t}\left(y_{1}\right)-c_{1} \rho_{t}\left(y_{2}\right)\right]
\end{aligned}
$$

On the other hand, we have

$$
P\left(m_{t, y_{2}} m_{t, y_{1}}^{(2)}+m_{t, y_{1}} m_{t, y_{2}}^{(2)} \mid \mathcal{F}_{t}\right) \leq 2 m^{(3)}<\infty
$$

by our integrability assumption. Hence, with $c_{2}=4 m^{(3)}$,

$$
P\left(1_{A} \frac{K_{t, y_{1}}^{\nu_{1}} K_{t, y_{2}}^{\nu_{2}}}{N_{t+1}^{2}}\right) \geq P\left(\frac{1_{A}}{N_{t}^{2}}\left[1+(\alpha-1) 1_{\left(y_{1}=y_{2}\right)}-c_{1} \rho_{t}\left(y_{1}\right)-c_{1} \rho_{t}\left(y_{2}\right)-\frac{c_{2}}{N_{t}}\right]\right)
$$

yielding (3.6) in the case $\left(y_{1}, \nu_{1}\right) \neq\left(y_{2}, \nu_{2}\right)$. The case $\left(y_{1}, \nu_{1}\right)=\left(y_{2}, \nu_{2}\right)$ is obtained in the same way by applying (3.2) instead of (3.1) and by eventually modifying the constants. To obtain (3.7), we have that

$$
\begin{align*}
P\left(\rho_{t+1}\left(y_{1}\right) \rho_{t+1}\left(y_{2}\right) \mid \mathcal{F}_{t}\right) & =\sum_{z_{1}, z_{2}} \sum_{\nu_{1}=1}^{N_{t, z_{1}}} \sum_{\nu_{2}=1}^{N_{t, z_{2}}} P\left(\left.\frac{\delta_{y_{1}}\left(X_{t, z_{1}}^{\nu_{1}}\right) \delta_{y_{2}}\left(X_{t, z_{2}}^{\nu_{2}}\right) K_{t, z_{1}}^{\nu_{1}} K_{t, z_{2}}^{\nu_{2}}}{N_{t+1}^{2}} \right\rvert\, \mathcal{F}_{t}\right) \\
& =\sum_{z_{1}, z_{2}} \sum_{\nu_{1}=1}^{N_{t, z_{1}}} \sum_{\nu_{2}=1}^{N_{t, z_{2}}} h_{1,2} P\left(\left.\frac{K_{t, z_{1}}^{\nu_{1}} K_{t, z_{2}}^{\nu_{2}}}{N_{t+1}^{2}} \right\rvert\, \mathcal{F}_{t}\right) \tag{3.8}
\end{align*}
$$

by means of the independence between $\left(X_{t, z_{1}}^{\nu_{1}}, X_{t, z_{2}}^{\nu_{2}}\right)$ and $\left(\mathcal{F}_{t}, N_{t+1}, K_{t, z_{1}}^{\nu_{1}} K_{t, z_{2}}^{\nu_{2}}\right)$, and the function $h_{1,2}$ is defined as follows:

$$
\begin{align*}
h_{1,2} & :=P\left(\delta_{y_{1}}\left(X_{t, z_{1}}^{\nu_{1}}\right) \delta_{y_{2}}\left(X_{t, z_{2}}^{\nu_{2}}\right)\right) \\
& =1_{\left(\left(z_{1}, \nu_{1}\right)=\left(z_{2}, \nu_{2}\right)\right)} p\left(z_{1}, y_{1}\right) 1_{\left(y_{1}=y_{2}\right)}+1_{\left(\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)\right)} p\left(z_{1}, y_{1}\right) p\left(z_{2}, y_{2}\right) \tag{3.9}\\
& \geq 1_{\left(\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)\right)} p\left(z_{1}, y_{1}\right) p\left(z_{2}, y_{2}\right) .
\end{align*}
$$

Applying (3.6) we get

$$
\begin{aligned}
P\left(\rho_{t+1}\left(y_{1}\right) \rho_{t+1}\left(y_{2}\right) \mid \mathcal{F}_{t}\right) & \geq \sum_{z_{1}, z_{2}} \sum_{\nu_{1}, \nu_{2}} h_{1,2} \frac{1}{N_{t}^{2}}\left[1+(\alpha-1) 1_{\left(z_{1}=z_{2}\right)}-c_{1} \rho_{t}\left(z_{1}\right)-c_{1} \rho_{t}\left(z_{2}\right)-\frac{c_{2}}{N_{t}}\right] \\
& \geq \sum_{\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)} p\left(z_{1}, y_{1}\right) p\left(z_{2}, y_{2}\right) \frac{1}{N_{t}^{2}}\left[g_{t}\left(z_{1}, z_{2}\right)+(\alpha-1) 1_{\left(z_{1}=z_{2}\right)}\right],
\end{aligned}
$$

with $g_{t}\left(z_{1}, z_{2}\right)=1-c_{1} \rho_{t}\left(z_{1}\right)-c_{2} \rho_{t}\left(z_{2}\right)-\frac{c_{2}}{N_{t}}$. Let us compute explicitly the above sum $\sum_{\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)} \cdots$:

$$
\begin{aligned}
\sum_{\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)}= & \sum_{z_{1} \neq z_{2}} N_{t, z_{1}} N_{t, z_{2}} p\left(z_{1}, y_{1}\right) p\left(z_{2}, y_{2}\right) \frac{1}{N_{t}^{2}} g_{t}\left(z_{1}, z_{2}\right) \\
& +\sum_{z}\left(N_{t, z}^{2}-N_{t, z}\right) p\left(z, y_{1}\right) p\left(z, y_{2}\right) \frac{1}{N_{t}^{2}}\left[g_{t}(z, z)+\alpha-1\right],
\end{aligned}
$$

by removing the diagonal terms. Using the definition of $\rho_{t}(z)=N_{t, z} / N_{t}$, we get

$$
\begin{aligned}
\sum_{\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)}= & \sum_{z_{1}, z_{2}} \rho_{t}\left(z_{1}\right) \rho_{t}\left(z_{2}\right) p\left(z_{1}, y_{1}\right) p\left(z_{2}, y_{2}\right) g_{t}\left(z_{1}, z_{2}\right) \\
& +(\alpha-1) \sum_{z} \rho_{t}(z)^{2} p\left(z, y_{1}\right) p\left(z, y_{2}\right)-\sum_{z} p\left(z, y_{1}\right) p\left(z, y_{2}\right) \frac{\rho_{t}(z)}{N_{t}}\left[g_{t}(z, z)+\alpha-1\right] \\
\geq & \left(1-\frac{c_{2}}{N_{t}}\right) \mathcal{P} \rho_{t}\left(y_{1}\right) \mathcal{P} \rho_{t}\left(y_{2}\right)+(\alpha-1) \sum_{z} \rho_{t}(z)^{2} p\left(z, y_{1}\right) p\left(z, y_{2}\right) \\
& -c_{1}\left[\mathcal{P} \rho_{t}\left(y_{1}\right) \mathcal{P}\left(\rho_{t}^{2}\right)\left(y_{2}\right)+\mathcal{P} \rho_{t}\left(y_{2}\right) \mathcal{P}\left(\rho_{t}^{2}\right)\left(y_{1}\right)\right]-\frac{\alpha}{N_{t}} \sum_{z} p\left(z, y_{1}\right) p\left(z, y_{2}\right) \rho_{t}(z),
\end{aligned}
$$

as desired.
Recall that $\mathcal{R}_{t}=\sum_{x} \rho_{t}^{2}(x)$. Let $t \geq 2$. The following lemma shows the role played by the semigroup in analyzing \mathcal{R}_{t}.

Lemma 3.1.5 Assume (1.18). There exists a constant $c_{3}>0$ such that for all $1 \leq s \leq t-1$,

$$
P\left(\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2} \mid \mathcal{F}_{s}\right) \geq \sum_{x}\left(\mathcal{P}_{t-s} \rho_{s}(x)\right)^{2}+(\alpha-1) r_{t-s} \mathcal{R}_{s}-2 c_{1} \mathcal{R}_{s}^{3 / 2}-\frac{c_{3}}{N_{s}} .
$$

Proof: Observe that

$$
\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2}=\sum_{x} \sum_{y_{1}, y_{2}} \mathcal{P}_{t-(s+1)}\left(x, y_{1}\right) \mathcal{P}_{t-(s+1)}\left(x, y_{2}\right) \rho_{s+1}\left(y_{1}\right) \rho_{s+1}\left(y_{2}\right) .
$$

Applying (3.7) gives

$$
P\left(\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2} \mid \mathcal{F}_{s}\right) \geq\left(1-\frac{c_{2}}{N_{s}}\right) I_{2}+(\alpha-1) I_{3}-c_{1} I_{4}-\frac{\alpha}{N_{s}} I_{5},
$$

with

$$
I_{2}:=\sum_{x} \sum_{y_{1}, y_{2}} \mathcal{P}_{t-(s+1)}\left(x, y_{1}\right) \mathcal{P}_{t-(s+1)}\left(x, y_{2}\right) \mathcal{P} \rho_{s}\left(y_{1}\right) \mathcal{P} \rho_{s}\left(y_{2}\right),
$$

$$
\begin{aligned}
I_{3} & :=\sum_{x} \sum_{y_{1}, y_{2}} \mathcal{P}_{t-(s+1)}\left(x, y_{1}\right) \mathcal{P}_{t-(s+1)}\left(x, y_{2}\right) \sum_{z} \rho_{s}^{2}(z) p\left(z, y_{1}\right) p\left(z, y_{2}\right) \\
I_{4} & :=\sum_{x} \sum_{y_{1}, y_{2}} \mathcal{P}_{t-(s+1)}\left(x, y_{1}\right) \mathcal{P}_{t-(s+1)}\left(x, y_{2}\right)\left[\mathcal{P} \rho_{s}\left(y_{1}\right) \mathcal{P}\left(\rho_{s}^{2}\right)\left(y_{2}\right)+\mathcal{P} \rho_{s}\left(y_{2}\right) \mathcal{P}\left(\rho_{s}^{2}\right)\left(y_{1}\right)\right] \\
I_{5} & :=\sum_{x} \sum_{y_{1}, y_{2}} \mathcal{P}_{t-(s+1)}\left(x, y_{1}\right) \mathcal{P}_{t-(s+1)}\left(x, y_{2}\right) \sum_{z} p\left(z, y_{1}\right) p\left(z, y_{2}\right) \rho_{s}(z)
\end{aligned}
$$

Using the semigroup property and noting that $\sum_{x}\left(\mathcal{P}_{t-s}(x, z)\right)^{2}=\mathcal{P}_{2 t-2 s}(z, z)=r_{t-s}$ for any z, we obtain

$$
\begin{aligned}
& I_{2}=\sum_{x}\left(\mathcal{P}_{t-s} \rho_{s}(x)\right)^{2}, \\
& I_{3}=\sum_{x} \sum_{z}\left(\mathcal{P}_{t-s}(x, z)\right)^{2} \rho_{s}^{2}(z)=\sum_{z} \sum_{x}\left(\mathcal{P}_{t-s}(x, z)\right)^{2} \rho_{s}^{2}(z)=r_{t-s} \sum_{z} \rho_{s}^{2}(z), \\
& I_{4}=2 \sum_{x} \mathcal{P}_{t-s} \rho_{s}(x) \mathcal{P}_{t-s}\left(\rho_{s}^{2}\right)(x), \\
& I_{5}=\sum_{x} \sum_{z}\left(\mathcal{P}_{t-s}(x, z)\right)^{2} \rho_{s}(z)=\sum_{z} \rho_{s}(z) r_{t-s}=r_{t-s} .
\end{aligned}
$$

By the translation invariance and the Cauchy-Schwarz inequality, we see that

$$
\mathcal{R}_{s}=\sum_{x} \mathcal{P}_{t-s}\left(\rho_{s}^{2}\right)(x) \geq \sum_{x}\left(\mathcal{P}_{t-s}\left(\rho_{s}\right)(x)\right)^{2} \geq \max _{x} \mathcal{P}_{t-s}\left(\rho_{s}\right)(x)^{2},
$$

and hence that $I_{4} \leq 2 \mathcal{R}_{s}^{3 / 2}$. This implies the lemma with $c_{3}=\alpha+c_{2}$.
Define

$$
V_{t}=\sum_{s=1}^{t} \mathcal{R}_{s}, \quad t=1,2, \ldots
$$

Lemma 3.1.6 Assume (1.18). Fix $j \geq 0$. The martingale $Z_{j}(\cdot)$ defined by

$$
Z_{j}(t):=\sum_{s=1}^{t}\left(\sum_{x}\left(\mathcal{P}_{j} \rho_{s}(x)\right)^{2}-P\left(\sum_{x}\left(\mathcal{P}_{j} \rho_{s}(x)\right)^{2} \mid \mathcal{F}_{s-1}\right)\right), \quad t \geq 1 .
$$

satisfies the following law of large numbers:

$$
\left\{V_{\infty}=\infty\right\} \subset \stackrel{\text { a.s. }}{\subset}\left\{\frac{Z_{j}(t)}{V_{t}} \rightarrow 0, t \rightarrow \infty,\right\} .
$$

Proof: Let us compute the increasing process $\left\langle Z_{j}\right\rangle$. associated to Z_{j}. By the Cauchy-Schwarz inequality, $\left(\sum_{x} \mathcal{P}_{j} \rho_{s}(x)\right)^{2} \leq \sum_{x} \mathcal{P}_{j} \rho_{s}^{2}(x)=\mathcal{R}_{s} \leq 1$. It follows that

$$
\begin{aligned}
\left(Z_{j}(s)-Z_{j}(s-1)\right)^{2} & \leq 2\left(\sum_{x}\left(\mathcal{P}_{j} \rho_{s}(x)\right)^{2}\right)^{2}+2\left(P\left(\sum_{x}\left(\mathcal{P}_{j} \rho_{s}(x)\right)^{2} \mid \mathcal{F}_{s-1}\right)\right)^{2} \\
& \leq 2 \mathcal{R}_{s}^{2}+2 P\left(\mathcal{R}_{s} \mid \mathcal{F}_{s-1}\right)^{2} \\
& \leq 2 \mathcal{R}_{s}+2 P\left(\mathcal{R}_{s} \mid \mathcal{F}_{s-1}\right)
\end{aligned}
$$

Hence,

$$
\left\langle Z_{j}\right\rangle_{s}-\left\langle Z_{j}\right\rangle_{s-1}=P\left(\left(Z_{j}(s)-Z_{j}(s-1)\right)^{2} \mid \mathcal{F}_{s-1}\right) \leq 4 P\left(\mathcal{R}_{s} \mid \mathcal{F}_{s-1}\right) .
$$

We will prove that

$$
\begin{equation*}
P\left(\mathcal{R}_{s} \mid \mathcal{F}_{s-1}\right) \leq 2 m^{(2)} \mathcal{R}_{s-1} . \tag{3.10}
\end{equation*}
$$

Then, $\left\langle Z_{j}\right\rangle_{t} \leq 8 m^{(2)} V_{t-1}$, and the lemma follows from the standard law of large numbers for a square-integrable martingale, cf. section 2.2,(4).
It remains to show (3.10). Using (3.8) and (3.9) to $y_{1}=y_{2}=y$, we have

$$
\begin{aligned}
P\left(\mathcal{R}_{s} \mid \mathcal{F}_{s-1}\right) & =\sum_{y} P\left(\rho_{s}^{2}(y) \mid \mathcal{F}_{s-1}\right) \\
& =\sum_{y} \sum_{z_{1}, z_{2}} \sum_{\nu_{1}=1}^{N_{s-1, z_{1}}} \sum_{\nu_{2}=1}^{N_{s-1, z_{2}}} h_{1,2} P\left(\left.\frac{K_{s-1, z_{1}}^{\nu_{1}} K_{s-1, z_{2}}^{\nu_{2}}}{N_{s}^{2}} \right\rvert\, \mathcal{F}_{s-1}\right) \\
& \leq \sum_{y} \sum_{z_{1}, z_{2}} \sum_{\nu_{1}=1}^{N_{s-1, z_{1}}^{N_{s-1, z_{2}}}} \sum_{\nu_{2}=1} h_{1,2} \frac{m^{(2)}}{N_{s-1}^{2}} .
\end{aligned}
$$

To obtain the last inequality, we used $N_{s} \geq N_{s-1}$ and the independence between $K_{s-1, \text {, }}$ and \mathcal{F}_{s-1}. We divide the last summation into the summation over $\left(z_{1}, \nu_{1}\right)=\left(z_{2}, \nu_{2}\right)$ and that over $\left(z_{1}, \nu_{1}\right) \neq\left(z_{2}, \nu_{2}\right)$, to see that

$$
\sum_{y} \sum_{z_{1}, z_{2}} \sum_{\nu_{1}=1}^{N_{s-1, z_{1}}} \sum_{\nu_{2}=1}^{N_{s-1, z_{2}}} \frac{h_{1,2}}{N_{s-1}^{2}} \leq \frac{1}{N_{s-1}}+\sum_{x}\left(\mathcal{P} \rho_{s-1}(x)\right) 2 \leq \frac{1}{N_{s-1}}+\mathcal{R}_{s-1} \leq 2 \mathcal{R}_{s-1}
$$

Here, we used $\mathcal{R}_{s-1}=\sum_{x} N_{s-1, x}^{2} / N_{s-1}^{2} \geq 1 / N_{s-1}$ to see the last inequality. Putting things together, we have (3.10) and the proof of the lemma is now complete.

3.2 Proof of Theorem 1.3.2:

We first note that there are $\epsilon>0$ and $t_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{s=1}^{t_{0}} r_{s} \geq \frac{1+\epsilon}{\alpha-1} \tag{3.11}
\end{equation*}
$$

where the constant α is from Proposition 1.2.1. For $d=1,2$, we take $\epsilon=1$. Then, (3.11) holds for t_{0} large enough, since $\sum_{s=1}^{\infty} r_{s}=\infty$. For $d \geq 3$, our assumption $P\left(\bar{N}_{\infty}=0\right)=1$ implies $\alpha \geq \alpha^{*}>1 / \pi_{d}$ by Proposition 1.2.1. Since $\sum_{s=1}^{\infty} r_{s}=\frac{\pi_{d}}{1-\pi_{d}}$, (3.11) holds for small enough $\epsilon>0$ and large enough t_{0}.
Let $t>t_{0}$. Applying Lemma 3.1.5 to $s=t-1, t-2, \ldots, t-t_{0}$ and taking the sum on s, we get

$$
\begin{aligned}
& \sum_{s=t-t_{0}}^{t-1}\left(2 c_{1} \mathcal{R}_{s}^{3 / 2}+\frac{c_{3}}{N_{s}}\right) \\
\geq & \sum_{s=t-t_{0}}^{t-1}\left(\sum_{x}\left(\mathcal{P}_{t-s} \rho_{s}(x)\right)^{2}-P\left(\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2} \mid \mathcal{F}_{s}\right)\right)+(\alpha-1) \sum_{s=t-t_{0}}^{t-1} r_{t-s} \mathcal{R}_{s} \\
= & \sum_{s=t-t_{0}}^{t-1}\left(\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2}-P\left(\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2} \mid \mathcal{F}_{s}\right)\right)+ \\
& \sum_{s=t-t_{0}}^{t-1}\left(\sum_{x}\left(\mathcal{P}_{t-s} \rho_{s}(x)\right)^{2}-\sum_{x}\left(\mathcal{P}_{t-(s+1)} \rho_{s+1}(x)\right)^{2}\right)+(\alpha-1) \sum_{s=t-t_{0}}^{t-1} r_{t-s} \mathcal{R}_{s}
\end{aligned}
$$

$$
=\sum_{s=t-t_{0}}^{t-1}\left[Z_{t-(s+1)}(s+1)-Z_{t-(s+1)}(s)\right]+\sum_{x}\left(\mathcal{P}_{t_{0}} \rho_{t-t_{0}}(x)\right)^{2}-\mathcal{R}_{t}+(\alpha-1) \sum_{s=t-t_{0}}^{t-1} r_{t-s} \mathcal{R}_{s},
$$

where we recall that the martingale $Z_{j}(\cdot)$ are defined in Lemma 3.1.6. By change of variable $s=t-j$, we have proven that

$$
\sum_{j=1}^{t_{0}}\left(2 c_{1} \mathcal{R}_{t-j}^{3 / 2}+\frac{c_{3}}{N_{t-j}}\right) \geq \sum_{j=1}^{t_{0}}\left[Z_{j-1}(t-j+1)-Z_{j-1}(t-j)\right]-\mathcal{R}_{t}+(\alpha-1) \sum_{j=1}^{t_{0}} r_{j} \mathcal{R}_{t-j}
$$

Taking the sum of these inequalities for $t=t_{0}+1, \ldots, T$, we obtain that

$$
\begin{aligned}
\sum_{t=t_{0}+1}^{T} \sum_{j=1}^{t_{0}}\left(2 c_{1} \mathcal{R}_{t-j}^{3 / 2}+\frac{c_{3}}{N_{t-j}}\right) \geq \sum_{j=1}^{t_{0}} & {\left[Z_{j-1}(T-j+1)-Z_{j-1}\left(t_{0}-j+1\right)\right]-\left(V_{T}-V_{t_{0}}\right) } \\
& +(\alpha-1) \sum_{j=1}^{t_{0}} r_{j}\left(V_{T-j}-V_{t_{0}-j}\right)
\end{aligned}
$$

Since $\mathcal{R}_{s} \leq 1$,

$$
\begin{aligned}
V_{T-j}-V_{t_{0}-j} & \geq V_{T}-j-\left(t_{0}-j\right)=V_{T}-t_{0}, \\
(\alpha-1) \sum_{j=1}^{t_{0}} r_{j}\left(V_{T-j}-V_{t_{0}-j}\right) & \geq(\alpha-1) \sum_{j=1}^{t_{0}} r_{j} V_{T}-c_{9} \geq(1+\epsilon) V_{T}-c_{9},
\end{aligned}
$$

with constant $c_{9}=(\alpha-1) t_{0} \sum_{j=1}^{t_{0}} r_{j}$. Hence,

$$
\begin{equation*}
\sum_{t=t_{0}+1}^{T} \sum_{j=1}^{t_{0}}\left(2 c_{1} \mathcal{R}_{t-j}^{3 / 2}+\frac{c_{3}}{N_{t-j}}\right) \geq \sum_{j=1}^{t_{0}}\left[Z_{j-1}(T-j+1)-Z_{j-1}\left(t_{0}-j+1\right)\right]+\epsilon V_{T}-c_{9} . \tag{3.12}
\end{equation*}
$$

Recall from Lemma 3.1.3 that $\sum_{t=1}^{\infty} \frac{1}{N_{t}}<\infty$, a.s., which combined with Lemma 3.1.6 implies that the two sums involving respectively $\frac{c_{3}}{N_{t-j}}$ and $Z_{j-1}(T-j+1)$ in (3.12) are negligible, relative to V_{T}. It follows that

$$
\liminf _{T \rightarrow \infty} \frac{1}{V_{T}} \sum_{t=t_{0}+1}^{T} \sum_{j=1}^{t_{0}} \mathcal{R}_{t-j}^{3 / 2} \geq \frac{\epsilon}{2 c_{1}}, \quad \text { a.s. }
$$

Consequently,

$$
\liminf _{T \rightarrow \infty} \frac{1}{V_{T}} \sum_{t=1}^{T} \mathcal{R}_{t}^{3 / 2} \geq \frac{\epsilon}{2 c_{1} t_{0}}, \quad \text { a.s. }
$$

which implies that

$$
\limsup _{t \rightarrow \infty} \mathcal{R}_{t} \geq\left(\frac{\epsilon}{2 c_{1} t_{0}}\right)^{2}, \quad \text { a.s. }
$$

This completes the proof of theorem.
Acknowledgements: We thank Yuval Peres for kindly allowing us to use his proof of Lemma 2.1.3. We also thank two anonymous referees for valuable comments.

References

[1] Athreya, K. and Ney, P. (1972): Branching Processes, Springer Verlag New York.
[2] Birkner, M.(2003): Particle systems with locally dependent branching: long-time behaviour, genealogy and critical parameters. PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt.
[3] Birkner, M., Geiger, J., Kersting G.(2005): Branching processes in random environment- a view on critical and subcritical cases. Interacting stochastic systems, 269-291, Springer, Berlin.
[4] Carmona, Ph, Hu, Y. (2002): On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Related Fields 124 (2002), no. 3, 431-457.
[5] Carmona, R., Molchanov, S. A. (1994): Parabolic Anderson Model and Intermittency Memoirs of the American Mathematical Society 518.
[6] Comets, F., Shiga, T., Yoshida, N.(2003) Directed Polymers in Random Environment: Path Localization and Strong Disorder, Bernoulli 9, 705-723.
[7] Comets, F., Shiga, T., Yoshida, N. (2004) Probabilistic analysis of directed polymers in random environment: a review, Advanced Studies in Pure Mathematics, 39, 115-142.
[8] Comets, F., Vargas, V. (2006): Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2 267-277.
[9] Durrett, R. (2005):"Probability-Theory and Examples", 3rd Ed., Brooks/Cole-Thomson Learning.
[10] Révész, P. (1994): "Random Walks of Infinitely Many Particles" World Scientific.
[11] Smith, W., L.; Wilkinson, W., E. (1969): On branching processes in random environments. Ann. Math. Statist. 40 814-827.
[12] Yoshida, N. (2008): Central limit theorem for branching random walks in random environment, Ann. Appl. Proba., Vol. 18, No. 4, 1619-1635, 2008.

Yueyun Hu
Département de Mathématiques
Université Paris XIII
F-93430 Villetaneuse
France
yueyun@math.univ-paris13.fr

Nobuo Yoshida
Division of Mathematics, Graduate School of Science Kyoto University
Kyoto 606-8502
Japan
nobuo@math.kyoto-u.ac.jp

[^0]: ${ }^{1}$ Corresponding author, Partially supported by JSPS Grant-in-Aid for Scientific Research, Kiban (C) 17540112

