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Plan of Talk

In this talk, we review the relation between dilogarithm identities (DI) and cluster
algebras (CA), which is recently updated in view of cluster scattering diagrams (CSD).

Caution: Cluster scattering diagrams are nothing to do with scattering amplitudes
which is one of the theme of this workshop.

1 History in B.C. (1980s–2000)

2 DI and CA (2000–2015)

3 DI and CSD (2015– )
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Dilogarithms

Euler dilogarithm: (x ≤ 1) (1768)

Li2(x) =
∞∑
k=1

xk

k2

= −
∫ x

0

log(1− y)

y
dy.

Rogers dilogarithm: (0 ≤ x ≤ 1) (1907)

L(x) = −
1

2

∫ x

0

{
log(1− y)

y
+

log y

1− y

}
dy.

= Li2(x) +
1

2
log x log(1− x).

modified Rogers dilogarithm (no official name): (0 ≤ x) (1990’s– )

L̃(x) =
1

2

∫ x

0

{
log(1 + y)

y
−

log y

1 + y

}
dy.

= −Li2(−x)−
1

2
log x log(1 + x)

= L

(
x

1 + x

)
.

In this talk we maily use L̃(x). (Its importance is a key point of this talk.)
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Dilogarithm conjecture from Bethe ansatz method

In 1980’s Faddeev and others in Leningrad (St. Petersburg) started to study
integrable systems by the Bethe ansatz method.
The Rogers dilogartihm L(x) mysteriously appeared through the calculation of
the specific heats of various integrable lattice models.

Xr : simply laced Dynkin diagram:

◦ ◦ ◦ ◦
Ar

◦ ◦ ◦
◦
◦

Dr

◦ ◦ ◦ ◦ ◦
◦

E6

◦ ◦ ◦ ◦ ◦ ◦
◦

E7

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

E8

For nodes a and b in Xr , we write a ∼ b if it is adjacent in Xr .
Fix an integer ` ≥ 2, called the level.
For a pair (Xr, `), we define a system of algebraic equations for Q(a)

m

(a = 1, . . . , r; m = 1. . . . , `− 1):

(Q-system) Q
(a)
m

2
= Q

(a)
m+1Q

(a)
m−1 +

∏
b:b∼a

Q
(b)
m , Q

(a)
0 = Q

(a)
` = 1.

Conjecture [Kirillov89, Bazhanov-Reshetikhin 90]

For the unique positive real solution of the Q-system, the following equality holds:

r∑
a=1

`−1∑
m=1

L

(∏
b:b∼aQ

(b)
m

Q
(a)
m

2

)
=
rh(`− 1)

h+ `

π2

6
(h: Coxeter number of Xr).

Remarkably, Kirillov proved it for type Ar by the explicit solution [Kirillov89]. 5 / 24



History in B.C. (1980s–2000) DI and CA (2000–2015) DI and CSD (2015– )

Functional generalization of dilogarithm conjecture

The Y -system (a system of functional equations) was introduced by
Al. Zamolodchikov in 1991 to study some integrable field theories.
Gliozzi and Tateo conjectured the functional generalization of the dilogarithm
conjecture based on the Y -system for certain integrable field theories.

For the same pair (Xr, `) of the Q-system, we define a system of functional equations
for Y (a)

m (u) (a = 1, . . . , r; m = 1. . . . , `− 1; u ∈ Z):

(Y -system) Y
(a)
m (u− 1)Y

(a)
m (u+ 1) =

∏
b:b∼a(1 + Y

(b)
m (u)),

(1 + Y
(a)
m+1(u)−1)(1 + Y

(a)
m−1(u)−1)

,

Y
(a)
0 (u)−1 = Y

(a)
` (u)−1 = 0.

One can regard it as a system of recursion relations along discrete parameter u
(discrete dynamical system) with the initial variables Y (a)

m (0) and Y (a)
m (1).

Conjecture [Gliozzi-Tateo95]

(1) (Periodicity) Y (a)
m (u+ 2(h+ `)) = Y

(a)
m (u). (for ` = 2, [Zamlodchikov91])

(2) (functional dilogarithm identity)

2(h+`)−1∑
u=0

r∑
a=1

`−1∑
m=1

L̃(Y
(a)
m (u)) = 2rh(`− 1)

π2

6
.

For the positive constant solution, the DI reduces to the DI conjectured by [BR90].
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Examples of Y -system DI

Example 1. (Xr, `) = (A1, 2), where h = 2, period 2(h+ `) = 8.

We have only variables Y (u) = Y
(1)
1 (u), and the Y -system is given by

Y (u+ 1)Y (u− 1) = 1.

It has a reduced period of 4: Y (u+ 4) = Y (u+ 2)−1 = Y (u). The corresponding DI is

L̃(y) + L̃(y−1) =
π2

6
.

This is Euler’s identity.

Example 2. (Xr, `) = (A2, 2), where h = 3, period 2(h+ `) = 10.

We have variables Y1(u) := Y
(1)
1 (u), Y2(u) := Y

(2)
1 (u), and the Y -system is given by

Y1(u+ 1)Y1(u− 1) = 1 + Y2(u), Y2(u+ 1)Y2(u− 1) = 1 + Y1(u).

It has a half periodicity Y1(u+ 5) = Y2(u), Y2(u+ 5) = Y1(u). The corresponding DI is

L̃(y1) + L̃(y2(1 + y1)) + L̃(y−1
1 (1 + y2 + y1y2)) + L̃(y−1

1 y−1
2 (1 + y2)) + L̃(y2

−1) =
π2

2
.

This is Abel’s identity (the pentagon identity).

So, Y -system DIs are vast generalization of these classic identities by root systems.
They were very mysterious and only proved partially before cluster algebras (= B.C.).
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Development after cluster algebra

Solutions of Y -system conjectures for (Xr, `):

Who and When periodicity DI idea/method/result
Gliozzi-Tateo 95 (Ar, 2) (Ar, 2) explicit solution

Frenkel-Szenes 95 (Ar, 2) (Ar, 2) explicit solution
constancy condition (1)

Fomin-Zelevinsky 00∼ – – cluster algebra
Fomin-Zelevinsky 03 (any, 2) cluster structure (2)

Coxeter transformation (3)
Chapoton 05 (any, 2) (1) + (2)

evaluation at 0/∞ limit (4)
Szenes 06 (Ar , any) flat connection on graph
Volkov 06 explicit solution
Fomin-Zelevinsky 07 – – coefficients/ F-polynomials (5)
Keller 08 (any, any) (5)

cluster category
Auslander-Reiten theory

N 09 (any, any) (1)+(2)+(3)+(4)+(5)

There are other types of Y -systems, and the corresponding problems were also solved
by the cluster algebraic methods.
nonsimply-laced Y -system: [Inoue-Iyama-Kuniba-N-Suzuki13]
sine-Gordon Y -system: [N-Tateo10], [N-Stella14]
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Cluster algebra basics (1)

We say that an r × r integer matrix B = (bij) is skew-symmetrizable if it has a
decomposition (skew-symmetric decomposition)

B = ∆Ω,

where ∆ is a diagonal matrix whose diagonals are positive integers and Ω is a
skew-symmetric matrix.
For an integer a, let

[a]+ = max(a, 0).

For an n× n skew-symmetrizable matrix B and k = 1, . . . , r, a new r × r integer
matrix B′ = (b′ij) = µk(B) is defined by

b′ij =

{
−bij i = k or j = k,

bij + bik[bkj ]+[−bik]+bkj i, j 6= k.

It is called the mutation of B in direction k.

Fact

(1) B′ is also skew-symmetrizable with common skew-symmetrizer ∆.
(2) µk is involutive, i.e., µk(B′) = B.
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Cluster algebra basics (2)

A pair Υ = (y, B) is called a Y -seed, where y = (y1, . . . , yr) is an r-tuple of formal
variables, and B is an r × r skew-symmetrizable matrix.
For a Y -seed Υ = (y, B) and k = 1, . . . , r, a new Y -seed µk(Υ) = Υ′ = (y′, B′) is
defined by B′ = µk(B) and

y′i =

{
y−1
k i = k,

yiy
[bki]+
k (1 + yk)−bki i 6= k.

It is called the mutation of Υ in direction k.

Fact

µk is involutive, i.e., µk(y′, B′) = (y, B).

We define a left action of permutation σ of {1, . . . , r} on a seed Υ = (y, B) by
σ(Υ) = Υ′ = (y′, B′), where

y′i = yσ−1(i), b′ij = bσ−1(i)σ−1(j).
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DI associated with a period in CA

Consider a sequence of mutations

Υ(0) = (y(0), B(0))
k0−→ Υ(1) = (y(1), B(1))

k1−→ · · ·
kP−1−→ Υ(P ) = (y(P ), B(P )).

We say that it is σ-period if Υ(P ) = σ(Υ(0)) for a permutation σ.

After proving several Y -system DIs, I recognized that the periodicity is essential.

Theorem [N12]. (DI associated with a period in CA)

For any σ-period as above, the following DI holds:

P−1∑
s=0

δks L̃(yks (s)) = N
π2

6
,

where ∆ = diag(δ1, . . . , δr) is a common skew symmetrizer of B(s) = ∆Ω(s) and N
is some positive integer. It is also rewritten in the form (zero constant form)

P−1∑
s=0

εsδks L̃(yks (s)εks ) = 0,

where εs ∈ {±1} is the tropical sign of yks (s).

Y -systems are embedded in some sequences of mutations. Their periodicities and DIs
are special instances of the above.
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Examples of DIs (1)

type A1 (involution). r = 1, B =
(
0
)
.

By the involution of the mutation, we have a periodicity

Υ(0) = (y, B)
1−→ Υ(1)

1−→ Υ(0).

The associated DI is

L̃(y1) + L̃(y−1
1 ) =

π2

6
.

This is Euler’s identity. The zero constant form is trivial:

L̃(y1)− L̃(y1) = 0.

type A1 ×A1 (commutativity/square periodicity). r = 2, B =

(
0 0
0 0

)
.

Since two mutations µ1 and µ2 are commutative, we have a periodicity

Υ(0) = (y, B)
1−→ Υ(1)

2−→ Υ(2)
1−→ Υ(3)

2−→ Υ(0).

The associated DI is

L̃(y1) + L̃(y2) + L̃(y−1
1 ) + L̃(y−1

2 ) =
π2

3
.

Again, this is Euler’s identity. The zero constant form is trivial:

L̃(y1) + L̃(y2)− L̃(y1)− L̃(y2) = 0.
13 / 24
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Examples of DIs (2)

type A2 (pentagon periodicity). r = 2, B =

(
0 −1
1 0

)
.

We have a nontrivial periodicity

Υ(0) = (y, B)
1−→ Υ(1)

2−→ Υ(2)
1−→ Υ(3)

2−→ Υ(4)
1−→ τ12Υ(0).

The associated DI is

L̃(y1)+ L̃(y2(1+y1))+ L̃(y−1
1 (1+y2 +y1y2))+ L̃(y−1

1 y−1
2 (1+y2))+ L̃(y2

−1) =
π2

2
.

This is Abel’s identity (the pentagon identity). The zero constant form is

L̃(y1) + L̃(y2(1 + y1))− L̃(y1(1 + y2 + y1y2)−1)− L̃(y1y2(1 + y2)−1)− L̃(y2) = 0.

type B2 (hexagon periodicity). r = 2, B =

(
0 −1
2 0

)
=

(
1 0
0 2

)(
0 −1
1 0

)
= ∆Ω.

We have a nontrivial periodicity

Υ(0) = (y, B)
1−→ Υ(1)

2−→ Υ(2)
1−→ Υ(3)

2−→ Υ(4)
1−→ Υ(5)

2−→ Υ(0).

The associated DI in the zero constant form is

L̃(y1) + 2L̃(y2(1 + y1))− L̃(y1(1 + y2 + y1y2)−2)

− 2L̃(y1y2(1 + 2y2 + y2
2 + y1y

2
2)−1)− L̃(y1y

2
2(1 + y2)−2)− 2L̃(y2) = 0.
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Methods/Ideas of Proof of DIs in CA

Method 1: Algebraic method [N12].

Constancy condition [Frenkel-Szenes95] (based on the idea of [Bloch78]:

P∑
t=1

ft(u) ∧ (1 + ft(u)) = 0 =⇒
P∑
t=1

L̃(ft(u)) = const.

To show the constancy condition, we use the idea of [Fock-Goncharov09]):
For each Y -seed Υ(s), we attach certain quantity V (s) such that
V (s+ 1)− V (s) = δksyks (s) ∧ (1 + yks (s)). Then, the periodicity implies the
constancy condition. (The proof does not explain why such V (s) exists.)

Method 2: via Quantization [Kashaev-N11].

Fo each σ-period one obtains the quantum dilogarithm identities (QDI) for Faddeev’s
quantum dilogarithm Φq(x) [Fock-Goncharov09]. Taking the limit q → 1 and apply the
saddle point method, we recover the classical DI. (The saddle point method (in
multivariables) is standard in physics, but difficult to be validated rigorously.)

Method 3: Classical mechanical method [Gekhtman-N-Rupel17].

One can bypass quantization by directly formulating mutations as classical mechanical
system, where the Hamiltonian is given by the Euler dilogarithm [Fock-Goncharov09].
Then, the modified Rogers dilogarithm appears as the Lagrangian, and the DI is
obtained as the invariance of the action integral due to the discrete-time analogue of
Noether’s theorem. (This explains the intrinsic meaning of DIs.)
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Cluster Scattering Diagram (CSD)

Around 2015, Gross-Hacking-Keel-Kontsevich [GHKK18] proved some important
conjectures on cluster algebras by using cluster scattering diagrams (CSDs).
The notion of scattering diagram (a.k.a. wall-crossing structure) was originally
introduced by [Gross-Siebert11] and [Kontsevich-Soibelman06] to study the
homological mirror symmetry.
Roughly speaking, any cluster pattern is embedded in the corresponding CSD.

Example:

B =

(
0 −3
3 0

)
infinite type, nonaffine

G-fan (representing a cluster pattern). principle: mutation

CSD (only the support is presented). principle: consistency

deg ≤ 1 deg ≤ 2 deg ≤ 3 deg ≤ 4 the Badlands
17 / 24



History in B.C. (1980s–2000) DI and CA (2000–2015) DI and CSD (2015– )

Badlands (the dark side)

Badlands National Park, South Dakota, USA
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Example: the Badlands in a rank 3 CSD

B =

0 −1 0
1 0 −2
0 2 0

 (infinite, nonaffine).

the stereo graphic projection of the support: (The right figure is the magnified one of
the shaded region in the left figure.)

j1

j1

j2

j2

j′1

e⊥1

e⊥2 e⊥3

C+
s

2
2

2

1

[N23] T. Nakanishi, Cluster algebras and scattering diagrams, MSJ Mem. 41 (2023),
279 pp.
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CSD Basics
B = ∆Ω: skew-symmetric decomposition of the initial exchange matrix
the structure group G = GΩ

a lattice N = Zr , N+ =: {n ∈ N | n 6= 0, n ∈ (Z≥0)r}.
Lie algebra g: generators Xn (n ∈ N+) with [Xn, Xn′ ] = {n, n′}ΩXn+n′ .
g: completion of g with respect to deg

exponential group G = exp(g): the product is defined by the
Baker-Campbell-Hausdorff formula

dilogarithm elements: Ψ[n] = exp(
∑∞
j=1

(−1)j+1

j2
Xjn) ∈ G (n ∈ N+).

action of G on Q[[y]]: Xn(yn
′
) = {n, n′}Ωyn+n′ . Ψ[n]yn

′
= yn

′
(1 +yn){n,n

′}Ω .
pentagon relation: if {n, n′} = c > 0,

Ψ[n]1/cΨ[n′]1/c = Ψ[n′]1/cΨ[n+ n′]1/cΨ[n]1/c.

wall w = (d,Ψ[n]c)n: n ∈ N+: normal vector,
codimension 1 cone d ⊂ n⊥ ⊂ Rr : support, Ψ[n]c (c ∈ Q): wall element
scattering diagram D: a collection of walls (satisfying the finiteness condition)
scattering diagram D is consistent if for any loop γ in Rr , the product of wall
elements (with intersection sign) along γ is the identity in G.

Theorem/Definition [GHKK18] Cluster scattering diagram (CSD)

There is a unique consistent scattering diagram D (up to equivalence) such that
• (e⊥i ,Ψ[ei]

δi )ei (i = 1, . . . , r) are walls of D (incoming walls)
• any other wall w = (d,Ψ[n]c)n in D satisfies Bn 6∈ d (outgoing walls)
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DI in CSD

D = D(B): CSD for the initial exchange matrix B
γ: any loop in D

• consistency relation along a loop γ:
←∏
s

Ψ[ns]
εscs = id

εs: the intersection sign, cs ∈ Q.

•

•
base point+

−
γ

Theorem [N21]

The following DI holds: ∑
s

εscsL̃(ys) = 0,

ys =
(→∏

t:t<s
Ψ[nt]

−εtct
)
yns (generalization of mutation).

The sum is an infinite one in general.

When the loop γ is completely inside the G-fan, the DI coincides with the one
associated with a period of CA.

The proof is given by the extension of Method 3 (classical mechanical method).
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Infinite reduciblity

The following structure theorem for CSDs is known.

Fact [GHKK18,N23]

Any consistency relation in a CSD is reduced to a trivial one by applying the pentagon
and commutative relation in G possibly infinitely many times.

Shortly speaking, the dilogarithm elements and the pentagon relation are everything for
a CSD.
As a result, we have the following infinite reducibility of DI for a CSD.

Theorem [N21] (inifnite reducibility of Di)

The DI associated with any loop in a CSD is reduced to a trivial one by applying
pentagon identity possibly infinitely many times.

This is also applicable to the DI associated with any period in a CA, which is a finite
sum.
On the other hand, according to the recent result of [de Jeu20], any finite DI whose
arguments are rational functions is finitely reducible.
Thus, the DI associated with any period in a CA is actually finitely reducible. (This is a
little disappointing to me at this moment because the structure group G fails to catch
this finite reducibility.)
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Examples (1)

type B2 (hexagon periodicity). r = 2, B =

(
0 −1
2 0

)
=

(
1 0
0 2

)(
0 −1
1 0

)
= ∆Ω.

We write [n] := Ψ[n]. The consistency relation along γ is generated by the pentagon
relation as follows: [

0
1

] [
0
1

] [
1
0

]
︸ ︷︷ ︸ =

[
0
1

] [
1
0

]
︸ ︷︷ ︸

[
1
1

] [
0
1

]

=

[
1
0

] [
1
1

] [
0
1

] [
1
1

]
︸ ︷︷ ︸

[
0
1

]

=

[
1
0

] [
1
1

] [
1
1

] [
1
2

] [
0
1

] [
0
1

]
.

•

•

[
1

0

]
[
0

1

]2
[
1

1

]2 [12]
Accordingly, one can generate the corresponding DI by the pentagon identity.[

1
0

]−1 [
0
1

]−1

︸ ︷︷ ︸ L̃(ye2 ) +

[
1
0

]−1

L̃(ye2 ) + L̃(ye1 )

=

[
0
1

]−1 [
1
1

]−1 [
1
0

]−1

L̃(ye2 ) +

[
0
1

]−1 [
1
1

]−1

L̃(ye1 ) +

[
0
1

]−1

L̃(y(1,1)) + L̃(ye2 )

= · · ·

So, this is finitely reducible.
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Examples (2)

type A(1)
1 (infinite periodicity). r = 2, B =

(
0 −2
2 0

)
=

(
2 0
0 2

)(
0 −1
1 0

)
= ∆Ω.

The consistency relation along γ is as follows:[
0
1

]2 [
1
0

]2

=

[
1
0

]2 [
2
1

]2 [
3
2

]2

· · ·
∞∏
j=0

[
2j

2j

]22−j

· · ·
[
2
3

]2 [
1
2

]2 [
0
1

]2

[
1

0

]2
[
0

1

]2
The associated DI is an infinite sum and infinitely reducible.

CA associated with torus with two punctures

There is period of length 32 that is not a product of the pentagon and square periodicity
[Fomin-Shapiro-Thurston07]. Similar examples are known in [Kim-Yamazaki18]. A
schematic picture in CSD is as follows:

•

γ

×
×

The loop γ is not shrinkable inside the G-fan due to an obstacle (joint of type A(1)
1 ).

The associated DI is infinitely reducible. (However, according to the result of [de
Jeu20], this is actually finitely reducible by some other means.)
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