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exact WKB analysis and cluster algebras

WKB approximation
Wentzel, Kramers, Brilloin (1926)
semiclassical approximation method for Schrödinger equation

exact WKB analysis (80 ∼)
; study of WKB solution of 1d (complex) Schrödinger equation

by Borel resummation
Voros (83)
Aoki-Kawai-Takei (91)
Dellabaere-Dillinger-Pham (DDP) (93)

cluster algebras
Fomin-Zelevinsky (00 ∼)
combinatorial structure in representation theory in several contexts
appearing in several areas in mathematics
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Overview & Keywords

Hitchin
system

Schrödinger
equation

quadratic
differentials

(Stokes graphs)

triangulations
of surfaces

3-CY
categories

cluster
algebras

[Gaiotto09]

[Kawai05]

[Kawai05,Gaiotto09,Bridgeland13]
[Labardini12,Bridgeland13]

[Gekhtman05,Fock03,Fomin08]

[Nagao10]

[Kontsevich08]

this work

“pentagon relation" [DDP93]

Sγ1Sγ2 = Sγ2Sγ1+γ2Sγ1 , Sγ : Stokes automorphism for cycle γ

“There is a striking similarity between our [their] wall-crossing formula and identities for
the Stokes automorphisms in the theory of WKB asymptotics..."
[Kontsevich-Soibelman08]

{

mutation

seed

{

quiver (1)

cluster variables (2)

{Stokes graph (1)

flip

{Voros symbols (2)

Stokes phenomenon

+ −→
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WKB solutions (1)

T. Kawai and Y. Takei, Algebraic analysis of singular perturbation theory, AMS, 2005.
Schrödinger equation

(

d2

dz2
− η2Q(z, η)

)

ψ(z, η) = 0

z: complex (local) coordinate, η = ~−1: large parameter

ψ(z, η) = exp

(∫ z

S(z, η)dz

)

dS

dz
+ S2 = η2Q (Riccati equation)

{

Q(z, η) = Q0(z) + η−1Q1(z) + · · ·
S(z, η) = ηS−1(z) + S0(z) + · · ·

S2
−1 = Q0,

dS−1

dz
+ 2S−1S0 = Q1, . . .

S±(z, η) = ±η
√

Q0(z) + · · ·
= Seven(z, η) ± Sodd(z, η)

Sodd(z, η) = η
√

Q0(z) + · · ·

Seven(z, η) = −1

2

d

dz
logSodd(z, η)
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WKB solutions (2)

(in previous page)

ψ(z, η) = exp

(∫ z

S(z, η)dz

)

S±(z, η) = ±η
√

Q0(z) + · · ·
= Seven(z, η) ± Sodd(z, η)

Sodd(z, η) = η
√

Q0(z) + · · ·

Seven(z, η) = −1

2

d

dz
logSodd(z, η)

Hence

ψ±(z, η) =
1

√

Sodd(z, η)
exp

(

±
∫ z

Sodd(z, η)dz

)

WKB solutions

=
1

√

η
√

Q0(z)
exp

(

±
∫ z

η
√

Q0(z)dz

)

(1 + O(η−1))

WKB approximation divergent series!

The exact WKB analysis manages this divergent series by Borel resummation.
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Borel resummation

f(η) =
∞
∑

n=0

fnη
−n (possibly divergent) formal series

fB(y) =
∞
∑

n=1

fn

(n− 1)!
yn−1 Borel transform of f

S[f ](η) = f0 +

∫ ∞

0
e−ηyfB(y)dy Borel sum of f

(not necessarily convergent)

Example.

(1) f(η) = η−n =⇒ S[f ](η) = η−n

(2) f(η): a convergent series of η−1 =⇒ S[f ](η) = f(η) near η = ∞.
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Borel summability

Definition. A formal series f(η) =
∑∞

n=0 fnη
−n is Borel summable if

fB(y) is a convergent series of y.
fB(y) is analytically continued in the domain Ω.
|fB(y)| ≤ c1e

c2|y| for some c1, c2 > 0.

y

Ω

Example. The following f(η) is divergent, but Borel summable.

f(η) =
∞
∑

n=0

(−1)n−1(n− 1)!η−n

fB(y) =
∞
∑

n=1

(−1)n−1yn−1

(

=
1

1 + y
for |y| < 1

)

Theorem. (e.g. [Costin08]) If f(η) is Borel summable, then the Borel sum S[f ](η)
converges near η = ∞; moreover, it is asymptotically expanded to f(η),

S[f ](η) ∼ f(η) (η → ∞).
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Stokes phenomenon

Formulation of Stokes phenomenon by Borel resummation

y

×
+δ

−δ
×: isolated singularity of fB(y)

(f(η) is not Borel summable)

analytic function S+δ[f ] = S−δ[f ] + ×

asymptotic expansion f f + g

jump
(Stokes phenomenon)

This method will be applied to the WKB solutions of the Schrödinger equation
(

d2

dz2
− η2Q(z, η)

)

ψ(z, η) = 0,

ψ±(z, η) =
1

√

Sodd(z, η)
exp

(

±
∫ z

Sodd(z, η)dz

)

.

S1-action on y =⇒ S1-action on η =⇒ S1-action on z, or Q(z, η)
(various viewpoints for Stokes phenomenon)
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Trajectories and Stokes curves

Schrödinger equation on a compact Riemann surface Σ
(

d2

dz2
− η2Q(z, η)

)

ψ(z, η) = 0

In this section, concentrate on the classic situation

Σ = Riemann sphere, Q(z, η) = Q0(z) polynomial in z.

Assume that Q0(z) has only simple zeros.

Q0(z) determines a foliation in Σ:

leaf (trajectory) Im

∫ z

a

√

Q0(z)dz = const (a: zero of Q0(z))

Stokes curve Im

∫ z

a

√

Q0(z)dz = 0 (a: zero of Q0(z))

Around a simple zero ×

∫ z

0

√
zdz =

2

3
z3/2 = w

w

×

z

trivalency

(=⇒ triangulation)
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Stokes graph

Stokes graph: graph on Σ with vertices = zeros & pole (∞), edges = Stokes curves
Stokes region: domain on Σ surrounded by Stokes curves
Example: Q0(z) = i(z − 1)(z + 1)(z − 2i+ 2)(z − i)(z + i)

Assume that the Stokes graph is saddle-free (i.e., without saddle trajectory × × ).
Then, Stokes regions fall into the following two classes [Strebel84].

×

×

(regular) horizontal strip

×

half plane
13 / 25
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From Stokes graph to triangulation

To each saddle-free Stokes graph, one can associate a triangulation of a polygon.

Example: Q0(z) = i(z − 1)(z + 1)(z − 2i+ 2)(z − i)(z + i)

Stokes graph triangulation

horizontal strip (internal) arc
half plane (boundary) edge

simple zero triangle
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Voros’ connection formula

Theorem. [Voros83, Koike-Schäfke (to appear)]
Assume that the Stokes graph is saddle-free.

(1) The WKB solutions ψ±(z, η) are Borel summable in each Stokes region D, so that
the Borel sums S[ψ±](z, η) for |η| ≫ 1 define analytic functions of z in each D.

(2) The following connection formula holds:

S[ψD1
+ ] = S[ψD2

+ ] + iS[ψD2
− ],

S[ψD1
− ] = S[ψD2

− ],

where

× C
a

D1

D2

⊕

⊖

⊖

in the double covering Σ̂ of Σ

s.t.
√

Q0(z)dz is single-valued

and we normalize the WKB solutions at a, i.e.,

ψ±(z, η) =
1

√

Sodd(z, η)
exp

(

±
∫ z

a
Sodd(z, η)dz

)

.
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DDP’s jump formula

Assume that the Stokes graph has the following unique saddle trajectory:
⊕

⊕

⊖

⊖

× ×

γ0

γ0: saddle class

For each path β ∈ H1(Σ̂ \ P̂0, P̂∞), we define

Wβ(η) :=

∫

β

(

Sodd(z, η) − η
√

Q0(z)
)

dz Voros coefficient

eWβ Voros symbol

Let 〈γ0, β〉 be the intersection number of γ0 and β.

Theorem. [Dellabaere-Dillinger-Pham93]
(1) If 〈γ0, β〉 = 0, then eWβ is Borel summable.
(2) If 〈γ0, β〉 6= 0, then eWβ is not Borel summable; the following jump formula holds:

S−δ[e
Wβ ] = S+δ[e

Wβ ](1 + S+δ[e
Vγ0 ])−〈γ0 ,β〉, Vγ0 (η) :=

∫

γ0

Sodd(z, η)dz.
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Quadratic differential

Schrödinger equation on a surface Σ:

(

d2

dz2
− η2Q(z, η)

)

ψ(z, η) = 0,

In this section, we consider a more general situation than the classic one:
Σ: compact Riemann surface,
Q(z, η) = Q0(z) +Q1(z)η−1 + · · ·+Qk(z)η

−k , Qn(z): meromorphic

Under the coordinate transformation, the leading term Q0(z) transforms as a quadratic
differential (e.g. [Kawai-Takei05]),

Q0(z)dz
⊗2.

=⇒
√

Q0(z)dz : 1-form single-valued on the double covering Σ̂ of Σ

Assume

Every zero of Q0(z) is simple.

Every pole of Q0(z) is not simple.

We also assume some technical condition on the poles of Qn(z) (n ≥ 2).
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Stokes graphs

Patterns of foliations around a pole [Strebel84]

(a) (b)

double pole

(c)

pole of order m ≥ 3
(m = 6)

m− 2 tangent lines

The Stokes graph and the Stokes regions are defined as before.

Assume that the Stokes graph is saddle-free (i.e., without saddle trajectory).
Then, Stokes regions fall into three classes [Strebel84].

×

×

regular horizontal strip

×

degenerate horizontal strip

×

half plane
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From Stokes graph to triangulation

(in the previous page)

×

×

regular horizontal strip

×

degenerate horizontal strip

×

half plane

Assume that the Stokes graph is saddle-free.
(a part of) Stokes graph

××

×

×

×

×

×

pole of order m ≥ 3

(m = 4)

(a part of) triangulation

××

×

×

×

×

×

hole with

m− 2 marked points

These triangulations fit the surface realization of cluster algebras. 20 / 25
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Mutation of Stokes graphs

Under a continuous deformation of the potential Q(z, η), the Stokes graph may change
its topology. (= mutation of Stokes graphs)

Example.

e+πi/10(1 − z2) 1− z2 e−πi/10(1 − z2)

k
flip

k
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Mutation of Stokes graphs

Example. Σ = P
1, Q(z) = eδπi(z − 1)(z + 1)(z − 2i+ 2)(z − i)(z + i)

δ = 0.5 δ = 0.374 δ = 0.25
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Mutation of Stokes graphs

Mutation of Stokes graphs

Under a continuous deformation of the potential Q(z, η), the Stokes graph may
change its topology. (= mutation of Stokes graphs)
When the mutation occurs, one or more saddle connections appear.
If only one saddle connection simultaneously appears during the mutation, it
locally reduces to two types of elementary mutations called flip and pop
[Gaiotto-Neitzke-Moore09], [Bridgeland-Smith13].
They are refined to signed flip and signed pop.

Singed flip µ
(ε)
k

× ×
a1 a2

k
µ
(+)
k

µ
(−)
k

× ×
k

a1 a2

× ×

G+δ G0 G
−δ

× × × ×

It is induced from the S1-action on Q(z, η) for G0, Q(θ)(z, η) := e2iθQ(z, eiθη).
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Simple paths and simple cycles

For simplicity, assume that the Stokes graph has no degenerate horizontal strip.
(↔ no self-folding triangle in the triangulation)

To each Stokes region Di, we assign
simple path βi ∈ H1(Σ̂ \ P̂0, P̂∞)

simple cycle γi ∈ H1(Σ̂ \ P̂0 ⊔ P̂∞)

⊕

⊕

⊖ ⊖

×

× γi

βi duality 〈γi, βj〉 = δij

Under the signed flip µ
(ε)
k , they mutate as

β′
i =

{

−βk +
∑n

j=1[−εbjk]+βj i = k

βi i 6= k
(g-vector-like)

γ′i =

{

−γk i = k

γi + [εbki]+γk i 6= k
(c-vector-like)
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Main Theorem: Mutation formula of Voros symbols

We set

xi = eWi , Wi =

∫

βi

(

Sodd(z, η) − η
√

Q0(z)
)

dz Voros symbol for βi,

ŷi = eVi , Vi =

∫

γi

Sodd(z, η)dz Voros symbol for γi,

yi = evi , vi =

∫

γi

η
√

Q0(z)dz, ŷi = yi

n
∏

j=1

x
bji
j

where we follow Fomin-Zelevinsky’s notation for cluster algebras with coefficients.

Theorem. [IN14] Under the S1-action Q(θ)(z, η) = e2iθQ(z, eiθη) which induces the

signed mutation µ
(ε)
k of Stokes graphs, the Voros symbols “mutate” as

y′i  

{

y−1
k i = k

yiyk
[εbki]+ i 6= k,

x′i  















xk
−1





n
∏

j=1

xj
[−εbjk ]+



 (1 + ŷk
ε) i = k

xi i 6= k,

ŷ′i  

{

ŷk
−1 i = k

ŷiŷk
[εbki]+(1 + ŷk

ε)−bki i 6= k.

Remark. The jump terms come form DDP’s jump formula. 25 / 25
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