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0.1 Elementaly distributions

Example 0.1.1 (Normal distribution) Let m ∈ R and v > 0.

▶ A r.v. X : Ω → R is called a (m, v)-normal r.v. if

P (X ∈ B) =
1√
2πv

∫
B

exp

(
−(x−m)2

2v

)
dx for B ∈ B(R). (0.1)

The law of an (m, v)-normal r.v. is denoted by N(m, v). It is not difficult to see that

EX = m, varX = v.

mm−

√

v m+
√

v

1/
√

2πv

In particular, N(0, 1) is called the standard normal distribution. N(m, v) and N(0, 1) is

related as follows.

Y ≈ N(0, 1) ⇐⇒ X
def
= m+

√
vY ≈ N(m, v). (0.2)

Remark: By setting m = 0 and B = R in (0.1),∫ ∞

−∞
exp

(
−x2

2v

)
dx =

√
2πv.

Then, formally plugging v = i/2 in the above identity, we obtain Fresnel integral:∫ ∞

−∞
exp

(
ix2

)
dx =

√
πi =

√
π

2
(1 + i),

i.e., ∫ ∞

−∞
cos(x2)dx =

∫ ∞

−∞
sin(x2)dx =

√
π

2
.

Exercise Justify the above manupulation: v = i/2.
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Example 0.1.2 (Poisson distribution) Let c > 0.

▶ A r.v. N : Ω → N is called a c-Poisson r.v. if

P (N ∈ B) = πc(B)
def.
=

∑
n∈B

e−ccn

n!
, B ⊂ N. (0.3)

A probability measure πc defined above is called c-Poisson distribution. It is not hard to

see that

EN = varN = c. (0.4)

Let N1 and N2 be independent r.v.’s. c1, c2 > 0 and c = c1 + c2. We prove that

Nj ≈ πcj (j = 1, 2) =⇒ N1 +N2 ≈ πc. (0.5)

We stat by noting that

1)
cr

r!
=

∑
k,ℓ≥0
k+ℓ=r

ck1
k!

cℓ2
ℓ!
,

which can be seen as follows. For t ∈ R,∑
r≥0

tr
cr

r!
= etc = etc1etc2 =

∑
k≥0

tk
ck1
k!

∑
ℓ≥0

tℓ
cℓ2
ℓ!

=
∑
n≥0

tn
∑
k,ℓ≥0
k+ℓ=n

ck1
k!

cℓ2
ℓ!
.

By comparing the coefficient of tr, we get 1).

We now conclude (0.5) as follows:

P (N1 +N2 = r) =
∑
k,ℓ≥0
k+ℓ=r

P (N1 = k,N2 = ℓ) =
∑
k,ℓ≥0
k+ℓ=r

P (N1 = k)P (N2 = ℓ)

=
∑
k,ℓ≥0
k+ℓ=r

e−c1ck1
k!

e−c2cℓ2
ℓ!

= e−c
∑
k,ℓ≥0
k+ℓ=r

ck1
k!

cℓ2
ℓ!

1)
= e−c c

r

r!
. \(∧2

∧)/
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Here are histograms of πc(n)
def
= e−ccn

n!
(n ∈ N).

0 1 2 3 4 5 6 7 8 9 10

c = 3

0 1 2 3 4 5

c = 1

0 1 2 3 4

0.607 0.368 0.224

c = 0.5

0 1 2 3 4 5 6 7 8

0.271

c = 2

14 273

0.106

c = 14

When c is large, the histogram looks like that of N(c, c). This is a manifestation of the central

limit theorem:
Nc − c√

c

w−→ N(0, 1), as c → ∞.

5



Example 0.1.3 (Binomial distribution) Let p ∈ [0, 1] and n = 1, 2, ... A probability

measure µn,p on {0, 1, .., n} defined as follows is called the (n, p)-binomial distribution, and

will henceforth be denoted by Bin(n, p):

µn,p(k) =
(n
k

)
pk(1− p)n−k, k = 0, 1, ..., n. (0.6)

Note in particular that

µ1,p(k) =

{
p if k = 1,
1− p if k = 0.

(0.7)

Let {Xj}nj=1 be i.i.d. with Xj ≈ Bin(1, p) Then,

Sn
def
= X1 + . . .+Xn ≈ Bin(n, p). (0.8)

To prove this, note first that for j = 1, ..., n,

1) P (Xj = k) = µ1,p(k) =

{
p if k = 1,
1− p if k = 0.

Therefore, we have for any k = 0, 1, ..., n that

P (Sn = k) =
∑

k1,...,kn=0,1
k1+...+kn=k

P (X1 = k1, ..., Xn = kn)

=
∑

k1,...,kn=0,1
k1+...+kn=k

P (X1 = k1) · · ·P (Xn = kn)︸ ︷︷ ︸
1)
=pk(1−p)n−k

=
(n
k

)
pk(1− p)n−k.

Question Let Z be a r.v. defined on a probability space (Ω,F , P ) such that Z ≈ Bin(n, p).

Is it always true that there exist iid Xj ≈ Bin(1, p) (j = 1, ..., n) defined on (Ω,F , P )

such that Z = X1 + ...+Xn?
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Here are histograms of k 7→ µn,p(k) for (n, p) = (20, 1/2) and (n, p) = (24, 1/8).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(n, p) = (20, 1/2)

0 1 2 3 4 5 6 7 8 9

(n, p) = (24, 1/8)

0.176 0.239

The histogram on the left looks like that of the normal distribution, which can be explained

by the de Moivre-Laplace theorem: Suppose that n, k → ∞ and k−np
n2/3 → 0. Then,

µn,p(k) ∼
1√
2πvn

exp

(
−(k − np)2

2vn

)
, where v = p(1− p). (0.9)

On the other hand, the histogram on the right looks like that of Poisson distribution, which

can be explained by law of small numbers: Suppose that n → ∞, p → 0, np → c > 0. Then,(n
k

)
pk(1− p)n−k −→ e−cck

k!
, k ∈ N. (0.10)

\(∧2
∧)/
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Example 0.1.4 (Gamma distributions) Let a, c > 0.

▶ We define (c, a)-gamma distribution γc,a ∈ P((0,∞)) by

γc,a(B) =
ca

Γ(a)

∫
B

xa−1e−cxdx, for B ∈ B((0,∞)). (0.11)

Here, we have introdued the Gamma function as usual:

Γ(a) =

∫ ∞

0

xa−1e−xdx, a ∈ C, Re(a) > 0. (0.12)

γc,a is also denoted by γ(c, a). It is not difficult to see that

EX = a/c, varX = a/c2. (0.13)
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0.2 The Law of Large Numbers� �
Theorem 0.2.1 (The Law of Large Numbers) Let Sn = X1+ ...+Xn, where {Xn}n≥1

are i.i.d. with E|Xn| < ∞. Then,

Sn

n

n→∞−→ EX1, P -a.s. (0.14)� �
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Example 0.2.2 (Uniqueness of the Laplace transform) Let µ1, µ2 ∈ P([0,∞)). Then

µ1 = µ2 if ∫
[0,∞)

e−λxdµ1(x) =

∫
[0,∞)

e−λxdµ2(x) for all λ ≥ 0. (0.15)

Proof: Let f ∈ Cb([0,∞) → [0,∞)) be arbitrary. We first prove the following approximation:

1) lim
n↗∞

fn(x) = f(x) for all x ≥ 0,

where

fn(x) = e−nx

∞∑
k=0

(nx)k

k!
f

(
k

n

)
, n ∈ N.

To prove 1), we may assume x > 0, since fn(0) = f(0). For x > 0, we let

Sn = X1 + ...+Xn

where Xn are iid, ≈ πx (cf. (0.3)). Then,

2) Sn

(0.5)
≈ πnx.

Moreover, by the law of large numbers (Theorem 0.2.1),

Sn/n
n→∞−→ EX1

(0.4)
= x, a.s.

and hence by the bounded convergence theorem,

fn(x)
2)
= E[f(Sn/n)]

n→∞−→ f(x).

We now use 1) to prove that µ1 = µ2. It is enough to prove that

3)

∫
[0,∞)

fdµ1 =

∫
[0,∞)

fdµ2.

Indeed, by differentiating (0.15) k times at in λ and then setting λ = n ∈ N, we have that∫
[0,∞)

xke−nxdµ1(x) =

∫
[0,∞)

xke−nxdµ2(x) for all k, n ∈ N.

By multiplying both hands-sides of the above identity by nk

k!
f
(
k
n

)
, and adding over k ∈ N, we

arrive at:

4)

∫
[0,∞)

fndµ1 =

∫
[0,∞)

fndµ2.

Since supx≥0 |fn(x)| ≤ supx≥0 |f(x)|, we obtain 3) from 2) and 4) via the bounded convergence

theorem. \(∧2
∧)/
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0.3 Characteristic functions

For ν ∈ P(Rd), we define its Fourier transform by

ν̂(θ)
def
=

∫
exp(i(θ · x))dν(x), θ ∈ Rd.

� �
Proposition 0.3.1 (Characteristic function) For ν ∈ P(Rd) and a r.v. X : Ω → Rd,
the following are equivalent:

a) E exp(i(θ ·X)) = ν̂(θ) for all θ ∈ Rd;

b) X ≈ ν.

▶ The expectation on the left-hand side of a) above is called the characteristic function
(ch.f. for short ) of X.� �
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Example 0.3.2 (ch.f. of a Poisson r.v.) Let πc(n) =
e−ccn

n!
, n ∈ N, c > 0, cf. (0.3) and N

be a r.v. ≈ πc, . We then see for any z ∈ C that

E[zN ] = e−c
∑
n≥0

zn
cn

n!
= exp((z − 1)c).

This shows (by setting z = exp(iθ)) in particular that

π̂c(θ) = E exp(iθN) = exp((eiθ − 1)c). (0.16)
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Example 0.3.3 (⋆) (ch.f. of a Gamma r.v.) For z ∈ C\{0}, we define Arg z ∈ (−π, π]

(argument of z) by

z = |z| exp(iArg z),

and Logz ∈ C by

Log z = log |z|+ iArg z.

By definition, Arg z is the angle, signed counter-clockwise, from the positive real axis to the

vecor representing z.

③

❆�✁③

Finally we set:

zs = exp (sLog z) , for z ∈ C\{0} and s ∈ C.

Let X be a real r.v. such that X ≈ γc,a. We will show that

1) E exp(−zX) =
(
1 +

z

c

)−a

for any z ∈ C with Re z > −c.

Then, it follows from 1) that for θ ∈ R,

γ̂c,a(θ) =

(
1− iθ

c

)−a

=

∣∣∣∣1− iθ

c

∣∣∣∣−a

exp

(
−aiArg

(
1− iθ

c

))
=

(
1 +

θ2

c2

)−a/2

exp

(
iaArctan

θ

c

)
. (0.17)

To prove 1), note first that both hand-sides are holomorphic in z for Re z > −c. Therefore, it

is enough to prove it for all z = t ∈ (−c,∞). Then,

E exp(−tX)
(0.11)
=

ca

Γ(a)

∫ ∞

0

xa−1e−(t+c)xdx

x=y/(t+c)
=

ca

Γ(a)

(
1

t+ c

)a ∫ ∞

0

ya−1e−ydy︸ ︷︷ ︸
=Γ(a)

=

(
1 +

t

c

)−a

.

This proves 1).
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Example 0.3.4 (⋆) (Stieltjes’ counterexample to the moment problem) We consider

the following question. Suppose that a function f ∈ C([0,∞)) satisfies∫ ∞

0

xn|f(x)|dx < ∞, and

∫ ∞

0

xnf(x)dx = 0 for all n ∈ N.

Then f ≡ 0?

Stieltjes gave a counterexample f(x)
def
= exp(−x1/4) sin x1/4 to this question (1894). We can

use (0.17) to verify that the above function is indeed a counterexample. In fact, we see from

(0.17) that γ̂1,4n+4(1) ∈ R for all n ∈ N. Thus, taking the imaginary part, we have

0 =

∫ ∞

0

x4n+3e−x sinxdx =
1

4

∫ ∞

0

xn exp(−x1/4) sin x1/4dx.

14



Example 0.3.5 (⋆) (Euler’s complementary formula for the Gamma function) We

will use (0.17) to prove the following identity due to Euler:

1

Γ(1 + a)Γ(1− a)
=

sin(πa)

πa
, a ∈ (0, 1). (0.18)

Let fa(x) =
1

Γ(a)
xa−1e−x1x>0 (the density of γ(1, a)). We have by the Plancherel formula that:

1)

∫ ∞

0

f1+a(x)f1−a(x)dx =
1

2π

∫
R
f̂1+a(θ)f̂1−a(−θ)dθ.

Since

f1+a(x)f1−a(x) =
1

Γ(1 + a)Γ(1− a)
e−2x1x>0,

we see that

2)

∫ ∞

0

f1+a(x)f1−a(x)dx =
1

2Γ(1 + a)Γ(1− a)

On the other hand,

f̂1+a(θ)f̂1−a(−θ)
(0.17)
=

1

1 + θ2
exp(i(1 + a)Arctan θ − i(1− a)Arctan θ)

= (Arctan θ)′ exp(2iaArctan θ).

Thus,

3)


∫
R
f̂1+a(θ)f̂1−a(−θ)dθ

t=Arctan θ
=

∫ π/2

−π/2

exp(2iat)dt

=
exp(iaπ)− exp(−iπa)

2ia
=

sin(πa)

a

By 1)–3), we obtain (0.18).
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0.4 Weak Convergence� �
Proposition 0.4.1 (Weak convergence of r.v.’s) For n = 0, 1, ..., let Xn be Rd-valued
r.v.’s and that Xn ≈ µn ∈ P(Rd). Then, the following are equivalent:

a) E exp(iθ ·Xn) −→ E exp(iθ ·X0) for all θ ∈ Rd.

b) µn
w−→ µ0.

▶ The sequence (Xn)n≥0 is said to converge weakly (or converge in law ) to X0

if one (therefore all) of the above conditions is satisfied. We will henceforth denote this
convergence by

Xn
w−→ X0 or Xn

w−→ µ0� �
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Example 0.4.2 Let (Nc)c>0 be r.v.’s such that πc(k)
def
= P (Nc = k) = e−cck/k! for all k ∈ N

and c > 0. We will prove the following two facts, of which the first is probabilistic, the second

purely analytic:

a)
Nc − c√

c

w−→ N(0, 1), as c → ∞ (Central limit theorem).

b) n!
n→∞∼

√
2πn (n/e)n (Stirling’s formula).

Proof: a) Note that

exp(iθ) = 1 + iθ − θ2

2
+O(|θ|3) as θ → 0,

and hence that

1) exp

(
i
θ√
c

)
= 1 +

iθ√
c
− θ2

2c
+O

(
|θ|3

c3/2

)
as c → ∞ for any θ ∈ R.

Since π̂c(θ)
(0.16)
= exp(c(exp(iθ)− 1)), we have

2)



E exp

(
iθ
Nc − c√

c

)
= π̂c

(
θ√
c

)
exp (−i

√
cθ)

= exp

(
c

(
exp

(
i
θ√
c

)
− 1− i

θ√
c

))
1)
= exp

(
c

(
−θ2

2c
+O

(
θ3

c3/2

)))
c→∞−→ exp

(
−θ2

2

)
.

Recall that exp
(
− θ2

2

)
is the Fourier transform of N(0, 1). We see the desired weak convergence

from 2) and Proposition 0.4.1.

b) We have that

π̂c(θ) =
∑
k≥0

exp(ikθ)πc(k), θ ∈ R

Multiplying exp(−inθ)/(2π) to the both hands sides of the above identity and integrating them

over θ ∈ [−π, π], we obtain

3) πc(n) =
1

2π

∫ π

−π

π̂c(θ) exp(−inθ)dθ.

Moreover, since 1− cos θ ≥ 2θ2

π2 , |θ| ≤ π, we have

4)
∣∣∣π̂c

(
θ√
c

)∣∣∣ = exp
(
−c

(
1− cos θ√

c

))
≤ exp

(
−2θ2

π2

)
, |θ| ≤ π

√
c.

Finally, note that

5)


√
n

n!

(n
e

)n

=
√
nπn(n)

3)
=

√
n

2π

∫ π

−π

π̂n(θ) exp(−inθ)dθ

=
1

2π

∫ π
√
n

−π
√
n

π̂n

(
θ√
n

)
exp(−i

√
nθ)dθ

By 2), 4) and the dominated convergence theorem, we conclude that

the RHS 5)
n→∞−→ 1

2π

∫ ∞

−∞
exp

(
− θ2

2

)
dθ =

1√
2π

.

This proves b). \(∧2
∧)/
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0.5 Martingales

We suppose that (Ω,F , P ) is a probability space, and that G is a sub σ-algebra of F .� �
Proposition 0.5.1 (Conditional expectation) Let X ∈ L1(P ).

a) There exists a unique Y ∈ L1(Ω,G, P |G) such that

E[X : A] = E[Y : A] for all A ∈ G. (0.19)

The r.v. Y is called the conditional expectation of X given G, and is denoted by
E[X|G].

b) For X,Xn ∈ L1(P ) (n ∈ N),

E[αX1 + βX2|G] = αE[X1|G] + βE[X2|G], a.s. for α, β ∈ R, (0.20)

X1 ≤ X2, a.s. =⇒ E[X1|G] ≤ E[X2|G], a.s., (0.21)

|E[X|G]| ≤ E[|X||G], a.s., (0.22)

X is G-measurable ⇐⇒ E[X|G] = X, a.s. (0.23)

E[X : A] = EXP (A), ∀A ∈ G ⇐⇒ E[X|G] = EX, a.s. (0.24)

X is independent of G =⇒ E[X|G] = EX, a.s. (0.25)

Xn
n→∞−→ X in L1(P ) ⇐⇒ E[|Xn −X||G] n→∞−→ 0 in L1(P ). (0.26)� �

18



We assume that

� (Ω,F , P ) is a probability space and T ⊂ R;

� (Ft)t∈T is a filtration;

� X = (Xt)t∈T is a sequence of real r.v.’s defined on (Ω,F , P ).

Definition 0.5.2 X = (Xt,Ft)t∈T is called a martingale if the following hold true.

� (adapted) Xt is Ft-measurable for all t ∈ T;

� (integrable) Xt ∈ L1(P ) for all t ∈ T;

� (martingale property)

E[Xt|Fs] = Xs a.s. if s, t ∈ T and s < t. (0.27)

If the equality in (0.27) is replaced by ≥ (resp. ≤), X is called a submartingale (resp.

supermartingale ).

19



Example 0.5.3 Let F∞ = σ (Ft, t ∈ T), Q be a signed measure on (Ω,F∞), and Pt = P |Ft ,

Qt = Q|Ft . Suppose that Qt � Pt for all t ∈ T. Then, Xt
def
= dQt

dPt
, t ∈ T is a martingale.

Proof: Xt is Ft-measurable and Xt ∈ L1(P ). Let s, t ∈ T, s < t and A ∈ Fs. Then, since

A ∈ Ft,

E[Xt : A] = Qt(A) = Q(A) = Qs(A) = E[Xs : A].

Thus, E[Xt|Fs] = Xs, a.s. \(∧2
∧)/

Now, a naive qustion arises.

Question 1 Is an arbitrary martingale Xt expressed as Xt = dQt/dPt by a sined measure Q

as in Example 0.5.3?

But the answer is clearly negative. Indeed, if Xt = dQt/dPt for a sined measure Q, then

sup
t≥0

E|Xt| = sup
t≥0

|Qt| ≤ |Q|, (0.28)

where |Qt| and |Q| above are total variations. Therefore, the martingale Xt should be at least

L1-bounded. We now arrive at a less obvious question:

Question 2 Is an arbitrary L1-bounded martingale Xt expressed as Xt = dQt/dPt by a sined

measure Q as in Example 0.5.3?
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I am grateful to Francis Comets for bringing the following lemma to my interest.� �
Lemma 0.5.4 Suppose that the set T ⊂ R is unbounded from above and that X =
(Xt,Ft)t∈T is a submartingale such that supt∈TE[X+

t ] < ∞.

a) There exists a martingale Y = (Yt,Ft)t∈T such that X+
t ≤ Yt for all t ∈ T.

b) (Krickeberg decomposition) There exists a nonnegative supermartingale Z =
(Zt,Ft)t∈T such that Xt = Yt − Zt for all t ∈ T. In particular, Z is a martingale if
X is a martingale.� �

Proof: a) We start by observing that

1) t, u, v ∈ T, t ≤ u < v =⇒ E[X+
u |Ft] ≤ E[X+

v |Ft], a.s.

Indeed, (X+
t ,Ft)t∈T is a submartingale. Thus,

X+
u ≤ E[X+

v |Fu], a.s.

We obtain 1) by taking the conditional expextations of the both hands sides of the above

identity.

By 1), the limit Yt
def
= limu→∞ E[X+

u |Ft] ∈ [0,∞] exists and X+
t ≤ Yt for all t ∈ T. We verify

that

2) Y = (Yt,Ft)t∈T is a martingale.

First, Yt ∈ L1(P ) for all t ∈ T, since by 1) and the monotone convergence theorem,

EYt = lim
u→∞

E[E[X+
u |Ft]] = lim

u→∞
E[X+

u ] < ∞.

Next, if s, t ∈ T and s < t, then, by the monotone convergence theorem for conditional

expectations,

E[Yt|Fs] = lim
u→∞

E[E[X+
u |Ft]|Fs] = lim

u→∞
E[X+

u |Fs] = Ys, a.s.

b) Zt
def
= Yt −Xt, t ∈ T is a nonnegative supermartingale. In particular, Z is a martingale if

X is a martingale. \(∧2
∧)/
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Let X = (Xt)t∈T be a process. We write FX
t = σ(Xs ; s ∈ T ∩ [0, t]) t ∈ T, and FX

∞ =

σ(FX
t ; t ∈ T). For a signed measure Q on (Ω,FX

∞), let |Q| be its variation, Q± = (|Q|±Q)/2

(Jordan decomposition) and Qt = Q|FX
t
.� �

Lemma 0.5.5 Let Y = (Yt,FX
t )t∈T be a nonnegative, mean-one martingale. Then, there

exists a unique probability measure P Y on (Ω,FX
∞) such that

P Y (A) = E[Yt : A] for all t ∈ T and A ∈ FX
t .� �

Proof: For each t ∈ T, let P̃t(A) = E[Yt : A] for A ∈ FX
t . Then, the family of measures

(FX
t , P̃t), t ∈ T are consistent in the sense that P̃t|FX

s
= P̃s if s, t ∈ T, s < t. Thus, by

Kolmogorov’s extension theorem, there exists a unique probability measure P Y on (Ω,FX
∞)

such that P Y |FX
t
= P̃t for all t ∈ T. \(∧2

∧)/
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� �
Proposition 0.5.6 Suppose that the set T is ubbounded from above, and that X =
(Xt,FX

t )t∈T is a martingale. Then, the following conditions are equivalent.

a) X is a difference of two nonnegative (FX
t )-martingales.

b1) There exists a signed measure Q on (Ω,FX
∞) such that for all t ∈ T, |Q|t � Pt and

dQt/dPt = Xt.

b2) There exists a signed measure Q on (Ω,FX
∞) such that for all t ∈ T, Qt � P and

dQt/dPt = Xt.

c) sup
t∈T

E|Xt| < ∞.

� �
Proof: of Proposition 0.5.6: a) ⇒ b1): Suppose that X is a difference of two nonnegative

(FX
t )-martingales Yt and Zt. Then, by Lemma 0.5.5, there exist finite measures QY , QZ on

(Ω,FX
∞) such that for all t ∈ T, QY

t � Pt, Q
Z
t � Pt, Yt = dQY

t /dPt, Zt = dQZ
t /dPt. Set

Q = QY −QZ . Then, |Q| ≤ QY +QZ and hence |Q|t ≤ (QY +QZ)t � Pt. Moreover,

dQt/dPt = d(QY
t − dQZ

t )/dPt = dQY
t /dPt − dQZ

t /dPt = Yt − Zt = Xt.

b1) ⇒ b2): This follows from the inequality |Qt| ≤ |Q|t.
b2) ⇒ c): E|Xt| = |Qt|(Ω) ≤ |Q|(Ω) < ∞.

c) ⇒ a): This follows from Lemma 0.5.4. \(∧2
∧)/
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0.6 Brownian Motion

The Brownian motion came into the history in 1827, when R. Brown, a British botanist,

observed that pollen grains suspended in water perform a contunual swarming motion. In 1905,

A. Einstein derived (0.30) below from the moleculer physics point of view. A mathematically

rigorous construction with a proof of the continuity (cf. B3) below) was given by N. Wiener

(1923).

We fix a probability space (Ω,F , P ) in this subsection. In the sequel, we will repeatedly

refer to a finite time series of the form

0 = t0 < t1 < ... < tn, n ≥ 1. (0.29)

Definition 0.6.1 (Brownian motion) Let B = (Bt : Ω → Rd)t≥0 be a family r.v.’s. We

consider the following conditions.

B1) For any time series (0.29), the following r.v.’s are independent.

B(0), B(t1)−B(0), . . . , B(tn)−B(tn−1).

B2) For any 0 ≤ s < t,

Bt −Bs ≈ N(0, (t− s)Id), (0.30)

where Id is the identity matrix of degree d,

B3) There is an ΩB ∈ F such that P (ΩB) = 1 and t 7→ Bt(ω) is continuous for all ω ∈ ΩB.

B4) B0 = x, for a nonrandom vector x ∈ Rd,

▶ B is called a d-dimensional Brownian motion (BMd for short) if the conditions B1)–B3)

are satisfied.

▶ B is called a d-dimensionalBrownian motion started at x (BMd
x for short), if the conditions

B1)–B4) are satisfied.

▶ B is called a d-dimensional pre-Brownian motion (pre-BMd for short), if the conditions

B1), B2) are satisfied. A d-dimensional pre-Brownian motion is said to be started at x, if

it saitesfies B4) and is abbreviated by pre-BMd
x.
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0.7 Continuity of the Brownian Motion

Referring to Definition 0.6.1, given the distribution of B0, the distribution of B = (Bt)t≥0 is

determined by properties B1) and B2). Then,

Question 1 Do all pre-Brownian motions have continuous path?

Example 0.7.1 Let B be BM1
0, and U be a r.v. uniformly distributed on (0, 1), which is

independent of B. Now, define B̃ = (B̃t)t≥0 by

B̃t =

{
Bt, if t 6= U,
0, if t = U .

Since P (t = U) = 0 for any fixed t ≥ 0, B and B̃ have the same law, and hence the latter is a

pre-BM1
0. However, B̃ is discontinuous a.s.

In fact, Example 0.7.1 does more job than to construct a discontinuous pre Brownian

motion. The following remark is due to Kouji Yano:� �
Proposition 0.7.2 The following ”event” is not σ(B)-measurable:

C
def
= {Bt is continuous in t ≥ 0}.� �

Proof (sketch): The map B 7→ B̃ preserves the law of the Brownian motion. Thus, if C is

σ(B)-measurable, then, it should be the case that P (B ∈ C) = P (B̃ ∈ C), a contradiction

(1 = 0)! \(∧2
∧)/
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0.8 Germ triviality

Let B be a BMd. We define the right-continuous enlargement (Ft)t≥0 of the canonical

filtration (F0
t )t≥0 as follows;

F0
t = σ(Bs ; s ≤ t), and Ft =

⋂
ε>0

F0
t+ε. (0.31)

In particular, F0 is called the germ σ-algebra. The technical advantage of introducing Ft

(“an infinitesimal peeking in the future”) is to enlarge F0
t to get the right-continuity:⋂

ε>0

Ft+ε = Ft, ∀t ≥ 0. (0.32)

Indeed, ⋂
ε>0

Ft+ε =
⋂
ε>0

⋂
δ>0

F0
t+ε+δ =

⋂
ε,δ>0

F0
t+ε+δ = Ft.

Note that Ft is strictly larger than F0
t . For example, the r.v. X = lim

n→∞
B1(t+ 1

n
) is Ft-

measurable, but not F0
t -measurable.

The following fact is well-known.� �
Proposition 0.8.1 (Germ triviaility/Blumenthal zero-one law ) For BMd

x for some
x ∈ Rd,

A ∈ F0 =⇒ P (A) ∈ {0, 1}.� �
Question 1 How much larger is Ft than F0

t ?

Question 2 Can germ triviality be explained from a general property for Ft (t ≥ 0)?

Question 3 Does germ triviality remain true for pre-Brownian motions?
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� �
Proposition 0.8.2 (Markov property) Let s ≥ 0 and G ∈ Ts

def
= σ(Bt ; t ≥ s). Then,

P (G|Fs) = P (G|Bs), a.s. (0.33)� �
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Proposition 0.8.2 can be used to show that the right-continuous enlargement of Ft is larger

than F0
t by null sets:� �

Proposition 0.8.3 Let B be a BMd, t ≥ 0. Then,

a)
Ft = F0

t ∨ σ(Nt), (0.34)

where Nt denotes the totality of Ft-measurable null sets.

b) In particular, if B is a BMd
x for some x ∈ Rd, then, F0 = σ(N0) and hence P (A) ∈

{0, 1} for A ∈ F0 (germ triviality).� �
Proof: a) It is clear that Ft ⊃ F0

t ∨ σ(Nt). We will show the opposite inclusion. Let

G ∈ Gt
def
=

⋂
ε>0

σ(Bt+s ; 0 ≤ s ≤ ε).

Since Gt ⊂ Ft ∩ Tt, we see from (0.33) that

1G = P (G|Ft)
(0.33)
= P (G|Bt), a.s.

Thus, 1G is a.s. equals to an σ(Bt)-measurable function. This implies that

Gt ⊂ σ(Bt) ∨ σ(Nt).

Hence

Ft = F0
t ∨ Gt ⊂ F0

t ∨ σ(Nt).

b) Suppose in particular that B is a BMd
x for some x ∈ Rd. Then F0

0 = {∅,Ω}, and hence

F0 = σ(N0), which consists only of events A with P (A) ∈ {0, 1}. \(∧2
∧)/

Remark:

The germ triviality is not true in gereral for pre-Brownian motions. In fact, let B be BM1
0,

and U be a r.v. uniformly distributed on (0, 1), which is independent of B. Now, define

B̃ = (B̃t)t≥0 by

B̃t =

{
Bt if t 6= U/n for any n ∈ N,
U if t = U/n for some n ∈ N.

Since P (t = U/n for some n ∈ N) = 0 for any fixed t ≥ 0, B and B̃ have the same law, and

hence the latter is a pre-BM1
0. However, the germ σ-algebra of B̃ contains σ(U).
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