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This is just a note on almost sure central limit theorem on branching Brownian motion in random
environment considered by Shiozawa, so there is no abstract and introductions. If you would like to
know backgrounds or find references, you had better read other papers. This contains only minimum
definition of our model, main result, and its proof.

Let us consider branching Brownian motion in random environment introduced by Shiozawa.

η : Poisson random measure on R+ × Rd with intensity measure dtdx. (environment)

Vt = {(s, x) ∈ R; × Rd : s ∈ (0, s], x ∈ U(Bs(ω))}, (tube around (s,Bs) )

where U(x) is a closed ball in Rd centered at x ∈ Rd with unit volume and {Bt : t ∈ R+} is a
Brownian motion on Rd.

Let τ be a non-negative random variables of exponential distribution with the mean 1, indepen-
dent of η, Bt, etc... Fix a parameter α > 0, and set

S = inf{t > 0 : αη(Vt) > τ}. (branching time)

Let {pn : n ∈ N} be an offspring distribution (
∑∞

n=1 pn = 1). Also, we denote by m(p) the p-th
moment for {pn : n ∈ N};

m(p) =
∞∑

n=1

np pn.

Let P η and P be probability measure of BBM under fixed environment η and environment. Also,
let P (·) =

∫
P η(·)dP. We denote their expectations by Eη, E, and E.

We define notations as follows:

Mt(A) = ♯ {particles locates in A at time t} for A ∈ B(Rd).

Mt =Mt(Rd)

Nt(·) =
Mt(·)
E[Mt]

Here, we remark that Nt = Nt(Rd) is an Ft ⊗ Gt-martingale, where Ft and Gt are filtrations
generated by branching Brownian motion under fixed environment and by environment up to time
t, respectively. Also, E[Mt] = eλ(β)t for λ = λ(β) = eβ − 1 and for β = log(m(1) − e−α(m(1) − 1)).
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Theorem 0.1. Suppose d ≥ 3. We assume that supt≥0E[N2
t ] < ∞. Then, we have that for any

f ∈ Cb(Rd) ∫
Rd

f

(
x√
t

)
Nt(dx) → N∞

∫
Rd

f(x)dν(x), P -a.s.

where ν is a Gaussian measure with mean 0 and covariance matrix Id.

For a ∈ Nd, t ∈ R+, and x ∈ Rd, we define Φa(t, x) by

Φa(t, x) =

(
∂

∂θ

)a

exp

(
θ · x− t|θ|2

2

)∣∣∣∣
θ=0

.

Actually, Φa(t, x) satisfies that

(P1) There exists C1, C2, and C3 such that

|Φa| ≤ C1 + C2|x||a| + C3t
|a|/2

for all (t, x) ∈ R+ × Rd.

(P2) The process Φa(t, Bt) is a martingale with respect to the filtration Ft = σ{Bs : s ≤ t}.

When we define M(Φa) by Mt(Φa) =Mt(Φa(t, ·)), Mt(Φa) is also an Ft ⊗Gt-martingale [2, Lemma
3.2] and [1, p8 Proof of Theorem 2.1] .

To prove almost sure central limit theorem for BBMRE, it is enough to show the following:

Lemma 0.2. [1, Lemma 3.1.5] Suppose that d ≥ 3. We assume that supt≥0E[N2
t ] <∞. Then, we

have

E[Mt(Φa)
2] = O(bt), as t↗ ∞, P -a.s.,

where bt = 1 for |a| < d
2 − 1, bt = log t for |a| = d

2 − 1, and bt = t|a|−
d
2+1 for |a| > d

2 − 1.
Moreover, there exists κ ∈ [0, |a|) such that

sup
0≤s≤t

|Ms(Φa)| = O(tκ/2), as t↗ ∞, Q-a.s.

Proof of Theorem 0.1. It is well-known that Φa(t, x) = xa + ψa(t, x), where

ψa(t, x) =
∑

|b|+2j=|a|,j≥1

Aa(b, j)x
btj ,

for some Aa(b, j) ∈ R. Since t−|a|ψa(t, x) = ψa(1, x/
√
t), we write∫

Rd

(
x√
t

)a

Nt(dx) =Mt(Φa)t
−|a|/2 −

∫
Rd

ψa

(
1,

x√
t

)
Nt(dx).

The second term converges almost surely as t→ ∞ to

−(2π)−d/2

∫
Rd

ψ(1, x)e−|x|2/2dx = (2π)−d/2

∫
Rd

xae−|x|2/2dx,

by induction on a and
∫
Rd Φa(1, x)e

−|x|2/2dx = 0. Also, the first term converges to 0 by Lemma 0.2
almost surely.
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Proof of Lemma 0.2. From [2, Lemma 3.4], we have that

E
[
Mt(Φa)

2
]
=e−λtE

[
(Φa(t, Bt))

2
]

(0.1)

+ cν̃E
[∫ t

0

e−λsE⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s) exp

(
λ2

∫ t−s

0

∣∣U(B1
u) ∩ U(B2

u)
∣∣ du)] ds] ,

(0.2)

where E and E⊗2
Bs

represent the expectation with respect to Brownian motion starting from the
origin and two independent Brownian motion starting from Bs respectively, and

c = m(2) −m(1), and ν̃ = 1− e−α.

We remark that the original result of this was given for E[Nt(f)
2] for bounded Borel function f ,

but it is easily modified for polynomial growth Borel function f .
We abbreviate |Vt−s(B1) ∩ Vt−s(B2)| for

∫ t−s

0

∣∣U(B1
u) ∩ U(B2

u)
∣∣ du. Also, we remark that the

first term in (0.2) is O(1). As the proof of [1, Lemma 3.1.5],

exp
(
λ2

∣∣Vt−s(B
1) ∩ Vt−s(U

2)
∣∣) = 1 +

∫ t−s

0

λ2
∣∣U(B1

u) ∩ U(B2
u)
∣∣ exp (λ2 ∣∣Vt−s(B

1) ∩ Vt−s(B
2)
∣∣)

so that

E
[∫ t

0

e−λsE⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s) exp

(
λ2

∫ t−s

0

∣∣U(B1
u) ∩ U(B2

u)
∣∣ du)] ds]

= E
[∫ t

0

e−λsE⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

]
ds

]
+ λ2E

[∫ t

0

e−λsE⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

∫ t−s

0

∣∣U(B1
u) ∩ U(B2

u)
∣∣ exp (λ2 ∣∣Vu(B1) ∩ Vu(B2)

∣∣) du] ds] .
(0.3)

From Markov property and martingale property, we have that

E
[∫ t

0

e−λsE⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

]
ds

]
= E0

[∫ t

0

e−λsΦa(s.Bs)
2ds

]
,

and this term is finite. The second term in (0.3) can be rewritten as

λ2E
[∫ t

0

e−λs

∫ t−s

0

E⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

∣∣U(B1
u) ∩ U(B2

u)
∣∣ exp (λ2 ∣∣Vu(B1) ∩ Vu(B2)

∣∣)] duds]
(0.4)

Since B1
u and B2

u are independent, we get from (P2) that

E⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

∣∣U(B1
u) ∩ U(B2

u)
∣∣ exp (λ2 ∣∣Vu(B1) ∩ Vu(B2)

∣∣)]
= E⊗2

Bs

[
Φa(s+ u,B1

u)Φa(s+ u,B2
u)

∣∣U(B1
u) ∩ U(B2

u)
∣∣ exp (λ2 ∣∣Vu(B1) ∩ Vu(B2)

∣∣)] , Q-a.s.

When we introduce independent Brownian motions B̂t and B̌t by

B̂t =
B1

t −B2
t√

2
, and B̌t =

B1
t +B2

t√
2

,
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U(B1
u)∩U(B2

u) ̸= ∅ if and only if B̂u ∈
√
2U(0) and if B1

0 = B2
0 = Bs, then B̂0 = 0 and B̌0 =

√
2Bs.

Also, it is easy to check from (P1) that∣∣Φa(u,B
1
u)Φa(u,B

2
u)
∣∣ ∣∣U(B1

u) ∩ U(B2
u)
∣∣ ≤ C1

(
1 + (s+ u)|a| + |B̌u|2|a|

)
1
{
B̂u ∈

√
2U(0)

}
Therefore, we have

E⊗2
Bs

[
Φa(t, B

1
t−s)Φa(t, B

2
t−s)

∣∣U(B1
u) ∩ U(B2

u)
∣∣ exp (λ2 ∣∣Vu(B1) ∩ Vu(B2)

∣∣)]
≤ CEB̌√

2Bs

[(
1 + (s+ u)|a| + |B̌u|2|a|

)]
EB̂
0

[
1{

√
2B̂u ∈ 2U(0)} exp

(
λ2

∫ u

0

∣∣∣U(0) ∩ U(
√
2B̂r)

∣∣∣ dr)]
≤ CEB̌√

2Bs

[(
1 + (s+ u)|a| + |B̌u|2|a|

)]
(1 ∧ u−d/2),

where we have used Lemma 3.1.4 in [1] in the last line. Also, it is easy to check that E√
2Bs

[(
1 + (s+ u)|a| + |B̌u|2|a|

)]
≤

C(1 + |Bs|2|a| + s|a| + u|a|). Thus, we have that

(0.4) ≤ C

∫ t

0

dse−λs

∫ t−s

0

du(1 + s|a| + u|a|)(1 ∧ u−d/2)

≤ O(bt).

The proof of the last part is the same as Proposition 3.1.2 in [1].
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