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CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS
IN RANDOM ENVIRONMENT

BY NOBUO YOSHIDA!
Kyoto University

We consider branching random walks in d-dimensional integer lattice
with time—space i.i.d. offspring distributions. When d > 3 and the fluctuation
of the environment is well moderated by the random walk, we prove a central
limit theorem for the density of the population, together with upper bounds
for the density of the most populated site and the replica overlap. We also dis-
cuss the phase transition of this model in connection with directed polymers
in random environment.

1. Introduction. We consider particles in Z¢, performing random walks and
branching into independent copies at each step of the random walk. When a
particle occupies a site x € 74 at time r € N = {0,1,...}, then, it moves to a
randomly chosen adjacent site y at time # + 1 and is replaced by k new parti-
cles with probability g; (k) (k € N). We assume that the offspring distributions
Gi.x = (qr.x(k))ren are i.i.d. in time ¢ and space x. This model was investigated
earlier in [2, 3], and we call it the branching random walks in random environment
(BRWRE). See Section 1.1 for a more precise definition.

An object of central interest in this model is the population N; . of the parti-
cles at time—space (f,x) € N x 74, and the total population Ny =} 74 N; x at
time 7. Due to the random environment, the population has much more fluctuation
as compared with the nonrandom environment case, for example, [15], Section 4.2.
This fluctuation results from “disastrous locations” in time—space, where the off-
spring distribution ¢, (k) happens to assign extremely high probability to small
k’s. Thanks to the random walk, on the other hand, some of the particles are lucky
enough to elude those disastrous locations. Therefore, the spatial motion compo-
nent of the model has the effect to moderate the fluctuation.

As is discussed above, the random environment intensifies the fluctuation of the
population, while the spatial motion moderates it. As was observed earlier in [3],
Theorem 4, these competing factors in the model give rise to a phase transition
as follows. When the randomness of the offspring distribution is well moderated
by that of the random walk, the growth of the total population is of the same or-
der as its expectation with strictly positive probability. When, on the other hand,
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the randomness of the environment dominates, the total population grows strictly
slower than its expectation almost surely. We also discuss this phase transition
later in this article. Interestingly, this phase transition shares the same aspect with,
or even explains, the localization/delocalization transition of directed polymers in
random environment [8], and of the parabolic Anderson model with time—space
i.i.d. potentials, for example, [5].

In this article, we mainly consider the case in which the fluctuation caused by
the random environment is well moderated by the random walk. It is known that
this is the case if d > 3 and the mean offspring is controlled by a square moment
condition [3], Theorem 4—see Theorem 1.1 below. We prove a central limit theo-
rem for the density of the population (Theorem 1.1, Corollary 1.2), together with
upper bounds for the density of the most populated site and the replica overlap
(Proposition 1.3). Our method here is based on square moment estimates. In Sec-
tion 3, we discuss the phase transition of BRWRE in connection with that of the
directed polymers in random environment [8].

1.1. Branching random walks in random environment (BRWRE). We start
with some remarks on the usage of the notation in this paper. We write N =
{0,1,2,...}, N* ={1,2,...} and Z = {£x;x € N}. Let (2, F, P) be a proba-
bility space, which is not necessarily the one we define by (1.3)—(1.4) later on. We
write P[X]= [XdP and P[X:A]= [, XdP for ar.v. (random variable) X and
an event A.

We now define the model. Let p(-, -) be a transition probability for a Markov
chain with a countable state space I". To each (¢, x) € N x I', we associate a dis-
tribution

Grx = @raOen € [0, 11N, Y gy =1
keN
on N. Then, the branching random walk (BRW) with offspring distribution ¢ =
(qt,x) (t,x)eNxT 1s described as the following dynamics:

e Attime ¢ = 0, there is one particle at the origin x = 0.

e Suppose that there are N; , particles at each site x € I" at time ¢. Attime ¢ + 1,
the vth particle at a site x (v=1,..., N; ) jumps to a site y = X} with prob-
ability p(x, y) independently of each other. At arrival, it dies, leaving K’ new
particles there.

We formulate the above description more precisely. The following formulation
is an analogue of [15], Section 4.2, where nonrandom offspring distributions are
considered. See also [3], Section 5 for the random offspring case.

e Spatial motion: A particle at time—space location (¢, x) is supposed to jump to
some other location (¢ 4+ 1, y) and is replaced by its children there. Therefore, the
spatial motion should be described by assigning the destination of each particle
at each time—space location (#, x). So, we are guided to the following definition.
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We define the measurable space (2x, Fx) as the set INXIxN® with the product

o-field, and Qx > X — X;’,x for each (¢, x, v) € I' x N x N* as the projection. We
define Px € P (Qx, Fx) as the product measure such that

(1.1) PX(X,‘”X =y)=px,y) forall (r,x,v) e NxI'xN*and y eT.

Here, we interpret X} ; as the position at time 7 + 1 of the children born from the
vth particle at time—space location (¢, x).

o Offspring distribution: We set Q; = P MN)NXT “where £ (N) denotes the set of
probability measures on N:

PN ={g=(q®)kene[0,11"; > qk)=1¢.
keN

Thus, each g € 2 is a function (¢, x) = q; x = (g1, x (k) keny from N x I" to P (N).
We interpret g; , as the offspring distribution for each particle which occupies the
time—space location (z, x). The set P (N) is equipped with the natural Borel o -field
induced from that of [0, 1]Y. We denote by F, the product o-field on €.

We define the measurable space (Qx, Fx) as the set NNV XT' <N with the product
o-field, and Qg > K — Kt‘jx for each (¢, x, v) € N x I" x N* as the projection. For

each fixed g € 24, we define PI? € P(Q2k, Fk) as the product measure such that
(12) PL(K}, =k) =g (k) forall (x,z,v) eI’ x Nx N*and k € N.

We interpret K/, as the number of the children born from the vth particle at time-
space location (7, x).

We now define the branching random walk in random environment. We fix a
product measure Q € & (£2,, F,), which describes the i.i.d. offspring distribution
assigned to each time—space location. Finally, we define (2, ¥) by

(1.3) Q=Qyx x Qg x Qq, F=FxQFk®F,,

and P9, P € P (2, F) by

(1.4) Pl=Px®PL®34,, P=/Q(dq)Pq.

We denote by N , the population at time—space location (¢, x) € N x I', which is

defined inductively by Ng » = dp » for t =0, and

Ni—1,y

(1.5) Nt,x = Z Z ‘SX(Xtv—l,y)Ktv—l,y

yel' v=1
for ¢t > 1. The total population at time ¢ is then given by

Ni—1,y

(1.6) Ne=) Nex=). > K/,

xel yel' v=1
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We remark that the total population is exactly the classical Galton—Watson process
if ¢; » = q, where g € #(N) is nonrandom. On the other hand, if I" is a singleton,
then NV, is the population of the Smith—Wilkinson model [18].

For p > 0, we write

(1.7) m® = 0[mP)]  withm{P) = 3" kPq, (k)
keN
(1.8) m=m.
Note that for p > 1,
mP < Q[m/ 1 <m®?
by Holder’s inequality. We set
(1.9) Nix=N;,/m'" and N,=N,/m".

N, = N,/m' is a martingale (Lemma 1.5 below), and therefore the following limit
always exists:

(1.10) Noo = lim Ny, P-as.

—00
1.2. Results. Before we state our results, we fix our notation for simple ran-
dom walk.
e The random walk: ({S;};en, Pg) is a simple random walk on the d-dimensional
integer lattice 74 starting from x € 74 . More precisely, we let (25, Fs) be the

path space (Z4)N with the cylindrical o-field, and let Q5> S+ S;, € N be the
projection. We define p: Z¢ x Z4 ~ {0, %} by

1
. ifp—yl=1
(L11) pie.y)=12g ThR=yI=L

0,  iflx—yl#£l,

where x| = (|x1|>+- - - + |x4]|?)'/? for x € Z¢. We consider the unique probability
measure Py on (g, Fs) such that §; — S;_,t =1, 2, ... are independent and

P{{So=x}=1,  P§{Si—Si-1=y}=p©,y), foryezd.

In the sequel, Pg will be simply written by Ps. We define the return probability of
the simple random walk:

(1.12) g = Pg(S; =0 for some ¢t > 1).

As is well known, 7y = =1, and m; < 1 ford > 3.
To state our results, we assume that I' = Z¢ and that p(-,-) is given by (1.11).
Then, with the notation introduced by (1.5)—(1.10), we state:
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THEOREM 1.1. Suppose that
(1.13) m>1, m? <oo and d=>3.

Then, the following are equivalent:

(@) Qi 1 0. 1) is defined by (1.12
a) ] <E,were7rde(, ) is defined by (1.12).

(b) lim;ooN; = Noo in L?(P).
(©) 1im; 00 Y yezd Nex f(t7V2x) = Noo Jga fg1 inL2(P) forall f € Cp(RY).
Here and in what follows,

4 \d/2
(1.14) gi(x) = <—> e~dkP/an s,
2t
[ra fg1 is the abbreviation for [pa f(x)g1(x)dx, and Cp(R?) denotes the set of

bounded continuous functions on RY.

Theorem 1.1(a) controls the randomness of the environment in terms of that
of the random walk. Theorem 1.1(b) in particular implies that P(N o, > 0) > 0,
that is, the growth of the total population is of the same order as its expectation
with strictly positive probability. In contrast with this, we will see that the total
population grows strictly slower than its expectation almost surely, if either d =
1,2, or the environment is random enough (Corollary 3.3 below). It is easy to
deduce from Theorem 1.1(c) the following:

COROLLARY 1.2. Suppose that
Q[m?,1 1
<

m2 g

2)<c><>, d>3, and

m>1, m!

Then, P(N» > 0) > 0 and

tl_i)n;)P( > Newf(720) —/dfgl

xeZd R

forall e >0and f € Cp(RY).

1 _
N ze}Noo>0>=0

Corollary 1.2 tells us that, as t ' 0o, the density or the spatial distribution

N;,
Ptx = Ttx, xez!
of the population converges to the standard normal distribution, if it is properly

scaled. Other interesting objects related to the density would be

pf =maxp;, and R; = Z pl%x.

xez4
xeZ4
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p/ is the density at the most populated site, while R, is the probability that a given
pair of particles at time ¢ are at the same site. R; can be thought of as the replica
overlap, in analogy with the spin glass theory. Clearly, (,ot*)2 < R; < p/. We use
the method in this paper to show the following upper bound for R;:

PROPOSITION 1.3.  Suppose that
Qlm?,1 1

< —.
m? 4

m>1, m(2)<oo, d>3, and

Then, P(Ns > 0) > 0 and
Rr=0(T"9?)  in P(|No > 0)-probability,
that is, the laws P(Td/zj{r €|Noo>0), T >1are tight.

REMARKS. After the first version of this article was submitted, a couple of
related results are obtained.

(1) Hu and Yoshida [14] prove the following localization result, which is in con-
trast with Proposition 1.3 above: Suppose that m® < oo, Q@m;y=m)#1,
0(g:x(0)=0) =1 and P(No = 0) = 1. Then, there exists a non-random
number ¢ € (0, 1) such that

lim R; >c, P-as.
t /100

(2) Shiozawa [16] considers branching Brownian motion in random environment,
which can be thought of as a natural continuous counterpart of the discrete
model considered in this article. He proves Theorem 1.1—Proposition 1.3 for
the continuous setting.

1.3. Some basic properties of N; . Here again, we only assume that (S;, Pg)
is a Markov chain on a countable state space I and with the transition probability
p(-,-). We denote the ¢-step transition probability by

(1.15) pi(x,y) = Pg(S; =y).
Define o = {@, 2} and
(1.16) Fr=0(X;., K; . qs 55 <t—1), t>1

This definition is natural, because the configuration of the particles up to time ¢ is
determined by the above #;. Note that X Kg . gs,.. s >t are independent of ;.

LEMMA 1.4. Fort<T,

T—t—1
(1.17) PQ[NT,xm]:ZNt,yPg’[ I mt+u,su:ST_,=x]
yell u=0
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In particular,

T-1
P[N7 ] = P?[]‘[ Mus, : St =x},
=0
(1.18)

T-1
PI[N7]= PSO[H ms}
=0

PROOF. Let A € #; be arbitrary. Then,
PUNr:Al= Y > PUS(XY,  , DKi_i . i NT—1xp, = v, Al
x7—1€v>0
By the independence, each expectation in the above sum is equal to
Px[8:(Xo_y o DIPEIKY 0 IPUNT_{ 5, =, Al

= p(-xT—l’ x)mT—l,X’r,1 Pq[NT—l,xT,1 =, A]
Hence,
PUNT iA1=} PUNr—1x i Almrog p(yr-1. ).
xr—_1€l’
By proceeding inductively, the right-hand side is equal to
T-2

T-1
Z Pq[Nt,xf :A](H mu,x,,)(l_[ p(xy, xu+l))P(xT—1,x)
u=t

Xt Xt 4150 X7 —1 €T u=t

T—t—1
= Z Pq[N[’xt A]P§t|: 1_[ Miu,sS, :ST—Z‘ =.X:|.

xrel’ u=0

Hence we have (1.17). [

LEMMA 1.5. (N, Fi)i=0 is a martingale on (2, F, P). Similarly,
(P[N.], F4,1)1=0 is a martingale on (0, F4.1, Q), where ¥y ; is a o-field gen-
erated by q(-,s),s <t — 1.

PrROOF. Ift < T, then,

o~ - (1.17) _ _
P[N7|F1=)_ PINrx|F1 =" m" Y 3 N, yP{[Sr—r =x]=m"'N,.
xel xel’ yell

O
2. Proof of the results.

2.1. Lemmas. We assume that I' = Z4 and that p(-, ) is given by (1.11) from
here on.
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LEMMA 2.1.
P[N7 N7zl =m" Ps(St =x)b: 5

T-1 B
+em” Y0 m' Py [adim Se=i g = 5, 57 = 0],

t=0
2 m®
wherea:%andc:—— 1.
m m
PROOF. We follow [2], Lemma 20. N; xN; 5 = Zy,; Fy 5, where
Nt—l,y Nr—l,}7 _ _
Fy5= tv—l,y tv—l,igx(X;)—l,y)gf(X;j—l,i)'
v=1l V=1

(1) We first consider the expectation of Fy y with y # y. In this case, K | y

and K f_l’ y are independent under P(-|¥;_1). Therefore, we have

P[Fy5|Fi-11 = N—1.yNi—1 5m>p(y, x) p(F, %).

Nr—l,y
v=1

(2) We turn to the expectation of Fy y with y = y. In this case, {K;_ | y}

are independent under P (-] «7?;—1 ), where
Fio1=0(Fi-1, (@r-1.0)rezd)-
For y =y and x = X, we have
= 2
P[Fy,y|ft—1] = Nt—l,y(Nt—l,y - l)mtz_l,yp()% x)2 + Nt—l,ymg_)l,yp(yax)-

The first and second terms on the right-hand side come respectively from off-
diagonal and diagonal terms in F) .
For y =y and x # X, we have no diagonal terms in F ,. Therefore,

P[Fyy|Fi1] = Ni—1,y(Ni—1,y = Dmi_y yp(v, ) p(3, %)
We now introduce the following notation:
Nt,x,)? = Nt,th,f - Nt,xax,f-

From the considerations in (1) and (2) above, and from P[N; ] = m'p,(0, x), we
obtain

P[Nix 5= m*P[N;—1,51p(y,x)p(7, %)
v,y
YEY

+am* Y P[Ni—1,y,y1p(y. x) p(y, %)
y

+ (m(z) — m)Sx,;m’_lpt 0, x)

=Y P[Ni—1,5la(y. M) p(y. x)p(¥. %) + by (x, %),
.y
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where
a(y,5) =m*a'=7 and  b,(x, %) =cm'8; 5p (0, x).

By Lemma 2.2 below, applied to the Markov chain (S, S), we get

T—1

- . x -
PINTxzl=c ) m" T PLE[pr—i(0, Spatu=t 115u=5u 5, = 5],

=0

It is now easy to see that the above identity is the same as what we want. [

LEMMA 2.2. Let S = (8;);en be a Markov chain with the state space I". Sup-
pose that ¢;, a;, by (t € N) are functions on T" such that

2.1 @i (x) = Pglai(S)@—1(SD] + by (x),x €T, 1 > 1,

where Pg denotes the law of S, conditioned to start from x € T'. Then,

T T—1 '
(2.2) ¢r(x)="Pg [fﬂo(ST) [Tar—ut1S)+ Y br—(SH[] aT—u+1(Su)i|

u=1 t=0 u=1
for x el and T > 1. [(2.1) and (2.2) are discrete analogues of the parabolic
Schrodinger equation and its Feynman—Kac representation.]

PROOF. Straightforward by induction on 7. [

LEMMA 2.3. For functions f, fon 74,
> P[NrxNrzlf(0) f(®)

x,xez4

=m" Ps[f(S1) f(S1)]

T—-1
' 3.3 ~ ~
+ cmT Z thS”g[azuzl S —Su=5S: Su}f(_ST)f(St ~ 5 - ST)],
t=0
m®

and c = —— — 1.
m

2
where o = —Q[mé"‘]

PROOF. For 0 <t <T, we compute

~ t _~ ~ ~ o
L= Y Poglatent BESdis = §sp = 0] £ (0 f ()
t

x,xezd
= Y PMYaia MSmR=T g B =%, Sp = —x] f (0 F @)

P aXimt 1SeSi=S=8 15, — 5, — S =%, S = —x] f(0) &)

I
illng

- P ’N[aztuﬂ 1{St_Su:St_Su}f(_ST)fN(St _ gt _ ST)]~
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By Lemma 2.1, the left-hand side of the desired identity equals

T—1
m” Ps[f(Sr) F(SD)1+em™ Y m'I;. .
t=0

LEMMA 2.4. Suppose that 1 <o < 1/mg. Then, for f, fe Cp(RY),
lim POO[arXum0 1Se=Sib £ (=125, F1=1128))]

11— 00

o[ ge)([ )

PROOF. This lemma is shown in the proof of [6], Theorem 4.2. [

2.2. Proof of Theorem 1.1. (a) <= (b): It follows from Lemma 2.3 that
T-1
2 -T -T 0.0 L HSu=S,
PIN;I=m™" +em™" ) m' Py g[a>u= (Su=5u}]
t=0

and hence that

sugP[N 1= hm P[N ] ch’g[ uet HSu= “}] =cPs[a Tal {52”_0}]
t> ’
The right-hand side is finite if and only if o« < 1/m, since Y °°
geometrically distributed with the success probability ;.

(a) = (c): By a standard approximation argument, we may assume that f €
Cpu (R?), where Ch.u (R%) denotes the set of bounded, uniformly continuous func-
tions. Since (a) implies (b), it is enough to prove that, as T oo,

1{Sou = 0} is

u=1

Xr & S N f(T72%) — 0 inLA(P)

xezd

for f € Cp,(RY) such that [pa fg1 = 0. By Lemma 2.3,
P[X?1= Y PIN7 Nrzlfrx)frX)

x,Xe7d
T-—1
=m T Ps[fr(Sp)*1+em™ " > m'y, 1,
t=0
where fr(x) = f(T~'2x) and
yir = PO X WS=Si=S=Su) 7. 57) fr (8, = 5, — S1).

Since

lim m™" > m'yr=0,

T—o0 1<t<T—-InT
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it is enough to show that
(%) lim sup{y;,7; 7T —InT <t <T}=0.
T—o00
ForT —InT <t < T, both
T2y —17128,| and |T7V2(S, = 5, = Sp) +171/28)]

are bounded by a constant multiple of 7~!/?In T'. Since f is uniformly continuous
and o < 1/m4, we have

t _ _9 _~ ~
Vi = p;):g[azuzl 1{S;—Su=S; S”}fz(—Sz)ft(—St)] +er

t—1

= PS”g[O[ u:Ol{SM:S”}ft(_St)f}(_gt)] Ny

with some ¢ — 0. Here, on the second line, we have used that (Su);:() law (S; —

Si—u)!,_o- This, together with Lemma 2.4, implies (x).
(c) = (b): Obvious.

2.3. Proof of Proposition 1.3. 1t follows from the assumptions and Theo-
rem 1.1 that P(Ns > 0) > 0. Note that

N2 Y Niy==5 ) Np,
T xezd NT xeZd

and that lim7 oo N7 = Noo > 0, P(-|Ns > 0)-a.s. Therefore, it is enough to
prove that

3 P(N7  [Now > 0) = O(T~4?).
xezZ4
In fact, we will show that
—2 _
(1) Y P(N7.) =0T .
xezd

Since @ < 1/m4, we have

0< indfCD <sup® < o0 for ®(x) = Pg [az;gl 1{s2u:0}]'
7 7d

Then, it follows from Lemma 2.5 below that

) sup PY[azu=1 52=0: 50 — x]= 0(~?), 1 Joc.

xeZd
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By Lemma 2.1,
—2
P(N7 )
T—1 t - B
=m TIPSt =x)+em™T Z thg’g [a2u=1 USu=Su}. g, = §, Sy = 0]
t=0 ’

T—1 .
=m~T Ps(Sy =x) +cm™T Y m' POQ[aXu-i =S o5, = 5, 57 = —x].

t=0
Hence, (1) can be seen via (2) as follows:
—2
> P(N7.)
xezd

T—-1
t _9 ~
— m—T +m—T Z mtpg,g[a u=1 l{Su—Su} : St — S[]
t=0

T—1
=m T +m™T Z thg[ozZ;:l HSu=0}. ¢, — 0] = o(T~%).
t=0

LEMMA 2.5. Suppose that b:7Z¢ — R (d > 3) is bounded and that

o
0< indfCD <sup® < o0 with ®(x) = Pg |:exp<z b(S,)):|.
Z z? =0

Then,as T /' o0,

T-1
sup Pg [eXp<Z b(&)) 181 = y] =0T ).

x,yeZd =0

PROOF. Here is a recipe to get a Nash-type estimate for a Schrodinger semi-
group, which is similar to [10], Lemma 3.1.3, [19], Lemma 3.3. We define

~ 1 ~ _
P.y) = ——"Vp, @), i) =e "W ).
O (x)
Then, it is easy to see that p is a transition probability of an ni-symmetric Markov
chain on Z?. Moreover, we have by the assumption that:

(1) 0< indf m <supm < 0o (“strong reversibility” [20], page 27),
Z 7d

(d-1)/d
2) (Z ﬁ(x)) <k Z mx)p(x,y), for any finite A C 74,
xXeA X€EA,y¢A

where the constant « is independent of A (“d-isoperimetric inequality” [20],
page 40),



CLT FOR BRANCHING RW IN RANDOM ENVIRONMENT 1631

3) Z m(y) > er¢ for any r € N and x e 74,
yeZd

lx—yl<r

where the constant ¢ > 0 is independent of r and x.

Then, by [20], page 148, Corollary 14.5, these imply that
@ sup prx, =0T asT oo,

X, yeZd

where pr is the T-step transition function obtained from p.

Since
T—1 1
P?|exp b(S)|:Sr=y|=2X)pr(x,y)—,
i [ (; ’ @ (y)
the lemma follows from (4). [

3. Relation to directed polymers in random environment. We now relate
the BRWRE with directed polymers in random environment.

3.1. Directed polymers in random environment (DPRE).

o The random environment: 1 = {n; x :(x,t) € Z¢ x N} is a sequence of 1.v.’s
which are real valued, nonconstant, and i.i.d. r.v.’s defined on a probability space
(82, F, Q) such that

3.1 Olexp(Bns x)] < o0 for all B € R.
We define
(3.2) A(B) =In Qlexp(Bn:,x)]-

e The polymer measure: For any T € N*, define the probability measure p7 on
the path space (25, F5) by

1
(3.3) dur = Zr exp(8Hr)dPs,
where 8 > 0 is a parameter (the inverse temperature),
T—1
(3.4) Hr = n.s and Zr = Ps[exp(BHr)]
t=0

are the Hamiltonian and the normalizing constant (the partition function).
Define the normalized partition function by

(3.5) Zr =Zrexp(=TA(B)), T > 1.

This is a positive mean-one (¥, 7)-martingale on (£2,, ¥, Q) with ¥, =
{2, 2,} and

For=0nC,s);s<T—1), T>1.
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By the martingale convergence theorem, the limit
(3.6) Zoo = Tlim Zr

exists Q-a.s. Moreover, there are only two possibilities for the positivity of the
limit:

(3.7) 0{Z >0} =1,
or
(3.8) 0{Zy=0}=1.

Indeed, the event {Z,, = 0} is in the tail o -field:
(olnC, s);s>1l.
t>1

By Kolmogorov’s zero-one law, every event in the tail o-field has probability O
or 1.

The above contrasting situations (3.7) and (3.8) will be called the weak disorder
phase and the strong disorder phase, respectively.

3.2. BRWRE and its associated DPRE. Suppose that we are given an environ-
ment 7; , for the directed polymer. We can then associate an environment, that is,
an i.i.d. random offspring distribution g, , for the BRWRE so that

(3.9) Py =my o =" kqy (k)
keN

holds. Among many ways to do so, let us take:

k

m
(3.10) Grx (k) = 7 =

Then, by Lemma 1.4,
(3.11) PI[N; x1= Pslexp(BHr): St =x] and PI[Nrl=Zr.
These imply

PNt 1= Ps[exp(BHr — A(B)T): St =x], PIN7]=Z7
and

PI[N;x] _ PI[N,,]
Pi[Nr] ~ PI[N7]’

nr(St =x) =

Since ur and Z7 are invariant under constant addition to N:.x, W€ may assume
that

m = Q[m; ] = Qlexp(Bn: x)] > 1
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without loss of generality. Moreover, by (3.10) and our integrability assumption
(3'1) on nt,X7

Y Kqxk) =my . +m; € LYQ).
keN

Therefore, Theorem 1.1 implies the following central limit theorem for DPRE,
which is a weaker version of the results obtained in [4, 12, 17].

COROLLARY 3.1. Ifd >3 and »(28) — 21(B) < In(1/74), then
(3.12) tim L F(T72sp1= [ e
T— o0 R4
in Q-probability for any f € Cp(R?).

3.3. Phase transitions of BRWRE and DPRE. As we mentioned before, BR-
WRE undergoes the following phase transition. When the randomness of the off-
spring distribution is well moderated by that of the random walk (as in Corol-
lary 1.2, Proposition 1.3), the growth of the total population is of the same order as
its expectation with strictly positive probability. When, on the other hand, the ran-
domness of the environment dominates, the total population grows strictly slower
than its expectation almost surely. We now relate this phase transition with that for
DPRE.

PROPOSITION 3.2. Suppose that an environment n;  for the DPRE and an
offspring distribution q; x for the BRWRE are related so that (3.9) holds. Then:

(@) P[Nool < O[Zso]. In particular, 0Zs =0)=1 (strong disorder for
DPRE) implies P(N oo = 0) = 1 (the total population grows strictly slower than
its expectation almost surely).

(b) The converse to (a) is not true.

PROOF. (a) We have:

PINwl= [ 0Wq)PIINw] = [ Q(dg)lim PN, = Q[Zxc),

where the inequality follows from Fatou’s lemma.

(b) As is mentioned in [3], Theorem 4, It follows from a comparison with the
Galton—Watson model that P(Ns, = 0) = 1 and hence P (N, = 0) = 1 as soon as
m < 1. We have always m > 1 when 7,  is a negative r.v. Meanwhile, the polymer
is in weak disorder phase for d > 3 and 8 > 0 small enough. [J

By Proposition 3.2, we can translate the results from DPRE [7, 9] to the follow-
ing observation for BRWRE:
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COROLLARY 3.3. Suppose one of the following conditions:

(al) d=1, Q(m; x =m) # 1.
(@2) d=2,0(m;x=m) # 1.
(a3) d >3, Q[*= In =] > In(2d).

m

Then, P(N o = 0) = 1. Moreover, in cases (al) and (a3), there exists a nonrandom
number ¢ > 0 such that

< —c, a.s.

(3.13) lim

Corollary 3.3 says that the total population grows strictly slower than its expec-
tation almost surely, in low dimensions or in “random enough” environment. The
result is in contrast with the nonrandom environment case, where P(No, = 0) = 1
only for offspring distributions with very heavy tail, more precisely, if and only
if P[K,‘jx In K,‘jx] = oo ([1], page 24, Theorem 1). Here, we can have P(Ny, =
0) =1 even when sz, . 1s bounded. Also, (3.13) is in sharp contrast with the non-
random environment case, where it is well known—see, for example, [1], page 30,
Theorem 3—that

InN,
{No > 0} a'zs'{li}n nt ! :O} whenever m > 1.

Corollary 3.3 is also stated in [3], Theorem 4, however without (3.13).

We have discussed the relation between BRWRE and DPRE. We remark that
the branching Brownian motions in random environment recently considered by
Shiozawa [16] and Brownian directed polymers [11] are in similar relation. There-
fore, by the results in [11], Proposition 3.2 and Corollary 3.3 [except (3.13) in case
(al)] can be extended to branching Brownian motions in random environment.

4. Survival and extinction. We now close this article with a brief discus-
sion on survival/extinction for this model, that is, edéf P(Noo =0) <1lor=1.By
standard computations of generating function, we see that eV < e < SV where
eOW and e3W stands respectively for extinction probabilities for a Galton—Watson
model with offspring distribution Q[g; . (-)] and a Smith—Wilkinson model [1, 18].
On the other hand, by using oriented percolation, one can construct examples for
eV <e=1andfore <eSW =1 [13].

Acknowledgments. The author thanks Francis Comets for drawing his atten-
tion to [6]. He also thanks Ryoki Fukushima, Yuichi Shiozawa and Shinzo Watan-
abe for discussions.



(1]
(2]

(3]

(4]
(5]
(6]
(71
8]
(9]
(10]
(11]
[12]

(13]
(14]

(15]
[16]
(7]
(18]

(19]

(20]

CLT FOR BRANCHING RW IN RANDOM ENVIRONMENT 1635

REFERENCES

ATHREYA, K. and NEY, P. (1972). Branching Processes. Springer, New York. MR0373040

BIRKNER, M. (2003). Particle systems with locally dependent branching: Long-time behav-
iour, genealogy and critical parameters. Ph.D. thesis, Johann Wolfgang Goethe-Univ.,
Frankfurt.

BIRKNER, M., GEIGER, J. and KERSTING, G. (2005). Branching processes in random
environment—a view on critical and subcritical cases. In Interacting Stochastic Systems
269-291. Springer, Berlin. MR2118578

BOLTHAUSEN, E. (1989). A note on diffusion of directed polymers in a random environment.
Comm. Math. Phys. 123 529-534. MR1006293

CARMONA, R. and MOLCHANOV, S. A. (1994). Parabolic Anderson Problem and Intermit-
tency. Mem. Amer. Math. Soc. 108. MR1185878

COMETS, F. (2007). Weak disorder for low dimensional polymers: The model of stable laws.
Markov. Process. Related Fields 13 681-696.

COMETS, F., SHIGA, T. and YOSHIDA, N. (2003). Directed polymers in random environment:
Path localization and strong disorder. Bernoulli 9 705-723. MR1996276

COMETS, F., SHIGA, T. and YOSHIDA, N. (2004). Probabilistic analysis of directed polymers
in random environment: A review. Adv. Studies Pure Math. 39 115-142. MR2073332

COMETS, F. and VARGAS, V. (2006). Majorizing multiplicative cascades for directed polymers
in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2 267-277. MR2249671

COMETS, F. and YOSHIDA, N. (2004). Some new results on Brownian directed polymers in
random environment. RIMS Kokyuroku 1386 50—66.

COMETS, F. and YOSHIDA, N. (2005). Brownian directed polymers in random environment.
Comm. Math. Phys. 54 257-287. MR2117626

COMETS, F. and YOSHIDA, N. (2006). Directed polymers in random environment are diffusive
at weak disorder. Ann. Probab. 34 1746—1770. MR2271480

FUKUSHIMA, R. (2007). Private communications.

Hu, Y. and YOSHIDA, N. (2007). Localization for branching random walks in random envi-
ronment. Preprint. arXiv:0712.0649v1[math.PR].

REVESZ, P. (1994). Random Walks of Infinitely Many Particles. World Scientific, Singapore.
MR1645302

SHIOZAWA, Y. (2007). Central limit theorem for branching Brownian motions in random en-
vironment. Preprint.

SONG, R. and ZHOU, X. Y. (1996). A remark on diffusion on directed polymers in random
environment. J. Statist. Phys. 85 277-289. MR1413246

SMITH, W. L. and WILKINSON, W. E. (1969). On branching processes in random environ-
ments. Ann. Math. Statist. 40 814-827. MR0246380

VARGAS, V. (2006). A local limit theorem for directed polymers in random media: The
continuous and the discrete case. Ann. Inst. H. Poincaré Probab. Statist. 42 521-534.
MR2259972

WOESS, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press.
MR1743100

DI1VISION OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE

KYOTO UNIVERSITY

KyoTo 606-8502

JAPAN

E-MAIL: nobuo@math.kyoto-u.ac.jp

URL: http://www.math.kyoto-u.ac.jp/~nobuo/


http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=2118578
http://www.ams.org/mathscinet-getitem?mr=1006293
http://www.ams.org/mathscinet-getitem?mr=1185878
http://www.ams.org/mathscinet-getitem?mr=1996276
http://www.ams.org/mathscinet-getitem?mr=2073332
http://www.ams.org/mathscinet-getitem?mr=2249671
http://www.ams.org/mathscinet-getitem?mr=2117626
http://www.ams.org/mathscinet-getitem?mr=2271480
http://www.arxiv.org/math.PR/0712.0649v1
http://www.ams.org/mathscinet-getitem?mr=1645302
http://www.ams.org/mathscinet-getitem?mr=1413246
http://www.ams.org/mathscinet-getitem?mr=0246380
http://www.ams.org/mathscinet-getitem?mr=2259972
http://www.ams.org/mathscinet-getitem?mr=1743100
mailto:nobuo@math.kyoto-u.ac.jp
http://www.math.kyoto-u.ac.jp/~nobuo/

	Introduction
	Branching random walks in random environment (BRWRE)
	Results
	Some basic properties of Nt,x

	Proof of the results
	Lemmas
	Proof of Theorem 1.1
	Proof of Proposition 1.3

	Relation to directed polymers in random environment
	Directed polymers in random environment (DPRE)
	BRWRE and its associated DPRE
	Phase transitions of BRWRE and DPRE

	Survival and extinction
	Acknowledgments
	References
	Author's Addresses

