Curves and Grassmannians

Dedicated to Prof. Hideyuki Matsumura on his 60th Birthday

Shigeru MUKAI

Let C be a compact Riemann surface, or more generally, a smooth complete algebraic curve. The graded ring $R_{C}=\oplus_{k=0}^{\infty} H^{0}\left(\omega_{C}^{k}\right)$ of pluri-canonical forms on C is called the canonical ring of C. There are two fundamental results on R_{C} (cf. [1] and [5]):
Theorem (Noether) If C is not hyperelliptic, then R_{C} is generated by $H^{0}\left(\omega_{C}\right)$.
R_{C} is a quotient of the polynomial ring $S=k\left[X_{1}, \cdots, X_{g}\right]$ of g variables by a homogeneous ideal I_{C}, where g is the genus of C.

Theorem (Petri) I_{C} is generated in degree 2 if C is neither trigonal nor a plane quintic.

If C is not hyperelliptic, then the canonical linear system $\left|K_{C}\right|$ is very ample. The image $C_{2 g-2} \subset \mathbf{P}^{g-1}$ of the morphism $\Phi_{\left|K_{C}\right|}$ is called the canonical model of C. It is called a canonical curve when C is not specified. By Noether's theorem, R_{C} is the homogeneous coordinate ring of the canonical model. If C is trigonal or a smooth plane quintic, then the quadric hull of $C_{2 g-2} \subset \mathbf{P}^{g-1}$ is a surface of degree $g-2$. Otherwise, $C_{2 g-2} \subset \mathbf{P}^{g-1}$ is an intersection of quadrics (Enriques-Petri's theorem). For curves C of genus $g \leq 5$, it is easy to determine the structure of R_{C} by the geometry of $C_{2 g-2} \subset \mathbf{P}^{g-1}$ and/or by a general structure theorem of Gorenstein ring ([3]). But it seems not for curves of higher genus. In [11], we have announced linear section theorems which enable us to describe R_{C} for all curves of genus $g \leq 9$. In this article, we treat the case $g=8$.

Let $G(2,6) \subset \mathbf{P}^{14}$ be the 8-dimensional Grassmannian embedded in \mathbf{P}^{14} by the Plücker coordinates. It is classically known that a transversal linear subspace P of dimension 7 cuts out a canonical curve C of genus 8. In [10], we have shown that the generic curve of genus 8 is obtained in this manner. The main purpose of this article is to show the following:

Main Theorem A curve C of genus 8 is a transversal linear section of the 8 -dimensional Grassmannian $G(2,6) \subset \mathbf{P}^{14}$ if and only if C has no g_{7}^{2}.

Since the defining ideal of $G(2,6) \subset \mathbf{P}^{14}$ is generated by Pfaffians, so is the ideal I_{C}. More precisely, we have

Corollary Let C be as above. Then there exists a skew-symmetric matrix $M(X)$ of size 6 whose components are linear forms of X_{1}, \cdots, X_{8} and such that the ideal I_{C} is generated by the 15 Pfaffians of 4×4 principal minors of $M(X)$.

By [7], the graded ring R_{C} has the following free resolution as an S-module:

$$
\begin{aligned}
0 \longleftarrow R_{C} \longleftarrow & S \\
& \longleftarrow(-2) \otimes U^{15} \longleftarrow S(-3) \otimes U^{35} \longleftarrow S(-4) \otimes U^{21} \\
0 & \longrightarrow S(-9) \\
\longrightarrow S(-7) \otimes V^{15} & \longrightarrow S(-6) \otimes V^{35} \longrightarrow S(-5) \otimes V^{21}
\end{aligned}
$$

where U^{i} denotes an i-dimensional representation of $G L(6)$ and V^{i} is its dual.
For the proof of the main theorem, the use of vector bundles is essential. Let E be an (algebraic) vector bundle of rank 2 on C generated by global sections. Then each fibre of E is a 2-dimensional quotient space of $H^{0}(E)$. Hence we obtain a Grassmannian morphism of C, which we denote by $\Phi_{|E|}: C \longrightarrow G\left(H^{0}(E), 2\right)$. The determinant line bundle $\Lambda^{2} E$ is also generated by global sections and we obtain the morphism $\Phi_{|\wedge E|}$ to a projective space. A pair of global sections s_{1} and s_{2} of E determines a global section [$s_{1} \wedge s_{2}$] of $\wedge^{2} E$. This correspondence $H^{0}(E) \times H^{0}(E) \longrightarrow H^{0}\left(\wedge^{2} E\right)$ is bilinear and skew-symmetric. Hence we obtain the linear map

$$
\begin{equation*}
\lambda: \bigwedge^{2} H^{0}(E) \longrightarrow H^{0}\left(\bigwedge^{2} E\right) \tag{0.11}
\end{equation*}
$$

The two morphisms $\Phi_{|E|}$ and $\Phi_{|\bigwedge E|}$ are related by the rational map $\mathbf{P}^{*}(\lambda)$ associated to λ and we obtain the commutative diagram

$$
\begin{array}{cccc}
C & \xrightarrow{\Phi_{|E|}} & G\left(H^{0}(E), 2\right) \tag{0.11}\\
\downarrow & & \\
\mathbf{P}^{*}\left(H^{0}\left(\wedge^{2} E\right)\right) & \xrightarrow{\mathbf{P}(\lambda)} & \mathbf{P}^{*}\left(\wedge^{2} H^{0}(E)\right) .
\end{array} \text { Plücker }
$$

Hence our task is to find of a 2-bundle E with the following properties:
(0.3) E has canonical determinant, that is, $\wedge^{2} E \simeq \omega_{C}$,
(0.4) $\operatorname{dim} H^{0}(E)=6$ and E is generated by global sections,
(0.5) the map λ is surjective, and
(0.6) the diagram (0.2) is cartesian.

A stable 2-bundle E with canonical determinant which maximizes $\operatorname{dim} H^{0}(E)$ is the desired one:

Theorem A Let C be a curve of genus 8 without g_{7}^{2}. When F runs over all stable 2-bundles with canonical determinant on C, the maximum of $\operatorname{dim} H^{0}(F)$ is equal to 6 . Moreover, such vector bundles $F_{\max }$ on C with $\operatorname{dim} H^{0}\left(F_{\max }\right)=6$ are unique up to isomorphism and generated by global sections.

We denote $F_{\max }$ by E and put $V=H^{0}(E)$. The commutative diagram (0.2) becomes

$$
\begin{array}{ccccc}
& C & \xrightarrow{\Phi_{|E|}} & G(V, 2) & \tag{0.15}\\
\text { canonical } & \downarrow & & \downarrow & \text { Plücker } \\
& \mathbf{P}^{*}\left(H^{0}\left(\omega_{C}\right)\right) & \xrightarrow{\mathbf{P}(\lambda)} & \mathbf{P}^{*}\left(\Lambda^{2} V\right) .
\end{array}
$$

The hyperplanes of $\mathbf{P}^{*}\left(\bigwedge^{2} V\right)$ are parametrized by $\mathbf{P}_{*}\left(\bigwedge^{2} V\right)$ and those containing the image of C by $\mathbf{P}_{*}(\operatorname{Ker} \lambda)$. A hyperplane corresponds to a point in the dual Grassmannian $G(2, V) \subset \mathbf{P}_{*}\left(\wedge^{2} V\right)$ if and only if it cuts out a Schubert subvariety.

Theorem B There exists a bijection between the intersection $\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap G(2, V)$ and the set $W_{5}^{1}(C)$ of g_{5}^{1} 's of C.

The finiteness of $W_{5}^{1}(C)$ will be proved in $\S 4$ using the geometry of space curves. The 'if' part of Main Theorem is a consequence of

Theorem C Let E be a 2-bundle with canonical determinant on a non-trigonal curve C of genus 8. If E satisfies (0.4) and if the intersection $\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap G(2, V)$ is finite, then λ is surjective and the diagram (0.7) is cartesian.

We prove Theorem A, B and C in $\S 3$ after a brief review of basic materials on Grassmannians in $\S 1$ and the proof of 'only if part' of Main Theorem in $\S 2$. Results similar to these theorems will be proved for curves of genus 6 in the final section.

If the ground field is the complex number field \mathbf{C}, then C is the quotient of the upper half plane $H=\{\Im z>0\}$ by the (cocompact) discrete subgroup $\pi_{1}(C) \subset P S L(2, \mathbf{R})$. Let $\Gamma \subset S L(2, \mathbf{R})$ be the pull-back of $\pi_{1}(C)$. The canonical ring R_{C} of C is isomorphic to the ring $\oplus_{k=0}^{\infty} S_{2 k}(\Gamma)$ of holomorphic automorphic forms

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} f(z), z \in H,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

of even weight. By virtue of a theorem of Narasimhan and Ramanan ([13] and [4]), there exists a bijection between

1) the set of isomorphism classes of stable 2-bundles E with canonical determinant, and
2) the set of conjugacy classes (with respect to $S U(2)$) of odd $S U(2)$-irreducible representations $\rho: \Gamma \longrightarrow S U(2)$ of Γ,
where a representation ρ of Γ is odd if $\rho(-1)=-1 . H^{0}(E)$ is isomorphic to the space $S_{1}(\Gamma, \rho)$ of vector-valued holomorphic automorphic forms

$$
\rho\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\binom{f\left(\frac{a z+b}{c z+d}\right)}{g\left(\frac{a z b}{c z+d}\right)}=(c z+d)\binom{f(z)}{g(z)}, z \in H,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

of weight one with coefficient in ρ. If $\binom{f_{1}}{g_{1}},\binom{f_{2}}{g_{2}} \in S_{1}(\Gamma, \rho)$, then $f_{1} g_{2}-f_{2} g_{1}$ belongs to $S_{2}(\Gamma)$. Hence we obtain the linear map $\Lambda^{2} S_{1}(\Gamma, \rho) \longrightarrow S_{2}(\Gamma)$ which is nothing but λ in (0.1). By Theorem A and C, we have

Theorem D Let C be a curve of genus 8 without g_{7}^{2}. When ρ runs all odd irreducible $S U(2)$-representations of Γ, the maximum of $\operatorname{dim} S_{1}(\Gamma, \rho)$ is equal to 6 . Moreover, such representations $\rho_{\max }$ with $\operatorname{dim} S_{1}\left(\Gamma, \rho_{\max }\right)=6$ are unique up to conjugacy and satisfy the following:
(1) $\wedge^{2} S_{1}\left(\Gamma, \rho_{\max }\right) \longrightarrow S_{2}(\Gamma)$ is surjective, and
(2) the matrix $M(z)=\left(\begin{array}{lll}f_{1}(z) & \cdots & f_{6}(z) \\ g_{1}(z) & \cdots & g_{6}(z)\end{array}\right)$ is of rank 2 for every $z \in H$, where the column vectors of $M(z)$ are base of $S_{1}(\Gamma, \rho)$.

By the property (2), $M(z)$ gives a holomorphic map of H to the 8-dimensional Grassmannian $G(2,6)$. By the automorphicity of $M(z)$, this map factors through C and its image is a linear section of $G(2,6)$.

Let $G\left(8, \wedge^{2} \mathbf{C}^{6}\right)$ be the Grassmannian of 7-dimensional linear subspaces P of $\mathbf{P}_{*}\left(\wedge^{2} \mathbf{C}^{6}\right)$ and $G\left(8, \wedge^{2} \mathbf{C}^{6}\right)^{s}$ its open subset consisting of all stable points with respect to the action of $S L(6)$. The algebraic group $P G L(6)$ acts on $G\left(8, \wedge^{2} \mathbf{C}^{6}\right)$ effectively and the geometric quotient $G\left(8, \wedge^{2} \mathbf{C}^{6}\right)^{s} / P G L(6)$ exists as a normal quasi-projective variety ([12]). By Theorem A and C, the linear subspaces P transversal to $G(2,6)$ form an open subset Ξ of $G\left(8, \wedge^{2} \mathbf{C}^{6}\right)^{s}$ and $\Xi / P G L(6)$ is isomorphic to the moduli space \mathcal{M}_{8}^{\prime} of curves of genus 8 without g_{7}^{2}.

Remark (1) The non-existence of g_{7}^{2} is equivalent to the triple point freeness of the theta divisor of the Jacaobian variety of C.
(2) The curves with g_{7}^{2} form a closed irreducible subvariety of codimension one in the moduli space \mathcal{M}_{8} of curves of genus 8 . See [11] for the canonical model of such curves of genus 8.

Notation and conventions. By a g_{d}^{r}, we mean a line bundle L on a curve C of degree d and with $\operatorname{dim} H^{0}(L) \geq r+1$. The map associated to the complete linear system $|L|$ is denoted by $\Phi_{|L|}$. The line bundle $\omega_{C} L^{-1}$ is called the Serre adjoint of L. We fix an algebraically closed field k and consider all vector spaces, varieties and schemes over it. For a vector space V, its dual is denoted by V^{\vee}. We denote by $G(r, V)$ and $G(V, r)$ the Grassmannians of r-dimensional subspaces and quotient spaces of V, respectively. They are abbreviated to $G(r, n)$ and $G(n, r)$ when $V=k^{n}$. Two projective spaces $G(1, V)$ and $G(V, 1)$ associated to V are denoted by $\mathbf{P}_{*}(V)$ and $\mathbf{P}^{*}(V) . \mathbf{P}^{*}$ is a contravariant functor.

1 Grassmannians

The Grassmannian $G(r, V)$ is defined to be the set of r-dimensional (linear) subspaces of a vector space V. We consider the case $r=2$. A 2-dimensional subspace U of k^{n} is spanned by two rows of a $2 \times n$ matrix

$$
R=\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right)
$$

of rank 2. Hence $G(2, n)$ is covered by $\binom{n}{2}$ affine spaces $Z_{i j}, 1 \leq i<j \leq n$, of dimension $2(n-2)$, where Z_{12} is the set of matrices of the form

$$
\left(\begin{array}{ccccc}
1 & 0 & a_{3} & \cdots & a_{n} \\
0 & 1 & b_{3} & \cdots & b_{n}
\end{array}\right)
$$

and other $Z_{i j}$'s are obtained from Z_{12} by permutation of columns. It is easy to check that $G(2, n)$ is an algebraic variety with respect to this atlas. Furthermore, $G(2, n)$ is a projective algebraic variety. We set $p_{i j}(R)=\left|\begin{array}{ll}a_{i} & a_{j} \\ b_{i} & b_{j}\end{array}\right|$ for $1 \leq i, j \leq n$. The ratio
$p_{i j}(R): p_{k l}(R)$ is uniquely determined by U and does not depend on the choice of R. Hence the point

$$
\left(p_{12}(R): \cdots: p_{i j}(R): \cdots: p_{n-1, n}(R)\right) \in \mathbf{P}_{\binom{n}{2}-1}, \quad 1 \leq i<j \leq n
$$

depends only on U. We call this the Plücker coordinate of U and denote by $p(U)$.
Proposition 1.1 The map $\pi: G(2, n) \longrightarrow \mathbf{P}^{\binom{n}{2}-1},[U] \mapsto p(U)$ is an embedding.
Proof. It is obvious that the restriction of π to each $Z_{i j}$ is an embedding. Since $p(U)$ belongs to $Z_{i j}$ if and only if $p_{i j}(U) \neq 0, \pi$ is injective.

The defining equation of $G(2, n) \subset \mathbf{P}^{\binom{n}{2}-1}$ is easy to find. For a $2 \times n$ matrix R, let M_{R} be the $n \times n$ matrix whose $i j$ th component is $p_{i j}(R)$. This matrix is skew-symmetric. Let $A l t_{n}$ be the space of all skew-symmetric matrices of size n. The ambient projective space of the Grassmannian $G(2, n)$ is canonically identified with the projectivization of $A l t_{n}$. A skew-symmetric matrix M is equal to M_{R} for some R if and only if $\operatorname{rank} M=2$. Hence the Grassmannian $G(2, n) \subset \mathbf{P}_{*}\left(A l t_{n}\right)$ is set-theoretically the intersection of $\binom{n}{4}$ quadrics defined by Pfaffians of 4×4 principal minors. Writing down the Pfaffians in the affine coordinate of $Z_{i j}$, it is easy to check

Proposition 1.2 The Grassmannian $G(2, n) \subset \mathbf{P}_{*}\left(A l t_{n}\right)$ is scheme-theoretically the intersection of $\binom{n}{4}$ quadrics defined by Pfaffians of principal minors of size 4 .

We make the Plücker embedding and this proposition free from coordinates. Let A be a vector space. If U is a 2-dimensional subspace of A, then $\Lambda^{2} U$ is a 1-dimensional subspace of $\bigwedge^{2} A$. Hence the Grassmannian $G(2, A)$ is a subvariety of $\mathbf{P}_{*}\left(\bigwedge^{2} A\right)$ by Proposition 1.1. Similarly $G(A, 2)$ is a subvariety of $\mathbf{P}^{*}\left(\bigwedge^{2} A\right)$. For a bivector

$$
w=\sum_{1 \leq i<j \leq n} a_{i j} v_{i} \wedge v_{j} \in \bigwedge^{2} A
$$

we define its reduced square $w^{[2]} \in \Lambda^{4} A$ by

$$
w^{[2]}=\sum_{1 \leq i<j<k<l \leq n} \text { Pfaff }\left(\begin{array}{cccc}
0 & a_{i j} & a_{i k} & a_{i l} \tag{1.2}\\
a_{j i} & 0 & a_{j k} & a_{j l} \\
a_{k i} & a_{k j} & 0 & a_{k l} \\
a_{l i} & a_{l j} & a_{l k} & 0
\end{array}\right) v_{i} \wedge v_{j} \wedge v_{k} \wedge v_{l},
$$

where we put $a_{j i}=-a_{i j}, a_{k i}=-a_{i k}$ and so on. Then $w \wedge w=2 w^{[2]}$ and $w^{[2]}$ does not depend on the choice of a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ of A. Similarly the reduced power $w^{[p]} \in \wedge^{2 p} A$ is defined for every positive integer p so that $w^{\wedge p}=p!w^{[p]}$ by using the Pfaffians of principal minors of size $2 p$. The point $[w] \in \mathbf{P}_{*}\left(\wedge^{2} A\right)$ belongs to the Grassmannian $G(2, A)$ if and only if $w^{[2]}=0$. By Proposition 1.2, we have

Proposition 1.3 The Grassmannian $G(2, A) \subset \mathbf{P}_{*}\left(\Lambda^{2} A\right)$ is scheme-theoretically the zero locus of the quadratic form

$$
s q_{A}: \bigwedge_{\bigwedge}^{2} A \longrightarrow \bigwedge^{4} A, \quad w \mapsto w^{[2]}
$$

with values in $\wedge^{4} A$.
For a 4-dimensional quotient space W of A, we call the composite q_{W} of $s q_{A}$ and $\wedge^{4} A \longrightarrow \Lambda^{4} W \simeq k$ the Plücker quadratic form associated to $W . q_{W}$ is of rank 6. By the proposition, we have the linear system $L \simeq \mathbf{P}^{*}\left(\bigwedge^{4} A\right)$ of quadrics containing $G(2, A)$. The zero loci of Plücker quadratic forms, called Plücker quadrics, are parametrized by the Grassmannian $G(A, 4) \subset L$.

If $\operatorname{dim} A=4$, then $G(2, A)$ is a smooth 4-dimensional quadric in $\mathbf{P}_{*}\left(\bigwedge^{2} A\right)=\mathbf{P}^{5}$. If $\operatorname{dim} A=5$, every $Q \in L$ is a Plücker quadric. In the case $\operatorname{dim} A=6, \wedge^{4} A$ is the dual of $\Lambda^{2} A$ by the pairing

$$
\bigwedge^{2} A \times \bigwedge^{4} A \longrightarrow \bigwedge^{6} A \simeq k
$$

and $G(A, 4)$ is isomorphic to $G(2, A)$. Under the natural action of $P G L(A)$, the linear system L is decomposed into three orbits $G(A, 4), \Delta-G(A, 4)$ and $L-\Delta$ according as the rank of bivectors, where Δ is the cubic hypersurface defined by the Pfaffian. According as the three orbits, there are three types of quadrics in L. Take a basis $\left\{v_{1}, \cdots, v_{6}\right\}$ of A and let $p_{i j}, 1 \leq i<j \leq 6$, be the Plücker coordinates. The Plücker quadrics associated to the 4 -dimensional quotient spaces $A /<v_{1}, v_{2}>, A /<v_{3}, v_{4}>$ and $A /<v_{5}, v_{6}>$ are

$$
\left\{\begin{array}{ll}
Q_{1}: & q_{1}=p_{34} p_{56}-p_{35} p_{46}+p_{36} p_{45}=0, \tag{1.3}\\
Q_{3}: & q_{3}=p_{12} p_{56}-p_{15} p_{26}+p_{16} p_{25}=0 \\
Q_{5}: & q_{5}=p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}=0,
\end{array}\right. \text { and }
$$

respectively. The sum $q_{3}+q_{5}$ is equal to

$$
\begin{equation*}
p_{12}\left(p_{34}+p_{56}\right)-p_{13} p_{24}+p_{14} p_{23}-p_{15} p_{26}+p_{16} p_{25} \tag{1.3}
\end{equation*}
$$

and of rank 10. The sum $q_{1}+q_{3}+q_{5}$ is of rank 15 . So we have proved
Proposition 1.4 Assume that $\operatorname{dim} A=6$. Then the linear system L has exactly three orbits L_{6}, L_{10} and L_{15} of dimension 8, 13 and 14 under the natural action of $\operatorname{PGL}(A)$. Moreover,
a) every $Q \in L_{6}$ is a Plücker quadric and of rank 6,
b) every $Q \in L_{10}$ is of rank 10 and defined by a linear combination of two Plücker quadratic forms, and
c) every $Q \in L_{15}$ is smooth.

Remark 1.5 (1) The set L_{6} of Plücker quadrics is canonically isomorphic to the Grassmannian $G(2, A) \subset \mathbf{P}_{*}\left(\bigwedge^{2} A\right)$. The direct isomorphism between them is given as follows: The hypersurface Δ defined by the Pfaffian

$$
r: \bigwedge^{2} A \longrightarrow \bigwedge^{6} A \simeq k, w \mapsto w^{[3]}
$$

is singular along $G(2, A)$. Hence the partial derivatives $\partial r / \partial w, w \in \Lambda^{2} A$ are quadratic forms which vanish on $G(2, A)$. The correspondence $w \mapsto \partial r / \partial w$ gives a $P G L(A)$ equivariant isomorphism $\mathbf{P}_{*}\left(\wedge^{2} A\right) \simeq L$, which maps $G(2, A)$ onto L_{6}.
(2) The secant variety S of $G(2,6) \subset \mathbf{P}^{14}$ is the Pfaffian cubic hypersurface Δ and satisfies $\operatorname{dim} S=\frac{3}{2} \operatorname{dim} X+1 . G(2,6) \subset \mathbf{P}^{14}$ is one of the Severi varieties classified by Zak [14] (see also [8]).

We recall an elementary fact on the projective dual of a hyperquadric $Q \subset \mathbf{P}$. The projective dual $\check{Q} \subset \mathbf{P}^{\vee}$ of Q consists of the points $[H]$ of the dual projective space \mathbf{P}^{\vee} such that $\operatorname{rank} H \cap Q \leq \operatorname{rank} Q-2$. The following is easily verified.

Proposition 1.6 The projective dual $\check{Q} \subset \mathbf{P}^{\vee}$ is a smooth hyperquadric in the linear span $\langle\check{Q}\rangle$ of \check{Q}. The linear span $\langle\check{Q}\rangle$ coincides with the complementary linear subspace of $\operatorname{Sing} Q \subset \mathbf{P}$ and consists of $[H]$ such that $\operatorname{rank} H \cap Q \leq \operatorname{rank} Q-1$. In particular, $\operatorname{dim} \mathscr{Q}$ is equal to $\operatorname{rank} Q-2$.

A linear subspace P contained in Q is called Lagrangean if it is maximal among such subspaces. We can choose a system of coordinates $\left(x_{1}: x_{2}: x_{3}: \cdots\right)$ of \mathbf{P} so that

$$
\begin{cases}P: & x_{1}=x_{2}=\cdots=x_{n}=0 \\ Q: & x_{1} x_{n+1}+x_{2} x_{n+2}+\cdots+x_{n} x_{2 n}=0\end{cases}
$$

when $\operatorname{rank} Q$ is even and so that

$$
\begin{cases}P: & x_{1}=x_{2}=\cdots=x_{n}=x_{2 n+1}=0 \\ Q: & x_{1} x_{n+1}+x_{2} x_{n+2}+\cdots+x_{n} x_{2 n}+x_{2 n+1}^{2}=0\end{cases}
$$

when $\operatorname{rank} Q$ is odd. In both cases, hyperplanes $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0$, containing P, belongs to the dual Q of Q. Moreover, they form a Lagrangean subspace of \check{Q}. Hence the complement $P^{\perp} \subset \mathbf{P}^{\vee}$ of P contains a Lagrangean of \check{Q}. If P_{0} is a linear subspace of P, then $P_{0}^{\perp} \supset P^{\perp}$. Therefore, we have

Proposition 1.7 If a linear subspace P is contained in a hyperquadric $Q \subset \mathbf{P}$, then its complement P^{\perp} contains a Lagrangean of $\check{Q} \subset \mathbf{P}^{\vee}$ and hence $\operatorname{dim}\left(P^{\perp} \cap \check{Q}\right) \geq\left[\frac{1}{2} \operatorname{rank} Q\right]-1$.

The following is a key of the proof of Theorem C.
Proposition 1.8 Let A, L_{6} and L_{10} be as in Proposition 1.7.
(1) If $Q \in L_{6}$, then the projective dual $\check{Q} \subset \mathbf{P}^{*}\left(\wedge^{2} A\right)$ of Q is a 4-dimensional quadric contained in $G(A, 2)$,
(2) If $Q \in L_{10}$, then \check{Q} is an 8-dimensional quadric and the intersection $\check{Q} \cap G(A, 2)$ is of dimension 5 .

Proof. Let $\left\{v_{1}^{*}, \cdots, v_{6}^{*}\right\}$ be the dual basis of $\left\{v_{1}, \cdots, v_{6}\right\}$ and q_{1}, q_{3} and q_{5} as in (1.5).
(1) We may assume that Q is $Q_{1}: q_{1}=0$. Since $\operatorname{rank} q_{1}=6$ and q_{1} is a polynomial of the 6 variables $p_{34}, p_{56}, p_{35}, p_{46}, p_{36}$ and $p_{45},<\check{Q}_{1}>$ is the 5 -plane spanned by the 6 points $\left[v_{3}^{*} \wedge v_{4}^{*}\right],\left[v_{5}^{*} \wedge v_{6}^{*}\right],\left[v_{3}^{*} \wedge v_{5}^{*}\right],\left[v_{4}^{*} \wedge v_{6}^{*}\right],\left[v_{3}^{*} \wedge v_{6}^{*}\right]$ and $\left[v_{4}^{*} \wedge v_{5}^{*}\right]$. A hyperplane

$$
a_{34} p_{34}+a_{56} p_{56}+a_{35} p_{35}+a_{46} p_{46}+a_{36} p_{36}+a_{45} p_{45}=0
$$

is tangent to Q_{1} if and only if $a_{34} a_{56}-a_{35} a_{46}+a_{36} a_{45}=0$. Hence \check{Q} is contained in $G(A, 2)$.
(2) We may assume that Q is defined by (1.6), that is, $q_{3}+q_{5}=0 .<\check{Q}>$ is the 9-plane spanned by $\left[v_{3}^{*} \wedge v_{4}^{*}-v_{5}^{*} \wedge v_{6}^{*}\right],\left[v_{1}^{*} \wedge v_{2}^{*}\right], \cdots,\left[v_{2}^{*} \wedge v_{5}^{*}\right]$. A hyperplane

$$
a\left(p_{34}+p_{56}\right)+a_{12} p_{12}+\cdots+a_{25} p_{25}=0
$$

is tangent to Q if and only if

$$
a a_{12}-a_{13} a_{24}+a_{14} a_{23}-a_{15} a_{26}+a_{16} a_{25}=0 .
$$

The bivector $w=a\left(v_{3}^{*} \wedge v_{4}^{*}-v_{5}^{*} \wedge v_{6}^{*}\right)+a_{12} v_{1}^{*} \wedge v_{2}^{*}+\cdots+a_{25} v_{2}^{*} \wedge v_{5}^{*}$ is of rank ≤ 2 if and only if $a=0$ and

$$
\operatorname{rank}\left(\begin{array}{cccc}
a_{13} & a_{14} & a_{15} & a_{16} \\
a_{23} & a_{24} & a_{25} & a_{26}
\end{array}\right) \leq 1 .
$$

Therefore, $\check{Q} \cap G(A, 2)$ coincides with $<\check{Q}>\cap G(A, 2)$ and is set-theoretically the cone over the Segre variety $\mathbf{P}^{1} \times \mathbf{P}^{3} \subset \mathbf{P}^{7}$ with the vertex $\left[v_{1}^{*} \wedge v_{2}^{*}\right]$.

We compute the canonical class and degree of Grassmannians.
Proposition 1.9 The anti-canonical class of the Grassmannian $G(r, n)$ is n times the hyperplane section class of the Plücker embedding $G(r, n) \subset \mathbf{P}\binom{n}{r}-1$.

Proof. Let A be an n-dimensional vector space. For every r-dimensional subspace U of A, the tangent space of $G(r, A)$ at the point $[U]$ is canonically isomorphic to Hom $(U, A / U)$. Let

$$
0 \longrightarrow \mathcal{F}^{\vee} \longrightarrow A \otimes_{k} \mathcal{O}_{G} \longrightarrow \mathcal{E} \longrightarrow 0
$$

be the universal exact sequence on $G(r, A) . \mathcal{E}$ and \mathcal{F} are vector bundles of rank r and $n-r$, respectively. Their determinant are the restriction of the tautological line bundle. Since the tangent bundle of $G(r, A)$ is isomorphic to $\mathcal{H o m}\left(\mathcal{F}^{\vee}, \mathcal{E}\right) \simeq \mathcal{F} \otimes \mathcal{E}$, the anti-canonical class of $G(r, A)$ is n times the hyperplane section class.

The Grassmannian $G(r, n)$ is a homogeneous space of $P G L(n)$. Let $\alpha_{i}=e_{i}-e_{i+1}$, $1 \leq i<n$, be the standard root basis of the Lie algebra \underline{g} of $P G L(n)$. The stabilizer group P belongs to the conjugacy class of maximal parabolic subgroups corresponding to the r th fundamental weight w_{r}. Let $\underline{p} \subset \underline{g}$ be the Lie algebra of P. The tangent space of $G(r, n)$ (at the base point) is isomorphic to $\underline{g} / \underline{p}$ and spanned by $r(n-r)$ roots $e_{i}-e_{j}$ with $1 \leq i \leq r<j \leq n$, which are called the positive complementary roots. Their sum, which corresponds to the anti-canonical class of $G(r, n)$, is equal to $n w_{r}$. This is another proof of the above proposition since the line bundle L which gives the Plücker embedding of $G(r, n)$ corresponds to w_{r}. By [2], the self-intersection number of L is equal to

$$
N!\prod_{\beta} \frac{\left(\beta \cdot w_{r}\right)}{(\beta . \rho)},
$$

where β runs over all positive complementary roots, $N=\operatorname{dim} G(r, n)=r(n-r)$ and $\rho=w_{1}+\cdots+w_{n-1}$. Therefore, we have deduced the following classical formula:

Proposition 1.10 The degree of the Grassmannian $G(r, n) \subset \mathbf{P}_{\binom{n}{r}-1}$ is equal to

$$
(r(n-r))!\prod_{1 \leq i \leq r<j \leq n}(j-i)^{-1}
$$

Corollary 1.11 The degree of $G(2, n) \subset \mathbf{P}^{n(n-3) / 2}$ is equal to the Catalan number $(2 n-4)!/(n-1)!(n-2)$!.

2 Linear sections of a Grassmannian

Let U_{1}, U_{2}, U_{3} and U_{4} be four distinct 2-dimensional subspaces of a vector space A. For $I \subset\{1,2,3,4\}$, we denote by P_{I} the linear span of $\left[U_{i}\right] \in G(2, A)$ with $i \in I$ in $\mathbf{P}_{*}\left(\wedge^{2} A\right)$. We study the intersection of P_{I} and $G(2, A)$ and prove the 'only if' part of Main theorem.

Lemma 2.1 The intersection $P_{12} \cap G(2, A)$ consists of $\left[U_{1}\right]$ and $\left[U_{2}\right]$ if $U_{1} \cap U_{2}=0$. The line P_{12} is contained in $G(2, A)$ otherwise.

The proof is straightforward.
Lemma 2.2 The intersection $P_{123} \cap G(2, A)$ consists of $\left[U_{1}\right]$, $\left[U_{2}\right]$ and $\left[U_{3}\right]$ if $U_{1} \cap U_{2}=$ $U_{1} \cap U_{3}=U_{2} \cap U_{3}=0$ and $\operatorname{dim} U_{1}+U_{2}+U_{3} \geq 5 . P_{123} \cap G(2, A)$ is of positive dimension otherwise.

Proof. Since P_{123} is contained in $\mathbf{P}_{*}\left(\bigwedge^{2}\left(U_{1}+U_{2}+U_{3}\right)\right)$ and since $P_{123} \cap G(2, A)=$ $P_{123} \cap G\left(2, U_{1}+U_{2}+U_{3}\right)$, we may assume that $A=U_{1}+U_{2}+U_{3}$. By Lemma 2.1, it suffices to consider the case $U_{1} \cap U_{2}=U_{2} \cap U_{3}=U_{3} \cap U_{1}=0$, which implies $\operatorname{dim} A \geq 4$.

Case $\operatorname{dim} A=4$: Since $G(2, A) \subset \mathbf{P}_{*}\left(\wedge^{2} A\right)$ is a hyperquadric, we have $\operatorname{dim} P_{123} \cap$ $G(2, A)>0$.

Case $\operatorname{dim} A=5$: We choose a basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ of A so that $U_{1}=<v_{1}, v_{4}>$, $U_{2}=<v_{2}, v_{5}>$ and $U_{3}=<v_{3},-v_{4}-v_{5}>$. A point in P_{123} is represented by a bivector $w=a v_{1} \wedge v_{4}+b v_{2} \wedge v_{5}+c v_{3} \wedge\left(-v_{4}-v_{5}\right)$. The reduced square $w^{[2]}$ defined in (1.3) is equal to

$$
-a b v_{1} \wedge v_{2} \wedge v_{4} \wedge v_{5}+a c v_{1} \wedge v_{3} \wedge v_{4} \wedge v_{5}-b c v_{2} \wedge v_{3} \wedge v_{4} \wedge v_{5}
$$

It follows that $P_{123} \cap G(2, A)$ contains no other points than $\left[U_{1}\right],\left[U_{2}\right]$ and $\left[U_{3}\right]$.
Case $\operatorname{dim} A=6: A$ is the direct sum of U_{1}, U_{2} and U_{3}. We have $P_{123} \cap G(2, A)=$ $\left\{\left[U_{1}\right],\left[U_{2}\right],\left[U_{3}\right]\right\}$ by the same argument as above.

If $\operatorname{dim} A=5$, then $G(2, A) \subset \mathbf{P}_{*}\left(\wedge^{2} A\right)$ is of degree 5 by Corollary 1.14 and of codimension 3. Hence for general U_{1}, U_{2}, U_{3} and U_{4}, the intersection $P_{1234} \cap G(2, A)$ consists of five points. Now we assume that $\operatorname{dim} A=6$.

Lemma 2.3 The intersection $P_{1234} \cap G(2, A)$ consists of $\left[U_{1}\right],\left[U_{2}\right],\left[U_{3}\right]$ and $\left[U_{4}\right]$ if U_{1}, U_{2}, U_{3} and U_{4} satisfy,
i) $U_{i} \cap U_{j}=0$ for every $1 \leq i<j \leq 4$,
ii) $\operatorname{dim} U_{i}+U_{j}+U_{k} \geq 5$ for every $1 \leq i<j<k \leq 4$, and
iii) $U_{1}+U_{2}+U_{3}+U_{4}=A$.

Proof. First we consider the case where $U_{i}+U_{j}+U_{k}=A$ for every $1 \leq i<j<k \leq 4$. A is the direct sum of U_{1}, U_{2} and $U_{3} . U_{4}$ is generated by two vectors $v_{+}=v_{1}+v_{3}+v_{5}$ and $v_{-}=v_{2}+v_{4}+v_{6}$ for $v_{1}, v_{2} \in U_{1}, v_{3}, v_{4} \in U_{2}$ and $v_{5}, v_{6} \in U_{3}$. Then $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a basis of A. A point in P_{1234} is represented by a bivector

$$
\begin{aligned}
w= & a v_{1} \wedge v_{2}+b v_{3} \wedge v_{4}+c v_{5} \wedge v_{6}+d\left(v_{1}+v_{3}+v_{5}\right) \wedge\left(v_{2}+v_{4}+v_{6}\right) \\
= & a^{\prime} v_{1} \wedge v_{2}+b^{\prime} v_{3} \wedge v_{4}+c^{\prime} v_{5} \wedge v_{6} \\
& +d\left(v_{1} \wedge v_{4}+v_{1} \wedge v_{6}-v_{2} \wedge v_{3}-v_{2} \wedge v_{5}+v_{3} \wedge v_{6}-v_{4} \wedge v_{5}\right),
\end{aligned}
$$

for some $a, b, c, d \in k$, where we put $a^{\prime}=a+d, b^{\prime}=b+d$ and $c^{\prime}=c+d$. A direct computation shows

$$
\begin{aligned}
w^{[2]}= & \left(a^{\prime} b^{\prime}-d^{2}\right) v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}+\left(a^{\prime} c^{\prime}-d^{2}\right) v_{1} \wedge v_{2} \wedge v_{5} \wedge v_{6} \\
& +\left(b^{\prime} c^{\prime}-d^{2}\right) v_{3} \wedge v_{4} \wedge v_{5} \wedge v_{6}+\left(a^{\prime} c^{\prime}-d^{2}\right) v_{1} \wedge v_{2} \wedge v_{5} \wedge v_{6} \\
& +\left(a^{\prime} d-d^{2}\right) v_{1} \wedge v_{2} \wedge\left(v_{3} \wedge v_{6}-v_{4} \wedge v_{5}\right) \\
& +\left(b^{\prime} d-d^{2}\right) v_{3} \wedge v_{4} \wedge\left(v_{1} \wedge v_{6}-v_{2} \wedge v_{5}\right) \\
& +\left(c^{\prime} d-d^{2}\right) v_{5} \wedge v_{6} \wedge\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{3}\right) .
\end{aligned}
$$

Hence [w] belongs to $G(2, A)$ if and only if $a d=b d=c d=a b=b c=a c=0$. Therefore, the intersection $P_{1234} \cap G(2, A)$ consists of $\left[U_{1}\right],\left[U_{2}\right],\left[U_{3}\right]$ and $\left[U_{4}\right]$.

Next we assume that three subspaces, say U_{1}, U_{2} and U_{3}, do not generate A. By our assumption, we can take a basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ of A so that $U_{1}=<v_{1}, v_{4}>$, $U_{2}=<v_{2}, v_{5}>, U_{3}=<v_{3},-v_{4}-v_{5}>$ and $v_{6} \in U_{4} . U_{4}$ is generated by v_{6} and a nonzero vector v in $U_{4} \cap\left(U_{1}+U_{2}+U_{3}\right)$. A point in P_{1234} is represented by a bivector

$$
w=a v_{1} \wedge v_{4}+b v_{2} \wedge v_{5}+c v_{3} \wedge\left(-v_{4}-v_{5}\right)+d v \wedge v_{6}
$$

for some $a, b, c, d \in k$ and we have

$$
\begin{aligned}
w^{[2]}= & -a b v_{1} \wedge v_{2} \wedge v_{4} \wedge v_{5}+a c v_{1} \wedge v_{3} \wedge v_{4} \wedge v_{5}-b c v_{2} \wedge v_{3} \wedge v_{4} \wedge v_{5} \\
& +a d v_{1} \wedge v_{4} \wedge v \wedge v_{6}+b d v_{2} \wedge v_{5} \wedge v \wedge v_{6}+c d v_{3} \wedge\left(-v_{4}-v_{5}\right) \wedge v \wedge v_{6}
\end{aligned}
$$

Assume that $[w]$ belongs to $G(2, A)$. Then $a b=a c=b c=0$ and two of a, b and c are zero. If $b=c=0$ for example, then $w=a v_{1} \wedge v_{4}+d v \wedge v_{6}$. Since $v \notin U_{1}=<v_{1}, v_{4}>$ by our assumption i), either a or d is equal to zero. Therefore, $P_{1234} \cap G(2, A)$ consists of $\left[U_{1}\right],\left[U_{2}\right],\left[U_{3}\right]$ and $\left[U_{4}\right]$.

Remark 2.4 As is seen from the proof, the intersection $P_{1234} \cap G(2, A)$ is the 0-dimensional reduced scheme consisting of $\left[U_{1}\right],\left[U_{2}\right],\left[U_{3}\right]$ and $\left[U_{4}\right]$ under the assumption i), ii) and iii).

By these lemmas, we have
Proposition 2.5 (1) For every line ℓ in $\mathbf{P}_{*}\left(\bigwedge^{2} A\right)$, the cardinality of the intersection $\ell \cap G(2, A)$ is either less than three or infinite.
(2) For every plane P in $\mathbf{P}_{*}\left(\bigwedge^{2} A\right)$, the cardinality of the intersection $P \cap G(2, A)$ is either less than four or infinite.
(3) Assume that $\operatorname{dim} A=6$ and let R be a 3-plane in $\mathbf{P}_{*}\left(\wedge^{2} A\right)$. If the cardinality of the intersection $R \cap G(2, A)$ is finite and greater than four, then there exists a 5 -dimensional subspace A^{\prime} of A such that $R \subset \mathbf{P}_{*}\left(\bigwedge^{2} A^{\prime}\right)$.

Let \mathbf{P} be a linear subspace of $\mathbf{P}_{*}\left(\bigwedge^{2} A\right)$ such that the intersection $C=\mathbf{P} \cap G(2, A)$ is of dimension one.

Corollary 2.6 (1) $C \subset \mathbf{P}^{7}$ has no trisecant lines or 4 -secant planes.
(2) Assume that $\operatorname{dim} A=6$. If R is a 5 -secant 3 -plane of $C \subset \mathbf{P}^{7}$, then there exists a 5 -dimensional subspace A^{\prime} of A such that $R \cap C \subset G\left(2, A^{\prime}\right)$.

Assume that $\operatorname{dim} A=6$ and let $C \subset \mathbf{P}^{7}$ be a transversal intersection of $G(2, A) \subset$ $\mathbf{P}_{*}\left(\Lambda^{2} A\right)$ and seven hyperplanes H_{1}, \cdots, H_{7}. The canonical class of C is linearly equivalent to a hyperplane section by Proposition 1.12 and the adjunction formula. By the lemma of Enriques-Severi-Zariski ([6], p. 244), C is connected and the linear map

$$
\left(\bigwedge^{2} A^{\vee}\right) /<f_{1}, \cdots, f_{7}>\longrightarrow H^{0}\left(C, \omega_{C}\right)
$$

is injective, where f_{i} is a linear form defining the hyperplane H_{i} for $1 \leq i \leq 7$. Since $G(2,6) \subset \mathbf{P}^{14}$ is of degree 14 by Corollary $1.14, C$ is of genus 8 and the above map is surjective. Hence we have

Proposition 2.7 A transversal linear section $C \subset \mathbf{P}^{7}$ of $G(2,6) \subset \mathbf{P}^{14}$ is a canonical curve of genus 8 .

For an effective divisor $D=p_{1}+\cdots+p_{d}$ on a curve C of genus g, the Riemann-Roch theorem is written as

$$
\begin{equation*}
\operatorname{dim}\left|K_{C}\right|-\operatorname{dim}\left|K_{C}-p_{1}-\cdots-p_{d}\right|-1=d-\operatorname{dim} H^{0}\left(\mathcal{O}_{X}(D)\right) . \tag{2.7}
\end{equation*}
$$

The left hand side is the dimension of the linear span of the d points $p_{1}, \cdots, p_{d} \in C \subset$ \mathbf{P}^{g-1} on the canonical model. Hence the d points are linearly dependent if and only if $\operatorname{dim}|D|>0$.

Lemma 2.8 A transversal linear section C of $G(2,6) \subset \mathbf{P}^{14}$ has no g_{4}^{1}. If an effective divisor D is a g_{5}^{1} of C, then there exists a 5 -dimensional subspace A^{\prime} of A such that $D \subset C \cap G\left(2, A^{\prime}\right)$.

Proof. Let ξ be a g_{d}^{1} and $\left\{D_{t}=p_{1, t}+\cdots+p_{d, t} \mid t \in \mathbf{P}^{1}\right\}$ the linear system associated to it. By (2.7), $p_{1, t}, \cdots, p_{d, t}$ are linearly dependent for every $t \in \mathbf{P}^{1}$. Hence C has no g_{4}^{1} by Corollary 2.6 and Bertini's theorem. If $d=5$ and if D_{t} is reduced, then there exists a 5 -dimensional subspace A_{t} of A such that $D_{t} \subset C \cap G\left(2, A_{t}\right)$. Since $G(5, A) \simeq \mathbf{P}^{5}$ is complete, this holds true for every $t \in \mathbf{P}^{1}$.

Assume that $C=G(2,6) \cap \mathbf{P}^{7}$ has a g_{7}^{2}, which we denote by α. By the genus formula of a plane curve, $|\alpha|$ contains $D=D_{1} \cup D_{2}$ such that both D_{1} and D_{2} are g_{5}^{\prime} 's and $\operatorname{deg} D_{1} \cap D_{2}=3$, where $D_{1} \cup D_{2}$ is the smallest divisor dominating both D_{1} and D_{2}, and $D_{1} \cap D_{2}$ the largest one dominated by both. By the lemma, D_{1} and D_{2} are contained in $G\left(2, A_{1}\right)$ and $G\left(2, A_{2}\right)$ for 5 -dimensional subspaces A_{1} and A_{2} of A. Hence $D_{1} \cap D_{2}$ is contained in the 4 -dimensional Grassmannian $G\left(2, A_{1} \cap A_{2}\right)$, which is a contradiction. Thus we have proved the 'only if' part of the Main Theorem.

3 2-bundles with canonical determinant

Let C be a curve and E a vector bundle of rank 2 on C with $\wedge^{2} E \simeq \omega_{C}$. The following is a variant of the base-point-free pencil trick and very useful for our study of bundles on a curve.

Proposition 3.1 If a line bundle ζ on C is generated by global sections, then

$$
\operatorname{dim} \operatorname{Hom}(\zeta, E) \geq h^{0}(E)-\operatorname{deg} \zeta
$$

Proof. ζ is generated by two global sections and we have the exact sequence

$$
0 \longrightarrow \zeta^{-1} \longrightarrow \mathcal{O}_{C}^{\oplus 2} \longrightarrow \zeta \longrightarrow 0
$$

Tensoring E and taking H^{0}, we have

$$
h^{0}\left(\zeta^{-1} E\right)+h^{0}(\zeta E) \geq 2 h^{0}(E)
$$

By the Riemann-Roch theorem, we have

$$
h^{0}\left(\zeta^{-1} E\right)-h^{0}\left(\omega_{C} \zeta E^{\vee}\right)=\operatorname{deg}\left(\zeta^{-1} E\right)+2(1-g)=-2 \operatorname{deg} \zeta
$$

Since $\zeta E \simeq \omega_{C} \zeta E^{\vee}$, the arithmetic mean of these two inequalities is the desired one.

Let ξ be a line bundle and η its Serre adjoint. Then $\xi \oplus \eta$ is a 2 -bundle with canonical determinant. Applying the proposition to this vector bundle, we have

Corollary 3.2 If ζ is generated by global sections and if $\operatorname{deg} \zeta<h^{0}(\xi)+h^{0}(\eta)$, then there exists a nonzero homomorphism of ζ to ξ or to η.

We recall the general existence theorem of special divisors (Chap. 7, [1]):
Theorem 3.3 Let C be a curve of genus g, and d and r non-negative integers. If $(r+1)(r-d+g) \leq g$ holds, then C has a g_{d}^{r}.

Let C be a curve of genus 8 and assume that C has no g_{4}^{1}. By the theorem, C has a g_{5}^{1}, which we denote by ξ. ξ is free by our assumption.

Lemma 3.4 C has no g_{6}^{2}.
Proof. We show the existence of a g_{4}^{1} assuming that of a g_{6}^{2}. There exists a morphism $C \longrightarrow \mathbf{P}^{2}$ of degree ≤ 6, whose image \bar{C} is not contained in a line. If \bar{C} is a conic, C has a g_{3}^{1}. If \bar{C} is a cubic, C has a g_{4}^{1} since \bar{C} has a g_{2}^{1}. If $\operatorname{deg} \bar{C} \geq 4$, then $C \longrightarrow \bar{C}$ is birational and \bar{C} is singular by the genus formula. The projection from a singular point gives rise to a g_{4}^{1}.

The Serre adjoint η of ξ is a g_{9}^{3}.
Lemma 3.5 $|\eta|$ is free, $\operatorname{dim}|\eta|=3$ and $\Phi_{|\eta|}: C \longrightarrow \mathbf{P}^{3}$ is birational onto its image.

Proof. By Lemma 3.4, C has no g_{8}^{3}. Hence $\operatorname{dim}|\eta(-p)| \leq 2$ for every point $p \in C$ which shows the first two assertions. By our assumption, C is not trigonal, from which the last assertion follows.

We consider extensions $0 \longrightarrow \xi \longrightarrow E \longrightarrow \eta \longrightarrow 0$ of ξ by η. Let $e \in \operatorname{Ext}(\eta, \xi)$ be the extension class and $\delta_{e}: H^{0}(\eta) \longrightarrow H^{1}(\xi)$ the coboundary map. Since $h^{0}(\xi)+h^{0}(\eta)=6$, $h^{0}(E)=6$ is equivalent to $\delta_{e}=0$, that is, e lies in the kernel of the linear map

$$
\Delta: \operatorname{Ext}(\eta, \xi) \longrightarrow H^{0}(\eta)^{\vee} \otimes H^{1}(\xi), \quad e \mapsto \delta_{e} .
$$

Lemma 3.6 $\operatorname{dim} \operatorname{Ker} \Delta=1$.
Proof. The group Ext (η, ξ) is isomorphic to the first cohomology group $H^{1}\left(\eta^{-1} \xi\right)$, which is the dual of $H^{0}\left(\eta^{2}\right)$ by the Serre duality. Hence the linear map Δ is the dual of the multiplication map

$$
m: H^{0}(\eta) \otimes H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)
$$

Since C has no g_{4}^{1}, no quadric surface contains the image $C_{9} \subset \mathbf{P}^{3}$ of $\Phi_{|\eta|}$, that is, the linear map $S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)$ induced by m is injective. Since $\operatorname{dim} H^{0}\left(\eta^{2}\right)=11$ by the Riemann-Roch theorem, the cokernel of multiplication map m is of dimension one.

By the lemma, there exists a unique non-trivial extension of η by ξ with linearly independent six global sections, which we denote by $E_{\xi} . E_{\xi}$ is semi-stable by Lemma 3.4 and the following:

Lemma $3.7 \operatorname{dim} H^{0}(\zeta) \geq 3$ for every quotient line bundle ζ of E_{ξ}.
Proof. Let f be the composite of the natural inclusion $\xi \hookrightarrow E_{\xi}$ and surjection $E_{\xi} \longrightarrow \zeta$. If $f=0$, then $\zeta=\eta$ and $h^{0}(\zeta)=4$. So we assume that $f \neq 0$. There exist a nonzero effective divisor D such that $\zeta \simeq \xi(D)$ and an exact sequence $0 \longrightarrow \eta(-D) \longrightarrow E \longrightarrow \xi(D) \longrightarrow 0$. Since $|\eta|$ is free by Lemma 3.5, we have $h^{0}(\xi(D)) \geq h^{0}(E)-h^{0}(\eta(-D)) \geq 3$.

Proof of Theorem A: Let C be a curve of genus 8 and assume that C has no g_{7}^{2}.
Lemma 3.8 C has no g_{4}^{1}.
Proof. We show the existence of a g_{7}^{2} assuming that of a g_{4}^{1}. Let ξ be a g_{4}^{1} of C. We may assume that C has no g_{6}^{2}, which implies that C has no g_{8}^{3} or g_{3}^{1}. In particular, $|\xi|$ is free and the Serre adjoint η of ξ is very ample. The image of $\Phi_{|\eta|}$ is a curve $C_{10} \subset \mathbf{P}^{4}$ of degree 10. Hence a g_{7}^{2} is obtained by projecting off a trisecant line. The existence of a trisecant line follows from the Berzolari formula

$$
\Theta(C)=(n-2)(n-3)(n-4) / 6-g(n-4)
$$

([9]), where $n=\operatorname{deg} C$ and g is the genus. In fact, the number of trisecant lines $\Theta\left(C_{10}\right)$ of $C_{10} \subset \mathbf{P}^{4}$ is equal to 8 in our case.

Let ξ be a g_{5}^{1} on C. E_{ξ} is stable by Lemma 3.7 and by our assumption. Let E be a stable bundle with canonical determinant and with $h^{0}(E) \geq 6$. Then there is a nonzero homomorphism $f: \xi \longrightarrow E$ by Proposition 3.1. $f(\xi)$ is a line subbundle by the lemma below. Therefore, we have $h^{0}(E) \leq h^{0}(\xi)+h^{0}\left(\omega_{C} \xi^{-1}\right)=6$. The uniqueness of E follows from Lemma 3.6. Since η and ξ are generated by global sections, so is E. This completes the proof of Theorem A.

Lemma 3.9 For every line subbundle L of $E, h^{0}(L) \leq 2$. Moreover, if $h^{0}(L)=2$, then L is a g_{5}^{1}.

Proof. Let L be a line subbundle of E with $h^{0}(L) \geq 2$. Then we have $\operatorname{deg} L<7$ by the stability of E and $h^{0}(L)=2$ since C has no g_{6}^{2}. Since $h^{0}\left(\omega_{C} L^{-1}\right) \geq h^{0}(E)-h^{0}(L) \geq 4$, we have $\operatorname{deg} L=h^{0}(L)-h^{0}\left(\omega_{C} L^{-1}\right)+7 \leq 5$ by the Riemann-Roch theorem. Therefore, L is a g_{5}^{1} by Lemma 3.8.

Lemma 3.10 For every $g_{5}^{1} \xi$ of C, $\operatorname{dim} \operatorname{Hom}(\xi, E) \leq 1$.
Proof. Let f_{1} and f_{2} be two homomorphisms of ξ to E. We have two exact sequences

$$
0 \longrightarrow f_{1}(\xi) \longrightarrow E \longrightarrow \eta \longrightarrow 0
$$

and

$$
0 \longrightarrow f_{2}(\xi) \longrightarrow E \longrightarrow \eta \longrightarrow 0
$$

where η is the Serre adjoint of ξ. By Lemma 3.6, there exists an isomorphism of E which maps $f_{1}(\xi)$ onto $f_{2}(\xi)$. Since E is simple, f_{1} is a constant multiple of f_{2}.

Proof of Theorem B: Let U be a 2-dimensional subspace of $H^{0}(E)$ such that $\lambda\left(\wedge^{2} U\right)=0$. Then the evaluation map $U \otimes \mathcal{O}_{C} \longrightarrow E$ is not generically surjective. Its image is a line subbundle and a g_{5}^{1} by Lemma 3.9. Hence we obtain a map from the intersection $\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap G(2, V)$ to $W_{5}^{1}(C)$. This map is injective by Lemma 3.10 and surjective by Proposition 3.1.
Proof of Theorem C: The map $\lambda: \Lambda^{2} V \longrightarrow H^{0}\left(\omega_{C}\right)$ is surjective since $\operatorname{dim} G(2, V)=8=$ $\operatorname{dim} H^{0}\left(\omega_{C}\right)$. Hence $\mathbf{P}^{*}(\lambda)$ is an embedding. Since $C \subset \mathbf{P}^{7}$ is an intersection of quadrics by the Enriques-Petri theorem, it suffices to show

Claim : The restriction map $I_{G(V, 2), 2} \longrightarrow I_{C, 2}$ is surjective, where $I_{G(V, 2), 2}$ is the vector space $\simeq \Lambda^{4} V$ generated by the Plücker quadratic forms and $I_{C, 2}$ is the vector space of quadratic forms which vanish on C.

Since $S^{2} H^{0}\left(\omega_{C}\right) \longrightarrow H^{0}\left(\omega_{C}^{2}\right)$ is surjective by Noether's theorem, $I_{C, 2}$ is of dimension 15. $I_{G(V, 2), 2}$ is also of dimension 15. So we show the injectivity of the restriction map, instead. By Proposition 1.7, $q \in I_{G(V, 2), 2}$ is of $\operatorname{rank} 6,10$ or 15 . If $\operatorname{rank} q=15, Q: q=0$ is a smooth 13 -dimensional quadric and contains no 7 -plane. Hence q is not identically zero on the image $P \simeq \mathbf{P}^{7}$ of $\mathbf{P}^{*}(\lambda)$. If $\operatorname{rank} q=6$, then the projective dual \mathscr{Q} of Q is contained in $G(2, V)$ by Proposition 1.11. Hence the intersection $\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap \check{Q}$ is finite by our assumption and Q does not contain P by Proposition 1.10. If $\operatorname{rank} q=10, \check{Q}$ is an

8-dimensional quadric in the 9-plane $<\mathscr{Q}>\subset \mathbf{P}_{*}\left(\wedge^{2} V\right)$. By Proposition 1.11, the intersection $M=\check{Q} \cap G(2, V)$ is of dimension 5 and hence numerically equivalent to a positive multiple of the cubic power of a hyperplane section of \check{Q}. Hence every 4 -dimensional subvariety of \check{Q} intersects M in a positive dimensional set. Hence $\operatorname{dim}\left(\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap \check{Q}\right) \leq 3$ by our assumption. Therefore, Q does not contain the image P by Proposition 1.10, which completes the proof of Theorem C.

4 4-secant lines of $C_{9} \subset \mathbf{P}^{3}$

Let C be a curve of genus 8 . If ξ is a g_{5}^{1}, then its Serre adjoint η is a g_{9}^{3}. In this section, investigating the image of $\Phi_{|\eta|}$, we prove the following

Theorem 4.1 If C has no g_{4}^{1}, then C has only finitely many g_{5}^{1} 's.
Let $C \subset \mathbf{P}^{3}$ be a smooth space curve of genus 8 and degree 9 .
Proposition 4.2 The following two conditions are equivalent to each other.
(1) $C \subset \mathbf{P}^{3}$ has a 5 -secant line.
(2) $C \subset \mathbf{P}^{3}$ is contained in a cubic surface.

Moreover, if these equivalent conditions are satisfied, then $C \subset \mathbf{P}^{3}$ has only finitely many 4 -secant lines.

Let $\ell \subset \mathbf{P}^{3}$ be a 5 -secant line of $C \subset \mathbf{P}^{3}$ and put $I_{\ell} / I_{C} \simeq \mathcal{O}_{C}\left(-p_{1}-\cdots-p_{5}\right) \subset \mathcal{O}_{C}$. Let $|3 h-\ell|$ be the linear system of cubic surfaces containing ℓ and

$$
|3 h-\ell| \cdots \longrightarrow\left|3 h_{C}-p_{1}-\cdots-p_{5}\right|
$$

the restriction (rational) map, where h_{C} is a hyperplane section class of C. Since dim $\mid 3 h-$ $\ell \mid=15$ and $\operatorname{dim}\left|3 h_{C}-p_{1}-\cdots-p_{5}\right|=14$, there exists a cubic surface containing C. This shows $(1) \Rightarrow(2)$.

Conversely assume that C is contained in a cubic surface S. Since C is not contained in a quadric surface by the genus formula, S is irreducible.

Lemma 4.3 S has no triple points.
Proof. Assume the contrary. Then S is a cone over a plane cubic. Since $\operatorname{deg} C=9$, C does not pass the vertex of S and each generating line intersects C at three points. Since the blow-up of S at the vertex has Picard number $2, C$ is cut out by another cubic surface, which contradicts $g(C)=8$.

Lemma 4.4 S has only isolated singularities.
Proof. Assume the contrary. Then the singular locus is a line and the normalization \tilde{S} of S is the blow-up of \mathbf{P}^{2} at a point p. A plane section of $S \subset \mathbf{P}^{3}$ is transformed to a conic passing through the point p. Let $\bar{C} \subset \mathbf{P}^{2}$ be the transform of C. If \bar{C} is of degree d and has multiplicity μ at p, then we have $(d-1)(d-2) / 2-m(m-1) / 2=8$ and $2 d-m=9$, which has no integral solution.

Lemma 4.5 Let $S \subset \mathbf{P}^{3}$ be a cubic surface with only isolated double points as its singularity and C a smooth curve on S. Then there exists a birational morphism π from a minimal resolution \tilde{S} of S onto \mathbf{P}^{2} which satisfies
(1) π is the blowing up of at six points p_{1}, \cdots, p_{6}, and
(2) the strict transform $\tilde{C} \subset \tilde{S}$ of C is linearly equivalent to $d L-a_{1} E_{1}-\cdots-a_{6} E_{6}$ with $d \geq a_{1}+a_{2}+a_{3}$ and $a_{1} \geq a_{2} \geq \cdots \geq a_{6} \geq 0$, where E_{i} is (the total transform of) the exceptional divisor over p_{i} for each $1 \leq i \leq 6$ and L is the pull-back of a line.

Proof. The existence of π satisfying (1) is well known in the case S is smooth. If S is singular, the projection off a singular point induces a morphism π satisfying (1). Relabeling p_{1}, \cdots, p_{6}, we may assume that \tilde{C} is linearly equivalent to either
a) $d L-a_{1} E_{1}-\cdots-a_{6} E_{6}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{6} \geq 0$, or
b) E_{3}.

If $d<a_{1}+a_{2}+a_{3}$ in the former case or if $\tilde{C} \sim E_{3}$, we make the quadratic transformation with center p_{1}, p_{2} and p_{3}. Then we have new expression
a) $\tilde{C} \sim d^{\prime} L-a_{1}^{\prime} E_{1}-a_{2}^{\prime} E_{2}-a_{3}^{\prime} E_{3}-a_{4} E_{4}-a_{5} E_{5}-a_{6} E_{6}$, or
b) $\tilde{C} \sim 2 L-E_{1}-E_{2}$.

Since $d^{\prime}=2 d-a_{1}-a_{2}-a_{3}<d$, repeating this process, we have (2).
Applying the proposition to the space curve $C \subset S \subset \mathbf{P}^{3}$ of degree 9 , we have that \tilde{C} is linearly equivalent to $d L-a_{1} E_{1}-\cdots-a_{6} E_{6}$ for integers d, a_{1}, \cdots, a_{6} satisfying

$$
\left\{\begin{array}{l}
d \geq a_{1}+a_{2}+a_{3}, a_{1} \geq a_{2} \geq \cdots \geq a_{6} \geq 0 \\
3 d-a_{1}-a_{2}-a_{3}-a_{4}-a_{5}-a_{6}=9, \text { and } \\
d(d-1)-a_{1}\left(a_{1}-1\right)-\cdots-a_{6}\left(a_{6}-1\right)=16
\end{array}\right.
$$

This has the unique integral solution

$$
\tilde{C} \sim 7 L-3 E_{1}-2 E_{2}-2 E_{3}-2 E_{4}-2 E_{5}-E_{6} .
$$

Let m be the strict transform by π of a conic passing through p_{2}, \cdots, p_{6}. Then m is a 5 -secant line of $C \subset \mathbf{P}^{3}$ since $(m \cdot \tilde{C})=5$ and $\left(-K_{S} . m\right)=1$, which completes the proof of $(2) \Rightarrow(1)$. Every 4 -secant line of C is contained in the cubic surface S, which contains only finitely many lines. Therefore, we have the second half of Theorem 4.2.

Proposition 4.6 There exists a surface of degree ≤ 7 which is singular along $C \subset \mathbf{P}^{3}$.
Proof. Since C is smooth, we have the exact sequence

$$
\left.0 \longrightarrow T_{C} \longrightarrow T_{\mathbf{P}}\right|_{C} \longrightarrow N_{C / \mathbf{P}} \longrightarrow 0 .
$$

Since $N_{C / \mathbf{P}}$ is of rank 2, we have

$$
N_{C / \mathbf{P}}^{\vee} \simeq N_{C / \mathbf{P}} \otimes \operatorname{det} N_{C / \mathbf{P}}^{-1} \simeq N_{C / \mathbf{P}} \otimes \mathcal{O}_{\mathbf{P}}(-4) \otimes \omega_{C}^{-1}
$$

Since $T_{\mathbf{P}}$ is a quotient of $\mathcal{O}_{\mathbf{P}}(1)^{\oplus 4}, N_{C / \mathbf{P}}^{\vee} \otimes \mathcal{O}_{\mathbf{P}}(7)$ is a quotient of $\left(\mathcal{O}_{\mathbf{P}}(4) \otimes \omega_{C}^{-1}\right)^{\oplus 4}$. Since $H^{1}\left(\mathcal{O}_{\mathbf{P}}(4) \otimes \omega_{C}^{-1}\right)$ vanishes, $H^{1}\left(C, N_{C / \mathbf{P}}^{\vee} \otimes \mathcal{O}_{\mathbf{P}}(7)\right)$ also vanishes and we have

$$
\operatorname{dim} H^{0}\left(C, N_{C / \mathbf{P}}^{\vee} \otimes \mathcal{O}_{\mathbf{P}}(7)\right)=\operatorname{deg}\left(N_{C / \mathbf{P}}^{\vee} \otimes \mathcal{O}_{\mathbf{P}}(7)\right)+2(1-g(C))=62
$$

by the Riemann-Roch theorem. Since $N_{C / \mathbf{P}}^{\vee} \simeq I_{C} / I_{C}^{2}$, we have

$$
\begin{aligned}
& \operatorname{dim} H^{0}\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}}(7) \otimes I_{C}^{2}\right) \\
\geq & \operatorname{dim} H^{0}\left(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}}(7)\right)-\operatorname{dim} H^{0}\left(C, \mathcal{O}_{\mathbf{P}}(7) \otimes \mathcal{O}_{C}\right)-\operatorname{dim} H^{0}\left(C, \mathcal{O}_{\mathbf{P}}(7) \otimes N_{C / \mathbf{P}}^{\vee}\right) \\
= & 120-56-62=2
\end{aligned}
$$

The surface in the proposition contains all 4-secant lines of $C \subset \mathbf{P}^{3}$.
Lemma 4.7 Assume that $C \subset \mathbf{P}^{3}$ is not contained in a cubic surface and that two 4secant lines ℓ and m intersect at a point p. Then we have
(1) p lies on C, and
(2) the two lines ℓ, m and the tangent line of C at p are not contained in a plane.

Proof. The idea of proof has already appeared in the proof of Proposition 4.2. Assume that $p \notin C$ and put $I_{\ell} / I_{C} \simeq \mathcal{O}_{C}\left(-p_{1}-p_{2}-p_{3}-p_{4}\right)$ and $I_{m} / I_{C} \simeq \mathcal{O}_{C}\left(-q_{1}-q_{2}-q_{3}-q_{4}\right)$. Let $|3 h-\ell-m|$ be the linear system of cubic surfaces containing ℓ and m, and

$$
|3 h-\ell-m| \cdots \longrightarrow\left|3 h_{C}-p_{1}-\cdots-q_{5}\right|
$$

the restriction map. Since $\operatorname{dim}|3 h-\ell-m|=12$ and $\operatorname{dim}\left|3 h_{C}-p_{1}-\cdots-q_{5}\right|=11$, there exists a member of $|3 h-\ell-m|$ which contains C. But this contradicts our assumption and shows (1). Next assume that the plane spanned by ℓ and m is tangent to C at p. Put $I_{\ell} / I_{C} \simeq \mathcal{O}_{C}\left(-p-p_{1}-p_{2}-p_{3}\right)$ and $I_{m} / I_{C} \simeq \mathcal{O}_{C}\left(-p-q_{1}-q_{2}-q_{3}\right)$. Every surface containing ℓ and m tangents C at p. Hence we have the restriction map

$$
|3 h-\ell-m| \cdots \longrightarrow\left|3 h_{C}-2 p-p_{1}-\cdots-q_{3}\right| .
$$

The rest of the proof of (2) is same as (1).
Proposition 4.8 A smooth space curve $C \subset \mathbf{P}^{3}$ of genus 8 and degree 9 has only finitely many 4-secant lines.

Proof. By Proposition 4.2, we may assume that $C \subset \mathbf{P}^{3}$ is not contained in a cubic surface and that $C \subset \mathbf{P}^{3}$ has no 5-secant lines. Assume that $C \subset \mathbf{P}^{3}$ has a 1-dimensional family of 4 -secant lines and Let \bar{S} be the surface swept out by them. The degree d of \bar{S} is ≤ 7 by Proposition 4.6 and ≥ 4 by our assumption. Let X be the blow-up of \mathbf{P}^{3} along C and S the strict transform of \bar{S}. By the Lemma 4.7, S has a \mathbf{P}^{1}-bundle structure $\pi: S \longrightarrow N$ over a curve N whose fibres are the strict transforms of 4 -secant lines. Let D be the exceptional divisor of the blowing up $X \longrightarrow \mathbf{P}^{3}$ and H the pull-back of a plane. Then the canonical class K_{X} of X is linearly equivalent to $-4 H+D$. Since S is a \mathbf{P}^{1}-bundle, we have $-2=\left(K_{S} . f\right)=\left(K_{X}+S . f\right)=(S . f)$. Let μ be the multiplicity of \bar{S} along C. Then S belongs to the linear system $|d H-\mu D|$ and we have $-2=(d H-\mu D . f)=d-4 \mu$. Since $4 \leq d \leq 7$, we have $d=6$ and $\mu=2$. Since $\left(H^{3}\right)=1,\left(H^{2} . D\right)=0,\left(H . D^{2}\right)=-9$ and $\left(D^{3}\right)=-50$, we have

$$
-8\left(p_{a}(N)-1\right)=\left(K_{S}^{2}\right)=\left(\left(K_{X}+S\right)^{2} \cdot S\right)=\left((2 H-D)^{2} \cdot(6 H-2 D)\right)=-2,
$$

Proof of Theorem 4.1: Let C be a curve of genus 8 and assume that C has no g_{4}^{1}. Let ξ be a g_{5}^{1} of C, which is generated by global sections by our assumption. By Corollary 3.2, we have
$\left(^{*}\right) \operatorname{Hom}(\zeta, \eta) \neq 0$ for every $g_{5}^{1} \zeta$ different from ξ,
where η is the Serre adjoint of ξ. The image \bar{C} of $\Phi_{|\eta|}$ is a space curve of degree 9 by Lemma 3.5. If \bar{C} is smooth, every g_{5}^{1} different from ξ is induced from the projection off a 4 -secant line of \bar{C} by $\left({ }^{*}\right)$. Hence the number of g_{5}^{1} is finite by Proposition 4.8. If \bar{C} is singular, the projection off a singular point gives rise to a g_{7}^{2}, which we denote by α. $|\alpha|$ is free and $h^{0}(\alpha)=3$ by Lemma 3.4. Hence the image of $\Phi_{|\alpha|}$ is a plane curve of degree 7. The same holds for the Serre adjoint β of α. Since $h^{0}(\alpha)+h^{0}(\beta)=6$, either $\operatorname{Hom}(\zeta, \alpha) \neq 0$ or $\operatorname{Hom}(\zeta, \beta) \neq 0$ holds for every $g_{5}^{1} \zeta$ of C, by Corollary 3.2. Hence every g_{5}^{1} of C is induced from the projection off a double point of the plane curves $\Phi_{|\alpha|}(C)$ or $\Phi_{|\beta|}(C)$. Therefore, C has only finitely many g_{5}^{1} 's.

5 Curves of genus 6

A 2-dimensional complete linear section $S_{5} \subset \mathbf{P}^{5}$ of the 6-dimensional Grassmannian $G(2,5) \subset \mathbf{P}^{9}$ is a quintic del Pezzo surface. A hyperquadric section $C_{10} \subset \mathbf{P}^{9}$ of $S_{5} \subset \mathbf{P}^{5}$ is a canonical curve of genus 6 by the adjunction formula and Proposition 1.12. Since $C_{10} \subset \mathbf{P}^{9}$ is an intersection of quadrics, C is neither trigonal nor a plane quintic.

Theorem 5.1 Let C be a curve of genus 6 which are neither trigonal nor a plane quintic.
(1) When E runs over all stable 2-bundles with canonical determinant on C, the maximum of $\operatorname{dim} H^{0}(F)$ is equal to 5 . Moreover, such vector bundles $F_{\text {max }}$ on C with $\operatorname{dim} H^{0}\left(F_{\max }\right)=5$ are unique up to isomorphism and generated by global sections.
(2) There exists a bijection between the intersection $\mathbf{P}_{*}(\operatorname{Ker} \lambda) \cap G\left(2, H^{0}\left(F_{\text {max }}\right)\right)$ and the set $W_{4}^{1}(C)$ of g_{4}^{1} 's of C, where λ is the map (0.1) for $F_{\max }$.

Let ξ be a g_{4}^{1} of C and η its Serre adjoint. Then every stable 2-bundle E with canonical determinant and with $h^{0}(E) \geq 5$ is an extension of η by ξ. The rest of the proof is quite similar to that of Theorem A and B. We omit it here.

Let E be a 2-bundle with canonical determinant on C and assume that $h^{0}(E)=5, E$ is generated by global sections and that the intersection $\mathbf{P}_{*}\left(\operatorname{Ker} \lambda_{E}\right) \cap G\left(2, H^{0}(E)\right)$ is finite. Since $\operatorname{dim} G\left(2, H^{0}(E)\right)=6=\operatorname{dim} H^{0}\left(\omega_{C}\right), \lambda_{E}: \wedge^{2} H^{0}(E) \longrightarrow H^{0}\left(\omega_{C}\right)$ is surjective. Hence $\Phi_{|E|}: C \longrightarrow G\left(H^{0}(E), 2\right)$ is an embedding by the commutative diagram (0.7).

Claim : The restriction map $I_{G, 2} \longrightarrow I_{C, 2}$ is injective, where $I_{G, 2}$ is the vector space of Plücker quadratic forms of $G\left(2, H^{0}(E)\right)$ and $I_{C, 2}$ is the vector space of quadratic forms which vanish on C.

For every $q \in I_{G, 2}$, the projective dual \check{Q} of $Q: q=0$ is a 4-dimensional quadric contained in $G\left(2, H^{0}(E)\right)$. Hence the intersection $\mathbf{P}_{*}\left(\operatorname{Ker} \lambda_{E}\right) \cap \check{Q}$ is finite by our assumption and Q does not contain the image $P \simeq \mathbf{P}^{5}$ of $\mathbf{P}_{*}\left(\lambda_{E}\right)$ by Proposition 1.10.
$I_{G, 2}$ is of dimension 5 and $I_{C, 2}$ is of dimension 6 by Noether's theorem. Hence there exists a hyperquadric Q such that $C=P \cap G\left(H^{0}(E), 2\right) \cap Q$ by Enriques-Petri's theorem. Hence, by Theorem 5.1, we have

Theorem 5.2 If $W_{4}^{1}(C)$ is finite, then $\Phi_{|E|}: C \longrightarrow G\left(H^{0}(E), 2\right)$ is an embedding and its image is a complete intersection of $G\left(H^{0}(E), 2\right)$ and a 4-dimensional quadric in $\mathbf{P}^{9}=$ $\mathbf{P}^{*}\left(\wedge^{2} H^{0}(E)\right)$, where E is $F_{\max }$ in (1) of Theorem 5.1.

Assume that C has no g_{3}^{1} or g_{5}^{2} and let ξ be a g_{4}^{1} of C. Its Serre adjoint η is a g_{6}^{2} by the Riemann-Roch and $h^{0}(\eta)=3$ by Clifford's theorem. By our assumption, $|\eta|$ is free and the image \bar{C} of $\Phi_{|\eta|}: C \longrightarrow \mathbf{P}^{2}$ is either a sextic or a smooth cubic. By Corollary 3.2, every g_{4}^{1} different from ξ is obtained from the projection off a double point of $\Phi_{|\eta|}$, that is, a double points of the sextic \bar{C} in the former case and any point of the cubic \bar{C} in the latter case. Hence we have

Proposition 5.3 For a curve C of genus $6, W_{4}^{1}(C)$ is finite if and only if C is not bi-elliptic and has no g_{3}^{1} or g_{5}^{2}.

This is a special case of Mumford's refinement of Martens' theorem ([1], p. 193).

References

[1] Arbarello, E., Cornalba, M., Griffiths, P.A. and J. Harris: Geometry of Algebraic Curves, I, Springer-Verlag, 1985.
[2] Borel, A. and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538: II, Amer. J. Math., 81(1959), 315-382.
[3] Buchsbaum, D.A. and D. Eisenbud: Algebra structure theorems for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99(1977), 447-485.
[4] Donaldson, S.K.: A new proof of a theorem of Narasimhan and Seshadri, J. Diff. Geom. 18 (1983), 269-2277.
[5] Griffiths, P.A. and J. Harris: Principles of Algebraic Geometry, Wiley-Interscience, New-York, 1978.
[6] Hartshorne, R.: Algebraic Geometry, Springer-Verlag, 1977.
[7] Józefiak, T. and P. Paragacz: Ideals generated by Pfaffians, J. Algebra, 61(1979), 189-198.
[8] Lazarsfeld, R. and A. Van de Ven.: Topics in the geometry of projective space "Recent result of F.L. Zak", DMV Seminar, Vol. 4, Birkhäuser, 1984.
[9] Le Barz, P.: Formules multi-sécants pour les courbes gauche quelconques, in 'Enumerative Geometry and Classical Algebraic Geometry', P. Le Barz and Y. Hervier (eds.), pp. 165-197, Birkhäuser, Boston, 1982.
[10] Mukai, S.: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, in 'Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata', pp. 357-377, Kinokuniya, Tokyo, 1988.
[11] - : Curves and symmetric spaces, Proc. Japan Acad. 68(1992), 7-10.
[12] Mumford, D. and J. Fogarty: Geometric Invariant Theory, second enlarged edition, Springer-Verlag, 1982.
[13] Narasimhan, M.S. and C.S. Seshadri: Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82(1965), 540-564.
[14] Zak, F.L.: Severi varieties, Math. USSR Sbornik 54 (1986), 113-127.

Department of Mathematics
School of Science
Nagoya University
464-01 Furō-chō, Chikusa-ku
Nagoya, Japan

