Binomial distrbution, CLT, Martingales, and Brownian Motion¹

Nobuo Yoshida²

¹Notes for a presentation at Shinshu University on February 24, 2021.

 $^{{}^{2}[}e-mail] \verb"noby@math.nagoya-u.ac.jp", [URL] \verb"http://www.math.nagoya-u.ac.jp"/~noby", [URL] "http://www.math.nagoya-u.ac.jp"/~noby", [URL] "http://www.nath.nagoya-u.ac.jp"/~noby", [URL] "http://www.nath.na$

Contents

0.1	Elementaly distributions	3
0.2	The Law of Large Numbers	9
0.3	Characteristic functions	11
0.4	Weak Convergence	16
0.5	Martingales	18
0.6	Brownian Motion	24
0.7	Continuity of the Brownian Motion	25
0.8	Germ triviality	26

The topics above are selected from [Yos].

0.1 Elementaly distributions

Example 0.1.1 (Normal distribution) Let $m \in \mathbb{R}$ and v > 0.

▶ A r.v. $X : \Omega \to \mathbb{R}$ is called a (m, v)-normal r.v. if

$$P(X \in B) = \frac{1}{\sqrt{2\pi\nu}} \int_{B} \exp\left(-\frac{(x-m)^2}{2\nu}\right) dx \quad \text{for } B \in \mathcal{B}(\mathbb{R}).$$
(0.1)

The law of an (m, v)-normal r.v. is denoted by N(m, v). It is not difficult to see that

In particular, N(0,1) is called the **standard normal** distribution. N(m,v) and N(0,1) is related as follows.

$$Y \approx N(0,1) \iff X \stackrel{\text{def}}{=} m + \sqrt{v}Y \approx N(m,v).$$
 (0.2)

Remark: By setting m = 0 and $B = \mathbb{R}$ in (0.1),

$$\int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2v}\right) dx = \sqrt{2\pi v}.$$

Then, formally plugging v = i/2 in the above identity, we obtain **Fresnel integral**:

$$\int_{-\infty}^{\infty} \exp\left(\mathbf{i}x^{2}\right) dx = \sqrt{\pi \mathbf{i}} = \sqrt{\frac{\pi}{2}}(1+\mathbf{i}),$$

i.e.,

$$\int_{-\infty}^{\infty} \cos(x^2) dx = \int_{-\infty}^{\infty} \sin(x^2) dx = \sqrt{\frac{\pi}{2}}$$

Exercise Justify the above manupulation: v = i/2.

Example 0.1.2 (Poisson distribution) Let c > 0.

▶ A r.v. $N : \Omega \to \mathbb{N}$ is called a *c*-Poisson r.v. if

$$P(N \in B) = \pi_c(B) \stackrel{\text{def.}}{=} \sum_{n \in B} \frac{e^{-c}c^n}{n!}, \quad B \subset \mathbb{N}.$$
 (0.3)

A probability measure π_c defined above is called *c*-Poisson distribution. It is not hard to see that

$$EN = \operatorname{var} N = c. \tag{0.4}$$

Let N_1 and N_2 be independent r.v.'s. $c_1, c_2 > 0$ and $c = c_1 + c_2$. We prove that

$$N_j \approx \pi_{c_j} \ (j=1,2) \implies N_1 + N_2 \approx \pi_c.$$
 (0.5)

We stat by noting that

1)
$$\frac{c^r}{r!} = \sum_{\substack{k,\ell \ge 0\\k+\ell=r}} \frac{c_1^k}{k!} \frac{c_2^\ell}{\ell!},$$

which can be seen as follows. For $t \in \mathbb{R}$,

1 0

$$\sum_{r \ge 0} t^r \frac{c^r}{r!} = e^{tc} = e^{tc_1} e^{tc_2} = \sum_{k \ge 0} t^k \frac{c_1^k}{k!} \sum_{\ell \ge 0} t^\ell \frac{c_2^\ell}{\ell!} = \sum_{n \ge 0} t^n \sum_{k,\ell \ge 0 \atop k+\ell=n} \frac{c_1^k}{k!} \frac{c_2^\ell}{\ell!}$$

By comparing the coefficient of t^r , we get 1). We now conclude (0.5) as follows:

$$P(N_1 + N_2 = r) = \sum_{\substack{k,\ell \ge 0\\k+\ell = r}} P(N_1 = k, N_2 = \ell) = \sum_{\substack{k,\ell \ge 0\\k+\ell = r}} P(N_1 = k) P(N_2 = \ell)$$
$$= \sum_{\substack{k,\ell \ge 0\\k+\ell = r}} \frac{e^{-c_1}c_1^k}{k!} \frac{e^{-c_2}c_2^\ell}{\ell!} = e^{-c} \sum_{\substack{k,\ell \ge 0\\k+\ell = r}} \frac{c_1^k}{k!} \frac{c_2^\ell}{\ell!} \stackrel{1)}{=} e^{-c} \frac{c^r}{r!}. \qquad \backslash (^{\wedge} \Box^{\wedge}) / \Box^{\wedge}$$

Here are histograms of $\pi_c(n) \stackrel{\text{def}}{=} \frac{e^{-c}c^n}{n!} \ (n \in \mathbb{N}).$

When c is large, the histogram looks like that of N(c, c). This is a manifestation of the **central** limit theorem:

$$\frac{N_c - c}{\sqrt{c}} \xrightarrow{\mathrm{w}} N(0, 1), \quad \text{as } c \to \infty.$$

Example 0.1.3 (Binomial distribution) Let $p \in [0,1]$ and n = 1, 2, ... A probability measure $\mu_{n,p}$ on $\{0, 1, ..., n\}$ defined as follows is called the (n, p)-binomial distribution, and will henceforth be denoted by Bin(n, p):

$$\mu_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n.$$
(0.6)

Note in particular that

$$\mu_{1,p}(k) = \begin{cases} p & \text{if } k = 1, \\ 1 - p & \text{if } k = 0. \end{cases}$$
(0.7)

Let $\{X_j\}_{j=1}^n$ be i.i.d. with $X_j \approx Bin(1, p)$ Then,

$$S_n \stackrel{\text{def}}{=} X_1 + \ldots + X_n \approx \operatorname{Bin}(n, p). \tag{0.8}$$

To prove this, note first that for j = 1, ..., n,

1)
$$P(X_j = k) = \mu_{1,p}(k) = \begin{cases} p & \text{if } k = 1, \\ 1 - p & \text{if } k = 0. \end{cases}$$

Therefore, we have for any k = 0, 1, ..., n that

$$P(S_n = k) = \sum_{\substack{k_1, \dots, k_n = 0, 1 \\ k_1 + \dots + k_n = k}} P(X_1 = k_1, \dots, X_n = k_n)$$

=
$$\sum_{\substack{k_1, \dots, k_n = 0, 1 \\ k_1 + \dots + k_n = k}} \underbrace{P(X_1 = k_1) \cdots P(X_n = k_n)}_{\substack{1 \\ = p^k (1-p)^{n-k}}} = \binom{n}{k} p^k (1-p)^{n-k}.$$

Question Let Z be a r.v. defined on a probability space (Ω, \mathcal{F}, P) such that $Z \approx Bin(n, p)$. Is it always true that there exist iid $X_j \approx Bin(1, p)$ (j = 1, ..., n) defined on (Ω, \mathcal{F}, P) such that $Z = X_1 + ... + X_n$?

The histogram on the left looks like that of the normal distribution, which can be explained by the **de Moivre-Laplace theorem**: Suppose that $n, k \to \infty$ and $\frac{k-np}{n^{2/3}} \to 0$. Then,

$$\mu_{n,p}(k) \sim \frac{1}{\sqrt{2\pi v n}} \exp\left(-\frac{(k-np)^2}{2vn}\right), \text{ where } v = p(1-p).$$
(0.9)

On the other hand, the histogram on the right looks like that of Poisson distribution, which can be explained by law of small numbers: Suppose that $n \to \infty$, $p \to 0$, $np \to c > 0$. Then,

$$\binom{n}{k} p^k (1-p)^{n-k} \longrightarrow \frac{e^{-c} c^k}{k!}, \quad k \in \mathbb{N}.$$
(0.10)

 $\langle (^{\square}) /$

Example 0.1.4 (Gamma distributions) Let a, c > 0.

▶ We define (c, a)-gamma distribution $\gamma_{c,a} \in \mathcal{P}((0, \infty))$ by

$$\gamma_{c,a}(B) = \frac{c^a}{\Gamma(a)} \int_B x^{a-1} e^{-cx} dx, \quad \text{for } B \in \mathcal{B}((0,\infty)).$$
(0.11)

Here, we have introdued the Gamma function as usual:

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx, \quad a \in \mathbb{C}, \text{ Re}(a) > 0.$$

$$(0.12)$$

 $\gamma_{c,a}$ is also denoted by $\gamma(c,a)$. It is not difficult to see that

$$EX = a/c, \quad \text{var } X = a/c^2.$$
 (0.13)

0.2 The Law of Large Numbers

Theorem 0.2.1 (The Law of Large Numbers) Let $S_n = X_1 + ... + X_n$, where $\{X_n\}_{n \ge 1}$ are *i.i.d.* with $E|X_n| < \infty$. Then,

$$\frac{S_n}{n} \xrightarrow{n \to \infty} EX_1, \quad P\text{-}a.s. \tag{0.14}$$

Example 0.2.2 (Uniqueness of the Laplace transform) Let $\mu_1, \mu_2 \in \mathcal{P}([0,\infty))$. Then $\mu_1 = \mu_2$ if

$$\int_{[0,\infty)} e^{-\lambda x} d\mu_1(x) = \int_{[0,\infty)} e^{-\lambda x} d\mu_2(x) \quad \text{for all } \lambda \ge 0.$$

$$(0.15)$$

Proof: Let $f \in C_{\rm b}([0,\infty) \to [0,\infty))$ be arbitrary. We first prove the following approximation:

1) $\lim_{n \neq \infty} f_n(x) = f(x)$ for all $x \ge 0$,

where

$$f_n(x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right), \quad n \in \mathbb{N}.$$

To prove 1), we may assume x > 0, since $f_n(0) = f(0)$. For x > 0, we let

$$S_n = X_1 + \ldots + X_n$$

where X_n are iid, $\approx \pi_x$ (cf. (0.3)). Then,

2) $S_n \stackrel{(0.5)}{\approx} \pi_{nx}$.

Moreover, by the law of large numbers (Theorem 0.2.1),

$$S_n/n \xrightarrow{n \to \infty} EX_1 \stackrel{(0.4)}{=} x$$
, a.s.

and hence by the bounded convergence theorem,

$$f_n(x) \stackrel{2)}{=} E[f(S_n/n)] \stackrel{n \to \infty}{\longrightarrow} f(x).$$

We now use 1) to prove that $\mu_1 = \mu_2$. It is enough to prove that

3)
$$\int_{[0,\infty)} f d\mu_1 = \int_{[0,\infty)} f d\mu_2.$$

Indeed, by differentiating (0.15) k times at in λ and then setting $\lambda = n \in \mathbb{N}$, we have that

$$\int_{[0,\infty)} x^k e^{-nx} d\mu_1(x) = \int_{[0,\infty)} x^k e^{-nx} d\mu_2(x) \quad \text{for all } k, n \in \mathbb{N}.$$

By multiplying both hands-sides of the above identity by $\frac{n^k}{k!}f\left(\frac{k}{n}\right)$, and adding over $k \in \mathbb{N}$, we arrive at:

4)
$$\int_{[0,\infty)} f_n d\mu_1 = \int_{[0,\infty)} f_n d\mu_2$$
.

Since $\sup_{x\geq 0} |f_n(x)| \leq \sup_{x\geq 0} |f(x)|$, we obtain 3) from 2) and 4) via the bounded convergence theorem. $\langle (^{\Box}) /$

0.3 Characteristic functions

For $\nu \in \mathcal{P}(\mathbb{R}^d)$, we define its **Fourier transform** by

$$\widehat{\nu}(\theta) \stackrel{\text{def}}{=} \int \exp(\mathbf{i}(\theta \cdot x)) d\nu(x), \ \theta \in \mathbb{R}^d.$$

Proposition 0.3.1 (Characteristic function) For $\nu \in \mathcal{P}(\mathbb{R}^d)$ and a r.v. $X : \Omega \to \mathbb{R}^d$, the following are equivalent:

a) $E \exp(\mathbf{i}(\theta \cdot X)) = \hat{\nu}(\theta)$ for all $\theta \in \mathbb{R}^d$;

b) $X \approx \nu$.

▶ The expectation on the left-hand side of a) above is called the characteristic function (ch.f. for short) of X.

Example 0.3.2 (ch.f. of a Poisson r.v.) Let $\pi_c(n) = \frac{e^{-c_c n}}{n!}$, $n \in \mathbb{N}$, c > 0, cf. (0.3) and N be a r.v. $\approx \pi_c$, . We then see for any $z \in \mathbb{C}$ that

$$E[z^{N}] = e^{-c} \sum_{n \ge 0} z^{n} \frac{c^{n}}{n!} = \exp(((z-1)c)).$$

This shows (by setting $z = \exp(i\theta)$) in particular that

$$\widehat{\pi}_c(\theta) = E \exp(\mathbf{i}\theta N) = \exp((e^{\mathbf{i}\theta} - 1)c).$$
(0.16)

Example 0.3.3 (*) (ch.f. of a Gamma r.v.) For $z \in \mathbb{C} \setminus \{0\}$, we define Arg $z \in (-\pi, \pi]$ (argument of z) by

$$z = |z| \exp(\mathbf{i} \operatorname{Arg} z),$$

and $\operatorname{Log} z \in \mathbb{C}$ by

$$\log z = \log |z| + \mathbf{i} \operatorname{Arg} z$$

By definition, Arg z is the angle, signed counter-clockwise, from the positive real axis to the vecor representing z.

Finally we set:

$$z^s = \exp(s \operatorname{Log} z)$$
, for $z \in \mathbb{C} \setminus \{0\}$ and $s \in \mathbb{C}$.

Let X be a real r.v. such that $X \approx \gamma_{c,a}$. We will show that

1)
$$E \exp(-zX) = \left(1 + \frac{z}{c}\right)^{-a}$$
 for any $z \in \mathbb{C}$ with $\operatorname{Re} z > -c$.

Then, it follows from 1) that for $\theta \in \mathbb{R}$,

$$\widehat{\gamma_{c,a}}(\theta) = \left(1 - \frac{\mathbf{i}\theta}{c}\right)^{-a} = \left|1 - \frac{\mathbf{i}\theta}{c}\right|^{-a} \exp\left(-a\mathbf{i}\operatorname{Arg}\left(1 - \frac{\mathbf{i}\theta}{c}\right)\right)$$
$$= \left(1 + \frac{\theta^2}{c^2}\right)^{-a/2} \exp\left(\mathbf{i}a\operatorname{Arctan}\frac{\theta}{c}\right). \tag{0.17}$$

To prove 1), note first that both hand-sides are holomorphic in z for $\operatorname{Re} z > -c$. Therefore, it is enough to prove it for all $z = t \in (-c, \infty)$. Then,

$$E \exp(-tX) \stackrel{(0.11)}{=} \frac{c^a}{\Gamma(a)} \int_0^\infty x^{a-1} e^{-(t+c)x} dx$$
$$\stackrel{x=y/(t+c)}{=} \frac{c^a}{\Gamma(a)} \left(\frac{1}{t+c}\right)^a \underbrace{\int_0^\infty y^{a-1} e^{-y} dy}_{=\Gamma(a)} = \left(1 + \frac{t}{c}\right)^{-a}.$$

This proves 1).

Example 0.3.4 (*) (Stieltjes' counterexample to the moment problem) We consider the following question. Suppose that a function $f \in C([0, \infty))$ satisfies

$$\int_0^\infty x^n |f(x)| dx < \infty, \text{ and } \int_0^\infty x^n f(x) dx = 0 \text{ for all } n \in \mathbb{N}.$$

Then $f \equiv 0$?

Stieltjes gave a counterexample $f(x) \stackrel{\text{def}}{=} \exp(-x^{1/4}) \sin x^{1/4}$ to this question (1894). We can use (0.17) to verify that the above function is indeed a counterexample. In fact, we see from (0.17) that $\widehat{\gamma_{1,4n+4}}(1) \in \mathbb{R}$ for all $n \in \mathbb{N}$. Thus, taking the imaginary part, we have

$$0 = \int_0^\infty x^{4n+3} e^{-x} \sin x \, dx = \frac{1}{4} \int_0^\infty x^n \exp(-x^{1/4}) \sin x^{1/4} \, dx.$$

Example 0.3.5 (\star) (Euler's complementary formula for the Gamma function) We will use (0.17) to prove the following identity due to Euler:

$$\frac{1}{\Gamma(1+a)\Gamma(1-a)} = \frac{\sin(\pi a)}{\pi a}, \quad a \in (0,1).$$
(0.18)

Let $f_a(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x} \mathbf{1}_{x>0}$ (the density of $\gamma(1, a)$). We have by the Plancherel formula that:

1)
$$\int_0^\infty f_{1+a}(x)f_{1-a}(x)dx = \frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f_{1+a}(\theta)}\widehat{f_{1-a}(-\theta)}d\theta.$$

Since

$$f_{1+a}(x)f_{1-a}(x) = \frac{1}{\Gamma(1+a)\Gamma(1-a)}e^{-2x}\mathbf{1}_{x>0},$$

we see that

2)
$$\int_0^\infty f_{1+a}(x)f_{1-a}(x)dx = \frac{1}{2\Gamma(1+a)\Gamma(1-a)}$$

On the other hand,

$$\widehat{f_{1+a}}(\theta)\widehat{f_{1-a}}(-\theta) \stackrel{(0.17)}{=} \frac{1}{1+\theta^2} \exp(\mathbf{i}(1+a)\operatorname{Arctan}\theta - \mathbf{i}(1-a)\operatorname{Arctan}\theta)$$
$$= (\operatorname{Arctan}\theta)' \exp(2\mathbf{i}a\operatorname{Arctan}\theta).$$

Thus,

3)
$$\begin{cases} \int_{\mathbb{R}} \widehat{f_{1+a}}(\theta) \widehat{f_{1-a}}(-\theta) d\theta & \stackrel{t=\operatorname{Arctan} \theta}{=} & \int_{-\pi/2}^{\pi/2} \exp(2\mathbf{i}at) dt \\ &= & \frac{\exp(\mathbf{i}a\pi) - \exp(-\mathbf{i}\pi a)}{2\mathbf{i}a} = \frac{\sin(\pi a)}{a} \end{cases}$$

By 1)-3, we obtain (0.18).

0.4 Weak Convergence

Proposition 0.4.1 (Weak convergence of r.v.'s) For $n = 0, 1, ..., let X_n$ be \mathbb{R}^d -valued r.v.'s and that $X_n \approx \mu_n \in \mathcal{P}(\mathbb{R}^d)$. Then, the following are equivalent:

a) $E \exp(\mathbf{i}\theta \cdot X_n) \longrightarrow E \exp(\mathbf{i}\theta \cdot X_0)$ for all $\theta \in \mathbb{R}^d$.

b)
$$\mu_n \xrightarrow{w} \mu_0$$
.

▶ The sequence $(X_n)_{n\geq 0}$ is said to converge weakly (or converge in law) to X_0 if one (therefore all) of the above conditions is satisfied. We will henceforth denote this convergence by

 $X_n \xrightarrow{w} X_0 \quad or \quad X_n \xrightarrow{w} \mu_0$

Example 0.4.2 Let $(N_c)_{c>0}$ be r.v.'s such that $\pi_c(k) \stackrel{\text{def}}{=} P(N_c = k) = e^{-c}c^k/k!$ for all $k \in \mathbb{N}$ and c > 0. We will prove the following two facts, of which the first is probabilistic, the second purely analytic:

- a) $\frac{N_c c}{\sqrt{c}} \xrightarrow{w} N(0, 1)$, as $c \to \infty$ (Central limit theorem).
- b) $n! \stackrel{n \to \infty}{\sim} \sqrt{2\pi n} (n/e)^n$ (Stirling's formula).

Proof: a) Note that

$$\exp(\mathbf{i}\theta) = 1 + \mathbf{i}\theta - \frac{\theta^2}{2} + O(|\theta|^3) \text{ as } \theta \to 0,$$

and hence that

1)
$$\exp\left(\mathbf{i}\frac{\theta}{\sqrt{c}}\right) = 1 + \frac{\mathbf{i}\theta}{\sqrt{c}} - \frac{\theta^2}{2c} + O\left(\frac{|\theta|^3}{c^{3/2}}\right) \text{ as } c \to \infty \text{ for any } \theta \in \mathbb{R}.$$

Since $\widehat{\pi}_c(\theta) \stackrel{(0.16)}{=} \exp(c(\exp(\mathbf{i}\theta) - 1))$, we have

2)
$$\begin{cases} E \exp\left(\mathbf{i}\theta \frac{N_c - c}{\sqrt{c}}\right) = \widehat{\pi}_c \left(\frac{\theta}{\sqrt{c}}\right) \exp\left(-\mathbf{i}\sqrt{c}\theta\right) \\ = \exp\left(c \left(\exp\left(\mathbf{i}\frac{\theta}{\sqrt{c}}\right) - 1 - \mathbf{i}\frac{\theta}{\sqrt{c}}\right)\right) \\ \frac{1}{2} \exp\left(c \left(-\frac{\theta^2}{2c} + O\left(\frac{\theta^3}{c^{3/2}}\right)\right)\right) \xrightarrow{c \to \infty} \exp\left(-\frac{\theta^2}{2}\right). \end{cases}$$

Recall that $\exp\left(-\frac{\theta^2}{2}\right)$ is the Fourier transform of N(0,1). We see the desired weak convergence from 2) and Proposition 0.4.1.

b) We have that

$$\widehat{\pi_c}(\theta) = \sum_{k \ge 0} \exp(\mathbf{i}k\theta) \pi_c(k), \quad \theta \in \mathbb{R}$$

Multiplying $\exp(-in\theta)/(2\pi)$ to the both hands sides of the above identity and integrating them over $\theta \in [-\pi, \pi]$, we obtain

3)
$$\pi_c(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widehat{\pi}_c(\theta) \exp(-\mathbf{i}n\theta) d\theta.$$

Moreover, since $1 - \cos \theta \ge \frac{2\theta^2}{\pi^2}$, $|\theta| \le \pi$, we have

4)
$$\left| \widehat{\pi_c} \left(\frac{\theta}{\sqrt{c}} \right) \right| = \exp\left(-c \left(1 - \cos \frac{\theta}{\sqrt{c}} \right) \right) \le \exp\left(-\frac{2\theta^2}{\pi^2} \right), \quad |\theta| \le \pi\sqrt{c}.$$

Finally, note that

5)
$$\begin{cases} \frac{\sqrt{n}}{n!} \left(\frac{n}{e}\right)^n = \sqrt{n}\pi_n(n) \stackrel{3)}{=} \frac{\sqrt{n}}{2\pi} \int_{-\pi}^{\pi} \widehat{\pi_n}(\theta) \exp(-\mathbf{i}n\theta) d\theta \\ = \frac{1}{2\pi} \int_{-\pi\sqrt{n}}^{\pi\sqrt{n}} \widehat{\pi_n} \left(\frac{\theta}{\sqrt{n}}\right) \exp(-\mathbf{i}\sqrt{n}\theta) d\theta \end{cases}$$

By (2), (4) and the dominated convergence theorem, we conclude that

the RHS 5)
$$\xrightarrow{n \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\frac{\theta^2}{2}\right) d\theta = \frac{1}{\sqrt{2\pi}}.$$

 $\langle (\cap_{\Box}) /$

This proves b).

0.5 Martingales

We suppose that (Ω, \mathcal{F}, P) is a probability space, and that \mathcal{G} is a sub σ -algebra of \mathcal{F} .

Proposition 0.5.1 (Conditional expectation) Let $X \in L^1(P)$.

a) There exists a unique $Y \in L^1(\Omega, \mathcal{G}, P|_{\mathcal{G}})$ such that

$$E[X:A] = E[Y:A] \text{ for all } A \in \mathcal{G}.$$
(0.19)

The r.v. Y is called the conditional expectation of X given \mathcal{G} , and is denoted by $E[X|\mathcal{G}]$.

b) For $X, X_n \in L^1(P)$ $(n \in \mathbb{N})$,

$$E[\alpha X_{1} + \beta X_{2}|\mathcal{G}] = \alpha E[X_{1}|\mathcal{G}] + \beta E[X_{2}|\mathcal{G}], \quad a.s. \text{ for } \alpha, \beta \in \mathbb{R}, \quad (0.20)$$

$$X_{1} \leq X_{2}, \quad a.s. \implies E[X_{1}|\mathcal{G}] \leq E[X_{2}|\mathcal{G}], \quad a.s., \quad (0.21)$$

$$|E[X|\mathcal{G}]| \leq E[|X||\mathcal{G}], \quad a.s., \quad (0.22)$$

$$X \text{ is } \mathcal{G}\text{-measurable} \iff E[X|\mathcal{G}] = X, \quad a.s. \quad (0.23)$$

$$E[X:A] = EXP(A), \forall A \in \mathcal{G} \iff E[X|\mathcal{G}] = EX, \quad a.s. \quad (0.24)$$

$$X \text{ is independent of } \mathcal{G} \implies E[X|\mathcal{G}] = EX, \quad a.s. \quad (0.25)$$

$$X_{n} \xrightarrow{n \to \infty} X \text{ in } L^{1}(P) \iff E[|X_{n} - X||\mathcal{G}] \xrightarrow{n \to \infty} 0 \text{ in } L^{1}(P). \quad (0.26)$$

We assume that

- (Ω, \mathcal{F}, P) is a probability space and $\mathbb{T} \subset \mathbb{R}$;
- $(\mathcal{F}_t)_{t\in\mathbb{T}}$ is a filtration;
- $X = (X_t)_{t \in \mathbb{T}}$ is a sequence of real r.v.'s defined on (Ω, \mathcal{F}, P) .

Definition 0.5.2 $X = (X_t, \mathcal{F}_t)_{t \in \mathbb{T}}$ is called a **martingale** if the following hold true.

- (adapted) X_t is \mathcal{F}_t -measurable for all $t \in \mathbb{T}$;
- (integrable) $X_t \in L^1(P)$ for all $t \in \mathbb{T}$;
- (martingale property)

$$E[X_t | \mathcal{F}_s] = X_s \text{ a.s. if } s, t \in \mathbb{T} \text{ and } s < t.$$

$$(0.27)$$

If the equality in (0.27) is replaced by \geq (resp. \leq), X is called a **submartingale** (resp. **supermartingale**).

Example 0.5.3 Let $\mathcal{F}_{\infty} = \sigma (\mathcal{F}_t, t \in \mathbb{T})$, Q be a signed measure on $(\Omega, \mathcal{F}_{\infty})$, and $P_t = P|_{\mathcal{F}_t}$, $Q_t = Q|_{\mathcal{F}_t}$. Suppose that $Q_t \ll P_t$ for all $t \in \mathbb{T}$. Then, $X_t \stackrel{\text{def}}{=} \frac{dQ_t}{dP_t}$, $t \in \mathbb{T}$ is a martingale. Proof: X_t is \mathcal{F}_t -measurable and $X_t \in L^1(P)$. Let $s, t \in \mathbb{T}$, s < t and $A \in \mathcal{F}_s$. Then, since $A \in \mathcal{F}_t$,

$$E[X_t : A] = Q_t(A) = Q(A) = Q_s(A) = E[X_s : A].$$

X_s, a.s. \\(^_^^)/

Thus, $E[X_t|\mathcal{F}_s] = X_s$, a.s.

Now, a naive qustion arises.

Question 1 Is an arbitrary martingale X_t expressed as $X_t = dQ_t/dP_t$ by a sined measure Q as in Example 0.5.3?

But the answer is clearly negative. Indeed, if $X_t = dQ_t/dP_t$ for a sined measure Q, then

$$\sup_{t \ge 0} E|X_t| = \sup_{t \ge 0} |Q_t| \le |Q|, \tag{0.28}$$

where $|Q_t|$ and |Q| above are total variations. Therefore, the martingale X_t should be at least L^1 -bounded. We now arrive at a less obvious question:

Question 2 Is an arbitrary L^1 -bounded martingale X_t expressed as $X_t = dQ_t/dP_t$ by a sined measure Q as in Example 0.5.3?

I am grateful to Francis Comets for bringing the following lemma to my interest.

Lemma 0.5.4 Suppose that the set $\mathbb{T} \subset \mathbb{R}$ is unbounded from above and that $X = (X_t, \mathcal{F}_t)_{t \in \mathbb{T}}$ is a submartingale such that $\sup_{t \in \mathbb{T}} E[X_t^+] < \infty$.

- **a)** There exists a martingale $Y = (Y_t, \mathcal{F}_t)_{t \in \mathbb{T}}$ such that $X_t^+ \leq Y_t$ for all $t \in \mathbb{T}$.
- b) (Krickeberg decomposition) There exists a nonnegative supermartingale $Z = (Z_t, \mathcal{F}_t)_{t \in \mathbb{T}}$ such that $X_t = Y_t Z_t$ for all $t \in \mathbb{T}$. In particular, Z is a martingale if X is a martingale.

Proof: a) We start by observing that

1) $t, u, v \in \mathbb{T}, t \leq u < v \implies E[X_u^+ | \mathcal{F}_t] \leq E[X_v^+ | \mathcal{F}_t], \text{ a.s.}$

Indeed, $(X_t^+, \mathcal{F}_t)_{t \in \mathbb{T}}$ is a submartingale. Thus,

$$X_u^+ \le E[X_v^+ | \mathcal{F}_u], \text{ a.s.}$$

We obtain 1) by taking the conditional expectations of the both hands sides of the above identity.

By 1), the limit $Y_t \stackrel{\text{def}}{=} \lim_{u \to \infty} E[X_u^+ | \mathcal{F}_t] \in [0, \infty]$ exists and $X_t^+ \leq Y_t$ for all $t \in \mathbb{T}$. We verify that

2) $Y = (Y_t, \mathcal{F}_t)_{t \in \mathbb{T}}$ is a martingale.

First, $Y_t \in L^1(P)$ for all $t \in \mathbb{T}$, since by 1) and the monotone convergence theorem,

$$EY_t = \lim_{u \to \infty} E[E[X_u^+ | \mathcal{F}_t]] = \lim_{u \to \infty} E[X_u^+] < \infty.$$

Next, if $s, t \in \mathbb{T}$ and s < t, then, by the monotone convergence theorem for conditional expectations,

$$E[Y_t|\mathcal{F}_s] = \lim_{u \to \infty} E[E[X_u^+|\mathcal{F}_t]|\mathcal{F}_s] = \lim_{u \to \infty} E[X_u^+|\mathcal{F}_s] = Y_s, \text{ a.s.}$$

b) $Z_t \stackrel{\text{def}}{=} Y_t - X_t, t \in \mathbb{T}$ is a nonnegative supermartingale. In particular, Z is a martingale if X is a martingale. $\langle (^{\land}_{\Box} ^{\land}) /$

Let $X = (X_t)_{t \in \mathbb{T}}$ be a process. We write $\mathcal{F}_t^X = \sigma(X_s ; s \in \mathbb{T} \cap [0, t])$ $t \in \mathbb{T}$, and $\mathcal{F}_{\infty}^X = \sigma(\mathcal{F}_t^X ; t \in \mathbb{T})$. For a signed measure Q on $(\Omega, \mathcal{F}_{\infty}^X)$, let |Q| be its variation, $Q^{\pm} = (|Q| \pm Q)/2$ (Jordan decomposition) and $Q_t = Q|_{\mathcal{F}_t^X}$.

Lemma 0.5.5 Let $Y = (Y_t, \mathcal{F}_t^X)_{t \in \mathbb{T}}$ be a nonnegative, mean-one martingale. Then, there exists a unique probability measure P^Y on $(\Omega, \mathcal{F}_{\infty}^X)$ such that

$$P^{Y}(A) = E[Y_t : A] \text{ for all } t \in \mathbb{T} \text{ and } A \in \mathcal{F}_t^X.$$

Proof: For each $t \in \mathbb{T}$, let $\tilde{P}_t(A) = E[Y_t : A]$ for $A \in \mathcal{F}_t^X$. Then, the family of measures $(\mathcal{F}_t^X, \tilde{P}_t), t \in \mathbb{T}$ are consistent in the sense that $\tilde{P}_t|_{\mathcal{F}_s^X} = \tilde{P}_s$ if $s, t \in \mathbb{T}, s < t$. Thus, by Kolmogorov's extension theorem, there exists a unique probability measure P^Y on $(\Omega, \mathcal{F}_\infty^X)$ such that $P^Y|_{\mathcal{F}_t^X} = \tilde{P}_t$ for all $t \in \mathbb{T}$.

Proposition 0.5.6 Suppose that the set \mathbb{T} is ubbounded from above, and that $X = (X_t, \mathcal{F}_t^X)_{t \in \mathbb{T}}$ is a martingale. Then, the following conditions are equivalent.

- **a)** X is a difference of two nonnegative (\mathcal{F}_t^X) -martingales.
- **b1)** There exists a signed measure Q on $(\Omega, \mathcal{F}_{\infty}^X)$ such that for all $t \in \mathbb{T}$, $|Q|_t \ll P_t$ and $dQ_t/dP_t = X_t$.
- **b2)** There exists a signed measure Q on $(\Omega, \mathcal{F}_{\infty}^X)$ such that for all $t \in \mathbb{T}$, $Q_t \ll P$ and $dQ_t/dP_t = X_t$.
- c) $\sup_{t\in\mathbb{T}} E|X_t| < \infty.$

Proof: of Proposition 0.5.6: a) \Rightarrow b1): Suppose that X is a difference of two nonnegative (\mathcal{F}_t^X) -martingales Y_t and Z_t . Then, by Lemma 0.5.5, there exist finite measures Q^Y, Q^Z on $(\Omega, \mathcal{F}_\infty^X)$ such that for all $t \in \mathbb{T}, Q_t^Y \ll P_t, Q_t^Z \ll P_t, Y_t = dQ_t^Y/dP_t, Z_t = dQ_t^Z/dP_t$. Set $Q = Q^Y - Q^Z$. Then, $|Q| \leq Q^Y + Q^Z$ and hence $|Q|_t \leq (Q^Y + Q^Z)_t \ll P_t$. Moreover,

$$dQ_t/dP_t = d(Q_t^Y - dQ_t^Z)/dP_t = dQ_t^Y/dP_t - dQ_t^Z/dP_t = Y_t - Z_t = X_t.$$

 $\langle (\cap_{\Box}) /$

b1) \Rightarrow b2): This follows from the inequality $|Q_t| \le |Q|_t$. b2) \Rightarrow c): $E|X_t| = |Q_t|(\Omega) \le |Q|(\Omega) < \infty$. c) \Rightarrow a): This follows from Lemma 0.5.4.

0.6 Brownian Motion

The Brownian motion came into the history in 1827, when R. Brown, a British botanist, observed that pollen grains suspended in water perform a contunual swarming motion. In 1905, A. Einstein derived (0.30) below from the moleculer physics point of view. A mathematically rigorous construction with a proof of the continuity (cf. B3) below) was given by N. Wiener (1923).

We fix a probability space (Ω, \mathcal{F}, P) in this subsection. In the sequel, we will repeatedly refer to a finite time series of the form

$$0 = t_0 < t_1 < \dots < t_n, \ n \ge 1.$$
(0.29)

Definition 0.6.1 (Brownian motion) Let $B = (B_t : \Omega \to \mathbb{R}^d)_{t \ge 0}$ be a family r.v.'s. We consider the following conditions.

B1) For any time series (0.29), the following r.v.'s are independent.

$$B(0), B(t_1) - B(0), \ldots, B(t_n) - B(t_{n-1}).$$

B2) For any $0 \le s < t$,

$$B_t - B_s \approx N(0, (t - s)I_d),$$
 (0.30)

where I_d is the identity matrix of degree d,

B3) There is an $\Omega_B \in \mathcal{F}$ such that $P(\Omega_B) = 1$ and $t \mapsto B_t(\omega)$ is continuous for all $\omega \in \Omega_B$.

B4) $B_0 = x$, for a nonrandom vector $x \in \mathbb{R}^d$,

▶ *B* is called a *d*-dimensional **Brownian motion** (BM^{*d*} for short) if the conditions B1)–B3) are satisfied.

▶ *B* is called a *d*-dimensional **Brownian motion** started at x (BM^{*d*}_{*x*} for short), if the conditions B1)–B4) are satisfied.

▶ *B* is called a *d*-dimensional **pre-Brownian motion** (pre-BM^{*d*} for short), if the conditions B1), B2) are satisfied. A *d*-dimensional **pre-Brownian motion** is said to be started at *x*, if it saitesfies B4) and is abbreviated by pre-BM^{*d*}_{*x*}.

0.7 Continuity of the Brownian Motion

Referring to Definition 0.6.1, given the distribution of B_0 , the distribution of $B = (B_t)_{t\geq 0}$ is determined by properties B1) and B2). Then,

Question 1 Do all pre-Brownian motions have continuous path?

Example 0.7.1 Let B be BM_0^1 , and U be a r.v. uniformly distributed on (0, 1), which is independent of B. Now, define $\widetilde{B} = (\widetilde{B}_t)_{t \ge 0}$ by

$$\widetilde{B}_t = \begin{cases} B_t, & \text{if } t \neq U, \\ 0, & \text{if } t = U. \end{cases}$$

Since P(t = U) = 0 for any fixed $t \ge 0$, B and \tilde{B} have the same law, and hence the latter is a pre-BM₀¹. However, \tilde{B} is discontinuous a.s.

In fact, Example 0.7.1 does more job than to construct a discontinuous pre Brownian motion. The following remark is due to Kouji Yano:

Proposition 0.7.2 The following "event" is not $\sigma(B)$ -measurable:

 $C \stackrel{\text{def}}{=} \{B_t \text{ is continuous in } t \ge 0\}.$

Proof (sketch): The map $B \mapsto \widetilde{B}$ preserves the law of the Brownian motion. Thus, if C is $\sigma(B)$ -measurable, then, it should be the case that $P(B \in C) = P(\widetilde{B} \in C)$, a contradiction (1 = 0)!

0.8 Germ triviality

Let B be a BM^d. We define the **right-continuous enlargement** $(\mathcal{F}_t)_{t\geq 0}$ of the canonical filtration $(\mathcal{F}_t^0)_{t\geq 0}$ as follows;

$$\mathcal{F}_t^0 = \sigma(B_s \; ; \; s \le t), \text{ and } \mathcal{F}_t = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}^0.$$
 (0.31)

In particular, \mathcal{F}_0 is called the **germ** σ -algebra. The technical advantage of introducing \mathcal{F}_t ("an infinitesimal peeking in the future") is to enlarge \mathcal{F}_t^0 to get the right-continuity:

$$\bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon} = \mathcal{F}_t, \quad \forall t \ge 0.$$
(0.32)

Indeed,

$$\bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon} = \bigcap_{\varepsilon>0} \bigcap_{\delta>0} \mathcal{F}_{t+\varepsilon+\delta}^0 = \bigcap_{\varepsilon,\delta>0} \mathcal{F}_{t+\varepsilon+\delta}^0 = \mathcal{F}_t.$$

Note that \mathcal{F}_t is strictly larger than \mathcal{F}_t^0 . For example, the r.v. $X = \overline{\lim_{n \to \infty}} B^1(t + \frac{1}{n})$ is \mathcal{F}_t -measurable, but not \mathcal{F}_t^0 -measurable.

The following fact is well-known.

Proposition 0.8.1 (Germ triviality/Blumenthal zero-one law) For BM_x^d for some $x \in \mathbb{R}^d$, $A \in \mathcal{F}_0 \implies P(A) \in \{0, 1\}.$

Question 1 How much larger is \mathcal{F}_t than \mathcal{F}_t^0 ?

Question 2 Can germ triviality be explained from a general property for \mathcal{F}_t $(t \ge 0)$?

Question 3 Does germ triviality remain true for pre-Brownian motions?

Proposition 0.8.2 (Markov property) Let $s \ge 0$ and $G \in \mathcal{T}_s \stackrel{\text{def}}{=} \sigma(B_t ; t \ge s)$. Then, $P(G|\mathcal{F}_s) = P(G|B_s), \text{ a.s.}$ (0.33) Proposition 0.8.2 can be used to show that the right-continuous enlargement of \mathcal{F}_t is larger than \mathcal{F}_t^0 by null sets:

Proposition 0.8.3 Let B be a BM^d , $t \ge 0$. Then,

a)

$$\mathcal{F}_t = \mathcal{F}_t^0 \lor \sigma(\mathcal{N}_t), \tag{0.34}$$

where \mathcal{N}_t denotes the totality of \mathcal{F}_t -measurable null sets.

b) In particular, if B is a BM_x^d for some $x \in \mathbb{R}^d$, then, $\mathcal{F}_0 = \sigma(\mathcal{N}_0)$ and hence $P(A) \in \{0,1\}$ for $A \in \mathcal{F}_0$ (germ triviality).

Proof: a) It is clear that $\mathcal{F}_t \supset \mathcal{F}_t^0 \lor \sigma(\mathcal{N}_t)$. We will show the opposite inclusion. Let

$$G \in \mathcal{G}_t \stackrel{\text{def}}{=} \bigcap_{\varepsilon > 0} \sigma(B_{t+s} ; 0 \le s \le \varepsilon).$$

Since $\mathcal{G}_t \subset \mathcal{F}_t \cap \mathcal{T}_t$, we see from (0.33) that

$$\mathbf{1}_G = P(G|\mathcal{F}_t) \stackrel{(0.33)}{=} P(G|B_t), \text{ a.s.}$$

Thus, $\mathbf{1}_G$ is a.s. equals to an $\sigma(B_t)$ -measurable function. This implies that

$$\mathcal{G}_t \subset \sigma(B_t) \vee \sigma(\mathcal{N}_t).$$

Hence

$$\mathcal{F}_t = \mathcal{F}_t^0 \lor \mathcal{G}_t \subset \mathcal{F}_t^0 \lor \sigma(\mathcal{N}_t).$$

b) Suppose in particular that B is a BM_x^d for some $x \in \mathbb{R}^d$. Then $\mathcal{F}_0^0 = \{\emptyset, \Omega\}$, and hence $\mathcal{F}_0 = \sigma(\mathcal{N}_0)$, which consists only of events A with $P(A) \in \{0, 1\}$. $(^{\circ}_{\square})/$

Remark:

The germ triviality is not true in gereral for pre-Brownian motions. In fact, let B be BM_0^1 , and U be a r.v. uniformly distributed on (0, 1), which is independent of B. Now, define $\widetilde{B} = (\widetilde{B}_t)_{t>0}$ by

$$\widetilde{B}_t = \begin{cases} B_t & \text{if } t \neq U/n \text{ for any } n \in \mathbb{N}, \\ U & \text{if } t = U/n \text{ for some } n \in \mathbb{N}. \end{cases}$$

Since $P(t = U/n \text{ for some } n \in \mathbb{N}) = 0$ for any fixed $t \ge 0$, B and \widetilde{B} have the same law, and hence the latter is a pre-BM₀¹. However, the germ σ -algebra of \widetilde{B} contains $\sigma(U)$.

References

- [Bil95] Billingsley, P: "Probability and Measure", 3rd Ed. Wiley Series in Probability and Statistics, 1995.
- [Chu74] Chung, K.-L. : "A Course in Probability Theory", Harcourt Brace & World
- [Dud89] Dudley, R.: "Real Analysis and Probability", Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, Calfornia.
- [Dur84] Durrett, R. : "Brownian Motion and Martingales in Analysis", Wadsworth & Brooks/Cole Advanced Books & Software, Belmont, Calfornia.
- [Dur95] Durrett, R. : "Probability-Theory and Examples", 2nd Ed., Duxbury Press, 1995.
- [Fol76] Folland, G. B.: Introduction to partial differential equations, Princeton University Press, 1976.
- [IkWa89] Ikeda, N. and Watanabe, S. : Stochastic Differential Equations and Diffusion Processes (2nd ed.), North-Holland, Amsterdam / Kodansha, Tokyo (1989).
- [KS91] Karatzas, I. and Shreve, S. E.: Brownian Motion and Stochastic Calculus, Second Edition. Springer Verlag (1991).
- [Kre89] Kreyszig, E. : Introductory Functional Analysis with Applications (Wiley Classics Library)
- [Law91] Lawler, G. F.: Intersections of Random Walks: Birkhäuser.
- [Leb72] Lebedev, N. N.: Special Functions & Their Applications, Dover, 1972.
- [LeG16] Le Gall, J.-F.: Brownian Motion, Martingales, and Stochastic Calculus, Springer Verlag (2016).
- [MP10] Möters, P., Peres, Y. "Brownian Motion" Cambridge University Press (2010).
- [RS80] Reed, M. and Simon, B. "Method of Modern Mathematical Physics II" Academic Press 1980.
- [Rud87] Rudin, W.: "Real and Complex Analysis—3rd ed." McGraw-Hill Book Company, 1987.
- [Spi76] Spitzer, F.: "Principles of Random Walks", Springer Verlag, New York, Heiderberg, Berlin (1976).

[Yos] Yoshida, N.: "A Course in Probability", http://www.math.nagoya-u.ac.jp/~ noby/pdf/prob.pdf