Wonder of sine-Gordon Y-systems

Tomoki Nakanishi

Nagoya University

Workshop "Algebra, Combinatorics and Representation Theory"
In memory of Andrei Zelevinsky Northeastern Univ., Boston, April, 2013
(ver. 2013/06/12)

Based on a joint work with Salvatore Stella (Northeastern U.), arXiv:1212.6853. All beautiful figures in this slide are prepared by him.

The pdf file of this slide is available at my web site.

Summary

- The sine-Gordon (SG) Y-systems are some (very complicated) systems of algebraic functional equations introduced by Roberto Tateo in 90's.
- They originate from the SG equation, which is a famous soliton equation.
- To be more precise, there are two subfamilies:

SG Y-systems and reduced SG (RSG) Y-systems.
Both are associated with continued fractions.
Main Message
There is a wonderful interplay among

- continued fractions
- SG/RSG Y-systems
- triangulations of polygons
- cluster algebras of types A and D
- Since the SG equation is associated with affine $s l_{2}$, this should be a tip of iceberg of some gigantic thing!

Important remark

Don't be discouraged by the horrible appearance of the SG/RSG Y-systems, since they are beautiful in nature.

Outline

(1) RSG and SG Y-systemsPolygon realization of Y-systems

4 Appendix. General Construction

Background in integrable models

- 2 d sine-Gordon (SG) equation

$$
\partial_{t}^{2} \phi-\partial_{x}^{2} \phi+g \sin (\beta \phi)=0, \quad(g, \beta: \text { parameters })
$$

a deformation of Klein-Gordon equation $\partial_{t}^{2} \phi-\partial_{x}^{2} \phi+m^{2} \phi=0$.

- integrable, having solitons, (affine) Toda field theory of $\widehat{s l}_{2}$
- quantization of ϕ (SG model) \Longrightarrow factorizable S-matrix [Zamolodchikov ${ }^{2} 79$]
- Tateo (95) applied the thermodynamic Bethe ansatz (TBA) method (started by Yang ${ }^{2}$, and developed by Takahashi, Suzuki, Faddeev, Takhtajan, Bazhanov, Kirillov, Reshetikhin, AI. Zamolodchikov, ...).

SG S-matrix \Longrightarrow SG TBA equation (integral equation)
$\Longrightarrow \mathrm{SG} Y$-system \& RSG Y-system (algebraic equation)

- We are interested in the situation when the parameter

$$
\xi:=\frac{\beta^{2} / 2}{1-\beta^{2} / 2} \text { is rational, and } 0<\xi<1 \text { (the attractive region). }
$$

The SG and RSG Y-systems depend on the continued fraction expression of ξ.

- Boldly speaking, the SG equation, the SG S-matrix (SG model), and the SG/RSG Y-systems are like cow, milk, and cheese.

Continued fractions (1)

- For any finite sequence of positive integers $\left(n_{1}, \ldots, n_{F}\right), n_{1} \geq 2$, we associate a continued fraction

$$
\xi=\left[n_{F}, \ldots, n_{1}\right]:=\frac{1}{n_{F}+\frac{1}{n_{F-1}+\frac{1}{\ddots+\frac{1}{n_{1}}}}} .
$$

We have the one-to-one correspondence:

$$
\left(n_{1}, \ldots, n_{F}\right) \quad \leftrightarrow \quad \xi \in \mathbb{Q}, \quad 0<\xi<1
$$

For each (n_{1}, \ldots, n_{F}), we have a family of continued fractions:

$$
\xi_{a}=\left[n_{a}, \ldots, n_{1}\right], \quad(a=1, \ldots, F)
$$

Define positive integers $p_{a}, q_{a}(a=1, \ldots, F)$ by

$$
\xi_{a}=\frac{p_{a}}{q_{a}}, \quad \operatorname{gcd}\left(p_{a}, q_{a}\right)=1
$$

Set

$$
r_{a}:=p_{a}+q_{a} .
$$

Continued fractions (2)

- Running example. $F=3,\left(n_{1}, n_{2}, n_{3}\right)=(6,4,3)$.

$$
\begin{array}{ll}
\xi_{1}=\frac{1}{6}, & \left(p_{1}, q_{1}\right)=(1,6), \\
r_{1}=7, \\
\xi_{2}=\frac{1}{4+\frac{1}{6}}=\frac{6}{25}, & \left(p_{2}, q_{2}\right)=(6,25), \\
r_{2}=31, \\
\xi_{3}=\frac{1}{3+\frac{1}{4+\frac{1}{6}}}=\frac{25}{81}, & \left(p_{3}, q_{3}\right)=(25,81),
\end{array} r_{3}=106 .
$$

- We use the numbers p_{1}, \ldots, p_{F} to define the RSG/SG Y-systems. They satisfy the recursion relation

$$
\begin{aligned}
& p_{1}=1, \quad p_{2}=n_{1}, \\
& p_{a}=n_{a-1} p_{a-1}+p_{a-2} .
\end{aligned}
$$

e.g., in the above example, $p_{1}=1, p_{2}=n_{1}=6, p_{3}=n_{2} p_{2}+p_{1}=4 \cdot 6+1=25$. All the nice properties originate from this recursion relation.

RSG Y-systems (1)

- Input: (n_{1}, \ldots, n_{F}). Here, assume $n_{1} \geq 3$ (the case $n_{1}=2$ is exceptional). We will define the RSG Y-system $\mathbb{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$.
- the Y-variables $Y_{m}^{(a)}(u)$, where
$u \in \mathbb{Z}$ (spectral parameter), $\quad a=1 \ldots, F$ (generation),

$$
m= \begin{cases}1, \ldots, n_{1}-2 & \text { if } a=1 \\ 1, \ldots, n_{a} & \text { if } a=2, \ldots, F\end{cases}
$$

- the Dynkin diagram $X_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$ of type A indexed by (a, m) in the above range

- signs: We set

$$
\varepsilon_{a}:=(-1)^{a+1} \quad a=1, \ldots, F
$$

- General relations: For a general (a, m) other than $(2,1),(3,1), \ldots,(F, 1)$,

$$
Y_{m}^{(a)}\left(u-p_{a}\right) Y_{m}^{(a)}\left(u+p_{a}\right)=\prod_{(b, k) \sim(a, m)}\left(1+Y_{k}^{(b)}(u)^{\varepsilon_{b}}\right)^{\varepsilon_{b}}
$$

where $(b, k) \sim(a, m)$ means (b, k) is adjacent to (a, m) in $X_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$.

- For $F=1$, it is the classic Y-system of type A.

RSG Y-systems (2)

Exceptional relations: For $(a, m)=(2,1)$,

$$
\begin{aligned}
Y_{1}^{(2)}\left(u-p_{2}\right) Y_{1}^{(2)}\left(u+p_{2}\right)= & \left(1+Y_{2}^{(2)}(u)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(u)\right) \\
& \times \prod_{m=1}^{n_{1}-2}\left(1+Y_{m}^{(1)}(u-1-m)^{-1}\right)^{-1} \\
& \times \prod_{m=1}^{n_{1}-2}\left(1+Y_{m}^{(1)}(u+1+m)^{-1}\right)^{-1}
\end{aligned}
$$

For $(a, m)=(3,1), \ldots,(F, 1)$,

$$
\begin{aligned}
& Y_{1}^{(a)}\left(u-p_{a}\right) Y_{1}^{(a)}\left(u+p_{a}\right) \\
&=\left(1+Y_{2}^{(a)}(u)^{\varepsilon_{a}}\right)^{\varepsilon_{a}}\left(1+Y_{n_{a-2}-2 \delta_{a 3}}^{(a-2)}(u)^{\varepsilon_{a}}\right)^{\varepsilon_{a}} \\
& \times \prod_{m=1}^{n_{a-1}}\left(1+Y_{m}^{(a-1)}\left(u-p_{a}+\left(n_{a-1}+1-m\right) p_{a-1}\right)^{\varepsilon_{a}}\right)^{\varepsilon_{a}} \\
& \times \prod_{m=1}^{n_{a-1}}\left(1+Y_{m}^{(a-1)}\left(u+p_{a}-\left(n_{a-1}+1-m\right) p_{a-1}\right)^{\varepsilon_{a}}\right)^{\varepsilon_{a}}
\end{aligned}
$$

where $\delta_{a 3}$ is the Kronecker delta.

- In short: (very complicated) generalization of the Y-systems of type A.

Bisection of RSG Y-systems

- Let $\mathcal{Y}=\mathcal{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$ be the set of all Y-variables of $\mathbb{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$. Divide $\mathcal{Y}=\mathcal{Y}_{+} \sqcup \mathcal{Y}_{-}$, where

$$
\begin{aligned}
& \mathcal{Y}_{+}:=\left\{Y_{m}^{(a)}(u) \in \mathcal{Y} \mid \theta_{m}^{(a)}(u):=u+p_{a+1}-\left(n_{a}-m\right) p_{a} \text { is even }\right\}, \\
& \mathcal{Y}_{-}:=\left\{Y_{m}^{(a)}(u) \in \mathcal{Y} \mid \theta_{m}^{(a)}(u):=u+p_{a+1}-\left(n_{a}-m\right) p_{a} \text { is odd. }\right\}
\end{aligned}
$$

Fact

Each relation of the Y-system involves variables only from \mathcal{Y}_{+}or only from \mathcal{Y}_{-}.
So, the Y-system $\mathbb{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$ is bisected into the one for \mathcal{Y}_{+}and the one for \mathcal{Y}_{-}.
One can concentrate on the Y-system for \mathcal{Y}_{+}, for example.

SG Y-systems (1)

- Input: $\left(n_{1}, \ldots, n_{F}\right)$

We will define the $\mathrm{SG} Y$-system $\mathbb{Y}_{\mathrm{SG}}\left(n_{1}, \ldots, n_{F}\right)$.

- the Y-variables $Y_{m}^{(a)}(u)$, where $u \in \mathbb{Z}, a=1 \ldots, F$, and

$$
m= \begin{cases}\overline{1}, \overline{2}, 0,1, \ldots, n_{1}-2 & \text { if } a=1 \\ 1, \ldots, n_{a} & \text { if } a=2, \ldots, F\end{cases}
$$

- the Dynkin diagram $X_{\text {SG }}\left(n_{1}, \ldots, n_{F}\right)$ of type D indexed by (a, m) in the above range

- General relations: For a general (a, m) other than $(2,1),(3,1), \ldots,(F, 1)$,

$$
Y_{m}^{(a)}\left(u-p_{a}\right) Y_{m}^{(a)}\left(u+p_{a}\right)=\prod_{(b, k) \sim(a, m)}\left(1+Y_{k}^{(b)}(u)^{\varepsilon_{b}}\right)^{\varepsilon_{b}},
$$

where $(b, k) \sim(a, m)$ means (b, k) is adjacent to (a, m) in $X_{\mathrm{SG}}\left(n_{1}, \ldots, n_{F}\right)$.

- For $F=1$, it is the classic Y-system of type D.

SG Y-systems (2)

Exceptional relations: For $(a, m)=(2,1)$,

$$
\begin{aligned}
Y_{1}^{(2)} & \left(u-p_{2}\right) Y_{1}^{(2)}\left(u+p_{2}\right) \\
& =\left(1+Y_{2}^{(2)}(u)^{-1}\right)^{-1}\left(1+Y_{\overline{1}}^{(1)}(u)^{-1}\right)^{-1}\left(1+Y_{\overline{2}}^{(1)}(u)^{-1}\right)^{-1} \\
& \times \prod_{m=0}^{n_{1}-2}\left(1+Y_{m}^{(1)}(u-1-m)^{-1}\right)^{-1} \\
& \left.\times \prod_{m=0}^{n_{1}-2}\left(1+Y_{m}^{(1)}(u+1+m)\right)^{-1}\right)^{-1}
\end{aligned}
$$

For $(a, m)=(a, 1)$ with $a=3, \ldots, F$,

$$
\begin{aligned}
& Y_{1}^{(a)}\left(u-p_{a}\right) Y_{1}^{(a)}\left(u+p_{a}\right) \\
&=\left(1+Y_{2}^{(a)}(u)^{\varepsilon_{a}}\right)^{\varepsilon_{a}}\left(1+Y_{n_{a-2}-2 \delta_{a 3}}^{(a-2)}(u)^{\varepsilon_{a}}\right)^{\varepsilon_{a}} \\
& \times \prod_{m=1}^{n_{a-1}}\left(1+Y_{m}^{(a-1)}\left(u-p_{a}+\left(n_{a-1}+1-m\right) p_{a-1}\right)^{\varepsilon_{a}}\right)^{\varepsilon_{a}} \\
& \times \prod_{m=1}^{n_{a-1}}\left(1+Y_{m}^{(a-1)}\left(u+p_{a}-\left(n_{a-1}+1-m\right) p_{a-1}\right)^{\varepsilon_{a}}\right)^{\varepsilon_{a}} .
\end{aligned}
$$

- In short: (very complicated) generalization of the Y-systems of type D.

Reduction of SG Y-systems

- Under the specialization

$$
\begin{aligned}
& \qquad Y_{0}^{(1)}(u)=0, \quad Y_{\overline{1}}^{(1)}(u)=Y_{\overline{2}}^{(1)}(u)=-1 \\
& \mathbb{Y}_{\mathrm{SG}}\left(n_{1}, \ldots, n_{F}\right) \text { reduces to } \mathbb{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)
\end{aligned}
$$

Outline

2 Tateo's conjectures
(3) Polygon realization of Y-systems

44 Appendix. General Construction

Y-system and CFT

- General picture:

S-matrix model
massive theory

$\xrightarrow[\text { massive deformation }]{\text { massless limit }}$
conformal field theory (CFT) massless theory

- In TBA method, the Y-system is a tool to extract some essential information of CFT limit of the S-matrix model.
period of Y-system \Longrightarrow conformal dimension of the deformation field dilogarithm identity of Y-system \Longrightarrow central charge of CFT
- This perspective leads to several conjectures on the periodicities and dilogarithm identities for various Y-systems in 90's.
- In particular, Tateo made conjectures on explicit formulas of period and dilogarithm identities for RSG/SG Y-systems.

Tateo's Conjectures (1): Periodicity

- Recall that

$$
\xi_{F}=\left[n_{F}, \ldots, n_{1}\right]=\frac{p_{F}}{q_{F}}, \quad r_{F}:=p_{F}+q_{F} .
$$

Conjecture [Tateo 95].

"... the periodicity properties that can be numerically verified with high precision..."
(a). The RSG Y-system $\mathbb{Y}_{\mathrm{RSG}}\left(n_{1}, \ldots, n_{F}\right)$ has the following periodicity.

$$
Y_{m}^{(a)}\left(u+2 r_{F}\right)=Y_{m}^{(a)}(u) .
$$

(b). The SG Y-system $\mathbb{Y}_{\mathrm{SG}}\left(n_{1}, \ldots, n_{F}\right)$ has the following periodicity.
(i). If r_{F} is even, we have

$$
Y_{m}^{(a)}\left(u+2 r_{F}\right)=Y_{m}^{(a)}(u) .
$$

(ii). If r_{F} is odd, we have
(half periodicity) $\quad Y_{m}^{(a)}\left(u+2 r_{F}\right)= \begin{cases}Y_{\overline{2}}^{(1)}(u) & (a, m)=(1, \overline{1}) \\ Y_{\overline{1}}^{(1)}(u) & (a, m)=(1, \overline{2}) \\ Y_{m}^{(a)}(u) & \text { otherwise, }\end{cases}$
(full periodicity) $\quad Y_{m}^{(a)}\left(u+4 r_{F}\right)=Y_{m}^{(a)}(u)$.

Tateo's Conjectures (2): Dilogarithm identities

- Let $L(x)$ be the Rogers dilogarithm

$$
L(x)=-\frac{1}{2} \int_{0}^{x}\left(\frac{\log (1-y)}{y}+\frac{\log y}{1-y}\right) d y
$$

Conjecture [Tateo 95].

"... with an appropriate number of initial conditions we find the following identities ..."
For any real positive solution of the RSG/SG Y-system $\mathbb{Y}_{\mathrm{RSG} / \mathrm{SG}}\left(n_{1}, \ldots, n_{F}\right)$ for \mathcal{Y}_{+}, the following identities hold:

$$
\begin{aligned}
& \frac{6}{\pi^{2}} \sum_{\substack{Y_{m}^{(a)}(u) \in \mathcal{Y}_{+} \\
0 \leq u \leq 2 r_{F}}} L\left(\frac{Y_{m}^{(a)}(u)}{1+Y_{m}^{(a)}(u)}\right) \\
= & \begin{cases}r_{F}\left(\sum_{a: \text { odd }} n_{a}-4+\sum_{a=1}^{F-1}(-1)^{a+1} \frac{6}{p_{a} q_{a}}+(-1)^{F+1} \frac{6}{p_{F} r_{F}}\right) & \text { for RSG } \\
r_{F}\left(\sum_{a: \text { odd }} n_{a}\right) & \text { for SG. }\end{cases}
\end{aligned}
$$

The most complicated example of the dilog identities arising from the TBA method.

Cross-ratio solution of RSG Y-system by [Gliozzi-Tateo 96]

- cross-ratio:

$$
(\alpha, \beta, \gamma, \delta):=\frac{(\alpha-\delta)(\beta-\gamma)}{(\alpha-\beta)(\gamma-\delta)}
$$

Introduce formal variables $z(n)(n \in \mathbb{Z})$.
Theorem [Gliozzi \&Tateo 96]. (cross-ratio solution of RSG Y-system)
"... it is straightforward to verify by direct substitution that the general solution of Eqs.
(3.34-3.39) is ..."

Assume the periodicity $z\left(n+r_{F}\right)=z(n)$. Them, the cross-ratios

$$
Y_{m}^{(a)}(u)=\left(z\left(\alpha_{m}^{(a)}(u)\right), z\left(\beta_{m}^{(a)}(u)\right), z\left(\gamma_{m}^{(a)}(u)\right), z\left(\delta_{m}^{(a)}(u)\right)\right)^{\varepsilon_{a}}
$$

give the general solution of the RSG Y-system for \mathcal{Y}_{+}, where

$$
\begin{aligned}
\alpha_{m}^{(1)}(u) & =\frac{1}{2}(u+m+2), & \beta_{m}^{(1)}(u) & =\frac{1}{2}(u+m), \\
\gamma_{m}^{(1)}(u) & =\frac{1}{2}(u-m), & \delta_{m}^{(1)}(u) & =\frac{1}{2}(u-m-2) .
\end{aligned}
$$

and, for $a=2, \ldots, F$,

$$
\begin{array}{rlrl}
\alpha_{m}^{(a)}(u) & =\frac{1}{2}\left(u+p_{a+1}-\left(n_{a}-m\right) p_{a}\right), & \beta_{m}^{(a)}(u) & =\frac{1}{2}\left(u+p_{a+1}-\left(n_{a}+2-m\right) p_{a}\right), \\
\gamma_{m}^{(a)}(u) & =\frac{1}{2}\left(u-p_{a+1}+\left(n_{a}+2-m\right) p_{a}\right), & \delta_{m}^{(a)}(u)=\frac{1}{2}\left(u-p_{a+1}+\left(n_{a}-m\right) p_{a}\right) .
\end{array}
$$

In particular, the periodicity $Y_{m}^{(a)}\left(u+2 r_{F}\right)=Y_{m}^{(a)}(u)$ is proved.

Known and related results on Tateo's conjectures

- chronological table

1. [Gliozzi \&Tateo 96] Periodicities for RSG (for any F).
2. [Frenkel \& Szenes 95] Dilog identities for type $A Y$-system (=RSG for $F=1$).

- There was no systematic method to prove these conjectures.
(\uparrow B.C.)
- '00, Introduction of cluster algebras by Fomin \& Zelevinsky (\downarrow A.D.)

3. [Fomin \& Zelevinsky 02] Periodicity for type $D Y$-system (=SG for $F=1$).
4. [Chapoton 05] Dilog identities for type $D Y$-system (=SG for $F=1$).

- Similar conjectures for the RSOS Y-systems were proved by tropicalization-categorification method in cluster algebra [Keller 10], [N. 09], [Inoue-Iyama-Keller-Kuniba-N. 10]

5. [N.\& Tateo 10] Periodicities/Dilog identities for RSG/SG for $F=2$. (applying the above tropicalization-categorification method)

- However, the extension of the analysis [N.\& Tateo 10] to general F seems not easy, because analysis becomes too complicated.
Source of problem: We do not see any good structure in RSG/SG Y-systems. Again, we are stuck.

Main result

Main Theorem [N. \& Stella 12].

Tateo's conjectures for RSG/SG Y-systems hold for any F.

- Key idea to overcome the difficulty: Using polygon realization.
(1). (by the referee of [N.\& Tateo 10]): For $F=2$, the cluster algebras realizing the RSG/SG Y-systems are of types A / D, respectively.
(2). It is known that the cluster algebras of types A / D are realized by polygons (without/with puncture). [Fock \& Goncharov 07, Fomin-Shapiro-Thurston 08]
(3). So, we may try to realize the Y-systems for general F by polygons. This is indeed possible; and it turned out that the nature of RSG/SG Y-systems becomes most apparent in the polygon realization.

Outline

(1) RSG and SG Y-systems

2 Tateo's conjectures
(3) Polygon realization of Y-systems

44 Appendix. General Construction

Y-seed of cluster algebras

[Fomin-Zelevinsky 02]

- Fix a positive integer n.

Start from initial (labeled) Y-seed (B, y) :
a skew-symmetric matrix $B=\left(b_{i j}\right)_{i, j=1}^{n}$ (initial exchange matrix), algebraically independent variables $y=\left(y_{1}, \ldots, y_{n}\right)$ (initial coefficients $/ y$-variables)

- The mutation $\left(B^{\prime}, y^{\prime}\right)=\mu_{k}(B, y)$ at $k=1, \ldots, n$ is defined by the following rule.

$$
\begin{aligned}
b_{i j}^{\prime} & = \begin{cases}-b_{i j} & i=k \text { or } j=k \\
b_{i j}+b_{i k}\left[b_{k j}\right]_{+}+\left[-b_{i k}\right]_{+} b_{k j} & i, j \neq k\end{cases} \\
y_{i}^{\prime} & = \begin{cases}y_{i}^{-1} & i=k \\
y_{i} \frac{\left(1+y_{k}\right)^{\left[-b_{k i}\right]_{+}}}{\left(1+y_{k}^{-1}\right)^{\left[b_{k i}\right]_{+}}} & i \neq k,\end{cases}
\end{aligned}
$$

where $[a]_{+}=a$ for $a>0$ and 0 otherwise.

- Repeat mutations.

Mutation of a labeled triangulation of a polygon

- Fix a given (initial) labeled triangulation of $n+3$-gon.

There are n diagonals. The diagonals are labeled by $i=1, \ldots, n$.
e.g., octagon, $8-3=5$ diagonals

- mutation at k : flip the diagonal k

Polygon realization of Y-seeds of type A

- We associate a Y-seed (B, y) to each labeled triangulation Γ as follows.
- The matrix B : We set $b_{i j}=1, b_{j i}=-1$ for the configuration

Otherwise $b_{i j}=0$. This is compatible with the mutation of B-matrices.

- y-variables: For the initial triangulation Γ, attach the initial y-variable y_{i} to the diagonal i. For the labeled triangulation $\Gamma^{\prime}=\mu_{k}(\Gamma)$, attach the y-variables y_{i}^{\prime} to the diagonal i such that

$$
\begin{aligned}
& y_{k}^{\prime}=y_{k}^{-1}, \quad y_{i}^{\prime}=y_{i}\left(1+y_{k}^{-1}\right)^{-1}, \quad y_{j}^{\prime}=y_{j}\left(1+y_{k}\right), \quad \text { for the above } k, i, j \\
& y_{\ell}^{\prime}=y_{\ell}, \quad \text { else. }
\end{aligned}
$$

- Then we have a one-to-one correspondence (not obvious!):

$$
\text { labeled triangulation } \leftrightarrow \quad Y \text {-seed }
$$

shown via cross-ratio [Fock-Goncharov], or via tropicalization [Fomin-Thurston] + [Plamondon] + [Inoue-Iyama-Keller-Kuniba-N.]

Example 1: $\mathbb{Y}_{\mathrm{RSG}}(6) . Y$-system.

The input data $F=1,\left(n_{1}\right)=(6)$.
$\xi_{1}=\frac{1}{6},\left(p_{1}, q_{1}\right)=(1,6), r_{1}=7,2 r_{1}=2 \times 7=14($ period of Y-system $)$.

Y-variables: $Y_{1}^{(1)}(u), \ldots, Y_{4}^{(1)}(u)$
Y-system:

$$
Y_{m}^{(1)}(u-1) Y_{m}^{(1)}(u+1)=\prod_{(1, k) \sim(1, m)}\left(1+Y_{k}^{(1)}(u)\right)
$$

This is the classic Y-system of type A_{4}, which is realized by $7=4+3=n_{1}+1=r_{1}$-gon.

Example 1: $\mathbb{Y}_{\mathrm{RSG}}(6)$. Initial triangulation.

- Initial labeled triangulation of 7-gon. (zigzag/bipartite triangulation)

$11, \ldots 14$ are the abbreviation of the label $(a, m)=(1,1), \ldots,(1,4)$.
They correspond to the labels for Y-variables $Y_{1}^{(1)}(u), \ldots, Y_{4}^{(1)}(u)$.

Example 1: $\mathbb{Y}_{\mathrm{RSG}}(6)$. Sequence of mutations.

- Consider the following sequence of mutations:

half period:7, full period: 14 .
The labels marked by \circ are called the forward mutation points at time u

Example 1: $\mathbb{Y}_{\mathrm{RSG}}(6)$. Realization of Y-system.

- y-variables at time u : $y_{1}^{(1)}(u), y_{2}^{(1)}(u), y_{3}^{(1)}(u), y_{4}^{(1)}(u)$
- Identify $y_{m}^{(1)}(u)$ with $Y_{m}^{(1)}(u)$ only at the forward mutation points at u.

These Y-variables belongs to $\mathcal{Y}_{+}:=\left\{Y_{m}^{(1)}(u) \mid m+u\right.$ is even $\}$.
They satisfies the Y-system for \mathcal{Y}_{+}.
e.g. $Y_{2}^{(1)}(0) Y_{2}^{(1)}(2)=\left(1+Y_{1}^{(1)}(1)\right)\left(1+Y_{3}^{(1)}(1)\right)$.

$y_{2}^{(1)}(0)$
$y_{2}^{(1)}(1)=y_{2}^{(1)}(0)^{-1}$
$y_{2}^{(1)}(2)=y_{2}^{(1)}$
$(0)^{-1}\left(1+y_{1}^{(1)}\right.$
$(1))\left(1+y_{3}^{(1)}(1)\right)$

This proves the periodicity of the Y-system with period $14!$

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4) . Y$-system.

- The input data $F=2,\left(n_{1}, n_{2}\right)=(6,4)$.

$$
\xi_{2}=\frac{1}{4+\frac{1}{6}}=\frac{6}{25}, \quad\left(p_{2}, q_{2}\right)=(6,25), \quad r_{2}=31
$$

$2 r_{2}=2 \times 31=62($ period of Y-system).

Y-variables: $Y_{1}^{(1)}(u), \ldots, Y_{4}^{(1)}(u) ; Y_{1}^{(2)}(u), \ldots, Y_{4}^{(2)}(u)$
Y-system: General relation for $(a, m) \neq(2,1)$,

$$
Y_{m}^{(a)}\left(u-p_{a}\right) Y_{m}^{(a)}\left(u+p_{a}\right)=\prod_{(b, k) \sim(a, m)}\left(1+Y_{k}^{(b)}(u)^{\varepsilon_{b}}\right)^{\varepsilon_{b}}
$$

Exceptional relation for $(a, m)=(2,1)$,

$$
\begin{aligned}
Y_{1}^{(2)}(u-6) Y_{1}^{(2)} & (u+6)=\left(1+Y_{2}^{(2)}(u)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(u)\right) \\
& \times\left(1+Y_{4}^{(1)}(u-5)^{-1}\right)^{-1}\left(1+Y_{3}^{(1)}(u-4)^{-1}\right)^{-1} \\
& \times\left(1+Y_{2}^{(1)}(u-3)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(u-2)^{-1}\right)^{-1} \\
& \times\left(1+Y_{1}^{(1)}(u+2)^{-1}\right)^{-1}\left(1+Y_{2}^{(1)}(u+3)^{-1}\right)^{-1} \\
& \times\left(1+Y_{3}^{(1)}(u+4)^{-1}\right)^{-1}\left(1+Y_{4}^{(1)}(u+5)^{-1}\right)^{-1} .
\end{aligned}
$$

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Mutation sequence of quivers.

- Realization of $\mathbb{Y}_{\mathrm{RSG}}(6,4)$ by the the sequences of quivers with 28 vertices [N .-Tateo 10]. (•/o: first/second generation)

$u=0$

$u=1$

$u=2$
- The quivers at $u=0$ and 2 are isomorphic by the relabeling for the second generation. (periodicity of quivers)
- They are mutation equivalent to the quiver of type A.
- The choice of quivers and forward mutation points are rather mysterious.

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization by triangulations.

- One can translate the quivers of [N.-Tateo 10] into the triangulations of the 31-gon.

The o's are the forward mutation points.

- Key observation: Each mutation is the reflection with respect to the axis $Z(u)$.
\Longrightarrow Combining two reflections, we have the rotation by 5 units.
- Repeat the reflections with respect the images of these axes.

Since 31 and 5 are coprime, we have the (desired) period of 62 as an unlabeled triangulation. (As a labeled triangulation, the label $(2, m)_{s}$ is replaced by $(2, m)_{s+1}$.)

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

$$
\begin{aligned}
Y_{1}^{(2)}(13)= & Y_{1}^{(2)}(1)^{-1}\left(1+Y_{4}^{(1)}(2)^{-1}\right)^{-1}\left(1+Y_{3}^{(1)}(3)^{-1}\right)^{-1} \\
& \times\left(1+Y_{2}^{(1)}(4)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(5)^{-1}\right)^{-1} \\
& \times\left(1+Y_{2}^{(2)}(7)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(7)\right)^{(1)} \\
& \times\left(1+Y_{1}^{(1)}(9)^{-1}\right)^{-1}\left(1+Y_{2}^{(1)}(10)^{-1}\right)^{-1} \\
& \times\left(1+Y_{3}^{(1)}(11)^{-1}\right)^{-1}\left(1+Y_{4}^{(1)}(12)^{-1}\right)^{-1}
\end{aligned}
$$

Example 2: $\mathbb{Y}_{\mathrm{RSG}}(6,4)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(2,1)$:

$$
u=13
$$

$$
\begin{aligned}
Y_{1}^{(2)}(13)= & Y_{1}^{(2)}(1)^{-1}\left(1+Y_{4}^{(1)}(2)^{-1}\right)^{-1}\left(1+Y_{3}^{(1)}(3)^{-1}\right)^{-1} \\
& \times\left(1+Y_{2}^{(1)}(4)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(5)^{-1}\right)^{-1} \\
& \times\left(1+Y_{2}^{(2)}(7)^{-1}\right)^{-1}\left(1+Y_{1}^{(1)}(7)\right) \\
& \times\left(1+Y_{1}^{(1)}(9)^{-1}\right)^{-1}\left(1+Y_{2}^{(1)}(10)^{-1}\right)^{-1} \\
& \times\left(1+Y_{3}^{(1)}(11)^{-1}\right)^{-1}\left(1+Y_{4}^{(1)}(12)^{-1}\right)^{-1}
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3) . Y$-system.

- The input data $F=3,\left(n_{1}, n_{2}, n_{3}\right)=(6,4,3)$.

$$
\xi_{3}=\frac{1}{3+\frac{1}{4+\frac{1}{6}}}=\frac{25}{81}, \quad\left(p_{3}, q_{3}\right)=(25,81), \quad r_{3}=106
$$

$2 r_{3}=2 \times 106=212($ period of Y-system $)$.

Y-variables: $Y_{1}^{(1)}(u), \ldots, Y_{4}^{(1)}(u) ; Y_{1}^{(2)}(u), \ldots, Y_{4}^{(2)}(u) ; Y_{1}^{(3)}(u), \ldots, Y_{3}^{(3)}(u)$ Y-system: General relation for $(a, m) \neq(2,1),(3,1)$ and the exceptional relation for $(a, m)=(2,1)$ are the ones as before.
The exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(u-25) Y_{1}^{(3)}(u+25)= & \left(1+Y_{2}^{(3)}(u)\right)\left(1+Y_{4}^{(1)}(u)\right) \\
& \times\left(1+Y_{4}^{(2)}(u-19)\right)\left(1+Y_{3}^{(2)}(u-13)\right) \\
& \times\left(1+Y_{2}^{(2)}(u-7)\right)\left(1+Y_{1}^{(2)}(u-1)\right) \\
& \times\left(1+Y_{1}^{(2)}(u+1)\right)\left(1+Y_{2}^{(2)}(u+7)\right) \\
& \times\left(1+Y_{3}^{(2)}(u+13)\right)\left(1+Y_{4}^{(2)}(u+19)\right),
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Initial triangulation.

- Initial triangulation of an 106-gon.

- Quasi-symmetry with respect to $Z(u)(u=0,-1)$.
$=$ It is symmetric w.r.t. $Z(u)$ except for the diagonals which intersects with $Z(u)$.

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Sequence of mutations.

- Consider a sequence of mutations:

The o's are the forward mutation points.

- Combining two reflections, we have the rotation by 17 units.
- Repeat the reflections with respect the images of these axes.

Since 106 and 17 are coprime, we have the (desired) period of 212 as an unlabeled triangulation.

- Furthermore, they realize the Y-system $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$.

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
Y_{1}^{(3)}(51)=Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right)
$$

$$
\times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right)
$$

$$
\times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right)
$$

$$
\times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right)
$$

$$
\times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right)
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
Y_{1}^{(3)}(51)=Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right)
$$

$$
\times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right)
$$

$$
\times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right)
$$

$$
\times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right)
$$

$$
\times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right)
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51) & =Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
u=34
$$

$$
Y_{1}^{(3)}(51)=Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right)
$$

$$
\times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right)
$$

$$
\times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right)
$$

$$
\times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right)
$$

$$
\times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

$$
\begin{aligned}
Y_{1}^{(3)}(51)= & Y_{1}^{(3)}(1)^{-1}\left(1+Y_{4}^{(2)}(7)\right)\left(1+Y_{3}^{(2)}(13)\right) \\
& \times\left(1+Y_{2}^{(2)}(19)\right)\left(1+Y_{1}^{(2)}(25)\right) \\
& \times\left(1+Y_{2}^{(3)}(26)\right)\left(1+Y_{4}^{(1)}(26)\right) \\
& \times\left(1+Y_{1}^{(2)}(27)\right)\left(1+Y_{2}^{(2)}(33)\right) \\
& \times\left(1+Y_{3}^{(2)}(39)\right)\left(1+Y_{4}^{(2)}(45)\right) .
\end{aligned}
$$

Example 3: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Realization of Y-system.

- Let us focus on the exceptional relation for $(a, m)=(3,1)$:

Further examples

They are directly associated with continued fractions.

RSG vs. SG Y-systems

- RSG Y-system: type A, triangulation of r_{F}-gon (without puncture) SG Y-system: type D, (tagged) triangulation of r_{F}-gon (with a puncture) The difference is only the diagonals of the first generation.

Dilogarithm identities in general form

Suppose we have a (partial) period of Y-seed:

$$
(B(0), y(0)) \stackrel{k_{0}}{\longleftrightarrow}(B(1), y(1)) \stackrel{k_{1}}{\longleftrightarrow} \cdots \stackrel{k_{N}}{\longleftrightarrow}(B(N), y(N)) \equiv(B(0), y(0)),
$$

where \equiv is modulo permutation of labels.

Dilogarithm identity in general form [N11]

For any real positive evaluation of $y(0)$, we have

$$
\begin{equation*}
\frac{6}{\pi^{2}} \sum_{t=0}^{N-1} L\left(\frac{y_{k_{t}}(t)}{1+y_{k_{t}}(t)}\right)=N_{-} \tag{1}
\end{equation*}
$$

where N_{-}is the total number of $y_{k_{t}}(t)(t=0, \ldots, N=1)$ whose tropical sign (= the sign of the corresponding c-vector) is negative.

Once the periodicity is established, Tateo's conjecture reduces to the formula for N_{-}:

$$
N_{-}= \begin{cases}r_{F}\left(\sum_{a: \text { odd }} n_{a}-4+\sum_{a=1}^{F-1}(-1)^{a+1} \frac{6}{p_{a} q_{a}}+(-1)^{F+1} \frac{6}{p_{F} r_{F}}\right) \\ =r_{F}\left(\sum_{a: \text { odd }} n_{a}-4\right)+6 r_{F}^{(2)}, r_{F}^{(2)}:=p_{F}^{(2)}+q_{F}^{(2)}, p_{F}^{(2)} / q_{F}^{(2)}=\left[n_{F}, \ldots, n_{2}\right] & \text { for RSG } \\ r_{F}\left(\sum_{a: \text { odd }} n_{a}\right), & \text { for SG. }\end{cases}
$$

Counting of N_{-}by lamination technique

- We can count N_{-}by analyzing the triangulations, using the lamination technique due to [Fock-Goncharov 07], [Fomin-Thurston 08].
- Example. RSG, $F=1,\left(n_{1}\right)=(6)$. Data: $p_{1}=1, r_{1}=7$.

Tateo's conjecture:

$$
\begin{aligned}
N_{-} & =r_{F}\left(\sum_{a: \text { odd }} n_{a}-4+\sum_{a=1}^{F-1}(-1)^{a+1} \frac{6}{p_{a} q_{a}}+(-1)^{F+1} \frac{6}{p_{F} r_{F}}\right) \\
& =7\left(6-4+\frac{6}{1 \times 7}\right)=20
\end{aligned}
$$

Counting N_{-}using the (initial) lamination:

Summary

- The sine-Gordon (SG) Y-systems are some (very complicated) systems of algebraic functional equations introduced by Roberto Tateo in 90's.
- They originate from the SG equation, which is a famous soliton equation.
- To be more precise, there are two subfamilies:

SG Y-systems and reduced SG (RSG) Y-systems.
Both are associated with continued fractions.

Main Message

There is a wonderful interplay among

- continued fractions
- SG/RSG Y-systems
- triangulations of polygons
- cluster algebras of types A and D
- Since the SG equation is associated with affine $s l_{2}$, this should be a tip of iceberg of some gigantic thing!

Important remark

Don't be discouraged by the horrible appearance of the SG/RSG Y-systems, since they are beautiful in nature.

Outline

RSG and SG Y-systemsTateo's conjecturesPolygon realization of Y-systems

4 Appendix. General Construction

More on continued fractions

- Input $\left(n_{1}, \ldots, n_{F}\right)$. We introduced continued fractions $(1 \leq a \leq F)$

$$
\xi_{a}=\frac{p_{a}}{q_{a}}=\left[n_{a}, \ldots, n_{1}\right]:=\frac{1}{n_{a}+\frac{1}{n_{a-1}+\frac{1}{\ddots+\frac{1}{n_{1}}}}}
$$

and $r_{a}:=p_{a}+q_{a}$.
We further introduce continued fractions $2 \leq k \leq a \leq F$

$$
\xi_{a}^{(k)}=\frac{p_{a}^{(k)}}{q_{a}^{(k)}}=\left[n_{a}, \ldots, n_{k}\right]=\frac{1}{n_{a}+\frac{1}{n_{a-1}+\frac{1}{\ddots}+\frac{1}{n_{k}}}}
$$

and $r_{a}^{(k)}:=p_{a}^{(k)}+q_{a}^{(k)}$.

- We will construct a triangulation of an r_{F}-gon associated with $\left(n_{1}, \ldots, n_{F}\right)$. The numbers $r:=r_{F}, r^{(k)}:=r_{F}^{(k)}$ are especially important for the construction. Recursion relation: $r^{(k)}=n_{k} r^{(k+1)}+r^{(k+2)}$.

Example

- Running example: $F=3,\left(n_{1}, n_{2}, n_{3}\right)=(6,4,3)$. We have

$$
\begin{array}{lr}
\xi_{1}=\frac{1}{6}, & \left(p_{1}, q_{1}\right)=(1,6), \\
\xi_{2}=\frac{1}{4+\frac{1}{6}}=\frac{6}{25}, & \left(p_{2}, q_{2}\right)=(6,25), \\
\xi_{3}=\frac{1}{3+\frac{1}{4+\frac{1}{6}}}=\frac{25}{81}, & \left(p_{3}, q_{3}\right)=31, \\
\xi_{3} &
\end{array}
$$

We also have

$$
\begin{array}{lrr}
\xi_{2}^{(2)}=\frac{1}{4}, & \left(p_{2}^{(2)}, q_{2}^{(2)}\right)=(1,4), & r_{2}^{(2)}=5, \\
\xi_{3}^{(2)}=\frac{1}{3+\frac{1}{4}}=\frac{4}{13}, & \left(p_{3}^{(2)}, q_{3}^{(2)}\right)=(4,13), & r^{(2)}=r_{3}^{(2)}=17, \\
\xi_{3}^{(3)}=\frac{1}{3}, & \left(p_{3}^{(3)}, q_{3}^{(3)}\right)=(1,3), & r^{(3)}=r_{3}^{(3)}=4 .
\end{array}
$$

Recursion relation: $106=6 \times 17+4$.

Example: $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$. Initial triangulation.

- Recall: Initial triangulation of an 106 -gon for $\mathbb{Y}_{\mathrm{RSG}}(6,4,3)$.

$r=106$: The number of vertices.
$r^{(2)}=17$: The width of the zigzag of the second generation
$r^{(3)}=4$: The width of the zigzag of the third generation

General construction: Step 1. The intervals of the second generation

- The diagonals of the first generation and the intervals of the second generation

(a) even n_{1}

(b) odd n_{1}

The intervals of the second generation for even n_{1}, schematically:

General construction: Step 2. Subdivision of the intervals

The intervals of the a-th generation is subdivided into the intervals of the $a+1$-th generation:
For even n_{a},

For odd n_{a},

General construction: Step 3. Draw the diagonals

- For each interval of type R or L of the a-th generation, draw the diagonals of the a-th generation:

type L, even n_{a}

type R, even n_{a}

type L, odd n_{a}

type R, odd n_{a}

