Exact WKB analysis and cluster algebras

Tomoki Nakanishi

Nagoya University

"4th Workshop on Combinatorics of Moduli Spaces, Cluster Algebras, and Topological Recursion" Laboratoire J.-V. Poncelet, Steklov Mathematical Institute, and the Higher School of Economics, Moscow, May, 2014 (ver. 2014/05/26)

Based on joint work with Kohei Iwaki (RIMS), arXiv:1401.7074, 98 pages.

The pdf file of this slide (or updated one) will be available at my web site.

Introduction • O	WKB solutions	Stokes graph 00000	Cluster algebraic formulation	
exact WKB analysis and cluster algebras				

WKB approximation

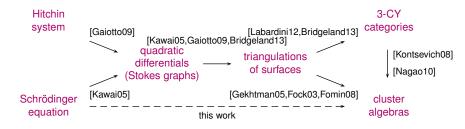
Wentzel, Kramers, Brilloin (1926) semiclassical approximation method for Schrödinger equation

exact WKB analysis (80 \sim)

 ≒ study of WKB solution of 1d (complex) Schrödinger equation by Borel resummation
 Voros (83)
 Aoki-Kawai-Takei (91)
 Dellabaere-Dillinger-Pham (DDP) (93)

cluster algebras

Fomin-Zelevinsky (00 \sim) combinatorial structure in representation theory in several contexts appearing in several areas in mathematics



"pentagon relation" [DDP93]

 $\mathfrak{S}_{\gamma_1}\mathfrak{S}_{\gamma_2}=\mathfrak{S}_{\gamma_2}\mathfrak{S}_{\gamma_1+\gamma_2}\mathfrak{S}_{\gamma_1},\qquad \mathfrak{S}_{\gamma}\text{: Stokes automorphism for cycle }\gamma$

"There is a striking similarity between our [their] wall-crossing formula and identities for the Stokes automorphisms in the theory of WKB asymptotics..." [Kontsevich-Soibelman08]

00	●0000	00000	
WKB solutions (1)			
T. Kawai and Y. Tak Schrödinger equatio	ei, Algebraic analysis of sin on $\left(\frac{d^2}{dz} - n^2 Q(z,n)\right)$		MS, 2005.

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z,\eta)\right)\psi(z,\eta) = 0$$

z: complex (local) coordinate, $\eta = \hbar^{-1}$: large parameter

$$\psi(z,\eta) = \exp\left(\int^z S(z,\eta)dz\right)$$

 $\frac{dS}{dz} + S^2 = \eta^2 Q \quad \text{(Riccati equation)}$

$$\begin{cases} Q(z,\eta) = Q_0(z) + \eta^{-1}Q_1(z) + \cdots \\ S(z,\eta) = \eta S_{-1}(z) + S_0(z) + \cdots \end{cases}$$

$$S_{-1}^2 = Q_0, \quad \frac{dS_{-1}}{dz} + 2S_{-1}S_0 = Q_1, \quad \dots$$

$$S_{\pm}(z,\eta) = \pm \eta \sqrt{Q_0(z)} + \cdots$$
$$= S_{\text{even}}(z,\eta) \pm S_{\text{odd}}(z,\eta)$$

$$S_{\text{odd}}(z,\eta) = \eta \sqrt{Q_0(z)} + \cdots$$
$$S_{\text{even}}(z,\eta) = -\frac{1}{2} \frac{d}{dz} \log S_{\text{odd}}(z,\eta)$$

Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
	00000		
WKB solutions (2)			

(in previous page)

$$\psi(z,\eta) = \exp\left(\int^z S(z,\eta)dz\right)$$

$$S_{\pm}(z,\eta) = \pm \eta \sqrt{Q_0(z)} + \cdots$$
$$= S_{\text{even}}(z,\eta) \pm S_{\text{odd}}(z,\eta)$$

$$S_{\text{odd}}(z,\eta) = \eta \sqrt{Q_0(z)} + \cdots$$
$$S_{\text{even}}(z,\eta) = -\frac{1}{2} \frac{d}{dz} \log S_{\text{odd}}(z,\eta)$$

Hence

$$\psi_{\pm}(z,\eta) = \frac{1}{\sqrt{S_{\text{odd}}(z,\eta)}} \exp\left(\pm \int^{z} S_{\text{odd}}(z,\eta) dz\right) \quad \text{WKB solutions}$$
$$= \frac{1}{\sqrt{\eta\sqrt{Q_{0}(z)}}} \exp\left(\pm \int^{z} \eta\sqrt{Q_{0}(z)} dz\right) (1+O(\eta^{-1}))$$
$$\text{WKB approximation} \qquad \text{divergent series!}$$

The exact WKB analysis manages this divergent series by Borel resummation.

Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
	00000		
Borel resum	mation		

$$f(\eta) = \sum_{n=0}^{\infty} f_n \eta^{-n} \quad \text{(possibly divergent) formal series}$$

$$f_B(y) = \sum_{n=1}^{\infty} \frac{f_n}{(n-1)!} y^{n-1} \quad \text{Borel transform of } f$$

$$\mathcal{S}[f](\eta) = f_0 + \int_0^{\infty} e^{-\eta y} f_B(y) dy \quad \text{Borel sum of } f$$
(not necessarily convergent)

Example.

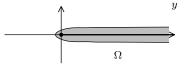
(1)
$$f(\eta) = \eta^{-n} \implies S[f](\eta) = \eta^{-n}$$

(2) $f(\eta)$: a convergent series of $\eta^{-1} \implies S[f](\eta) = f(\eta)$ near $\eta = \infty$.

Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
	00000		
Borel summability	,		

Definition. A formal series $f(\eta) = \sum_{n=0}^{\infty} f_n \eta^{-n}$ is Borel summable if

- $f_B(y)$ is a convergent series of y.
- $f_B(y)$ is analytically continued in the domain Ω .
- $|f_B(y)| \le c_1 e^{c_2|y|}$ for some $c_1, c_2 > 0$.



Example. The following $f(\eta)$ is divergent, but Borel summable.

$$f(\eta) = \sum_{n=0}^{\infty} (-1)^{n-1} (n-1)! \eta^{-n}$$
$$f_B(y) = \sum_{n=1}^{\infty} (-1)^{n-1} y^{n-1} \quad \left(= \frac{1}{1+y} \quad \text{for } |y| < 1 \right)$$

Theorem. (e.g. [Costin08]) If $f(\eta)$ is Borel summable, then the Borel sum $S[f](\eta)$ converges near $\eta = \infty$; moreover, it is asymptotically expanded to $f(\eta)$,

$$\mathcal{S}[f](\eta) \sim f(\eta) \quad (\eta \to \infty).$$

Introduction	WKB solutions ○○○○●	Stokes graph	Cluster algebraic formulation
Stokes pher	nomenon		
Formulatio	n of Stokes phenomenon by	Borel resummation	
	$+\delta$ $-\delta$	<u> </u>	singularity of $f_B(y)$ ot Borel summable)
an	alytic function $\mathcal{S}_{+\delta}[f]$	$= \mathcal{S}_{-\delta}[f] + \bigotimes$	

asymptotic expansion f f f + gjump (Stokes phenomenon)

This method will be applied to the WKB solutions of the Schrödinger equation

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z,\eta)\right)\psi(z,\eta) = 0,$$

$$\psi_{\pm}(z,\eta) = \frac{1}{\sqrt{S_{\text{odd}}(z,\eta)}}\exp\left(\pm\int^z S_{\text{odd}}(z,\eta)dz\right).$$

Solution on $y \implies S^1$ -action on $n \implies S^1$ -action on z , or $Q(z,\eta)$

 S^1 -action on $y \implies S^1$ -action on $\eta \implies S^1$ -action on z, or $Q(z, \eta)$ (various viewpoints for Stokes phenomenon)

Introduction	WKB solutions	Stokes graph ●0000	Cluster algebraic formulation
- -			

Trajectories and Stokes curves

Schrödinger equation on a compact Riemann surface Σ

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z,\eta)\right)\psi(z,\eta) = 0$$

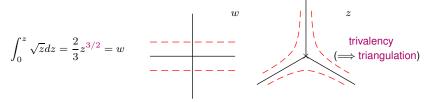
In this section, concentrate on the classic situation

 $\Sigma = \text{Riemann sphere}, \quad Q(z,\eta) = Q_0(z) \text{ polynomial in } z.$

Assume that $Q_0(z)$ has only simple zeros.

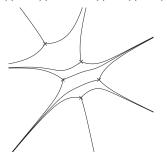
$$Q_0(z)$$
 determines a foliation in Σ :
leaf (trajectory) Im $\int_a^z \sqrt{Q_0(z)} dz = \text{const}$ (a: zero of $Q_0(z)$)
Stokes curve Im $\int_a^z \sqrt{Q_0(z)} dz = 0$ (a: zero of $Q_0(z)$)

Around a simple zero \times

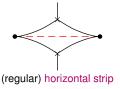


Introduction	WKB solutions	Stokes graph O●OOO	Cluster algebraic formulation
Stokes graph			

Stokes graph: graph on Σ with vertices = zeros & pole (∞), edges = Stokes curves Stokes region: domain on Σ surrounded by Stokes curves **Example:** $Q_0(z) = i(z-1)(z+1)(z-2i+2)(z-i)(z+i)$



Assume that the Stokes graph is saddle-free (i.e., without saddle trajectory \times). Then, Stokes regions fall into the following two classes [Strebel84].



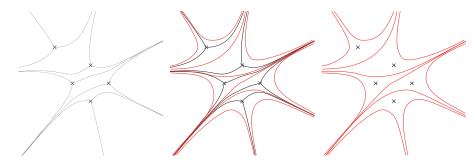
half plane

Introduction	00000	Stokes graph ○○●○○	Cluster algebraic formulation
From Stakes graph to triangulation			

From Stokes graph to triangulation

To each saddle-free Stokes graph, one can associate a triangulation of a polygon.

Example: $Q_0(z) = i(z-1)(z+1)(z-2i+2)(z-i)(z+i)$



Stokes graph	triangulation
horizontal strip	(internal) arc
half plane	(boundary) edge
simple zero	triangle

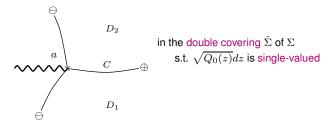
Theorem. [Voros83, Koike-Schäfke (to appear)] Assume that the Stokes graph is saddle-free.

(1) The WKB solutions $\psi_{\pm}(z, \eta)$ are Borel summable in each Stokes region D, so that the Borel sums $S[\psi_{\pm}](z, \eta)$ for $|\eta| \gg 1$ define analytic functions of z in each D.

(2) The following connection formula holds:

$$\begin{split} \mathcal{S}[\psi^{D_1}_+] &= \mathcal{S}[\psi^{D_2}_+] + i \mathcal{S}[\psi^{D_2}_-], \\ \mathcal{S}[\psi^{D_1}_-] &= \mathcal{S}[\psi^{D_2}_-], \end{split}$$

where

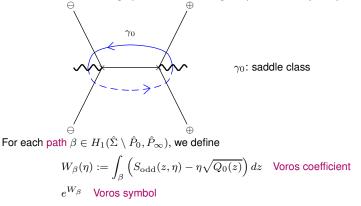


and we normalize the WKB solutions at a, i.e.,

$$\psi_{\pm}(z,\eta) = \frac{1}{\sqrt{S_{\text{odd}}(z,\eta)}} \exp\left(\pm \int_{a}^{z} S_{\text{odd}}(z,\eta) dz\right).$$

Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
		00000	
DDP's jump f	ormula		

Assume that the Stokes graph has the following unique saddle trajectory:



Let $\langle \gamma_0, \beta \rangle$ be the intersection number of γ_0 and β .

Theorem. [Dellabaere-Dillinger-Pham93] (1) If $\langle \gamma_0, \beta \rangle = 0$, then e^{W_β} is Borel summable. (2) If $\langle \gamma_0, \beta \rangle \neq 0$, then e^{W_β} is not Borel summable; the following jump formula holds: $S_{-\delta}[e^{W_\beta}] = S_{+\delta}[e^{W_\beta}](1 + S_{+\delta}[e^{V_{\gamma_0}}])^{-\langle \gamma_0, \beta \rangle}, \quad V_{\gamma_0}(\eta) := \int S_{\text{odd}}(z, \eta) dz.$

Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
00	00000	00000	0000000
Quadratic diffe	erential		

Schrödinger equation on a surface Σ :

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z,\eta)\right)\psi(z,\eta) = 0,$$

In this section, we consider a more general situation than the classic one:

 Σ : compact Riemann surface, $Q(z,\eta) = Q_0(z) + Q_1(z)\eta^{-1} + \cdots + Q_k(z)\eta^{-k}$, $Q_n(z)$: meromorphic

Under the coordinate transformation, the leading term $Q_0(z)$ transforms as a quadratic differential (e.g. [Kawai-Takei05]),

$$Q_0(z)dz^{\otimes 2}.$$

 $\implies \sqrt{Q_0(z)}dz$: 1-form single-valued on the double covering $\hat{\Sigma}$ of Σ

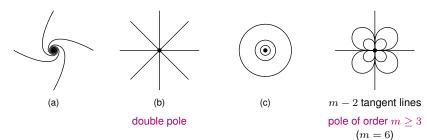
Assume

- Every zero of $Q_0(z)$ is simple.
- Every pole of $Q_0(z)$ is not simple.

We also assume some technical condition on the poles of $Q_n(z)$ $(n \ge 2)$.

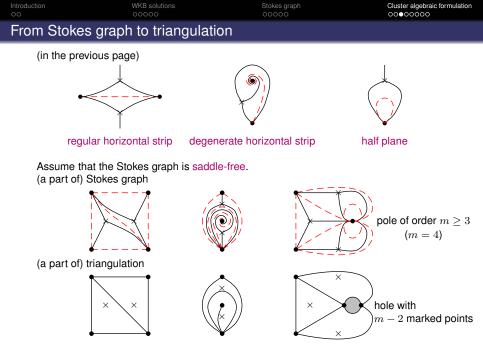
Introduction	WKB solutions	Stokes graph 00000	Cluster algebraic formulation
Stokes graphs			

Patterns of foliations around a pole [Strebel84]



The Stokes graph and the Stokes regions are defined as before.

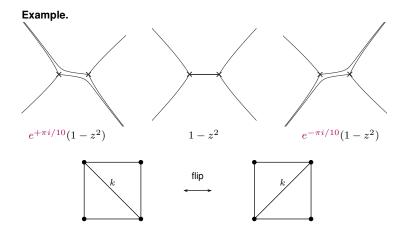
Assume that the Stokes graph is saddle-free (i.e., without saddle trajectory). Then, Stokes regions fall into three classes [Strebel84].

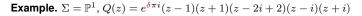


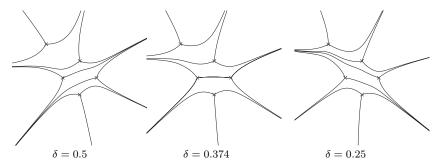
These triangulations fit the surface realization of cluster algebras.

Introduction	WKB solutions		Cluster algebraic formulation	
Mutation of Stokes graphs				

Under a continuous deformation of the potential $Q(z, \eta)$, the Stokes graph may change its topology. (= mutation of Stokes graphs)



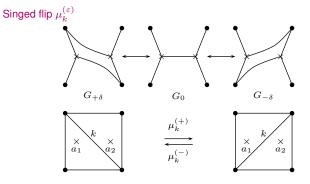




Introduction	WKB solutions	Stokes graph	Cluster algebraic formulation
Mutation of Stoke	s graphs		

Mutation of Stokes graphs

- Under a continuous deformation of the potential Q(z, η), the Stokes graph may change its topology. (= mutation of Stokes graphs)
- When the mutation occurs, one or more saddle connections appear.
- If only one saddle connection simultaneously appears during the mutation, it locally reduces to two types of elementary mutations called flip and pop [Gaiotto-Neitzke-Moore09], [Bridgeland-Smith13].
- They are refined to signed flip and signed pop.



It is induced from the S^1 -action on $Q(z,\eta)$ for $G_0, \, Q^{(\theta)}(z,\eta) := e^{2i\theta}Q(z,e^{i\theta}\eta).$

Introduction OO	WKB solutions		Cluster algebraic formulation	
Simple paths and simple cycles				

For simplicity, assume that the Stokes graph has no degenerate horizontal strip. $(\leftrightarrow \text{ no self-folding triangle in the triangulation})$

To each Stokes region D_i , we assign simple path $\beta_i \in H_1(\hat{\Sigma} \setminus \hat{P}_0, \hat{P}_\infty)$ simple cycle $\gamma_i \in H_1(\hat{\Sigma} \setminus \hat{P}_0 \sqcup \hat{P}_\infty)$ γ_i duality $\langle \gamma_i, \beta_i \rangle = \delta_{ii}$

Under the signed flip $\mu_k^{(\varepsilon)}$, they mutate as

$$\beta_{i}^{\prime} = \begin{cases} -\beta_{k} + \sum_{j=1}^{n} [-\varepsilon b_{jk}]_{+} \beta_{j} & i = k \\ \beta_{i} & i \neq k \end{cases}$$
(g-vector-like)
$$\gamma_{i}^{\prime} = \begin{cases} -\gamma_{k} & i = k \\ \gamma_{i} + [\varepsilon b_{ki}]_{+} \gamma_{k} & i \neq k \end{cases}$$
(c-vector-like)

$$\hat{y}_i = e^{V_i}, \quad V_i = \int_{\gamma_i} S_{\text{odd}}(z, \eta) dz$$
 Voros symbol for γ_i ,
 $y_i = e^{v_i}, \quad v_i = \int_{\gamma_i} \eta \sqrt{Q_0(z)} dz, \qquad \hat{y}_i = y_i \prod_{i=1}^n x_j^{b_{ji}}$

where we follow Fomin-Zelevinsky's notation for cluster algebras with coefficients.

Theorem. [IN14] Under the S^1 -action $Q^{(\theta)}(z,\eta) = e^{2i\theta}Q(z,e^{i\theta}\eta)$ which induces the signed mutation $\mu_k^{(\varepsilon)}$ of Stokes graphs, the Voros symbols "mutate" as

$$\begin{split} y'_i & \leadsto \begin{cases} y_k^{-1} & i = k \\ y_i y_k [\varepsilon^{b_k i}]_+ & i \neq k, \end{cases} \\ x'_i & \leadsto \begin{cases} x_k^{-1} \left(\prod_{j=1}^n x_j [-\varepsilon^{b_j k}]_+\right) (1 + \hat{y}_k^{\varepsilon}) & i = k \\ x_i & i \neq k, \end{cases} \\ \hat{y}'_i & \leadsto \begin{cases} \hat{y}_k^{-1} & i = k \\ \hat{y}_i \hat{y}_k [\varepsilon^{b_k i}]_+ (1 + \hat{y}_k^{\varepsilon})^{-b_k i} & i \neq k. \end{cases} \end{split}$$

Remark. The jump terms come form DDP's jump formula.