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0.1 Elementaly distributions

Example 0.1.1 (Normal distribution) Let m € R and v > 0.
» Arv. X :Q — Ris called a (m,v)-normal r.v. if

(x—=m)

\/%/Bexp ( T2> dx for B € B(R). (0.1)

The law of an (m,v)-normal r.v. is denoted by N(m,v). It is not difficult to see that

P(X € B) =

EX =m, var X =v.

m— /v m m+ /v

In particular, N(0,1) is called the standard normal distribution. N(m,v) and N(0,1) is

related as follows.

Y~ N0,1) < X m+ oY~ N(m,v). (0.2)

Remark: By setting m =0 and B =R in (0.1),

00 2
/ exp <_§_v) dx = V2mv.

Then, formally plugging v = i/2 in the above identity, we obtain Fresnel integral:

/Zexp (i2?) do = Vi = \/g(l + i),

/ " cos(2?)dz = / " sin(2?)de =

—00 —00

ie.,

Do

Exercise Justify the above manupulation: v =1i/2.



Example 0.1.2 (Poisson distribution) Let ¢ > 0.
» Arv. N:Q — Nis called a c-Poisson r.v. if

e ‘"

—— BCN. (0.3)

P(N € B) = .(B) = Y

neB

A probability measure 7. defined above is called c-Poisson distribution. It is not hard to
see that
EN =var N =c. (0.4)

Let N7 and Ns be independent r.v.’s. ¢1,¢co > 0 and ¢ = ¢; 4+ ¢o. We prove that
Nj %ﬂ'cj (j: 1,2) — N1+N2%7TC. <O5>

We stat by noting that
¢y do
2 o 2 ANk
which can be seen as follows. For t € R,

rcr tc tcy tea kclf ng n C]f Cé

r>0 k>0 T >0 ’ n>0 k,£>0
k+4=n

By comparing the coefficient of t", we get 1).

We now conclude (0.5) as follows:

P(Ny+Np=7) = Y P(Ni=kNy=10)= > P(N;=k)P(Ny=1)

k,£>0 k,£>0
k+l=r k+4=r
—c1 .k ,—c2 X 4 r
S i L B A%y . \("oh)/
ko k! 01 rl N
k,£>0 k>0
k+l=r k+4=r



. def ¢—ceon
Here are histograms of m.(n) = ¢~ (n € N).
—1-- 0.607 - 0.368 - 0.271 ——i 0.224
c=0.5 c=1 c=2 c=3
012 3 4 012345 0123456738 012345678910
~~~~~~~ 0.106
— ] c=14
3 14 27

When c is large, the histogram looks like that of N(c, ¢). This is a manifestation of the central

limit theorem:
NC — C W
— N(0,1), asc¢— 0.

B



Example 0.1.3 (Binomial distribution) Let p € [0,1] and n = 1,2,... A probability
measure /i, , on {0, 1,..,n} defined as follows is called the (n,p)-binomial distribution, and
will henceforth be denoted by Bin(n, p):

n _
pnp (k) = (k>pk(1—p)" Fok=0,1,..,n. (0.6)
Note in particular that
| if k=1,
MM“_{1—pﬁk=Q (0.7)
Let {X;}7_, be iid. with X; =~ Bin(1,p) Then,

S, ¥ X, + ...+ X, ~ Bin(n, p). (0.8)

To prove this, note first that for 7 =1, ..., n,

if k=1,
1) mxfﬁﬂ:mMHZ{?_pﬁkza

Therefore, we have for any k£ = 0,1, ...,n that

P(Sn:k) == Z P(Xlzkla 7Xn:kn)
k1,....kn=0,1
ki+...tkn=k
n _
= Y PXi=h) P =k)= () -p)
k1,....kn=0,1 e
k1+...+kn=k 1:)pk(l_p)nik

Question Let Z be a r.v. defined on a probability space (€2, F, P) such that Z ~ Bin(n, p).
Is it always true that there exist iid X; ~ Bin(1,p) (j = 1,...,n) defined on (2, F, P)
such that 7 = X; + ... + X,,?



Here are histograms of k +— p,,(k) for (n,p) = (20,1/2) and (n,p) = (24,1/8).

e 0.176 e 0.239
(nﬁp)::<20’1/2) (n,p)::(24,1/8)

-

34 5 6 7 8 9 101112 13 14 15 16 17 0123456 789

The histogram on the left looks like that of the normal distribution, which can be explained
by the de Moivre-Laplace theorem: Suppose that n, k — oo and % — 0. Then,

1 k — np)?
fnp () ~ Nz exp <—%) , where v =p(1—p). (0.9)

On the other hand, the histogram on the right looks like that of Poisson distribution, which
can be explained by law of small numbers: Suppose that n — oo, p — 0, np — ¢ > 0. Then,

—cck

n _ e
<k>pk(1—p)n b ke, (0.10)



Example 0.1.4 (Gamma distributions) Let a,c > 0.

» We define (¢, a)-gamma distribution ., € P((0,00)) by

Ca

[(a)

Yea(B) = / 2" te “dx, for B € B((0,00)). (0.11)
B

Here, we have introdued the Gamma function as usual:
[(a) = / 2% e *dz, a€ C, Re(a) > 0. (0.12)
0

Ve 18 also denoted by y(c,a). It is not difficult to see that

EX =aje, var X =a/c* (0.13)



0.2 The Law of Large Numbers

Theorem 0.2.1 (The Law of Large Numbers) Let S, = X;+...+X,,, where {X,,}>1
are i.i.d. with E|X,| < co. Then,
Sn n—oo
— — EX;, P-as. (0.14)
n




Example 0.2.2 (Uniqueness of the Laplace transform) Let uy, ps € P([0,00)). Then
pa = pig if
/ e Mdp (z) = / e duy(x) for all A > 0. (0.15)
[0,00) [0,00)

Proof: Let f € C,([0,00) — [0,00)) be arbitrary. We first prove the following approximation:
1) li/m fu(z) = f(z) for all x > 0,

where

=

8

~—

Il

ml

3

8
(]
)
N
ES

Sy
7~ N
| &
N———

S

m

Z

k!
k=0

To prove 1), we may assume z > 0, since f,(0) = f(0). For z > 0, we let
S, =X+ ..+ X,

where X, are iid, =~ m, (cf. (0.3)). Then,

0.5
2) S, (%) Tna-

Moreover, by the law of large numbers (Theorem 0.2.1),

(

Sn/n Y EX, o T, a.s.

and hence by the bounded convergence theorem,

2

fa(z) = Bf(Sa/n)] = f(2).

~

We now use 1) to prove that p; = po. It is enough to prove that
3) fdu = / fdps.
[0,00) [0,00)
Indeed, by differentiating (0.15) & times at in A and then setting A = n € N, we have that

/ e dpy (r) = / a*e ™ duy(x) for all k,n € N.
[0,00)

[0,00)

By multiplying both hands-sides of the above identity by ”k—]f f (%), and adding over k£ € N, we

arrive at:

[0,00) [0,00)

Since sup,g | fn(2)| < sup,sq | f(z)], we obtain 3) from 2) and 4) via the bounded convergence
theorem. \("a™)/

10



0.3 Characteristic functions

For v € P(R?), we define its Fourier transform by

5(9) &t / exp(i(0 - 2))dv(z), 0 € R

-
Proposition 0.3.1 (Characteristic function) For v € P(R?) and a r.v. X : Q — R%,

the following are equivalent:
a) Eexp(i(0- X)) =1(0) for all 0 € R%;
b) X =v.

» The expectation on the left-hand side of a) above is called the characteristic function
(ch.f. for short ) of X.
N

11




Example 0.3.2 (ch.f. of a Poisson r.v.) Let m.(n) = =& n €N, ¢ >0, cf. (0.3) and N

n!

be ar.v. = m,, . We then see for any z € C that

E[N] = e_cz Z”Z—T =exp((z — 1)c).

n>0

This shows (by setting z = exp(if)) in particular that

7.(0) = Eexp(iN) = exp((e'? — 1)c). (0.16)

12



Example 0.3.3 (x) (ch.f. of a Gamma r.v.) For z € C\{0}, we define Arg 2z € (—m, 7]
(argument of z) by
z = |z|exp(iArg 2),

and Logz € C by
Log z = log|z| + iArg 2.

By definition, Arg z is the angle, signed counter-clockwise, from the positive real axis to the

vecor representing z.

Argz

Finally we set:
z® =exp (sLog z), for z € C\{0} and s € C.

Let X be a real r.v. such that X ~ 7.,. We will show that

1) Eexp(—zX) = (1 + E>7a for any z € C with Rez > —c.
c

Then, it follows from 1) that for § € R,

Teall) = (1—@>_a:‘1_@

exp (—aiArg (1 — ﬁ))
c c c

92\ ~/? 0
= (1 + —2) exp <iaArctan —) . (0.17)
c

C

To prove 1), note first that both hand-sides are holomorphic in z for Re z > —c¢. Therefore, it

is enough to prove it for all z =t € (—¢, 00). Then,

Eexp(—tX) (LD Fc(a) / g e ey
0

a=y/(t+c) C LA\ [ 0, t\ ¢
g (re) v (1
—_—

=I'(a)

This proves 1).

13



Example 0.3.4 (%) (Stieltjes’ counterexample to the moment problem) We consider

the following question. Suppose that a function f € C([0,00)) satisfies

/ 2" f(x)|dr < oo, and/ 2" f(x)dr =0 for all n € N.
0 0

Then f =07

Stieltjes gave a counterexample f(x) o exp(—z'/*) sin x'/* to this question (1894). We can
use (0.17) to verify that the above function is indeed a counterexample. In fact, we see from
(0.17) that 97.4,74(1) € R for all n € N. Thus, taking the imaginary part, we have

(o9} 1 o0
0= / 4" 3e " sin wdr = Z/ 2" exp(—z'/*) sin 2/ 4dz.
0 0

14



Example 0.3.5 (x) (Euler’s complementary formula for the Gamma function) We
will use (0.17) to prove the following identity due to Euler:
1 sin(ma)

TO+al(l—a)  ma a € (0,1). (0.18)

Let f,(z) = Lx ~le™®1,-¢ (the density of 7(1,a)). We have by the Plancherel formula that:

1) / Jrga(x) fizal :—/f1+a f1 o(—0)do

Since
1

T(1+a)l(1-a)

—2x
€ 11:>07

f1+a(x)f1—a(x) =

we see that

o 1
I At e ey

On the other hand,

(0.17)

ﬁ;(@)ﬁ_\a(—é) exp(i(1 + a)Arctan § — i(1 — a)Arctan 0)

1+ 62
= (Arctan 6) exp(2iaArctan 6).

Thus,

o o _ w/2
[ @ = [ expeian
R

—m/2
exp(iar) — exp(—ira)  sin(ma)

2ia a

3)

By 1)-3), we obtain (0.18).

15



0.4 'Weak Convergence

-
Proposition 0.4.1 (Weak convergence of r.v.’s) Forn = 0,1,..., let X,, be R%-valued

r.v.’s and that X,, ~ u, € P(RY). Then, the following are equivalent:

a) Eexp(if - X,,) — Fexp(if - X,) for all § € R,

b) Hn l) Ho-

» The sequence (X, )n>0 is said to converge weakly (or converge in law ) to X

if one (therefore all) of the above conditions is satisfied. We will henceforth denote this
convergence by

Xo - Xy or X, — po

N j

16



Example 0.4.2 Let (N.).~0 be r.v.’s such that m.(k) o P(N,=k) =e " /k! for all k € N

and ¢ > 0. We will prove the following two facts, of which the first is probabilistic, the second

purely analytic:

Nc - w e .
a) ¢ v, N(0,1), asc— oo (Central limit theorem).
Ve

b) n! " V2mn (n/e)" (Stirling’s formula).
Proof: a) Note that

2
exp(if) =140 — % +O(10]*) as 6§ — 0,

and hence that
.0 i 62 63
1) exp(1%>:1+———+0(m> as ¢ — oo for any 6 € R.

Since 7.(0) (019 exp(c(exp(if) — 1)), we have

[ Fexp (iGNC\/; C) - 7 (%) exp (—iy/ch)

2)

I

=
o)
~/~
o
/T~
=
i)
T
° Sl=
~—
L

|
Sl =
~—
S~

(-3)

Recall that exp (—%) is the Fourier transform of N(0,1). We see the desired weak convergence

=
©)
]
k)
VY
o
/|\
l\')l%
+
VR
Q
w‘%
~~ w
Do
~
~~
~~
o
li
8
0]
)
ko)

\

from 2) and Proposition 0.4.1.
b) We have that

To(0) = exp(ik)r.(k), 0€R

Multiplying exp(—in#)/(27) to the both hands sides of the above identity and integrating them

over § € [—m, ], we obtain

3 mn) = — / " .(0) exp(—ind)do.

e % B
Moreover, since 1 — cosf > 27%2, |0 < 7, we have
4) 7 (%)‘ = exp (—c (1 — oS %)) < exp (—%) , 0] < my/e

Finally, note that

@ <E)n — \/ﬁﬂ-n(n) ) \/—ﬁ i 7n(0) exp(—inf)do

n! \e 2

—T

5)

L™ (Y explei/o)as
= — o | —= ) exp(—iv/n
2m —m/n \/ﬁ P
By 2), 4) and the dominated convergence theorem, we conclude that
1 [ 2 1
the RHS 5) "=% — (-%) a0 = —.
¢ ) 27T /—oo P 2 V 2
This proves b). \("a”)/

17



0.5 Martingales

We suppose that (2, F, P) is a probability space, and that G is a sub o-algebra of F.

Proposition 0.5.1 (Conditional expectation) Let X € L'(P).
a) There exists a unique Y € L'(Q, G, Plg) such that
E[X : A]=FE[Y : A] forall A€g. (0.19)

The r.v. Y is called the conditional expectation of X given G, and is denoted by
E[X|G].

b) For X, X, € L'(P) (n € N),

ElaX, + 0X5|G]) = aE[X1|G] + BE[X:|G], a.s. fora,f€R, (0.20)
X; <Xy, as. = E[Xi|G] < E[X1|G], a.s., (0.21)
BIX|0]| < BIX|G], as. (0.22)
X is G-measurable < FE[X|G] =X, a.s. (0.23)
E[X:A=EXP(A),VAeG < E[X|G]=FEX, as. (0.24)
X is independent of G — FE[X|G] = EX, a.s. (0.25)
L X, =% X in L'(P) < E[X,-X||g]"=30 in L'(P). (0.26)j

18



We assume that
e (2, F, P) is a probability space and T C R;
o (F)ier is a filtration;
e X = (X})ier is a sequence of real r.v.’s defined on (2, F, P).
Definition 0.5.2 X = (X, F;)er is called a martingale if the following hold true.
e (adapted) X; is F;-measurable for all ¢t € T;
e (integrable) X, € L'(P) for all ¢ € T;
e (martingale property)

E[Xi|Fs] = X as. if s,t € Tand s <. (0.27)

If the equality in (0.27) is replaced by > (resp. <), X is called a submartingale (resp.

supermartingale ).

19



Example 0.5.3 Let F, = o (F;,t € T), Q be a signed measure on (92, F), and P, = P|z,

Q: = Q|#,. Suppose that Q; < P, for all t € T. Then, X; aof %, t € T is a martingale.

Proof: X; is Fi-measurable and X; € L'(P). Let s,t € T, s < t and A € F,. Then, since
A€ R,
E[X;: Al =Qi(A) = Q(A) = Qs(A) = B[ X, : Al

Thus, E[X;|Fs] = X, a.s. \("a")/
Now, a naive qustion arises.

Question 1 Is an arbitrary martingale X, expressed as X; = d@Q);/dP; by a sined measure )

as in Example 0.5.37

But the answer is clearly negative. Indeed, if X; = d@;/dP, for a sined measure (), then
sup E|X;| = sup |Q:] < |Q)|, (0.28)
>0 >0

where |@;| and |@Q| above are total variations. Therefore, the martingale X; should be at least

L'-bounded. We now arrive at a less obvious question:

Question 2 Is an arbitrary L'-bounded martingale X, expressed as X, = dQ; /dP; by a sined

measure () as in Example 0.5.37

20



I am grateful to Francis Comets for bringing the following lemma to my interest.

-
Lemma 0.5.4 Suppose that the set T C R s unbounded from above and that X =

(X, Fo)ier is a submartingale such that sup,er E[X,'] < oc.
a) There exists a martingale Y = (Y, Fy)ier such that X, <Y, for allt € T.

b) (Krickeberg decomposition) There exists a nonnegative supermartingale 7 =
(Zy, Fi)ter such that Xy =Y, — Z; for allt € T. In particular, Z is a martingale if
X is a martingale.

N J
Proof: a) We start by observing that

1) tbu,weT, t<u<v = E[XF|F] <FEX]|F] as.
Indeed, (X", F)ser is a submartingale. Thus,
X+ < E[XI|F)], as.

We obtain 1) by taking the conditional expextations of the both hands sides of the above
identity.

By 1), the limit Y, % lim,_,.c E[X;| 7] € [0, 00] exists and X;" < Y, for all ¢ € T. We verify
that

2) Y = (Y, Fi)ier is a martingale.
First, Y; € LY(P) for all t € T, since by 1) and the monotone convergence theorem,
EY, = lim E[E[X}|F]] = lim E[X]] < cc.
uU—00 U—00

Next, if s, € T and s < t, then, by the monotone convergence theorem for conditional

expectations,
E[Y}|F| = lim BIEX[|R]|F] = lim EX[|F] =Y as.
U—00 U—00

b) Z; def Y, — X;, t € T is a nonnegative supermartingale. In particular, Z is a martingale if

X is a martingale. \("a™)/
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Let X = (X;)ier be a process. We write F¥ = o(X,; s € TN[0,¢]) t € T, and FX =
o(FX ; t € T). For a signed measure Q on (2, FX), let |Q| be its variation, Q* = (|Q| £Q)/2

(Jordan decomposition) and @Q; = Q|zx.

Lemma 0.5.5 Let Y = (Y;, FX)ier be a nonnegative, mean-one martingale. Then, there
exists a unique probability measure PY on (Q, FX) such that

PY(A)=E[Y;: Al for allt € T and A € FX.
¢

Proof: For each t € T, let P,(A) = E[Y; : A] for A € FX. Then, the family of measures
(ff(,ﬁt), t € T are consistent in the sense that §t|fsx = p, if s,t € T, s < t. Thus, by
Kolmogorov’s extension theorem, there exists a unique probability measure PY on (Q, FX)
such that PY|zx = P, for all ¢ € T. \("a")/

22



Proposition 0.5.6 Suppose that the set T is ubbounded from above, and that X =
(Xt, F)ier is a martingale. Then, the following conditions are equivalent.

a) X is a difference of two nonnegative (F;¥)-martingales.

bl) There exists a signed measure Q on (0, FX) such that for allt € T, |Q|; < P; and
dQ:/dP; = X;.

b2) There exists a signed measure Q on (2, FX) such that for allt € T, Q; < P and
dQ:/dP; = X;.

c) sup E|X;| < oc.
teT

/

Proof: of Proposition 0.5.6: a) = bl): Suppose that X is a difference of two nonnegative
(FX)-martingales Y; and Z;. Then, by Lemma 0.5.5, there exist finite measures QY, Q% on
(9, FX) such that for all t € T, QY < P, Q? < P, Y, = dQY /dP,, Z; = dQ?/dP,. Set
Q = QY — Q7. Then, |Q| < QY + Q% and hence |Q|; < (QY + Q%); < P,. Moreover,

dQ./dP;, = d(Q) — dQ?)/dP, = dQ} /dP, — dQ7 /dP, =Y, — Z, = X,.

bl) = b2): This follows from the inequality |Q| < |Q|.
b2) = c): E[X| = |Q:|(€) <|Q|(€2) < oo
¢) = a): This follows from Lemma 0.5.4. \("a™)/
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0.6 Brownian Motion

The Brownian motion came into the history in 1827, when R. Brown, a British botanist,
observed that pollen grains suspended in water perform a contunual swarming motion. In 1905,
A. Einstein derived (0.30) below from the moleculer physics point of view. A mathematically
rigorous construction with a proof of the continuity (cf. B3) below) was given by N. Wiener
(1923).

We fix a probability space (€2, F, P) in this subsection. In the sequel, we will repeatedly

refer to a finite time series of the form
O=to<t; <..<t,, n>1. (0.29)

Definition 0.6.1 (Brownian motion) Let B = (B; : Q — R%);5, be a family r.v.’s. We

consider the following conditions.

B1) For any time series (0.29), the following r.v.’s are independent.
B(0), B(t1) — B(0), ..., B(t,) — B(tn-1).
B2) For any 0 < s < t,
By — Bs = N(0, (t — s)1y), (0.30)
where I; is the identity matrix of degree d,
B3) There is an 25 € F such that P(Qp) =1 and ¢t — By(w) is continuous for all w € Q.
B4) By = z, for a nonrandom vector x € R?,

» B is called a d-dimensional Brownian motion (BM? for short) if the conditions B1)-B3)

are satisfied.

» B is called a d-dimensional Brownian motion started at 2 (BM? for short), if the conditions
B1)-B4) are satisfied.

» B is called a d-dimensional pre-Brownian motion (pre-BM? for short), if the conditions
B1), B2) are satisfied. A d-dimensional pre-Brownian motion is said to be started at x, if
it saitesfies B4) and is abbreviated by pre—BM;l.

24



0.7 Continuity of the Brownian Motion

Referring to Definition 0.6.1, given the distribution of By, the distribution of B = (By);>¢ is
determined by properties B1) and B2). Then,

Question 1 Do all pre-Brownian motions have continuous path?

Example 0.7.1 Let B be BM}, and U be a r.v. uniformly distributed on (0, 1), which is
independent of B. Now, define B = (Et)tzo by

"’_ Bt; lft#U,
Bt‘{ 0, ift=U.

Since P(t = U) = 0 for any fixed t > 0, B and B have the same law, and hence the latter is a

pre-BM. However, B is discontinuous a.s.

In fact, Example 0.7.1 does more job than to construct a discontinuous pre Brownian

motion. The following remark is due to Kouji Yano:

Proposition 0.7.2 The following "event” is not o(B)-measurable:

o {By is continuous in t > 0}.

Proof (sketch): The map B B preserves the law of the Brownian motion. Thus, if C is
o(B)-measurable, then, it should be the case that P(B € C) = P(B € (), a contradiction

(1=0) \("a")/
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0.8 Germ triviality

Let B be a BM?. We define the right-continuous enlargement (F;);> of the canonical

filtration (F);>0 as follows;

F=0(B,; s<t), and F, = (| F . (0.31)

e>0

In particular, F is called the germ c-algebra. The technical advantage of introducing F;

(“an infinitesimal peeking in the future”) is to enlarge F? to get the right-continuity:

() Frve =Fi, V> 0. (0.32)

e>0

Indeed,

ﬂ ft+s = ﬂ ﬂ t+edd — ﬂ t+5+5 -

e>0 e>06>0 £,6>0

Note that F; is strictly larger than F. For example, the r.v. X = lim B'(t+ 1) is F-

n—o0
measurable, but not FP-measurable.

The following fact is well-known.

Proposition 0.8.1 (Germ triviaility /Blumenthal zero-one law ) For BM? for some
r € R?,
AeFy = P(A) €{0,1}.

Question 1 How much larger is F; than F}?
Question 2 Can germ triviality be explained from a general property for F; (¢t > 0)?

Question 3 Does germ triviality remain true for pre-Brownian motions?
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Proposition 0.8.2 (Markov property) Let s > 0 and G € T & o(By; t>s). Then,

P(G|F,) = P(G|B,), a.s. (0.33)
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Proposition 0.8.2 can be used to show that the right-continuous enlargement of F; is larger
than F? by null sets:

a N
Proposition 0.8.3 Let B be a BM%, t > 0. Then,

a)

Fi=F Vo), (0.34)

where Ny denotes the totality of Fi-measurable null sets.

b) In particular, if B is a BM® for some x € R?, then, Fy = o(Np) and hence P(A) €
{0,1} for A € Fy (germ triviality).

/
Proof: a) It is clear that F;, D F V o(N;). We will show the opposite inclusion. Let
GEQtdéfﬂa(BHs; 0<s<e).
e>0

Since G, C F; NT;, we see from (0.33) that

(0.33

16 = P(G|F) "2 P(G|B), as.
Thus, 1¢ is a.s. equals to an o(B;)-measurable function. This implies that
Gy C o(B;) Vao(Ny).

Hence

Fi=F)NVG CFValN).
b) Suppose in particular that B is a BM? for some 2 € R% Then F9 = {0,Q}, and hence
Fo = o(Np), which consists only of events A with P(A) € {0,1}. \("a™)/

Remark:

The germ triviality is not true in gereral for pre-Brownian motions. In fact, let B be BMy,
and U be a r.v. uniformly distributed on (0,1), which is independent of B. Now, define
B= (Et)tzo by

B _ B, ift# U/n for any n € N,
"7\ U ift=U/n for somen € N.

Since P(t = U/n for some n € N) = 0 for any fixed ¢ > 0, B and B have the same law, and

hence the latter is a pre-BM}. However, the germ o-algebra of B contains o(U).
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