Date: Mon Feb 14 01:47:36 GMT 2005

From: Sumio Yamada

Subject: 投稿

皆様 下記のように研究集会を開きます。よろしくお願いします． 山田澄生 「Workshop on Geometric Analysis」 日時： 2005年 2月 21日(月)〜 2月24日（木） 場所： 東北大学 理学研究科 数学棟 518号室 プログラム（予定） Miguel Abreu (Instituto Superior Tecnico) Mon. 10:40-11:40 & Mon. 2:30-3:30 "Toric Kahler metrics in symplectic coordinates" Abstract: I will motivate and describe a parametrization for toric Kahler metrics on symplectic 2n-manifolds (and orbifolds) equipped with a Hamiltonian n-torus action, using symplectic coordinates and potentials (instead of the more common complex analogues). The relevant properties of this approach will be discussed and illustrated with several explicit examples. I will then concentrate on the constant and extremal (in the sense of Calabi) scalar curvature equation, motivating its special form in this setting, describing explicit interesting solutions and discussing some of its analytical properties. Almost all of what will be presented in these two talks is the result of separate work by Guillemin, Abreu and Donaldson. Jingyi Chen (University of British Columbia) Mon. 4:00-5:00 & Tue. 10:40-11:40 "Some geometric PDEs arising from calibrations" Abstract: In the first talk, I will discuss mean curvature flows for 2-dimensional symplectic surface in a Kaehler-Eistein surface and Lagangian submanifolds in a Calabi-Yau n-fold. In the second talk, I will discuss maps between hyperkaehler manifolds, which satisfy a first order system and are related to harmonic maps and minimal surfaces. Richard Schoen (Stanford University) Tue. 2:30-3:30 & Tue. 4:00-5:00 TBA Peter Topping (University of Warwick) Wed. 10:40-11:40 & Wed. 2:30-3:30 " Ricci flow I: A selected survey." Abstract: I'll describe what the Ricci flow is, and some of the basic theory, including a few ideas of Perelman which are interesting from a geometric analysis point of view. (Aimed at a general audience who know a bit of Riemannian geometry.) "Ricci flow II: Singular initial configurations." Abstract: I'll show how one of the ideas from the 1st talk can be used to prove a compactness theorem for Ricci flows, which gives us some unconventional existence theorems. Seiki Nishikawa (Tohoku University) Wed. 4:00-5:00 "Harmonic maps into complex Finsler manifolds" Jiaping Wang (University of Minnesota) Thurs. 10:40-11:40 & Thurs. 2:30-3:30 "Function theory and its applications" Abstract: Function theory has been successfully applied to derive various geometric and topological information of Riemannian manifolds. In the two talks, I plan to explain some of these aspects and mention a few open problems. Futoshi Takahashi (Tohoku University) Thurs. 4:00-5:00 "On an isoperimetric inequality for mapping with remainder term"