Cluster algebras and applications

Tomoki Nakanishi

Nagoya University

Talk presented at JMS meeting, Shinshu Univ., September 2011

Based on joint works with
R. Inoue. O. Iyama, R. Kashaev, B. Keller, A. Kuniba, J. Suzuki, R. Tateo, A. Zelevinsky

The pdf file of this talk will be available on my web site.

Summary

Summary

- In 90's the systems of discrete functional equations called T-systems and Y-systems were introduced and studied in the Bethe ansatz method for integrable models.
- After the introduction of cluster algebras by Fomin and Zelevinsky around 2000 it has been gradually recognized that T-systems and Y -systems are a part of cluster algebra structure.
- In particular, the long standing conjecture of periodicities of Y -systems by Zamolodchikov et al. is proved by the tropicalization method in cluster algebras.
- One can associate classical and quantum dilogarithm identities with any period of a cluster algebra.
- As a further consequence, the long standing conjecture of the central charge identities in conformal field theory by Kirillov et al. is proved.

Plan of Talk

(9) Cluster algebras
(2) T-systems and Y -systems
(3) Tropicalization
4. Periodicity
(5) Dilogarithm Identities

Outline

(9) Cluster algebras
(2) T-systems and Y-systems
(3) Tropicalization

4 Periodicity
(5) Dilogarithm Identities

Mutation of matrix/quiver

\star mutation of matrix
I : finite index set
$B=\left(b_{i j}\right)_{i, j \in I}$: a skew symmetric (integer) matrix mutation of B at $k \in I, B^{\prime}=\mu_{k}(B)$:

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\ b_{i j}+\left[-b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & i, j \neq k\end{cases}
$$

where $[a]_{+}:=\max (a, 0) . B^{\prime}$ is again skew symmetric, and $\mu_{k}^{2}=\mathrm{id}$.
\star correspondence to quiver
skew symmetric matrix $B \quad \leftrightarrow \quad$ quiver Q (with no loop and 2-cycle)

$$
b_{i j}=t>0 \quad \leftrightarrow \quad \circ \xrightarrow[i]{t \text { arrows }} \underset{j}{\circ}
$$

\star mutation of quiver at k
Step 1. For each pair of an incoming arrow $i \rightarrow k$ and an outgoing arrow $k \rightarrow j$, add a new arrow $i \rightarrow j$.
Step 2. Remove a maximal set of pairwise disjoint 2-cycles.
Step 3. Reverse all arrows incident with k.

Semifield

\star Semifield
Definition: A semifield $(\mathbb{P}, \oplus, \cdot)$ is an abelian multiplicative group endowed with a binary operation of addition \oplus which is commutative, associative, and distributive with respect to the multiplication in \mathbb{P}.
\star Three important examples:
(a) Universal semifield $\mathbb{P}_{\text {univ }}(y)$. For an I-tuple of variables $y=\left(y_{i}\right)_{i \in I}$, it consists of all the rational functions with subtraction-free rational expressions (i.e., $P(y) / Q(y)$ with $P(y)$ and $Q(y)$ being polynomials in y_{i} 's with positive rational coefficients).
(b) Tropical semifield $\mathbb{P}_{\text {trop }}(y)$. For an I-tuple of variables $y=\left(y_{i}\right)_{i \in I}$, it is the abelian multiplicative group freely generated by the variables y_{i} 's endowed with the addition \oplus

$$
\begin{equation*}
\prod_{i} y_{i}^{a_{i}} \oplus \prod_{i} y_{i}^{b_{i}}=\prod_{i} y_{i}^{\min \left(a_{i}, b_{i}\right)} . \tag{1}
\end{equation*}
$$

(c) Trivial semifield 1. It consists of only one element 1 with $1 \cdot 1=1 \oplus 1=1$.
\star Sequence of surjections:

$$
\begin{array}{ccccc}
\mathbb{P}_{\text {univ }}(y) & \rightarrow & \mathbb{P}_{\text {trop }}(y) & \rightarrow & \mathbf{1} \\
y_{i} & \mapsto & y_{i} & \mapsto & 1 \\
c(>0) & \mapsto & 1 & \mapsto & 1
\end{array}
$$

Cluster algebra with coefficients [Fomin-Zelevinsky 02]

\star initial seed (B, x, y) :
initial exchange matrix $B=\left(b_{i j}\right)_{i, j \in I}$: a skew symmetric (integer) matrix
initial cluster $x=\left(x_{i}\right)_{i \in I}$: an I-tuple of formal variables
initial coefficient tuple $y=\left(y_{i}\right)_{i \in I}$: an I-tuple of formal variables
$\mathbb{P}_{\text {univ }}(y)$: universal semifield of y
\star mutation of (B, x, y) at $k \in I\left(B^{\prime}, x^{\prime}, y^{\prime}\right)=\mu_{k}(B, x, y)$:

$$
\begin{aligned}
b_{i j}^{\prime} & = \begin{cases}-b_{i j} & i=k \text { or } j=k \\
b_{i j}+\left[-b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & i, j \neq k\end{cases} \\
y_{i}^{\prime} & = \begin{cases}y_{i}^{-1} & i=k \\
y_{i} y_{k}^{\left[b_{k i}\right]_{+}}\left(1 \oplus y_{k}\right)^{-b_{k i}} & i \neq k,\end{cases} \\
x_{i}^{\prime} & = \begin{cases}x_{i}^{-1}\left(\frac{y_{k}}{1 \oplus y_{k}} \prod_{j \in I} x_{j}{ }^{\left[b_{j k}\right]+}+\frac{1}{1 \oplus y_{k}} \prod_{j \in I} x_{j}^{\left[-b_{j k}\right]_{+}}\right) & i=k \\
x_{i} & i \neq k\end{cases}
\end{aligned}
$$

Again, $\mu_{k}^{2}=\mathrm{id}$.
太 Iterate mutations and collect all the resulted triplets $\left(B^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}\right)$.
The cluster algebra (with coefficients) $\mathcal{A}(B, x, y)$ is the $\mathbb{Z}\left(\mathbb{P}_{\text {univ }}(y)\right)$-subalgebra of the rational function field $\mathbb{Q}\left(\mathbb{P}_{\text {univ }}(y)\right)(x)$ generated by all the cluster variables $x_{i}^{\prime \prime}$.

Example: Cluster algebra of type A_{2}

\hat{y}-variables

Proposition [Fomin-Zelevinsky 07]

For each seed $\left(B^{\prime}, x^{\prime}, y^{\prime}\right)$, set

$$
\hat{y}_{i}^{\prime}:=y_{i}^{\prime} \prod_{j \in I} x_{j}^{\prime b_{j i}^{\prime}}
$$

Then, \hat{y}-variables satisfy the same exchange relation as y-variables. Namely,

$$
\hat{y}_{i}^{\prime \prime}= \begin{cases}\hat{y}_{i}^{\prime}-1 & i=k \\ \hat{y}_{i}^{\prime} y_{k}^{\prime}{ }^{\left[b_{k i}^{\prime}\right]}+\left(1+\hat{y}_{k}^{\prime}\right)^{-b_{k i}^{\prime}} & i \neq k\end{cases}
$$

Remark. Recall the exchange relation of x^{\prime} :

$$
\begin{gathered}
x_{i}^{\prime \prime}=\left\{\begin{array}{cc}
x_{i}^{\prime-1}\left(\frac{y_{k}^{\prime}}{1 \oplus y_{k}^{\prime}} \prod_{j \in I} x_{j}^{\prime\left[b_{j k}^{\prime}\right]_{+}}+\frac{1}{1 \oplus y_{k}^{\prime}} \prod_{j \in I} x_{j}^{\prime\left[-b_{j k}\right]_{+}}\right) & i=k \\
x_{i}^{\prime} & i \neq k
\end{array}\right. \\
\hat{y}_{k}^{\prime}=\frac{1 \text { st term for } i=k \text { in the above }}{2 \text { nd term for } i=k \text { in the above }}
\end{gathered}
$$

Alternatvie expression of exchange relations

The exchage relations are also written as

$$
\begin{aligned}
& y_{i}^{\prime \prime}= \begin{cases}y_{i}^{\prime-1} & i=k \\
y_{i}^{\prime} y_{k}^{\prime}\left[b_{k i}^{\prime}\right]+\left(1 \oplus y_{k}^{\prime}\right)^{-b_{k i}^{\prime}} & i \neq k\end{cases} \\
& x_{i}^{\prime \prime}= \begin{cases}x_{i}^{\prime-1}\left(\prod_{j \in I} x_{j}^{\prime}{ }^{\left[-b_{j k}^{\prime}\right]_{+}}\right) \frac{1+\hat{y}_{k}^{\prime}}{1 \oplus y_{k}^{\prime}} & i=k \\
x_{i}^{\prime} & i \neq k\end{cases}
\end{aligned}
$$

where

$$
\hat{y}_{i}^{\prime}:=y_{i}^{\prime} \prod_{j \in I} x_{j}^{\prime b_{j i}^{\prime}}
$$

Example: Cluster algebra of type A_{2} (revisited)

Separation formulas

Theorem (Separation formulas [Fomin-Zelevinsky 07])

For each seed ($B^{\prime}, x^{\prime}, y^{\prime}$), there exist some

$$
\begin{aligned}
& F_{i}^{\prime}(y)(i \in I) \quad \text { polynomial of } y, \\
& C^{\prime}=\left(c_{i j}^{\prime}\right)_{i, j \in I} \quad \text { integer matrix, } \\
& G^{\prime}=\left(g_{i j}^{\prime}\right)_{i, j \in I} \quad \text { integer matrix }
\end{aligned}
$$

such that

$$
\begin{aligned}
y_{i}^{\prime} & =\left(\prod_{j \in I} y_{j}^{c_{j i}^{\prime}}\right) \prod_{j \in I} F_{j}^{\prime}(y)_{\oplus}^{b_{j i}^{\prime}}, \\
x_{i}^{\prime} & =\left(\prod_{j \in I} x_{j}^{g_{j i}^{\prime}}\right) \frac{F_{i}^{\prime}(\hat{y})}{F_{i}^{\prime}(y)_{\oplus}}, \quad \hat{y}_{i}=y_{i} \prod_{j \in I} x_{j}^{b_{j i}} .
\end{aligned}
$$

Basic data of seed: B-matrix, C-matrix, G-matrix, F-polynomials

Properties of C-matrix, G-matrix, F-polynomials

Theorem [Derksen-Weyman-Zelevinsky10, Plamondon10, Nagao10]

(a) $F_{i}^{\prime}(y)$ has the constant term 1.
(b) Sign-coherence: Each column of C^{\prime} is a nonzero vector and nonzero components are either all positive or all negative.

Theorem (Duality [N 10])

The transposition of G^{\prime} is inverse to C^{\prime}.

Example: type A_{2}
$Q(3)$
$\underset{2}{\bigcirc \rightarrow}\left\{\begin{array}{l}x_{1}(3)=x_{1} x_{2}^{-1} \frac{1+\hat{y}_{2}}{1 \oplus y_{2}} \\ x_{2}(3)=x_{2}^{-1} \frac{1+\hat{y}_{2}+\hat{y}_{1} \hat{y}_{2}}{1 \oplus y_{2} \oplus y_{1} y_{2}},\end{array} \quad\left\{\begin{array}{l}y_{1}(3)=y_{1}\left(1 \oplus y_{2} \oplus y_{1} y_{2}\right)^{-1} \\ y_{2}(3)=y_{1}^{-1} y_{2}^{-1}\left(1 \oplus y_{2}\right),\end{array}\right.\right.$

$$
C^{\prime}=\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right), \quad G^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right), \quad\left(G^{\prime}\right)^{T} C^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & -1
\end{array}\right)=I
$$

Outline

(1) Cluster algebras

(2) T-systems and Y -systems
(3) Tropicalization

4 Periodicity
(5) Dilogarithm Identities

T- and Y-systems of simply laced type

Fix (X, ℓ), where X : Dynkin diagram of type A, D, E with index set \mathcal{I}. $\ell \geq 2$ integer.
\star Y-system: For formal variables $\left\{Y_{m}^{(a)}(u) \mid a \in \mathcal{I} ; m=1, \ldots, \ell-1 ; u \in \mathbb{Z}\right\}$

$$
Y_{m}^{(a)}(u-1) Y_{m}^{(a)}(u+1)=\frac{\prod_{b \in \mathcal{I}, b \sim a}\left(1+Y_{m}^{(b)}(u)\right)}{\left(1+Y_{m-1}^{(a)}(u)^{-1}\right)\left(1+Y_{m+1}^{(a)}(u)^{-1}\right)}
$$

with $Y_{0}^{(a)}(u)^{-1}=Y_{\ell}^{(a)}(u)^{-1}=0$
Origin: thermodynamic Bethe ansatz (TBA) equation for integrable models
\star T-system: For formal variables $\left\{T_{m}^{(a)}(u) \mid a \in \mathcal{I} ; m=1, \ldots, \ell-1 ; u \in \mathbb{Z}\right\}$

$$
T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=\prod_{b \in \mathcal{I}, b \sim a} T_{m}^{(b)}(u)+T_{m-1}^{(a)}(u) T_{m+1}^{(a)}(u)
$$

with $T_{0}^{(a)}(u)=T_{\ell}^{(a)}(u)=1$
Origin: relation among transfer matrices of integrable models (= relation among q-characters of KR modules of quantum groups)
\star Relation between Y - and T-systems: Set

$$
\hat{Y}_{m}^{(a)}(u):=\frac{\prod_{b \in I, b \sim a} T_{m}^{(b)}(u)}{T_{m-1}^{(a)}(u) T_{m+1}^{(a)}(u)} .
$$

Then, $\left\{\hat{Y}_{m}^{(a)}(u)\right\}$ satisfies the Y-system.

Periodicity conjecture of Y-systems

h^{\vee} : dual Coxeter number of $X, h^{\vee}=h$ (Coxeter number) for $X=A D E$.
t : tier number of $X, t=1$ for $A D E, t=2$ for $B C F, t=3$ for G.

Periodicity conjecture of Y -systems

$$
Y_{m}^{(a)}\left(u+2 t\left(h^{\vee}+\ell\right)\right)=Y_{m}^{(a)}(u),
$$

Conjectured by:
[Zamolodchikov 91] X : simply laced, $\ell=2$.
[Ravanini-Tateo-Valleriani 93] X : simply laced, ℓ general.
[Kuniba-Nakanishi-Suzuki 94] X : nonsimply laced, ℓ general
Proved by:
[Frenkel-Szenes 95], [Gliozzi-Tateo 96] $X=A_{1}$, by explicit solution
[Fomin-Zelevinsky 03] X : simply laced, $\ell=2$, by cluster algebra
[Volkov 07] $X=A_{n}$, by explicit solution
[Keller 10] X : simply laced, by cluster algebra + Auslander-Reiten theory
[Inoue-lyama-Keller-Kuniba-N 10] X : general, by cluster algebra + tropicalization
Corollary

$$
T_{m}^{(a)}\left(u+2 t\left(h^{\vee}+\ell\right)\right)=T_{m}^{(a)}(u)
$$

Example 1. $(X, \ell)=\left(A_{2}, 2\right)$

Initial quiver

$$
Q=\begin{gathered}
0 \longleftarrow \\
1
\end{gathered}
$$

Periodicity of quivers under the sequence of mutations μ_{1}, μ_{2} :

\bigcirc : forward mutation points
Set $(x(0), y(0))=(x, y)$, and define $(x(u), y(u))(u \in \mathbb{Z})$ by
$\left.\cdots \stackrel{\mu_{7}}{\leftrightarrow}\left(Q^{\mathrm{op}}, x(-1), y(-1)\right) \stackrel{\mu_{2}}{\leftrightarrow}(Q, x(0), y(0)) \stackrel{\mu_{7}}{\leftrightarrow}\left(Q^{\mathrm{op}}, x(1), y(1)\right) \stackrel{\mu_{2}}{\leftrightarrow}(Q, x(2), y(2))\right)^{\mu_{7}} \cdots$

Example 1. $(X, \ell)=\left(A_{2}, 2\right)$

Example of Y-system: $y_{1}(0) y_{1}(2)=1 \oplus y_{2}(1)$.

Example of T-system: $x_{1}(0) x_{1}(2)=1+x_{2}(1)$.

$\stackrel{\mu_{1}}{\leftrightarrow}$

Summary:
(1) $\left\{y_{a}(u) \mid(u, a)\right.$: forward mutation point $\}$ satisfies the Y-system.
(2) $\left\{x_{a}(u) \mid(u, a)\right.$: forward mutation point $\}$ satisfies the T-system (by trivializing coefficients).
(3) The relation between x and \hat{y} gives the relation between T - and Y -systems.
(5) The half period 5 of y-variables gives the half period of Y -systems $h+\ell=3+2=5$.

Example 2. $(X, \ell)=\left(A_{3}, 3\right)$

Consider the initial quiver

Periodicity of quivers under the sequence of mutations $\mu_{-} \mu_{+}$:

O : forward mutation points
Set $(x(0), y(0))=(x, y)$, and one can define $(x(u), y(u))(u \in \mathbb{Z})$ by
$\cdots \stackrel{\mu_{也}}{\leftrightarrow}\left(Q^{\mathrm{op}}, x(-1), y(-1)\right) \stackrel{\mu}{\leftrightarrow}(Q, x(0), y(0)) \stackrel{\mu_{\leftrightarrows}}{\leftrightarrow}\left(Q^{\mathrm{op}}, x(1), y(1)\right) \stackrel{\mu}{\leftrightarrow}(Q, x(2), y(2)) \stackrel{\mu_{\leftrightarrows}}{\leftrightarrow} \ldots$

Example 2. $(X, \ell)=\left(A_{3}, 3\right)$

Example of Y-system: $y_{11}(0) y_{11}(2)=\frac{1 \oplus y_{21}(1)}{1 \oplus y_{12}(1)^{-1}}$.

Example of T-systems: $x_{11}(0) x_{11}(2)=x_{21}(1)+x_{12}(1)$.

$$
x_{11}(0) x_{11}(1)=x_{21}(0)+x_{12}(0)
$$

Example 3. $(X, \ell)=\left(B_{4}, 4\right)[I I K K N ~ 10]$

Dynkin diagram of type B_{4}

Initial quiver Q :

Periodicity of quivers Q :

$$
Q \stackrel{\mu_{\dot{+}}^{\mu_{+}^{\circ}}}{\leftrightarrows} Q_{1} \stackrel{\mu^{\bullet}}{\leftrightarrows} Q_{2} \stackrel{\mu_{+}^{\bullet} \mu_{-}^{\circ}}{\leftrightarrow} Q_{3} \stackrel{\mu^{\bullet}}{\leftrightarrows} Q
$$

T- and Y -systems of type B_{n}

\star Y-system:

$$
\begin{aligned}
& Y_{m}^{(a)}(u-2) Y_{m}^{(a)}(u+2)=\frac{\left(1+Y_{m}^{(a-1)}(u)\right)\left(1+Y_{m}^{(a+1)}(u)\right)}{\left(1+Y_{m-1}^{(a)}(u)^{-1}\right)\left(1+Y_{m+1}^{(a)}(u)^{-1}\right)}(1 \leq a \leq n-2), \\
& Y_{m}^{(n-1)}(u-2) Y_{m}^{(n-1)}(u+2)=\frac{\left(1+Y_{m}^{(n-2)}(u)\right)\left(1+Y_{2 m-1}^{(n)}(u)\right)\left(1+Y_{2 m+1}^{(n)}(u)\right)}{\left(1+Y_{2 m}^{(n)}(u-1)\right)\left(1+Y_{2 m}^{(n)}(u+1)\right)} \begin{aligned}
\left(1+Y_{m-1}^{(n-1)}(u)^{-1}\right)\left(1+Y_{m+1}^{(n-1)}(u)^{-1}\right)
\end{aligned}, \\
& Y_{2 m}^{(n)}(u-1) Y_{2 m}^{(n)}(u+1)=\frac{1+Y_{m}^{(n-1)}(u)}{\left(1+Y_{2 m-1}^{(n)}(u)^{-1}\right)\left(1+Y_{2 m+1}^{(n)}(u)^{-1}\right)}, \\
& Y_{2 m+1}^{(n)}(u-1) Y_{2 m+1}^{(n)}(u+1)=\frac{1}{\left(1+Y_{2 m}^{(n)}(u)^{-1}\right)\left(1+Y_{2 m+2}^{(n)}(u)^{-1}\right)} . \\
& \text { 太 T-system: }
\end{aligned}
$$

$$
\begin{aligned}
T_{m}^{(a)}(u-2) T_{m}^{(a)}(u+2)= & T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u)+T_{m-1}^{(a)}(u) T_{m+1}^{(a)}(u) \\
& (1 \leq a \leq n-2) \\
T_{m}^{(n-1)}(u-2) T_{m}^{(n-1)}(u+2)= & T_{m}^{(n-2)}(u) T_{2 m}^{(n)}(u)+T_{m-1}^{(n-1)}(u) T_{m+1}^{(n-1)}(u), \\
T_{2 m}^{(n)}(u-1) T_{2 m}^{(n)}(u+1)= & T_{m}^{(n-1)}(u-1) T_{m}^{(n-1)}(u+1)+T_{2 m-1}^{(n)}(u) T_{2 m+1}^{(n)}(u), \\
T_{2 m+1}^{(n)}(u-1) T_{2 m+1}^{(n)}(u+1)= & T_{m}^{(n-1)}(u) T_{m+1}^{(n-1)}(u)+T_{2 m}^{(n)}(u) T_{2 m+2}^{(n)}(u)
\end{aligned}
$$

Outline

Cluster algebrasT-systems and Y -systems
(3) Tropicalization

4 Periodicity
(5) Dilogarithm Identities

Tropical y-variable

\star tropical y-variable (called principal coefficient in [FZ07]):
Recall the tropical semifield $\mathbb{P}_{\text {trop }}(y)$ generated by $y=\left(y_{i}\right)_{i \in I}$ with

$$
\prod_{i} y_{i}^{a_{i}} \oplus \prod_{i} y_{i}^{b_{i}}=\prod_{i} y_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

and the semifield homomorphism

$$
\pi_{\mathbf{T}}: \mathbb{P}_{\text {univ }}(y) \rightarrow \mathbb{P}_{\text {trop }}(y)
$$

Let us write

$$
\left[y_{i}^{\prime}\right]:=\pi_{\mathbf{T}}\left(y_{i}^{\prime}\right) \quad \text { tropical } y \text {-variable }
$$

Recall (Separation formula)

$$
y_{i}^{\prime}=\left(\prod_{j \in I} y_{j}^{c_{j i}^{\prime}}\right) \prod_{j \in I} F_{j}^{\prime}(y)_{\oplus}^{b_{j i}^{\prime}}
$$

Theorem [Fomin-Zelevinsky 07]

$$
\left[y_{i}^{\prime}\right]=\prod_{j \in I} y_{j}^{c_{j i}^{\prime}}, \quad\left[F_{i}^{\prime}(y)_{\oplus}\right]=1
$$

tropical y-variables $=C$-matrix

Categorification

\star Genelized cluster category (Buan et al, ... , Amiot, Plamondon)
B : any skew symmetric matrix
\mathcal{C} : generalized cluster category for B
To each seed ($B^{\prime}, x^{\prime}, y^{\prime}$) of $\mathcal{A}(B, x, y)$, one can canonically assign some rigid object $T^{\prime}=\bigoplus_{i \in I} T_{i}^{\prime}$ in \mathcal{C}.

Theorem (Plamondon10)

T : the rigid object assigned to the initial seed (B, x, y).
T^{\prime} : the rigid object assigned to a given seed ($B^{\prime}, x^{\prime}, y^{\prime}$).
Then,

$$
\begin{align*}
\tilde{Q}^{\prime} & =\text { the quiver of } \operatorname{End}_{\mathcal{C}}\left(T^{\prime}\right), \quad\left(\tilde{Q}^{\prime}: \text { principal extension of } Q^{\prime}\right) \tag{2}\\
c_{i j}^{\prime} & =-\operatorname{ind}_{T^{\prime}}\left(T_{i}[1]\right)_{j}=\operatorname{ind}_{T^{\prime}}^{\mathrm{op}}\left(T_{i}\right)_{j}, \tag{3}\\
g_{i j}^{\prime} & =\operatorname{ind}_{T}\left(T_{j}^{\prime}\right)_{i}, \tag{4}\\
F_{i}^{\prime}(y) & =\sum_{e \in \mathbb{Z}_{\geq 0}^{\tilde{I}}} \chi\left(\operatorname{Gr}_{e}\left(\operatorname{Hom}_{\mathcal{C}}\left(T, T_{i}^{\prime}[1]\right)\right)\right) \prod_{j \in I} y_{j}^{e_{j}} \tag{5}
\end{align*}
$$

Here, $\mathrm{Gr}_{e}(\cdot)$ is the quiver Grassmannian with dimension vector e, and $\chi(\cdot)$ is the Euler characteristic.

Criterion of periodicity

Definition

Let $\nu: I \rightarrow I$: be a bijection and let $\left(k_{1}, \ldots, k_{L}\right)$ be an I-sequence. Let ($B^{\prime}, x^{\prime}, y^{\prime}$) and $\left(B^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}\right)$ be seeds such that for $\left(B^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}\right)=\mu_{k_{L}} \cdots \mu_{k_{1}}\left(B^{\prime}, x^{\prime}, y^{\prime}\right)$. We say that $\left(k_{1}, \ldots, k_{L}\right)$ is a ν-period of $\left(B^{\prime}, x^{\prime}, y^{\prime}\right)$ if

$$
b_{\nu(i) \nu(j)}^{\prime \prime}=b_{i j}^{\prime}, \quad x_{\nu(i)}^{\prime \prime}=x_{i}^{\prime}, \quad y_{\nu(i)}^{\prime \prime}=y_{i}^{\prime}, \quad(i, j \in I)
$$

Corollary of categorification [Plamondon 10, IIKKN 10]

$\left(k_{1}, \ldots, k_{L}\right)$ is a ν-period of $\left(B^{\prime}, x^{\prime}, y^{\prime}\right)$ if and only if

$$
\left[y_{\nu(i)}^{\prime \prime}\right]=\left[y_{i}^{\prime}\right] \quad(i \in I) .
$$

Proof. [$\left.y^{\prime}\right] \Longrightarrow C^{\prime} \Longrightarrow G^{\prime} \Longrightarrow$ index of $T^{\prime} \Longrightarrow T^{\prime} \Longrightarrow\left(B^{\prime}, x^{\prime}, y^{\prime}\right)$
Our slogan: Tropical y-variables know everything.

Outline

Cluster algebrasT-systems and Y -systemsTropicalization
(4) Periodicity
(5) Dilogarithm Identities

Exchange relation of tropical y-variables

$\star \varepsilon$-expression of exchange relation

$$
y_{i}^{\prime \prime}= \begin{cases}y_{k}^{\prime-1} & i=k \\ \left.y_{i}^{\prime} y_{k}^{\prime}\right]^{\left[\varepsilon b_{k i}^{\prime}\right]_{+}}\left(1 \oplus y_{k}^{\prime \varepsilon}\right)^{-b_{k i}^{\prime}} & i \neq k\end{cases}
$$

This expression is independent of $\varepsilon \in\{1,-1\}$. tropical $\operatorname{sign} \varepsilon_{k}^{\prime}$: sign of exponents of $\left[y_{k}^{\prime}\right]$
Set $\varepsilon=\varepsilon_{k}^{\prime}$. Then, by definition $\left[1 \oplus y_{k}^{\prime} \varepsilon_{k}^{\prime}\right]=1$, and we have the exchange relation of tropical y-variables

$$
\left[y_{i}^{\prime \prime}\right]= \begin{cases}{\left[y_{k}^{\prime}\right]^{-1}} & i=k \\ {\left[y_{i}^{\prime}\right]\left[y_{k}^{\prime}\right]^{\left[\varepsilon_{k}^{\prime} b_{k i}^{\prime}\right]_{+}}} & i \neq k\end{cases}
$$

Sign-arrow coordination: A nontrivial tropical mutation occurs only when $\varepsilon_{k}^{\prime} b_{k i}^{\prime}>0$, i.e.,

$$
\underset{k}{\circ} \quad \varepsilon_{k}^{\prime}>0 \quad \text { or } \underbrace{\circ}_{k} \varepsilon_{k}^{\prime}<0
$$

Example 1. $(X, \ell)=\left(A_{2}, 2\right)$ [Fomin-Zelevinsky 03]

half period: $h+\ell=3+2=5$
Sequence of mutations $(\ldots,+,-,+,-,+, \ldots)$:

$$
\begin{aligned}
& \cdots \stackrel{+}{\longleftrightarrow}(B(-1), y(-1)) \stackrel{-}{\longleftrightarrow}(B(0), y(0)) \stackrel{+}{\longleftrightarrow}(B(1), y(1)) \stackrel{-}{\longleftrightarrow} \cdots \\
& y_{1}(0)=y_{1}, \quad y_{2}(0)=y_{2}, \\
& y_{1}(1)=y_{1}^{-1}, \quad y_{2}(1)=y_{2}\left(1 \oplus y_{1}\right), \\
& y_{1}(2)=y_{1}^{-1}\left(1 \oplus y_{1} \oplus y_{1} y_{2}\right), \quad y_{2}(2)=y_{2}^{-1}\left(1 \oplus y_{1}\right)^{-1}, \\
& y_{1}(3)=y_{1}\left(1 \oplus y_{1} \oplus y_{1} y_{2}\right)^{-1}, \quad y_{2}(3)=y_{1}^{-1} y_{2}^{-1}\left(1 \oplus y_{2}\right) \text {, } \\
& y_{1}(4)=y_{2}^{-1} \text {, } \\
& y_{2}(4)=y_{1} y_{2}\left(1 \oplus y_{2}\right)^{-1} \text {, } \\
& y_{1}(5)=y_{2} \text {, } \\
& y_{2}(5)=y_{1} .
\end{aligned}
$$

-1 0	y_{2}	1		1 0		-1 0		-1 -1		1		0 1		0 -1
4	\leftrightarrow		$\begin{aligned} & + \\ & \leftrightarrow \end{aligned}$	\uparrow	$\begin{aligned} & - \\ & \leftrightarrow \end{aligned}$		$\begin{aligned} & + \\ & \leftrightarrow \end{aligned}$	4	$\begin{aligned} & - \\ & \leftrightarrow \end{aligned}$		$\begin{aligned} & + \\ & \leftrightarrow \end{aligned}$	4	$\begin{aligned} & - \\ & \leftrightarrow \end{aligned}$	
1	y_{1}	0		0		0		0		-1		1		1
1		1		-1		-1		1		0		0		0
$y(-1)$		$y(0)$		$y(1)$		$y(2)$		$y(3)$		$y(4)$		$y(5)$		$y(6)$

Example 2. $(X, \ell)=\left(A_{3}, 2\right)$ [Fomin-Zelevinsky 03]

half period: $h+\ell=4+2=6$
Sequence of mutations $(\ldots,+,-,+,-,+, \ldots)$:

Example 3. $(X, \ell)=\left(A_{3}, 3\right)$ [N09,IIKKN10]

half period: $h+\ell=4+3=7$

Factorization property (due to sign-arrow coordination) [N09]

Outline

Cluster algebrasT-systems and Y -systemsTropicalizationPeriodicity
(5) Dilogarithm Identities

Pentagon relation for classical dilogarithm

Euler dilogarithm

$$
\begin{aligned}
\operatorname{Li}_{2}(x) & =\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} \quad(|x|<1) \\
& =-\int_{0}^{x} \frac{\log (1-y)}{y} d y \quad(x \leq 1)
\end{aligned}
$$

Rogers dilogarithm

$$
\begin{gathered}
L(x)=-\frac{1}{2} \int_{0}^{x}\left\{\frac{\log (1-y)}{y}+\frac{\log y}{1-y}\right\} d y \quad(0 \leq x \leq 1) \\
L(x)=\operatorname{Li}_{2}(x)+\frac{1}{2} \log x \log (1-x), \quad(0 \leq x \leq 1) \\
-L\left(\frac{x}{1+x}\right)=\operatorname{Li}_{2}(-x)+\frac{1}{2} \log x \log (1+x), \quad(0 \leq x)
\end{gathered}
$$

Properties:

$$
L(0)=0, \quad L(1)=\frac{\pi^{2}}{6},
$$

(Euler) $L(x)+L(1-x)=\frac{\pi^{2}}{6}$,
(Abel, pentagon identity) $\quad L(x)+L(y)=L(x y)+L\left(\frac{x(1-y)}{1-x y}\right)+L\left(\frac{y(1-x)}{1-x y}\right)$.

Central charge identity in conformal field theory

\star Fix $(X, \ell) . X$: simply laced.
The constant Y-system: For variables $\left\{Y_{m}^{(a)} \mid a \in \mathcal{I}, m=1, \ldots, \ell-1\right\}$,

$$
\left(Y_{m}^{(a)}\right)^{2}=\frac{\prod_{b \in \mathcal{I}, b \sim a}\left(1+Y_{m}^{(b)}\right)}{\left(1+Y_{m-1}^{(a)}-1\right)\left(1+Y_{m+1}^{(a)}-1\right)} .
$$

There exists a unique positive real solution [Nahm-Keegan 09].

Dilogarithm identities conjecture in CFT [Kirillov, Bazhanov, Reshetikhin, 90]

$$
\frac{6}{\pi^{2}} \sum_{a \in \mathcal{I}} \sum_{m=1}^{\ell-1} L\left(\frac{Y_{m}^{(a)}}{1+Y_{m}^{(a)}}\right)=\frac{\ell \operatorname{dim} \mathfrak{g}}{h+\ell}-n
$$

where \mathfrak{g} is the simply Lie algebra of type X and $n=|\mathcal{I}|=\operatorname{rank} X$.

Functional generalization [Gliozzi-Tateo 95]

$$
\frac{6}{\pi^{2}} \sum_{a \in \mathcal{I}} \sum_{m=1}^{\ell-1} \sum_{u=0}^{2(h+\ell)-1} L\left(\frac{Y_{m}^{(a)}(u)}{1+Y_{m}^{(a)}(u)}\right)=2 h n(\ell-1)
$$

The former follows from the latter.

Dilogarithm identitities associated with periods of seeds

$\left(k_{0}, \ldots, k_{L-1}\right)$: a ν-period of the initial seed (B, x, y).

$$
(B(0), y(0))=(B, y) \stackrel{\mu_{k_{0}}}{\leftrightarrow}(B(1), y(1)) \stackrel{\mu_{k_{1}}}{\leftrightarrow} \cdots \stackrel{\mu_{k_{L}}-1}{\leftrightarrow}(B(L), y(L))
$$

ε_{t} : the tropical sign of $y(t)$ at k_{t}.
$\left(\varepsilon_{0}, \ldots, \varepsilon_{L-1}\right)$: the tropical sign-sequence

Theorem (Dilogarithm identities [N 10])

The following equalities hold for any evaluation of the initial y-variables y_{i} in $\mathbb{R}_{>0}$.

$$
\begin{aligned}
\sum_{t=0}^{L-1} \varepsilon_{t} L\left(\frac{y_{k_{t}}(t)^{\varepsilon_{t}}}{1+y_{k_{t}}(t)^{\varepsilon_{t}}}\right) & =0 \\
\frac{6}{\pi^{2}} \sum_{t=0}^{L-1} L\left(\frac{y_{k_{t}}(t)}{1+y_{k_{t}}(t)}\right) & =N_{-} \\
\frac{6}{\pi^{2}} \sum_{t=0}^{L-1} L\left(\frac{1}{1+y_{k_{t}}(t)}\right) & =N_{+}
\end{aligned}
$$

N_{+}and N_{-}: the total numbers of 1 and -1 among $\varepsilon_{0}, \ldots, \varepsilon_{L-1}$, respectively.
Apply it for the periods corresponding to the Y -systems and count the number N_{-} \Longrightarrow dilogarithm identities in CFT and their functional generalizations

Example: Dilogarithm identity for $(X, \ell)=\left(A_{2}, 2\right)$

Simplest case:

$$
\begin{gathered}
B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \begin{array}{l}
\text { O } \\
1
\end{array} \\
(B(0), y(0)) \stackrel{\mu_{1}}{\leftrightarrow}(B(1), y(1)) \stackrel{\mu_{2}}{\leftrightarrow}(B(2), y(2)) \stackrel{\mu_{1}}{\leftrightarrow}(B(3), y(3)) \stackrel{\mu_{2}}{\leftrightarrow} \cdots \\
\left\{\begin{array} { l }
{ y _ { 1 } (0) = y _ { 1 } } \\
{ y _ { 2 } (0) = y _ { 2 } , }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } (1) = y _ { 1 } ^ { - 1 } } \\
{ y _ { 2 } (1) = y _ { 2 } (1 + y _ { 1 }) , }
\end{array} \quad \left\{\begin{array}{l}
y_{1}(2)=y_{1}^{-1}\left(1+y_{2}+y_{1} y_{2}\right) \\
y_{2}(2)=y_{2}^{-1}\left(1+y_{1}\right)^{-1}
\end{array}\right.\right.\right. \\
\left\{\begin{array} { l }
{ y _ { 1 } (3) = y _ { 1 } (1 + y _ { 2 } + y _ { 1 } y _ { 2 }) ^ { - 1 } } \\
{ y _ { 2 } (3) = y _ { 1 } ^ { - 1 } y _ { 2 } ^ { - 1 } (1 + y _ { 2 }) , }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } (4) = y _ { 2 } ^ { - 1 } } \\
{ y _ { 2 } (4) = y _ { 1 } y _ { 2 } (1 + y _ { 2 }) ^ { - 1 } , }
\end{array} \quad \left\{\begin{array}{l}
y_{1}(5)=y_{2} \\
y_{2}(5)=y_{1}
\end{array}\right.\right.\right.
\end{gathered}
$$

$(+,+,-,-,-)$: tropical sign-sequence.
Putting them into

$$
\sum_{t=0}^{L-1} \varepsilon_{t} L\left(\frac{y_{k_{t}}(t)^{\varepsilon_{t}}}{1+y_{k_{t}}(t)^{\varepsilon_{t}}}\right)=0
$$

we obtain

$$
\begin{aligned}
& L\left(\frac{y_{1}}{1+y_{1}}\right)+L\left(\frac{y_{2}\left(1+y_{1}\right)}{1+y_{2}+y_{1} y_{2}}\right) \\
& \quad-L\left(\frac{y_{1}}{\left(1+y_{1}\right)\left(1+y_{2}\right)}\right)-L\left(\frac{y_{1} y_{2}}{1+y_{2}+y_{1} y_{2}}\right)-L\left(\frac{y_{2}}{1+y_{2}}\right)=0 .
\end{aligned}
$$

It coincides with the pentagon relation.

Pentagon relation for quantum dilogarithm

quantum dilogarithm $\mathbf{\Psi}_{q}(x)(|q|<1)$

$$
\mathbf{\Psi}_{q}(x)=\prod_{k=0}^{\infty}\left(1+q^{2 k+1}\right)^{-1}, \quad x \in \mathbb{C}
$$

Theorem [Faddeev-Kashaev 94]

(a). Asymptotic behavior: In the limit $q \rightarrow 1^{-}$,

$$
\boldsymbol{\Psi}_{q}(x) \sim \exp \left(-\frac{\operatorname{Li}_{2}(-x)}{2 \log q}\right)
$$

(b). Quantum pentagon identity: If $U V=q^{2} V U$, then

$$
\boldsymbol{\Psi}_{q}(U) \boldsymbol{\Psi}_{q}(V)=\boldsymbol{\Psi}_{q}(V) \boldsymbol{\Psi}_{q}\left(q^{-1} U V\right) \boldsymbol{\Psi}_{q}(U)
$$

Moreover, in the limit $q \rightarrow 1^{-}$, it reduces to the classical pentagon identity.
cf. classical pentagon identity

$$
L(x)+L(y)=L(x y)+L\left(\frac{x(1-y)}{1-x y}\right)+L\left(\frac{y(1-x)}{1-x y}\right) .
$$

It is not a smooth termwise limit.

Classical and quantum dilogarithm identities

specialization to A_{2} case: pentagon identity
(I) $[\mathrm{N} 10]$
(II) Essentially [Berenstein-Zelevinsky 05], [Fock-Goncharov 09]
(III) [Fock-Goncharov 09], [Keller 11], [Kashaev-N 11], [Nagao 11]
(IV) [Kashaev-N 11]

Announcement

Infinite Analysis 11 Winter School
Quantum cluster algebras and related topics
Date: December 20 (tue) - 23 (fri), 2011
Place: Graduate Shool of Science, Osaka Univeristy
Three day lecture and one day miniworkshop
Lectures: A. Zelevinsky, B. Leclerc, K. Nagao, T. Nakanishi
Mini-workshop: F. Qin, P. Lampe, Y. Kimura, K. Hasegawa, T. Nakashima
workshop website: https://sites.google.com/site/ia11qca/

