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CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS
IN RANDOM ENVIRONMENT

BY NOBUO YOSHIDA1

Kyoto University

We consider branching random walks in d-dimensional integer lattice
with time–space i.i.d. offspring distributions. When d ≥ 3 and the fluctuation
of the environment is well moderated by the random walk, we prove a central
limit theorem for the density of the population, together with upper bounds
for the density of the most populated site and the replica overlap. We also dis-
cuss the phase transition of this model in connection with directed polymers
in random environment.

1. Introduction. We consider particles in Z
d , performing random walks and

branching into independent copies at each step of the random walk. When a
particle occupies a site x ∈ Z

d at time t ∈ N = {0,1, . . .}, then, it moves to a
randomly chosen adjacent site y at time t + 1 and is replaced by k new parti-
cles with probability qt,x(k) (k ∈ N). We assume that the offspring distributions
qt,x = (qt,x(k))k∈N are i.i.d. in time t and space x. This model was investigated
earlier in [2, 3], and we call it the branching random walks in random environment
(BRWRE). See Section 1.1 for a more precise definition.

An object of central interest in this model is the population Nt,x of the parti-
cles at time–space (t, x) ∈ N × Z

d , and the total population Nt = ∑
x∈Zd Nt,x at

time t . Due to the random environment, the population has much more fluctuation
as compared with the nonrandom environment case, for example, [15], Section 4.2.
This fluctuation results from “disastrous locations” in time–space, where the off-
spring distribution qt,x(k) happens to assign extremely high probability to small
k’s. Thanks to the random walk, on the other hand, some of the particles are lucky
enough to elude those disastrous locations. Therefore, the spatial motion compo-
nent of the model has the effect to moderate the fluctuation.

As is discussed above, the random environment intensifies the fluctuation of the
population, while the spatial motion moderates it. As was observed earlier in [3],
Theorem 4, these competing factors in the model give rise to a phase transition
as follows. When the randomness of the offspring distribution is well moderated
by that of the random walk, the growth of the total population is of the same or-
der as its expectation with strictly positive probability. When, on the other hand,
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the randomness of the environment dominates, the total population grows strictly
slower than its expectation almost surely. We also discuss this phase transition
later in this article. Interestingly, this phase transition shares the same aspect with,
or even explains, the localization/delocalization transition of directed polymers in
random environment [8], and of the parabolic Anderson model with time–space
i.i.d. potentials, for example, [5].

In this article, we mainly consider the case in which the fluctuation caused by
the random environment is well moderated by the random walk. It is known that
this is the case if d ≥ 3 and the mean offspring is controlled by a square moment
condition [3], Theorem 4—see Theorem 1.1 below. We prove a central limit theo-
rem for the density of the population (Theorem 1.1, Corollary 1.2), together with
upper bounds for the density of the most populated site and the replica overlap
(Proposition 1.3). Our method here is based on square moment estimates. In Sec-
tion 3, we discuss the phase transition of BRWRE in connection with that of the
directed polymers in random environment [8].

1.1. Branching random walks in random environment (BRWRE). We start
with some remarks on the usage of the notation in this paper. We write N =
{0,1,2, . . .}, N

∗ = {1,2, . . .} and Z = {±x;x ∈ N}. Let (�,F ,P ) be a proba-
bility space, which is not necessarily the one we define by (1.3)–(1.4) later on. We
write P [X] = ∫

X dP and P [X :A] = ∫
A X dP for a r.v. (random variable) X and

an event A.
We now define the model. Let p(·, ·) be a transition probability for a Markov

chain with a countable state space �. To each (t, x) ∈ N × �, we associate a dis-
tribution

qt,x = (qt,x(k))k∈N ∈ [0,1]N,
∑
k∈N

qt,x(k) = 1

on N. Then, the branching random walk (BRW) with offspring distribution q =
(qt,x)(t,x)∈N×� is described as the following dynamics:

• At time t = 0, there is one particle at the origin x = 0.
• Suppose that there are Nt,x particles at each site x ∈ � at time t . At time t + 1,

the νth particle at a site x (ν = 1, . . . ,Nt,x) jumps to a site y = Xν
t,x with prob-

ability p(x, y) independently of each other. At arrival, it dies, leaving Kν
t,x new

particles there.

We formulate the above description more precisely. The following formulation
is an analogue of [15], Section 4.2, where nonrandom offspring distributions are
considered. See also [3], Section 5 for the random offspring case.
• Spatial motion: A particle at time–space location (t, x) is supposed to jump to
some other location (t + 1, y) and is replaced by its children there. Therefore, the
spatial motion should be described by assigning the destination of each particle
at each time–space location (t, x). So, we are guided to the following definition.
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We define the measurable space (�X,FX) as the set �N×�×N
∗

with the product
σ -field, and �X � X �→ Xν

t,x for each (t, x, ν) ∈ � ×N ×N
∗ as the projection. We

define PX ∈ P (�X,FX) as the product measure such that

PX(Xν
t,x = y) = p(x, y) for all (t, x, ν) ∈ N × � × N

∗ and y ∈ �.(1.1)

Here, we interpret Xν
t,x as the position at time t + 1 of the children born from the

νth particle at time–space location (t, x).
• Offspring distribution: We set �q = P (N)N×� , where P (N) denotes the set of
probability measures on N:

P (N) =
{
q = (q(k))k∈N ∈ [0,1]N; ∑

k∈N

q(k) = 1

}
.

Thus, each q ∈ �q is a function (t, x) �→ qt,x = (qt,x(k))k∈N from N×� to P (N).
We interpret qt,x as the offspring distribution for each particle which occupies the
time–space location (t, x). The set P (N) is equipped with the natural Borel σ -field
induced from that of [0,1]N. We denote by Fq the product σ -field on �q .

We define the measurable space (�K,FK) as the set N
N×�×N

∗
with the product

σ -field, and �K � K �→ Kν
t,x for each (t, x, ν) ∈ N×� ×N

∗ as the projection. For
each fixed q ∈ �q , we define P

q
K ∈ P (�K,FK) as the product measure such that

P
q
K(Kν

t,x = k) = qt,x(k) for all (x, t, ν) ∈ � × N × N
∗ and k ∈ N.(1.2)

We interpret Kν
t,x as the number of the children born from the νth particle at time–

space location (t, x).
We now define the branching random walk in random environment. We fix a

product measure Q ∈ P (�q,Fq), which describes the i.i.d. offspring distribution
assigned to each time–space location. Finally, we define (�,F ) by

� = �X × �K × �q, F = FX ⊗ FK ⊗ Fq,(1.3)

and P q,P ∈ P (�,F ) by

P q = PX ⊗ P
q
K ⊗ δq, P =

∫
Q(dq)P q.(1.4)

We denote by Nt,x the population at time–space location (t, x) ∈ N × �, which is
defined inductively by N0,x = δ0,x for t = 0, and

Nt,x = ∑
y∈�

Nt−1,y∑
ν=1

δx(X
ν
t−1,y)K

ν
t−1,y(1.5)

for t ≥ 1. The total population at time t is then given by

Nt = ∑
x∈�

Nt,x = ∑
y∈�

Nt−1,y∑
ν=1

Kν
t−1,y .(1.6)
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We remark that the total population is exactly the classical Galton–Watson process
if qt,x ≡ q , where q ∈ P (N) is nonrandom. On the other hand, if � is a singleton,
then Nt is the population of the Smith–Wilkinson model [18].

For p > 0, we write

m(p) = Q
[
m

(p)
t,x

]
with m

(p)
t,x = ∑

k∈N

kpqt,x(k),(1.7)

m = m(1).(1.8)

Note that for p ≥ 1,

mp ≤ Q[mp
t,x] ≤ m(p)

by Hölder’s inequality. We set

Nt,x = Nt,x/mt and Nt = Nt/mt .(1.9)

Nt = Nt/mt is a martingale (Lemma 1.5 below), and therefore the following limit
always exists:

N∞ = lim
t→∞Nt, P -a.s.(1.10)

1.2. Results. Before we state our results, we fix our notation for simple ran-
dom walk.
• The random walk: ({St }t∈N,P x

S ) is a simple random walk on the d-dimensional
integer lattice Z

d starting from x ∈ Z
d . More precisely, we let (�S,FS) be the

path space (Zd)N with the cylindrical σ -field, and let �S � S �→ St , t ∈ N be the
projection. We define p : Zd × Z

d �→ {0, 1
2d

} by

p(x, y) =
⎧⎨⎩

1

2d
, if |x − y| = 1,

0, if |x − y| �= 1,

(1.11)

where |x| = (|x1|2 +· · ·+ |xd |2)1/2 for x ∈ Z
d . We consider the unique probability

measure P x
S on (�S,FS) such that St − St−1, t = 1,2, . . . are independent and

P x
S {S0 = x} = 1, P x

S {St − St−1 = y} = p(0, y), for y ∈ Z
d .

In the sequel, P 0
S will be simply written by PS . We define the return probability of

the simple random walk:

πd = PS(St = 0 for some t ≥ 1).(1.12)

As is well known, π1 = π2 = 1, and πd < 1 for d ≥ 3.
To state our results, we assume that � = Z

d and that p(·, ·) is given by (1.11).
Then, with the notation introduced by (1.5)–(1.10), we state:
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THEOREM 1.1. Suppose that

m > 1, m(2) < ∞ and d ≥ 3.(1.13)

Then, the following are equivalent:

(a)
Q[m2

t,x ]
m2 < 1

πd
, where πd ∈ (0,1) is defined by (1.12).

(b) lim t→∞Nt = N∞ in L
2(P ).

(c) lim t→∞
∑

x∈Zd Nt,xf (t−1/2x) = N∞
∫
Rd fg1 in L

2(P ) for all f ∈ Cb(R
d).

Here and in what follows,

gt (x) =
(

d

2πt

)d/2
e−d|x|2/(2t), t > 0,(1.14)

∫
Rd fg1 is the abbreviation for

∫
Rd f (x)g1(x) dx, and Cb(R

d) denotes the set of
bounded continuous functions on R

d .

Theorem 1.1(a) controls the randomness of the environment in terms of that
of the random walk. Theorem 1.1(b) in particular implies that P(N∞ > 0) > 0,
that is, the growth of the total population is of the same order as its expectation
with strictly positive probability. In contrast with this, we will see that the total
population grows strictly slower than its expectation almost surely, if either d =
1,2, or the environment is random enough (Corollary 3.3 below). It is easy to
deduce from Theorem 1.1(c) the following:

COROLLARY 1.2. Suppose that

m > 1, m(2) < ∞, d ≥ 3, and
Q[m2

t,x]
m2 <

1

πd

.

Then, P(N∞ > 0) > 0 and

lim
t→∞P

(∣∣∣∣∣ 1

Nt

∑
x∈Zd

Nt,xf (t−1/2x) −
∫

Rd
fg1

∣∣∣∣∣ ≥ ε
∣∣∣N∞ > 0

)
= 0

for all ε > 0 and f ∈ Cb(R
d).

Corollary 1.2 tells us that, as t ↗ ∞, the density or the spatial distribution

ρt,x = Nt,x

Nt

, x ∈ Z
d

of the population converges to the standard normal distribution, if it is properly
scaled. Other interesting objects related to the density would be

ρ∗
t = max

x∈Zd
ρt,x and Rt = ∑

x∈Zd

ρ2
t,x .
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ρ∗
t is the density at the most populated site, while Rt is the probability that a given

pair of particles at time t are at the same site. Rt can be thought of as the replica
overlap, in analogy with the spin glass theory. Clearly, (ρ∗

t )2 ≤ Rt ≤ ρ∗
t . We use

the method in this paper to show the following upper bound for Rt :

PROPOSITION 1.3. Suppose that

m > 1, m(2) < ∞, d ≥ 3, and
Q[m2

t,x]
m2 <

1

πd

.

Then, P(N∞ > 0) > 0 and

RT = O(T −d/2) in P(·|N∞ > 0)-probability,

that is, the laws P(T d/2RT ∈ ·|N∞ > 0), T ≥ 1 are tight.

REMARKS. After the first version of this article was submitted, a couple of
related results are obtained.

(1) Hu and Yoshida [14] prove the following localization result, which is in con-
trast with Proposition 1.3 above: Suppose that m(3) < ∞, Q(mt,x = m) �= 1,
Q(qt,x(0) = 0) = 1 and P(N∞ = 0) = 1. Then, there exists a non-random
number c ∈ (0,1) such that

lim
t↗∞Rt ≥ c, P -a.s.

(2) Shiozawa [16] considers branching Brownian motion in random environment,
which can be thought of as a natural continuous counterpart of the discrete
model considered in this article. He proves Theorem 1.1—Proposition 1.3 for
the continuous setting.

1.3. Some basic properties of Nt,x . Here again, we only assume that (St ,P
x
S )

is a Markov chain on a countable state space � and with the transition probability
p(·, ·). We denote the t-step transition probability by

pt(x, y) = P x
S (St = y).(1.15)

Define F0 = {∅,�} and

Ft = σ(X·
s,·,K ·

s,·, qs,·; s ≤ t − 1), t ≥ 1.(1.16)

This definition is natural, because the configuration of the particles up to time t is
determined by the above Ft . Note that X·

s,·,K ·
s,·, qs,·, s ≥ t are independent of Ft .

LEMMA 1.4. For t < T ,

P q[NT,x |Ft ] = ∑
y∈�

Nt,yP
y
S

[
T −t−1∏
u=0

mt+u,Su :ST −t = x

]
.(1.17)
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In particular,

P q[NT,x] = P 0
S

[
T −1∏
u=0

mu,Su :ST = x

]
,

(1.18)

P q[NT ] = P 0
S

[
T −1∏
u=0

mu,Su

]
.

PROOF. Let A ∈ Ft be arbitrary. Then,

P q[NT,x :A] = ∑
xT −1∈�

∑
ν≥0

P q[δx(X
ν
xT −1,T −1

)Kν
T −1,xT −1

:NT −1,xT −1 ≥ ν,A].

By the independence, each expectation in the above sum is equal to

PX[δx(X
ν
T −1,xT −1

)]P q
K [Kν

T −1,xT −1
]P q[NT −1,xT −1 ≥ ν,A]

= p(xT −1, x)mT −1,xT −1P
q[NT −1,xT −1 ≥ ν,A].

Hence,

P q[NT,x :A] = ∑
xT −1∈�

P q[NT −1,xT −1 :A]mT −1,xT −1p(xT −1, x).

By proceeding inductively, the right-hand side is equal to

∑
xt ,xt+1,...,xT −1∈�

P q[Nt,xt :A]
(

T −1∏
u=t

mu,xu

)(
T −2∏
u=t

p(xu, xu+1)

)
p(xT −1, x)

= ∑
xt∈�

P q[Nt,xt :A]P xt

S

[
T −t−1∏
u=0

mt+u,Su :ST −t = x

]
.

Hence we have (1.17). �

LEMMA 1.5. (Nt ,Ft )t≥0 is a martingale on (�,F ,P ). Similarly,
(P q[Nt ],Fq,t )t≥0 is a martingale on (�q,Fq,t ,Q), where Fq,t is a σ -field gen-
erated by q(·, s), s ≤ t − 1.

PROOF. If t < T , then,

P [NT |Ft ] = ∑
x∈�

P [NT,x |Ft ] (1.17)= mT −t
∑
x∈�

∑
y∈�

Nt,yP
y
S [ST −t = x] = mT −tNt .

�

2. Proof of the results.

2.1. Lemmas. We assume that � = Z
d and that p(·, ·) is given by (1.11) from

here on.
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LEMMA 2.1.

P [NT,xNT,x̃] = mT PS(ST = x)δx,x̃

+ cmT
T −1∑
t=0

mtP
x,x̃

S,S̃

[
α

∑t
u=1 1{Su=S̃u} :St = S̃t , ST = 0

]
,

where α = Q[m2
t,x ]

m2 and c = m(2)

m
− 1.

PROOF. We follow [2], Lemma 20. Nt,xNt,x̃ = ∑
y,ỹ Fy,ỹ , where

Fy,ỹ =
Nt−1,y∑
ν=1

Nt−1,ỹ∑
ν̃=1

Kν
t−1,yK

ν̃
t−1,ỹδx(X

ν
t−1,y)δx̃(X

ν̃
t−1,ỹ ).

(1) We first consider the expectation of Fy,ỹ with y �= ỹ. In this case, Kν
t−1,y

and Kν̃
t−1,ỹ are independent under P(·|Ft−1). Therefore, we have

P [Fy,ỹ |Ft−1] = Nt−1,yNt−1,ỹm
2p(y, x)p(ỹ, x̃).

(2) We turn to the expectation of Fy,ỹ with y = ỹ. In this case, {Kν
t−1,y}

Nt−1,y

ν=1

are independent under P(·|F̃t−1), where

F̃t−1 = σ(Ft−1, (qt−1,x)x∈Zd ).

For y = ỹ and x = x̃, we have

P [Fy,y |F̃t−1] = Nt−1,y(Nt−1,y − 1)m2
t−1,yp(y, x)2 + Nt−1,ym

(2)
t−1,yp(y, x).

The first and second terms on the right-hand side come respectively from off-
diagonal and diagonal terms in Fy,y .

For y = ỹ and x �= x̃, we have no diagonal terms in Fy,y . Therefore,

P [Fy,y |F̃t−1] = Nt−1,y(Nt−1,y − 1)m2
t−1,yp(y, x)p(y, x̃).

We now introduce the following notation:

Nt,x,x̃ = Nt,xNt,x̃ − Nt,xδx,x̃ .

From the considerations in (1) and (2) above, and from P [Nt,x] = mtpt (0, x), we
obtain

P [Nt,x,x̃] = ∑
y,ỹ

y �=ỹ

m2P [Nt−1,y,ỹ]p(y, x)p(ỹ, x̃)

+ αm2
∑
y

P [Nt−1,y,y]p(y, x)p(y, x̃)

+ (
m(2) − m

)
δx,x̃m

t−1pt(0, x)

= ∑
y,ỹ

P [Nt−1,y,ỹ]a(y, ỹ)p(y, x)p(ỹ, x̃) + bt (x, x̃),
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where

a(y, ỹ) = m2α1{y=ỹ} and bt (x, x̃) = cmtδx,x̃pt (0, x).

By Lemma 2.2 below, applied to the Markov chain (S, S̃), we get

P [NT,x,x̃] = c

T −1∑
t=0

mT +tP
x,x̃

S,S̃

[
pT −t (0, St )α

∑t
u=1 1{Su=S̃u} :St = S̃t

]
.

It is now easy to see that the above identity is the same as what we want. �

LEMMA 2.2. Let S = (St )t∈N be a Markov chain with the state space �. Sup-
pose that ϕt , at , bt (t ∈ N) are functions on � such that

ϕt(x) = P x
S [at (S1)ϕt−1(S1)] + bt (x), x ∈ �, t ≥ 1,(2.1)

where P x
S denotes the law of S, conditioned to start from x ∈ �. Then,

ϕT (x) = P x
S

[
ϕ0(ST )

T∏
u=1

aT −u+1(Su) +
T −1∑
t=0

bT −t (St )

t∏
u=1

aT −u+1(Su)

]
(2.2)

for x ∈ � and T ≥ 1. [(2.1) and (2.2) are discrete analogues of the parabolic
Schrödinger equation and its Feynman–Kac representation.]

PROOF. Straightforward by induction on T . �

LEMMA 2.3. For functions f, f̃ on Z
d ,∑

x,x̃∈Zd

P [NT,xNT,x̃]f (x)f̃ (x̃)

= mT PS[f (ST )f̃ (ST )]

+ cmT
T −1∑
t=0

mtP
0,0
S,S̃

[
α

∑t
u=1 1{St−Su=S̃t−S̃u}f (−ST )f̃ (St − S̃t − ST )

]
,

where α = Q[m2
t,x ]

m2 and c = m(2)

m
− 1.

PROOF. For 0 ≤ t ≤ T , we compute

It
def.= ∑

x,x̃∈Zd

P
x,x̃

S,S̃

[
α

∑t
u=1 1{Su=S̃u} :St = S̃t , ST = 0

]
f (x)f̃ (x̃)

= ∑
x,x̃∈Zd

P
0,0
S,S̃

[
α

∑t
u=1 1{Su−S̃u=x̃−x} :St − S̃t = x̃ − x,ST = −x

]
f (x)f̃ (x̃)

= ∑
x,x̃∈Zd

P
0,0
S,S̃

[
α

∑t
u=1 1{Su−S̃u=St−S̃t } :St − S̃t − ST = x̃, ST = −x

]
f (x)f̃ (x̃)

= P
0,0
S,S̃

[
α

∑t
u=1 1{St−Su=S̃t−S̃u}f (−ST )f̃ (St − S̃t − ST )

]
.
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By Lemma 2.1, the left-hand side of the desired identity equals

mT PS[f (ST )f̃ (ST )] + cmT
T −1∑
t=0

mtIt . �

LEMMA 2.4. Suppose that 1 ≤ α < 1/πd . Then, for f, f̃ ∈ Cb(R
d),

lim
t→∞P

0,0
S,S̃

[
α

∑t−1
u=0 1{Su=S̃u}f (t−1/2St )f̃ (t−1/2S̃t )

]
= P

0,0
S,S̃

[
α

∑∞
u=0 1{Su=S̃u}](∫

Rd
fg1

)(∫
Rd

f̃ g1

)
.

PROOF. This lemma is shown in the proof of [6], Theorem 4.2. �

2.2. Proof of Theorem 1.1. (a) ⇐⇒ (b): It follows from Lemma 2.3 that

P [N2
t ] = m−T + cm−T

T −1∑
t=0

mtP
0,0
S,S̃

[
α

∑t
u=1 1{Su=S̃u}]

and hence that

sup
t≥0

P [N2
t ] = lim

t→∞P [N2
t ] = cP

0,0
S,S̃

[
α

∑∞
u=1 1{Su=S̃u}] = cPS

[
α

∑∞
u=1 1{S2u=0}].

The right-hand side is finite if and only if α < 1/πd , since
∑∞

u=1 1{S2u = 0} is
geometrically distributed with the success probability πd .

(a) ⇒ (c): By a standard approximation argument, we may assume that f ∈
Cb,u(R

d), where Cb,u(R
d) denotes the set of bounded, uniformly continuous func-

tions. Since (a) implies (b), it is enough to prove that, as T ↗ ∞,

XT
def.= ∑

x∈Zd

NT,xf (T −1/2x) −→ 0 in L
2(P )

for f ∈ Cb,u(R
d) such that

∫
Rd fg1 = 0. By Lemma 2.3,

P [X2
T ] = ∑

x,x̃∈Zd

P [NT,xNT,x̃]fT (x)fT (x̃)

= m−T PS[fT (ST )2] + cm−T
T −1∑
t=0

mtγt,T ,

where fT (x) = f (T −1/2x) and

γt,T = P
0,0
S,S̃

[
α

∑t
u=1 1{St−Su=S̃t−S̃u}fT (−ST )fT (St − S̃t − ST )

]
.

Since

lim
T →∞m−T

∑
1≤t≤T −lnT

mtγt,T = 0,
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it is enough to show that

lim
T →∞ sup{γt,T ;T − lnT ≤ t < T } = 0.(∗)

For T − lnT ≤ t < T , both

|T −1/2ST − t−1/2St | and |T −1/2(St − S̃t − ST ) + t−1/2S̃t |
are bounded by a constant multiple of T −1/2 lnT . Since f is uniformly continuous
and α < 1/πd , we have

γt,T = P
0,0
S,S̃

[
α

∑t
u=1 1{St−Su=S̃t−S̃u}ft (−St )ft (−S̃t )

] + εT

= P
0,0
S,S̃

[
α

∑t−1
u=0 1{Su=S̃u}ft (−St )ft (−S̃t )

] + εT

with some εT → 0. Here, on the second line, we have used that (Su)
t
u=0

law= (St −
St−u)

t
u=0. This, together with Lemma 2.4, implies (∗).

(c) ⇒ (b): Obvious.

2.3. Proof of Proposition 1.3. It follows from the assumptions and Theo-
rem 1.1 that P(N∞ > 0) > 0. Note that

1

N2
T

∑
x∈Zd

N2
T ,x = 1

N
2
T

∑
x∈Zd

N
2
T ,x

and that limT →∞ NT = N∞ > 0, P(·|N∞ > 0)-a.s. Therefore, it is enough to
prove that ∑

x∈Zd

P (N
2
T ,x |N∞ > 0) = O(T −d/2).

In fact, we will show that ∑
x∈Zd

P (N
2
T ,x) = O(T −d/2).(1)

Since α < 1/πd , we have

0 < inf
Zd

 ≤ sup
Zd

 < ∞ for (x) = P x
S

[
α

∑∞
u=1 1{S2u=0}].

Then, it follows from Lemma 2.5 below that

sup
x∈Zd

P 0
S

[
α

∑t
u=1 1{S2u=0} :S2t = x

] = O(t−d/2), t ↗ ∞.(2)
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By Lemma 2.1,

P(N
2
T ,x)

= m−T PS(ST = x) + cm−T
T −1∑
t=0

mtP
x,x

S,S̃

[
α

∑t
u=1 1{Su=S̃u} :St = S̃t , ST = 0

]

= m−T PS(ST = x) + cm−T
T −1∑
t=0

mtP
0,0
S,S̃

[
α

∑t
u=1 1{Su=S̃u} :St = S̃t , ST = −x

]
.

Hence, (1) can be seen via (2) as follows:∑
x∈Zd

P (N
2
T ,x)

= m−T + m−T
T −1∑
t=0

mtP
0,0
S,S̃

[
α

∑t
u=1 1{Su=S̃u} :St = S̃t

]

= m−T + m−T
T −1∑
t=0

mtP 0
S

[
α

∑t
u=1 1{S2u=0} :S2t = 0

] = O(T −d/2).

LEMMA 2.5. Suppose that b : Zd → R (d ≥ 3) is bounded and that

0 < inf
Zd

 ≤ sup
Zd

 < ∞ with (x) = P x
S

[
exp

( ∞∑
t=0

b(St )

)]
.

Then, as T ↗ ∞,

sup
x,y∈Zd

P x
S

[
exp

(
T −1∑
t=0

b(St )

)
:ST = y

]
= O(T −d/2).

PROOF. Here is a recipe to get a Nash-type estimate for a Schrödinger semi-
group, which is similar to [10], Lemma 3.1.3, [19], Lemma 3.3. We define

p̃(x, y) = 1

(x)
eb(x)p(x, y)(y), m̃(x) = e−b(x)2(x).

Then, it is easy to see that p̃ is a transition probability of an m̃-symmetric Markov
chain on Z

d . Moreover, we have by the assumption that:

(1) 0 < inf
Zd

m̃ ≤ sup
Zd

m̃ < ∞ (“strong reversibility” [20], page 27),

(2)

(∑
x∈A

m̃(x)

)(d−1)/d

≤ κ
∑

x∈A,y /∈A

m̃(x)p̃(x, y), for any finite A ⊂ Z
d,

where the constant κ is independent of A (“d-isoperimetric inequality” [20],
page 40),
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(3)
∑

y∈Zd

|x−y|≤r

m̃(y) ≥ εrd for any r ∈ N and x ∈ Z
d,

where the constant ε > 0 is independent of r and x.
Then, by [20], page 148, Corollary 14.5, these imply that

(4) sup
x,y∈Zd

p̃T (x, y) = O(T −d/2) as T ↗ ∞,

where p̃T is the T -step transition function obtained from p̃.

Since

P x
S

[
exp

(
T −1∑
t=0

b(St )

)
:ST = y

]
= (x)p̃T (x, y)

1

(y)
,

the lemma follows from (4). �

3. Relation to directed polymers in random environment. We now relate
the BRWRE with directed polymers in random environment.

3.1. Directed polymers in random environment (DPRE).
• The random environment: η = {ηt,x : (x, t) ∈ Z

d × N} is a sequence of r.v.’s
which are real valued, nonconstant, and i.i.d. r.v.’s defined on a probability space
(�η,Fη,Q) such that

Q[exp(βηt,x)] < ∞ for all β ∈ R.(3.1)

We define

λ(β) = lnQ[exp(βηt,x)].(3.2)

• The polymer measure: For any T ∈ N
∗, define the probability measure μT on

the path space (�S,FS) by

dμT = 1

ZT

exp(βHT )dPS,(3.3)

where β > 0 is a parameter (the inverse temperature),

HT =
T −1∑
t=0

ηt,St and ZT = PS[exp(βHT )](3.4)

are the Hamiltonian and the normalizing constant (the partition function).
Define the normalized partition function by

ZT = ZT exp(−T λ(β)), T ≥ 1.(3.5)

This is a positive mean-one (Fη,T )-martingale on (�η,Fη,Q) with Fη,0 =
{∅,�η} and

Fη,T = σ
(
η(·, s); s ≤ T − 1

)
, T ≥ 1.
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By the martingale convergence theorem, the limit

Z∞ = lim
T →∞ZT(3.6)

exists Q-a.s. Moreover, there are only two possibilities for the positivity of the
limit:

Q{Z∞ > 0} = 1,(3.7)

or

Q{Z∞ = 0} = 1.(3.8)

Indeed, the event {Z∞ = 0} is in the tail σ -field:⋂
t≥1

σ [η(·, s); s ≥ t].

By Kolmogorov’s zero-one law, every event in the tail σ -field has probability 0
or 1.

The above contrasting situations (3.7) and (3.8) will be called the weak disorder
phase and the strong disorder phase, respectively.

3.2. BRWRE and its associated DPRE. Suppose that we are given an environ-
ment ηt,x for the directed polymer. We can then associate an environment, that is,
an i.i.d. random offspring distribution qt,x for the BRWRE so that

eβηt,x = mt,x = ∑
k∈N

kqt,x(k)(3.9)

holds. Among many ways to do so, let us take:

qt,x(k) = e−mt,x
mk

t,x

k! .(3.10)

Then, by Lemma 1.4,

P q[Nt,x] = PS[exp(βHT ) :ST = x] and P q[NT ] = ZT .(3.11)

These imply

P q[NT,x] = PS

[
exp

(
βHT − λ(β)T

)
:ST = x

]
, P q[NT ] = ZT

and

μT (ST = x) = P q[Nt,x]
P q[NT ] = P q[Nt,x]

P q[NT ] .

Since μT and ZT are invariant under constant addition to ηt,x , we may assume
that

m = Q[mt,x] = Q[exp(βηt,x)] > 1
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without loss of generality. Moreover, by (3.10) and our integrability assumption
(3.1) on ηt,x , ∑

k∈N

k2qt,x(k) = mt,x + m2
t,x ∈ L

1(Q).

Therefore, Theorem 1.1 implies the following central limit theorem for DPRE,
which is a weaker version of the results obtained in [4, 12, 17].

COROLLARY 3.1. If d ≥ 3 and λ(2β) − 2λ(β) < ln(1/πd), then

lim
T →∞μT [f (T −1/2ST )] =

∫
Rd

fg1(3.12)

in Q-probability for any f ∈ Cb(R
d).

3.3. Phase transitions of BRWRE and DPRE. As we mentioned before, BR-
WRE undergoes the following phase transition. When the randomness of the off-
spring distribution is well moderated by that of the random walk (as in Corol-
lary 1.2, Proposition 1.3), the growth of the total population is of the same order as
its expectation with strictly positive probability. When, on the other hand, the ran-
domness of the environment dominates, the total population grows strictly slower
than its expectation almost surely. We now relate this phase transition with that for
DPRE.

PROPOSITION 3.2. Suppose that an environment ηt,x for the DPRE and an
offspring distribution qt,x for the BRWRE are related so that (3.9) holds. Then:

(a) P [N∞] ≤ Q[Z∞]. In particular, Q(Z∞ = 0) = 1 (strong disorder for
DPRE) implies P(N∞ = 0) = 1 (the total population grows strictly slower than
its expectation almost surely).

(b) The converse to (a) is not true.

PROOF. (a) We have:

P [N∞] =
∫

Q(dq)P q[N∞] ≤
∫

Q(dq) lim
t

P q[Nt ] = Q[Z∞],
where the inequality follows from Fatou’s lemma.

(b) As is mentioned in [3], Theorem 4, It follows from a comparison with the
Galton–Watson model that P(N∞ = 0) = 1 and hence P(N∞ = 0) = 1 as soon as
m ≤ 1. We have always m ≥ 1 when ηt,x is a negative r.v. Meanwhile, the polymer
is in weak disorder phase for d ≥ 3 and β > 0 small enough. �

By Proposition 3.2, we can translate the results from DPRE [7, 9] to the follow-
ing observation for BRWRE:
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COROLLARY 3.3. Suppose one of the following conditions:

(a1) d = 1,Q(mt,x = m) �= 1.

(a2) d = 2,Q(mt,x = m) �= 1.

(a3) d ≥ 3,Q[mt,x

m
ln mt,x

m
] > ln(2d).

Then, P(N∞ = 0) = 1. Moreover, in cases (a1) and (a3), there exists a nonrandom
number c > 0 such that

lim
t

lnNt

t
< −c, a.s.(3.13)

Corollary 3.3 says that the total population grows strictly slower than its expec-
tation almost surely, in low dimensions or in “random enough” environment. The
result is in contrast with the nonrandom environment case, where P(N∞ = 0) = 1
only for offspring distributions with very heavy tail, more precisely, if and only
if P [Kν

t,x lnKν
t,x] = ∞ ([1], page 24, Theorem 1). Here, we can have P(N∞ =

0) = 1 even when Kν
t,x is bounded. Also, (3.13) is in sharp contrast with the non-

random environment case, where it is well known—see, for example, [1], page 30,
Theorem 3—that

{N∞ > 0} a.s.=
{

lim
t

lnNt

t
= 0

}
whenever m > 1.

Corollary 3.3 is also stated in [3], Theorem 4, however without (3.13).
We have discussed the relation between BRWRE and DPRE. We remark that

the branching Brownian motions in random environment recently considered by
Shiozawa [16] and Brownian directed polymers [11] are in similar relation. There-
fore, by the results in [11], Proposition 3.2 and Corollary 3.3 [except (3.13) in case
(a1)] can be extended to branching Brownian motions in random environment.

4. Survival and extinction. We now close this article with a brief discus-
sion on survival/extinction for this model, that is, e def= P(N∞ = 0) < 1 or = 1. By
standard computations of generating function, we see that eGW ≤ e ≤ eSW, where
eGW and eSW stands respectively for extinction probabilities for a Galton–Watson
model with offspring distribution Q[qt,x(·)] and a Smith–Wilkinson model [1, 18].
On the other hand, by using oriented percolation, one can construct examples for
eGW < e = 1 and for e < eSW = 1 [13].
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