Dilogarithm identities, cluster algebras, and cluster scattering diagrams

Tomoki Nakanishi

Nagoya University

Polylogarithms, Cluster Algebras, and Scattering Amplitudes, Brin Mathematics Research Center, September 11-15, 2023
ver. 2023.9.15

Plan of Talk

In this talk, we review the relation between dilogarithm identities (DI) and cluster algebras (CA), which is recently updated in view of cluster scattering diagrams (CSD).

Caution: Cluster scattering diagrams are nothing to do with scattering amplitudes which is one of the theme of this workshop.
(9) History in B.C. (1980s-2000)

2 DI and CA (2000-2015)

3 DI and CSD (2015-)
(9) History in B.C. (1980s-2000)
(2) DI and CA (2000-2015)

3 DI and CSD (2015-)

Dilogarithms

Euler dilogarithm: $(x \leq 1)(1768)$

$$
\begin{aligned}
\operatorname{Li}_{2}(x) & =\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}} \\
& =-\int_{0}^{x} \frac{\log (1-y)}{y} d y
\end{aligned}
$$

Rogers dilogarithm: $(0 \leq x \leq 1)$ (1907)

$$
\begin{aligned}
L(x) & =-\frac{1}{2} \int_{0}^{x}\left\{\frac{\log (1-y)}{y}+\frac{\log y}{1-y}\right\} d y \\
& =\operatorname{Li}_{2}(x)+\frac{1}{2} \log x \log (1-x)
\end{aligned}
$$

modified Rogers dilogarithm (no official name): $(0 \leq x)$ (1990's-)

$$
\begin{aligned}
\tilde{L}(x) & =\frac{1}{2} \int_{0}^{x}\left\{\frac{\log (1+y)}{y}-\frac{\log y}{1+y}\right\} d y \\
& =-\operatorname{Li}_{2}(-x)-\frac{1}{2} \log x \log (1+x) \\
& =L\left(\frac{x}{1+x}\right)
\end{aligned}
$$

In this talk we maily use $\tilde{L}(x)$. (Its importance is a key point of this talk.)

Dilogarithm conjecture from Bethe ansatz method

- In 1980's Faddeev and others in Leningrad (St. Petersburg) started to study integrable systems by the Bethe ansatz method.
- The Rogers dilogartihm $L(x)$ mysteriously appeared through the calculation of the specific heats of various integrable lattice models.
X_{r} : simply laced Dynkin diagram:

For nodes a and b in X_{r}, we write $a \sim b$ if it is adjacent in X_{r}.
Fix an integer $\ell \geq 2$, called the level.
For a pair $\left(X_{r}, \ell\right)$, we define a system of algebraic equations for $Q_{m}^{(a)}$
$(a=1, \ldots, r ; m=1 \ldots, \ell-1)$:

$$
(Q \text {-system }) \quad Q_{m}^{(a)^{2}}=Q_{m+1}^{(a)} Q_{m-1}^{(a)}+\prod_{b: b \sim a} Q_{m}^{(b)}, \quad Q_{0}^{(a)}=Q_{\ell}^{(a)}=1
$$

Conjecture [Kirillov89, Bazhanov-Reshetikhin 90]

For the unique positive real solution of the Q-system, the following equality holds:

$$
\sum_{a=1}^{r} \sum_{m=1}^{\ell-1} L\left(\frac{\prod_{b: b \sim a} Q_{m}^{(b)}}{Q_{m}^{(a)^{2}}}\right)=\frac{r h(\ell-1)}{h+\ell} \frac{\pi^{2}}{6} \quad\left(h: \text { Coxeter number of } X_{r}\right)
$$

Functional generalization of dilogarithm conjecture

- The Y-system (a system of functional equations) was introduced by Al. Zamolodchikov in 1991 to study some integrable field theories.
- Gliozzi and Tateo conjectured the functional generalization of the dilogarithm conjecture based on the Y-system for certain integrable field theories.
For the same pair $\left(X_{r}, \ell\right)$ of the Q-system, we define a system of functional equations for $Y_{m}^{(a)}(u)(a=1, \ldots, r ; m=1 \ldots, \ell-1 ; u \in \mathbb{Z})$:

$$
\begin{aligned}
(Y \text {-system }) \quad Y_{m}^{(a)}(u-1) Y_{m}^{(a)}(u+1)= & \frac{\prod_{b: b \sim a}\left(1+Y_{m}^{(b)}(u)\right)}{\left(1+Y_{m+1}^{(a)}(u)^{-1}\right)\left(1+Y_{m-1}^{(a)}(u)^{-1}\right)}, \\
& Y_{0}^{(a)}(u)^{-1}=Y_{\ell}^{(a)}(u)^{-1}=0
\end{aligned}
$$

One can regard it as a system of recursion relations along discrete parameter u (discrete dynamical system) with the initial variables $Y_{m}^{(a)}(0)$ and $Y_{m}^{(a)}(1)$.

Conjecture [Gliozzi-Tateo95]

(1) (Periodicity) $Y_{m}^{(a)}(u+2(h+\ell))=Y_{m}^{(a)}(u)$. (for $\ell=2$, [Zamlodchikov91])
(2) (functional dilogarithm identity)

$$
\sum_{u=0}^{2(h+\ell)-1} \sum_{a=1}^{r} \sum_{m=1}^{\ell-1} \tilde{L}\left(Y_{m}^{(a)}(u)\right)=2 r h(\ell-1) \frac{\pi^{2}}{6} .
$$

For the positive constant solution, the DI reduces to the DI conjectured by [BR90].

Examples of Y-system DI

Example 1. $\left(X_{r}, \ell\right)=\left(A_{1}, 2\right)$, where $h=2$, period $2(h+\ell)=8$.

We have only variables $Y(u)=Y_{1}^{(1)}(u)$, and the Y-system is given by

$$
Y(u+1) Y(u-1)=1
$$

It has a reduced period of 4: $Y(u+4)=Y(u+2)^{-1}=Y(u)$. The corresponding DI is

$$
\tilde{L}(y)+\tilde{L}\left(y^{-1}\right)=\frac{\pi^{2}}{6} .
$$

This is Euler's identity.

Example 2. $\left(X_{r}, \ell\right)=\left(A_{2}, 2\right)$, where $h=3$, period $2(h+\ell)=10$.

We have variables $Y_{1}(u):=Y_{1}^{(1)}(u), Y_{2}(u):=Y_{1}^{(2)}(u)$, and the Y-system is given by

$$
Y_{1}(u+1) Y_{1}(u-1)=1+Y_{2}(u), \quad Y_{2}(u+1) Y_{2}(u-1)=1+Y_{1}(u) .
$$

It has a half periodicity $Y_{1}(u+5)=Y_{2}(u), Y_{2}(u+5)=Y_{1}(u)$. The corresponding DI is $\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{2}\left(1+y_{1}\right)\right)+\tilde{L}\left(y_{1}^{-1}\left(1+y_{2}+y_{1} y_{2}\right)\right)+\tilde{L}\left(y_{1}^{-1} y_{2}^{-1}\left(1+y_{2}\right)\right)+\tilde{L}\left(y_{2}^{-1}\right)=\frac{\pi^{2}}{2}$.
This is Abel's identity (the pentagon identity).
So, Y-system DIs are vast generalization of these classic identities by root systems. They were very mysterious and only proved partially before cluster algebras (= B.C.).

(1) History in B.C. (1980s-2000)

(2) DI and CA (2000-2015)
(3) DI and CSD (2015-)

Development after cluster algebra

Solutions of Y-system conjectures for (X_{r}, ℓ):

Who and When	periodicity	DI	idea/method/result
Gliozzi-Tateo 95	$\left(A_{r}, 2\right)$	$\left(A_{r}, 2\right)$	explicit solution
Frenkel-Szenes 95	$\left(A_{r}, 2\right)$	$\left(A_{r}, 2\right)$	explicit solution constancy condition (1)
Fomin-Zelevinsky 00~	-	-	cluster algebra
Fomin-Zelevinsky 03	$($ any, 2)		cluster structure (2) Coxeter transformation (3)
Chapoton 05	$\left(A_{r}\right.$, any)	(any, 2)	(1) + (2) evaluation at 0/ ∞ limit (4)
Szenes 06 Volkov 06	flat connection on graph explicit solution		
Fomin-Zelevinsky 07	-	-	coefficients/F-polynomials (5)
Keller 08	(any, any)		(5) cluster category Auslander-Reiten theory
N 09		(any, any)	(1)+(2)+(3)+(4)+(5)

There are other types of Y-systems, and the corresponding problems were also solved by the cluster algebraic methods. nonsimply-laced Y-system: [Inoue-Iyama-Kuniba-N-Suzuki13] sine-Gordon Y-system: [N -Tateo10], [N -Stella14]

Cluster algebra basics (1)

We say that an $r \times r$ integer matrix $B=\left(b_{i j}\right)$ is skew-symmetrizable if it has a decomposition (skew-symmetric decomposition)

$$
B=\Delta \Omega
$$

where Δ is a diagonal matrix whose diagonals are positive integers and Ω is a skew-symmetric matrix.
For an integer a, let

$$
[a]_{+}=\max (a, 0)
$$

For an $n \times n$ skew-symmetrizable matrix B and $k=1, \ldots, r$, a new $r \times r$ integer matrix $B^{\prime}=\left(b_{i j}^{\prime}\right)=\mu_{k}(B)$ is defined by

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\ b_{i j}+b_{i k}\left[b_{k j}\right]_{+}\left[-b_{i k}\right]_{+} b_{k j} & i, j \neq k\end{cases}
$$

It is called the mutation of B in direction k.

Fact

(1) B^{\prime} is also skew-symmetrizable with common skew-symmetrizer Δ.
(2) μ_{k} is involutive, i.e., $\mu_{k}\left(B^{\prime}\right)=B$.

Cluster algebra basics (2)

A pair $\Upsilon=(\mathbf{y}, B)$ is called a Y-seed, where $\mathbf{y}=\left(y_{1}, \ldots, y_{r}\right)$ is an r-tuple of formal variables, and B is an $r \times r$ skew-symmetrizable matrix.
For a Y-seed $\Upsilon=(\mathbf{y}, B)$ and $k=1, \ldots, r$, a new Y-seed $\mu_{k}(\Upsilon)=\Upsilon^{\prime}=\left(\mathbf{y}^{\prime}, B^{\prime}\right)$ is defined by $B^{\prime}=\mu_{k}(B)$ and

$$
y_{i}^{\prime}= \begin{cases}y_{k}^{-1} & i=k \\ y_{i} y_{k}^{\left[b_{k i}\right]_{+}}\left(1+y_{k}\right)^{-b_{k i}} & i \neq k\end{cases}
$$

It is called the mutation of Υ in direction k.

Fact

μ_{k} is involutive, i.e., $\mu_{k}\left(\mathbf{y}^{\prime}, B^{\prime}\right)=(\mathbf{y}, B)$.
We define a left action of permutation σ of $\{1, \ldots, r\}$ on a seed $\Upsilon=(\mathbf{y}, B)$ by $\sigma(\Upsilon)=\Upsilon^{\prime}=\left(\mathbf{y}^{\prime}, B^{\prime}\right)$, where

$$
y_{i}^{\prime}=y_{\sigma^{-1}(i)}, \quad b_{i j}^{\prime}=b_{\sigma^{-1}(i) \sigma^{-1}(j)}
$$

DI associated with a period in CA

Consider a sequence of mutations

$$
\Upsilon(0)=(\mathbf{y}(0), B(0)) \xrightarrow{k_{0}} \Upsilon(1)=(\mathbf{y}(1), B(1)) \xrightarrow{k_{1}} \cdots \xrightarrow{k_{P-1}} \Upsilon(P)=(\mathbf{y}(P), B(P)) .
$$

We say that it is σ-period if $\Upsilon(P)=\sigma(\Upsilon(0))$ for a permutation σ.

- After proving several Y-system DIs, I recognized that the periodicity is essential.

Theorem [N12]. (DI associated with a period in CA)

For any σ-period as above, the following DI holds:

$$
\sum_{s=0}^{P-1} \delta_{k_{s}} \tilde{L}\left(y_{k_{s}}(s)\right)=N \frac{\pi^{2}}{6},
$$

where $\Delta=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{r}\right)$ is a common skew symmetrizer of $B(s)=\Delta \Omega(s)$ and N is some positive integer. It is also rewritten in the form (zero constant form)

$$
\sum_{s=0}^{P-1} \varepsilon_{s} \delta_{k_{s}} \tilde{L}\left(y_{k_{s}}(s)^{\varepsilon_{k_{s}}}\right)=0
$$

where $\varepsilon_{s} \in\{ \pm 1\}$ is the tropical sign of $y_{k_{s}}(s)$.
Y-systems are embedded in some sequences of mutations. Their periodicities and DIs are special instances of the above.

Examples of DIs (1)

type A_{1} (involution). $r=1, B=(0)$.
By the involution of the mutation, we have a periodicity

$$
\Upsilon(0)=(\mathbf{y}, B) \xrightarrow{1} \Upsilon(1) \xrightarrow{1} \Upsilon(0) .
$$

The associated DI is

$$
\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{1}^{-1}\right)=\frac{\pi^{2}}{6}
$$

This is Euler's identity. The zero constant form is trivial:

$$
\tilde{L}\left(y_{1}\right)-\tilde{L}\left(y_{1}\right)=0
$$

type $A_{1} \times A_{1}$ (commutativity/square periodicity). $r=2, B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
Since two mutations μ_{1} and μ_{2} are commutative, we have a periodicity

$$
\Upsilon(0)=(\mathbf{y}, B) \xrightarrow{1} \Upsilon(1) \xrightarrow{2} \Upsilon(2) \xrightarrow{1} \Upsilon(3) \xrightarrow{2} \Upsilon(0) .
$$

The associated DI is

$$
\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{2}\right)+\tilde{L}\left(y_{1}^{-1}\right)+\tilde{L}\left(y_{2}^{-1}\right)=\frac{\pi^{2}}{3}
$$

Again, this is Euler's identity. The zero constant form is trivial:

$$
\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{2}\right)-\tilde{L}\left(y_{1}\right)-\tilde{L}\left(y_{2}\right)=0 .
$$

Examples of Dls (2)

type A_{2} (pentagon periodicity). $r=2, B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
We have a nontrivial periodicity

$$
\Upsilon(0)=(\mathbf{y}, B) \xrightarrow{1} \Upsilon(1) \xrightarrow{2} \Upsilon(2) \xrightarrow{1} \Upsilon(3) \xrightarrow{2} \Upsilon(4) \xrightarrow{1} \tau_{12} \Upsilon(0) .
$$

The associated DI is
$\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{2}\left(1+y_{1}\right)\right)+\tilde{L}\left(y_{1}^{-1}\left(1+y_{2}+y_{1} y_{2}\right)\right)+\tilde{L}\left(y_{1}^{-1} y_{2}^{-1}\left(1+y_{2}\right)\right)+\tilde{L}\left(y_{2}^{-1}\right)=\frac{\pi^{2}}{2}$.
This is Abel's identity (the pentagon identity). The zero constant form is
$\tilde{L}\left(y_{1}\right)+\tilde{L}\left(y_{2}\left(1+y_{1}\right)\right)-\tilde{L}\left(y_{1}\left(1+y_{2}+y_{1} y_{2}\right)^{-1}\right)-\tilde{L}\left(y_{1} y_{2}\left(1+y_{2}\right)^{-1}\right)-\tilde{L}\left(y_{2}\right)=0$.

$$
\text { type } B_{2} \text { (hexagon periodicity). } r=2, B=\left(\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\Delta \Omega \text {. }
$$

We have a nontrivial periodicity

$$
\Upsilon(0)=(\mathbf{y}, B) \xrightarrow{1} \Upsilon(1) \xrightarrow{2} \Upsilon(2) \xrightarrow{1} \Upsilon(3) \xrightarrow{2} \Upsilon(4) \xrightarrow{1} \Upsilon(5) \xrightarrow{2} \Upsilon(0) .
$$

The associated DI in the zero constant form is

$$
\begin{aligned}
& \tilde{L}\left(y_{1}\right)+2 \tilde{L}\left(y_{2}\left(1+y_{1}\right)\right)-\tilde{L}\left(y_{1}\left(1+y_{2}+y_{1} y_{2}\right)^{-2}\right) \\
& -2 \tilde{L}\left(y_{1} y_{2}\left(1+2 y_{2}+y_{2}^{2}+y_{1} y_{2}^{2}\right)^{-1}\right)-\tilde{L}\left(y_{1} y_{2}^{2}\left(1+y_{2}\right)^{-2}\right)-2 \tilde{L}\left(y_{2}\right)=0 .
\end{aligned}
$$

Methods/Ideas of Proof of DIs in CA

Method 1: Algebraic method [N12].

Constancy condition [Frenkel-Szenes95] (based on the idea of [Bloch78]:

$$
\sum_{t=1}^{P} f_{t}(u) \wedge\left(1+f_{t}(u)\right)=0 \Longrightarrow \sum_{t=1}^{P} \tilde{L}\left(f_{t}(u)\right)=\text { const. }
$$

To show the constancy condition, we use the idea of [Fock-Goncharov09]): For each Y-seed $\Upsilon(s)$, we attach certain quantity $V(s)$ such that $V(s+1)-V(s)=\delta_{k_{s}} y_{k_{s}}(s) \wedge\left(1+y_{k_{s}}(s)\right)$. Then, the periodicity implies the constancy condition. (The proof does not explain why such $V(s)$ exists.)

Method 2: via Quantization [Kashaev-N11].

Fo each σ-period one obtains the quantum dilogarithm identities (QDI) for Faddeev's quantum dilogarithm $\Phi_{q}(x)$ [Fock-Goncharov09]. Taking the limit $q \rightarrow 1$ and apply the saddle point method, we recover the classical DI. (The saddle point method (in multivariables) is standard in physics, but difficult to be validated rigorously.)

Method 3: Classical mechanical method [Gekhtman-N-Rupel17].

One can bypass quantization by directly formulating mutations as classical mechanical system, where the Hamiltonian is given by the Euler dilogarithm [Fock-Goncharov09]. Then, the modified Rogers dilogarithm appears as the Lagrangian, and the DI is obtained as the invariance of the action integral due to the discrete-time analogue of Noether's theorem. (This explains the intrinsic meaning of DIs.)

(1) History in B.C. (1980s-2000)

(3) DI and CA (2000-2015)
(3) DI and CSD (2015-)

Cluster Scattering Diagram (CSD)

- Around 2015, Gross-Hacking-Keel-Kontsevich [GHKK18] proved some important conjectures on cluster algebras by using cluster scattering diagrams (CSDs).
- The notion of scattering diagram (a.k.a. wall-crossing structure) was originally introduced by [Gross-Siebert11] and [Kontsevich-Soibelman06] to study the homological mirror symmetry.
- Roughly speaking, any cluster pattern is embedded in the corresponding CSD.

Example:

$$
B=\left(\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right) \quad \text { infinite type, nonaffine }
$$

G-fan (representing a cluster pattern). principle: mutation

CSD (only the support is presented). principle: consistency

$$
\operatorname{deg} \leq 1
$$

$\operatorname{deg} \leq 2$
$\operatorname{deg} \leq 3$
$\operatorname{deg} \leq 4$

Badlands (the dark side)

Badlands National Park, South Dakota, USA

Example: the Badlands in a rank 3 CSD

$$
B=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -2 \\
0 & 2 & 0
\end{array}\right) \quad \text { (infinite, nonaffine). }
$$

the stereo graphic projection of the support: (The right figure is the magnified one of the shaded region in the left figure.)

[N23] T. Nakanishi, Cluster algebras and scattering diagrams, MSJ Mem. 41 (2023), 279 pp.

CSD Basics

- $B=\Delta \Omega$: skew-symmetric decomposition of the initial exchange matrix
- the structure group $G=G_{\Omega}$ a lattice $N=\mathbb{Z}^{r}, N^{+}=:\left\{n \in N \mid n \neq 0, n \in\left(\mathbb{Z}_{\geq 0}\right)^{r}\right\}$. Lie algebra \mathfrak{g} : generators $X_{n}\left(n \in N^{+}\right)$with $\left[X_{n}, X_{n^{\prime}}\right]=\left\{n, n^{\prime}\right\}_{\Omega} X_{n+n^{\prime}}$. $\overline{\mathfrak{g}}$: completion of \mathfrak{g} with respect to deg exponential group $G=\exp (\overline{\mathfrak{g}})$: the product is defined by the Baker-Campbell-Hausdorff formula
- dilogarithm elements: $\Psi[n]=\exp \left(\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j^{2}} X_{j n}\right) \in G\left(n \in N^{+}\right)$.
- action of G on $\mathbb{Q}[[y]]: X_{n}\left(y^{n^{\prime}}\right)=\left\{n, n^{\prime}\right\}_{\Omega} y^{n+n^{\prime}} . \Psi[n] y^{n^{\prime}}=y^{n^{\prime}}\left(1+y^{n}\right)^{\left\{n, n^{\prime}\right\}_{\Omega}}$.
- pentagon relation: if $\left\{n, n^{\prime}\right\}=c>0$,

$$
\Psi[n]^{1 / c} \Psi\left[n^{\prime}\right]^{1 / c}=\Psi\left[n^{\prime}\right]^{1 / c} \Psi\left[n+n^{\prime}\right]^{1 / c} \Psi[n]^{1 / c} .
$$

- wall $\mathbf{w}=\left(\mathfrak{d}, \Psi[n]^{c}\right)_{n}: n \in N^{+}:$normal vector, codimension 1 cone $\mathfrak{d} \subset n^{\perp} \subset \mathbb{R}^{r}$: support, $\Psi[n]^{c}(c \in \mathbb{Q})$: wall element
- scattering diagram \mathfrak{D} : a collection of walls (satisfying the finiteness condition)
- scattering diagram \mathfrak{D} is consistent if for any loop γ in \mathbb{R}^{r}, the product of wall elements (with intersection sign) along γ is the identity in G.

Theorem/Definition [GHKK18] Cluster scattering diagram (CSD)

There is a unique consistent scattering diagram \mathfrak{D} (up to equivalence) such that

- $\left(e_{i}^{\perp}, \Psi\left[e_{i}\right]^{d_{i}}\right){ }_{e_{i}}(i=1, \ldots, r)$ are walls of \mathfrak{D} (incoming walls)
- any other wall $\mathbf{w}=\left(\mathfrak{d}, \Psi[n]^{c}\right)_{n}$ in \mathfrak{D} satisfies $B n \notin \mathfrak{o}$ (outgoing walls)

DI in CSD

$\mathfrak{D}=\mathfrak{D}(B)$: CSD for the initial exchange matrix B
γ : any loop in \mathfrak{D}

- consistency relation along a loop γ :

$$
\prod_{s} \Psi\left[n_{s}\right]^{\epsilon_{s} c_{s}}=\mathrm{id}
$$

ϵ_{s} : the intersection sign, $c_{s} \in \mathbb{Q}$.

Theorem [N21]

The following DI holds:

$$
\sum_{s} \epsilon_{s} c_{s} \tilde{L}\left(y_{s}\right)=0
$$

$$
y_{s}=\left(\prod_{t: t<s} \Psi\left[n_{t}\right]^{-\epsilon_{t} c_{t}}\right) y^{n_{s}} \quad \text { (generalization of mutation). }
$$

- The sum is an infinite one in general.
- When the loop γ is completely inside the G-fan, the DI coincides with the one associated with a period of CA.
- The proof is given by the extension of Method 3 (classical mechanical method).

Infinite reduciblity

The following structure theorem for CSDs is known.

Fact [GHKK18,N23]

Any consistency relation in a CSD is reduced to a trivial one by applying the pentagon and commutative relation in G possibly infinitely many times.

Shortly speaking, the dilogarithm elements and the pentagon relation are everything for a CSD.
As a result, we have the following infinite reducibility of DI for a CSD.

Theorem [N21] (inifnite reducibility of Di)

The DI associated with any loop in a CSD is reduced to a trivial one by applying pentagon identity possibly infinitely many times.

This is also applicable to the DI associated with any period in a CA, which is a finite sum.
On the other hand, according to the recent result of [de Jeu20], any finite DI whose arguments are rational functions is finitely reducible.
Thus, the DI associated with any period in a CA is actually finitely reducible. (This is a little disappointing to me at this moment because the structure group G fails to catch this finite reducibility.)

Examples (1)

type B_{2} (hexagon periodicity). $r=2, B=\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\Delta \Omega$.
We write $[n]:=\Psi[n]$. The consistency relation along γ is generated by the pentagon relation as follows:

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]} } & =\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Accordingly, one can generate the corresponding DI by the pentagon identity.

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{-1}} \tilde{L}\left(y^{e_{2}}\right)+\underline{\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{-1} \tilde{L}\left(y^{e_{2}}\right)}+\underline{\tilde{L}\left(y^{e_{1}}\right)} \\
= & {\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{-1} \tilde{L}\left(y^{e_{2}}\right)+\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{-1} \underline{\tilde{L}\left(y^{e_{1}}\right)}+\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{-1} \tilde{L}\left(y^{(1,1)}\right)+\tilde{L}\left(y^{e_{2}}\right) }
\end{aligned}
$$

$$
=\cdots
$$

So, this is finitely reducible.

Examples (2)

type $A_{1}^{(1)}$ (infinite periodicity). $r=2, B=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\Delta \Omega$.
The consistency relation along γ is as follows:
$\left.\right|^{\left[\begin{array}{l}1 \\ 0\end{array}\right]^{2}}\left[\begin{array}{l}0 \\ 1\end{array}\right]^{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]^{2}\left[\begin{array}{l}1 \\ 0\end{array}\right]^{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]^{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]^{2}\left[\begin{array}{l}3 \\ 2\end{array}\right]^{2} \cdots \prod_{j=0}^{\infty}\left[\begin{array}{l}2^{j} \\ 2^{j}\end{array} 2^{2^{2-j}} \cdots\left[\begin{array}{l}2 \\ 3\end{array}\right]^{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]^{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]^{2}\right.$

The associated DI is an infinite sum and infinitely reducible.

CA associated with torus with two punctures

There is period of length 32 that is not a product of the pentagon and square periodicity [Fomin-Shapiro-Thurston07]. Similar examples are known in [Kim-Yamazaki18]. A schematic picture in CSD is as follows:

The loop γ is not shrinkable inside the G-fan due to an obstacle (joint of type $A_{1}^{(1)}$). The associated DI is infinitely reducible. (However, according to the result of [de Jeu20], this is actually finitely reducible by some other means.)

