Date: Tue Apr 09 02:22:50 GMT 2013
From: Yuki Miura
Subject: 【北海道大学数学連携研究センター】第 29 回数学連携サロン開催案内
各位

北海道大学 数学連携研究センターでは第29回数学連携サロンを
下記の通り開催いたします。
多数の皆様のご参加をお待ちしております。

※重複のご案内につきましては、ご容赦ください。

記

日時:4月24日(水)10時〜12時
場所:理学部 3号館205号室
講演者:グン 剣萍 教授 (先端生命科学研究院、当センター兼務教員)
タイトル: Tough hydrogels based on double network concept
アブストラクト:

Hydrogels draw great attention as biomaterials due to their soft and wet nature in similar to
biotissues. Recent inventions of several tough hydrogels show
their high potential as structural biomaterials, such as cartilages. Studies on the double network (DN) hydrogel, an
extraordinarily tough hydrogel consisting of interpenetrating brittle and
ductile networks, has clarified that the toughness is due to the internal
fracturing of the brittle network, which effectively dissipates energy and
prevents catastrophic crack propagation upon loading. The double-network
concept revealed a novel principle of the toughness, that is, the existence of
an easily fractured, brittle internal structure makes the material as a whole
mechanically tough[1]. Thus, the brittle network acts as a ‘sacrificial bond’,
a term originally used to describe the toughening of bones [2]. This principle
naturally suggests a new strategy for designing high-strength materials:
incorporating, on purpose, a mechanically fragile structure to toughen the
material as a whole. Since the rupture of the brittle network causes permanent
damage, a DN gel softens and does not recover after experiencing large
deformation. To address this problem, several recent works have replaced the
covalent bonds with non-covalent bonds to allow the fractured bond to be
reformed [3, 4]. Studies along these lines have successfully produced tough
hydrogels with partial or full self-recovery after internal rupture. Reversible
bonds also bring about other functions of the materials, including
self-healing, shape memory, viscoelasticity, and damping. In this talk, we
present several novel tough hydrogels and their mechanical functions based on
the reversible sacrificial bonds. 

References

1)Gong, J. P. Why are double network hydrogels so tough? /Soft Matter/
6, 2583 (2010).

2)Fantner, G. E. /et al/. Sacrificial bonds and hidden length dissipate
energy as mineralized fibrils separate during bone fracture. /Nat.
Mater./ 4, 612(2005).

3)Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers
as reversible sacrificial bonds to toughen hydrogel: hysteresis,
self-recovery, fatigue resistance, and crack blunting. /Macromolecules/
44, 8916(2011).

4)Sun, J. Y.,Zhao
,
X. H., Illeperuma
,W.
R. K.; Chaudhuri
,O.,
Oh
,
K. H., Mooney
,
D. J., Vlassak
,
J. J, Suo, Z. G.
Highly
stretchable and tough hydrogels. /Nature/ 489, 133(2012).


以上

-- 
---------------------------------------------------------------------------
三浦 由貴(3373)
北海道大学 電子科学研究所
複雑系数理研究分野秘書室
数学連携研究センター

外線:011-706-3373
ファックス:011-706-2413
--------------------------


  

    
  
  
    各位

北海道大学 数学連携研究センターでは第29回数学連携サロンを
下記の通り開催いたします。
多数の皆様のご参加をお待ちしております。

※重複のご案内につきましては、ご容赦ください。



日時:4月24日(水)10時〜12時
場所:理学部 3号館205号室
講演者:グン 剣萍 教授 (先端生命科学研究院、当センター兼務教員)
タイトル: Tough hydrogels based on double network concept
アブストラクト:

Hydrogels draw great attention as biomaterials due to their soft and wet nature in similar to
biotissues. Recent inventions of several tough hydrogels show
their high potential as structural biomaterials, such as cartilages. Studies on the double network (DN) hydrogel, an
extraordinarily tough hydrogel consisting of interpenetrating brittle and
ductile networks, has clarified that the toughness is due to the internal
fracturing of the brittle network, which effectively dissipates energy and
prevents catastrophic crack propagation upon loading. The double-network
concept revealed a novel principle of the toughness, that is, the existence of
an easily fractured, brittle internal structure makes the material as a whole
mechanically tough[1]. Thus, the brittle network acts as a ‘sacrificial bond’,
a term originally used to describe the toughening of bones [2]. This principle
naturally suggests a new strategy for designing high-strength materials:
incorporating, on purpose, a mechanically fragile structure to toughen the
material as a whole. Since the rupture of the brittle network causes permanent
damage, a DN gel softens and does not recover after experiencing large
deformation. To address this problem, several recent works have replaced the
covalent bonds with non-covalent bonds to allow the fractured bond to be
reformed [3, 4]. Studies along these lines have successfully produced tough
hydrogels with partial or full self-recovery after internal rupture. Reversible
bonds also bring about other functions of the materials, including
self-healing, shape memory, viscoelasticity, and damping. In this talk, we
present several novel tough hydrogels and their mechanical functions based on
the reversible sacrificial bonds. 

 

References

1)     Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).

2)     Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612(2005).

3)     Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916(2011).

4)     Sun, J. Y., Zhao, X. H., Illeperuma, W. R. K.; Chaudhuri,O., Oh, K. H., Mooney, D. J., Vlassak, J. J, Suo, Z. G. Highly stretchable and tough hydrogels. Nature 489, 133(2012).


以上
-- 
---------------------------------------------------------------------------
三浦 由貴(3373)
北海道大学 電子科学研究所
複雑系数理研究分野秘書室
数学連携研究センター

外線:011-706-3373
ファックス:011-706-2413
--------------------------