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Let C be a compact Riemann surface, or more generally, a smooth complete algebraic
curve. The graded ring RC =

⊕∞
k=0 H

0(ωk
C) of pluri-canonical forms on C is called the

canonical ring of C. There are two fundamental results on RC (cf. [1] and [5]):

Theorem (Noether) If C is not hyperelliptic, then RC is generated by H0(ωC).

RC is a quotient of the polynomial ring S = k[X1, · · · , Xg] of g variables by a homo-
geneous ideal IC , where g is the genus of C.

Theorem (Petri) IC is generated in degree 2 if C is neither trigonal nor a plane quintic.

If C is not hyperelliptic, then the canonical linear system |KC | is very ample. The
image C2g−2 ⊂ Pg−1 of the morphism Φ|KC | is called the canonical model of C. It is called
a canonical curve when C is not specified. By Noether’s theorem, RC is the homogeneous
coordinate ring of the canonical model. If C is trigonal or a smooth plane quintic, then
the quadric hull of C2g−2 ⊂ Pg−1 is a surface of degree g − 2. Otherwise, C2g−2 ⊂ Pg−1

is an intersection of quadrics (Enriques-Petri’s theorem). For curves C of genus g ≤ 5, it
is easy to determine the structure of RC by the geometry of C2g−2 ⊂ Pg−1 and/or by a
general structure theorem of Gorenstein ring ([3]). But it seems not for curves of higher
genus. In [11], we have announced linear section theorems which enable us to describe
RC for all curves of genus g ≤ 9. In this article, we treat the case g = 8.

Let G(2, 6) ⊂ P14 be the 8-dimensional Grassmannian embedded in P14 by the Plücker
coordinates. It is classically known that a transversal linear subspace P of dimension 7
cuts out a canonical curve C of genus 8. In [10], we have shown that the generic curve
of genus 8 is obtained in this manner. The main purpose of this article is to show the
following:

Main Theorem A curve C of genus 8 is a transversal linear section of the 8-dimensional
Grassmannian G(2, 6) ⊂ P14 if and only if C has no g2

7.

Since the defining ideal of G(2, 6) ⊂ P14 is generated by Pfaffians, so is the ideal IC . More
precisely, we have

Corollary Let C be as above. Then there exists a skew-symmetric matrix M(X) of size 6
whose components are linear forms of X1, · · · , X8 and such that the ideal IC is generated
by the 15 Pfaffians of 4× 4 principal minors of M(X).

By [7], the graded ring RC has the following free resolution as an S-module:



0←− RC ←− S ←− S(−2)⊗ U15 ←− S(−3)⊗ U35 ←− S(−4)⊗ U21

⊕
0 −→ S(−9) −→ S(−7)⊗ V 15 −→ S(−6)⊗ V 35 −→ S(−5)⊗ V 21

where U i denotes an i-dimensional representation of GL(6) and V i is its dual.
For the proof of the main theorem, the use of vector bundles is essential. Let E be

an (algebraic) vector bundle of rank 2 on C generated by global sections. Then each
fibre of E is a 2-dimensional quotient space of H0(E). Hence we obtain a Grassmannian
morphism of C, which we denote by Φ|E| : C −→ G(H0(E), 2). The determinant line
bundle

∧2 E is also generated by global sections and we obtain the morphism Φ|
∧

E| to
a projective space. A pair of global sections s1 and s2 of E determines a global section
[s1 ∧ s2] of

∧2 E. This correspondence H0(E) × H0(E) −→ H0(
∧2 E) is bilinear and

skew-symmetric. Hence we obtain the linear map

λ :
2∧
H0(E) −→ H0(

2∧
E). (0.11)

The two morphisms Φ|E| and Φ|
∧

E| are related by the rational map P∗(λ) associated to
λ and we obtain the commutative diagram

C
Φ|E|−→ G(H0(E), 2)

↓ ↓ Plücker

P∗(H0(
∧2 E))

P(λ)−→ P∗(
∧2 H0(E)).

(0.11)

Hence our task is to find of a 2-bundle E with the following properties:

(0.3) E has canonical determinant, that is,
∧2 E  ωC ,

(0.4) dimH0(E) = 6 and E is generated by global sections,

(0.5) the map λ is surjective, and

(0.6) the diagram (0.2) is cartesian.

A stable 2-bundle E with canonical determinant which maximizes dimH0(E) is the de-
sired one:

Theorem A Let C be a curve of genus 8 without g2
7. When F runs over all stable

2-bundles with canonical determinant on C, the maximum of dimH0(F ) is equal to 6.
Moreover, such vector bundles Fmax on C with dimH0(Fmax) = 6 are unique up to iso-
morphism and generated by global sections.

We denote Fmax by E and put V = H0(E). The commutative diagram (0.2) becomes

C
Φ|E|−→ G(V, 2)

canonical ↓ ↓ Plücker

P∗(H0(ωC))
P(λ)−→ P∗(

∧2 V ).

(0.15)

The hyperplanes of P∗(
∧2 V ) are parametrized by P∗(

∧2 V ) and those containing the
image of C by P∗(Kerλ). A hyperplane corresponds to a point in the dual Grassmannian
G(2, V ) ⊂ P∗(

∧2 V ) if and only if it cuts out a Schubert subvariety.



Theorem B There exists a bijection between the intersection P∗(Kerλ) ∩ G(2, V ) and
the set W 1

5 (C) of g1
5’s of C.

The finiteness of W 1
5 (C) will be proved in §4 using the geometry of space curves. The

‘if’ part of Main Theorem is a consequence of

Theorem C Let E be a 2-bundle with canonical determinant on a non-trigonal curve C
of genus 8. If E satisfies (0.4) and if the intersection P∗(Kerλ) ∩G(2, V ) is finite, then
λ is surjective and the diagram (0.7) is cartesian.

We prove Theorem A, B and C in §3 after a brief review of basic materials on Grass-
mannians in §1 and the proof of ‘only if part’ of Main Theorem in §2. Results similar to
these theorems will be proved for curves of genus 6 in the final section.

If the ground field is the complex number field C, then C is the quotient of the upper
half plane H = {�z > 0} by the (cocompact) discrete subgroup π1(C) ⊂ PSL(2,R). Let
Γ ⊂ SL(2,R) be the pull-back of π1(C). The canonical ring RC of C is isomorphic to the
ring

⊕∞
k=0 S2k(Γ) of holomorphic automorphic forms

f(
az + b

cz + d
) = (cz + d)2kf(z), z ∈ H,

(
a b
c d

)
∈ Γ

of even weight. By virtue of a theorem of Narasimhan and Ramanan ([13] and [4]), there
exists a bijection between

1) the set of isomorphism classes of stable 2-bundles E with canonical determinant,
and

2) the set of conjugacy classes (with respect to SU(2)) of odd SU(2)-irreducible rep-
resentations ρ : Γ −→ SU(2) of Γ,

where a representation ρ of Γ is odd if ρ(−1) = −1. H0(E) is isomorphic to the space
S1(Γ, ρ) of vector-valued holomorphic automorphic forms

ρ
((

a b
c d

)) (
f(az+b

cz+d
)

g(az+b
cz+d

)

)
= (cz + d)

(
f(z)
g(z)

)
, z ∈ H,

(
a b
c d

)
∈ Γ

of weight one with coefficient in ρ. If
(
f1

g1

)
,
(
f2

g2

)
∈ S1(Γ, ρ), then f1g2 − f2g1 belongs

to S2(Γ). Hence we obtain the linear map
∧2 S1(Γ, ρ) −→ S2(Γ) which is nothing but λ

in (0.1). By Theorem A and C, we have

Theorem D Let C be a curve of genus 8 without g2
7. When ρ runs all odd irreducible

SU(2)-representations of Γ, the maximum of dimS1(Γ, ρ) is equal to 6. Moreover, such
representations ρmax with dimS1(Γ, ρmax) = 6 are unique up to conjugacy and satisfy the
following:

(1)
∧2 S1(Γ, ρmax) −→ S2(Γ) is surjective, and

(2) the matrix M(z) =
(
f1(z) · · · f6(z)
g1(z) · · · g6(z)

)
is of rank 2 for every z ∈ H, where the

column vectors of M(z) are base of S1(Γ, ρ).



By the property (2), M(z) gives a holomorphic map of H to the 8-dimensional Grassman-
nian G(2, 6). By the automorphicity of M(z), this map factors through C and its image
is a linear section of G(2, 6).

Let G(8,
∧2 C6) be the Grassmannian of 7-dimensional linear subspaces P of P∗(

∧2 C6)
and G(8,

∧2 C6)
s

its open subset consisting of all stable points with respect to the action
of SL(6). The algebraic group PGL(6) acts on G(8,

∧2 C6) effectively and the geomet-
ric quotient G(8,

∧2 C6)
s
/PGL(6) exists as a normal quasi-projective variety ([12]). By

Theorem A and C, the linear subspaces P transversal to G(2, 6) form an open subset Ξ
of G(8,

∧2 C6)
s

and Ξ/PGL(6) is isomorphic to the moduli space M′
8 of curves of genus

8 without g2
7.

Remark (1) The non-existence of g2
7 is equivalent to the triple point freeness of the theta

divisor of the Jacaobian variety of C.
(2) The curves with g2

7 form a closed irreducible subvariety of codimension one in the
moduli spaceM8 of curves of genus 8. See [11] for the canonical model of such curves of
genus 8.

Notation and conventions. By a gr
d, we mean a line bundle L on a curve C of degree

d and with dimH0(L) ≥ r + 1. The map associated to the complete linear system |L|
is denoted by Φ|L|. The line bundle ωCL

−1 is called the Serre adjoint of L. We fix an
algebraically closed field k and consider all vector spaces, varieties and schemes over it.
For a vector space V , its dual is denoted by V ∨. We denote by G(r, V ) and G(V, r) the
Grassmannians of r-dimensional subspaces and quotient spaces of V , respectively. They
are abbreviated to G(r, n) and G(n, r) when V = kn. Two projective spaces G(1, V ) and
G(V, 1) associated to V are denoted by P∗(V ) and P∗(V ). P∗ is a contravariant functor.

1 Grassmannians

The Grassmannian G(r, V ) is defined to be the set of r-dimensional (linear) subspaces
of a vector space V . We consider the case r = 2. A 2-dimensional subspace U of kn is
spanned by two rows of a 2× n matrix

R =

(
a1 a2 · · · an

b1 b2 · · · bn

)

of rank 2. Hence G(2, n) is covered by
(
n
2

)
affine spaces Zij, 1 ≤ i < j ≤ n, of dimension

2(n− 2), where Z12 is the set of matrices of the form

(
1 0 a3 · · · an

0 1 b3 · · · bn

)

and other Zij’s are obtained from Z12 by permutation of columns. It is easy to check
that G(2, n) is an algebraic variety with respect to this atlas. Furthermore, G(2, n) is

a projective algebraic variety. We set pij(R) =

∣∣∣∣∣ ai aj

bi bj

∣∣∣∣∣ for 1 ≤ i, j ≤ n. The ratio



pij(R) : pkl(R) is uniquely determined by U and does not depend on the choice of R.
Hence the point

(p12(R) : · · · : pij(R) : · · · : pn−1,n(R)) ∈ P(n
2)−1, 1 ≤ i < j ≤ n,

depends only on U . We call this the Plücker coordinate of U and denote by p(U).

Proposition 1.1 The map π : G(2, n) −→ P(n
2)−1, [U ] �→ p(U) is an embedding.

Proof. It is obvious that the restriction of π to each Zij is an embedding. Since p(U)
belongs to Zij if and only if pij(U) �= 0, π is injective. ✷

The defining equation of G(2, n) ⊂ P(n
2)−1 is easy to find. For a 2 × n matrix R, let

MR be the n×n matrix whose ijth component is pij(R). This matrix is skew-symmetric.
Let Altn be the space of all skew-symmetric matrices of size n. The ambient projective
space of the Grassmannian G(2, n) is canonically identified with the projectivization of
Altn. A skew-symmetric matrix M is equal to MR for some R if and only if rankM = 2.

Hence the Grassmannian G(2, n) ⊂ P∗(Altn) is set-theoretically the intersection of
(
n
4

)
quadrics defined by Pfaffians of 4× 4 principal minors. Writing down the Pfaffians in the
affine coordinate of Zij, it is easy to check

Proposition 1.2 The Grassmannian G(2, n) ⊂ P∗(Altn) is scheme-theoretically the in-

tersection of
(
n
4

)
quadrics defined by Pfaffians of principal minors of size 4.

We make the Plücker embedding and this proposition free from coordinates. Let A be a
vector space. If U is a 2-dimensional subspace of A, then

∧2 U is a 1-dimensional subspace
of

∧2 A. Hence the Grassmannian G(2, A) is a subvariety of P∗(
∧2 A) by Proposition 1.1.

Similarly G(A, 2) is a subvariety of P∗(
∧2 A). For a bivector

w =
∑

1≤i<j≤n

aijvi ∧ vj ∈
2∧
A

we define its reduced square w[2] ∈ ∧4 A by

w[2] =
∑

1≤i<j<k<l≤n

Pfaff




0 aij aik ail

aji 0 ajk ajl

aki akj 0 akl

ali alj alk 0


 vi ∧ vj ∧ vk ∧ vl, (1.2)

where we put aji = −aij, aki = −aik and so on. Then w ∧ w = 2w[2] and w[2] does not
depend on the choice of a basis {v1, · · · , vn} of A. Similarly the reduced power w[p] ∈ ∧2p A
is defined for every positive integer p so that w∧p = p!w[p] by using the Pfaffians of principal
minors of size 2p. The point [w] ∈ P∗(

∧2 A) belongs to the Grassmannian G(2, A) if and
only if w[2] = 0. By Proposition 1.2, we have



Proposition 1.3 The Grassmannian G(2, A) ⊂ P∗(
∧2 A) is scheme-theoretically the

zero locus of the quadratic form

sqA :
2∧
A −→

4∧
A, w �→ w[2]

with values in
∧4 A.

For a 4-dimensional quotient space W of A, we call the composite qW of sqA and∧4 A −→ ∧4 W  k the Plücker quadratic form associated to W . qW is of rank 6. By
the proposition, we have the linear system L  P∗(

∧4 A) of quadrics containing G(2, A).
The zero loci of Plücker quadratic forms, called Plücker quadrics, are parametrized by
the Grassmannian G(A, 4) ⊂ L.

If dimA = 4, then G(2, A) is a smooth 4-dimensional quadric in P∗(
∧2 A) = P5. If

dimA = 5, every Q ∈ L is a Plücker quadric. In the case dimA = 6,
∧4 A is the dual of∧2 A by the pairing

2∧
A×

4∧
A −→

6∧
A  k,

and G(A, 4) is isomorphic to G(2, A). Under the natural action of PGL(A), the linear
system L is decomposed into three orbits G(A, 4),∆−G(A, 4) and L−∆ according as the
rank of bivectors, where ∆ is the cubic hypersurface defined by the Pfaffian. According
as the three orbits, there are three types of quadrics in L. Take a basis {v1, · · · , v6} of A
and let pij, 1 ≤ i < j ≤ 6, be the Plücker coordinates. The Plücker quadrics associated
to the 4-dimensional quotient spaces A/ < v1, v2 >,A/ < v3, v4 > and A/ < v5, v6 > are




Q1 : q1 = p34p56 − p35p46 + p36p45 = 0,
Q3 : q3 = p12p56 − p15p26 + p16p25 = 0 and
Q5 : q5 = p12p34 − p13p24 + p14p23 = 0,

(1.3)

respectively. The sum q3 + q5 is equal to

p12(p34 + p56)− p13p24 + p14p23 − p15p26 + p16p25 (1.3)

and of rank 10. The sum q1 + q3 + q5 is of rank 15. So we have proved

Proposition 1.4 Assume that dimA = 6. Then the linear system L has exactly three
orbits L6, L10 and L15 of dimension 8, 13 and 14 under the natural action of PGL(A).
Moreover,

a) every Q ∈ L6 is a Plücker quadric and of rank 6,
b) every Q ∈ L10 is of rank 10 and defined by a linear combination of two Plücker

quadratic forms, and
c) every Q ∈ L15 is smooth.

Remark 1.5 (1) The set L6 of Plücker quadrics is canonically isomorphic to the Grass-
mannian G(2, A) ⊂ P∗(

∧2 A). The direct isomorphism between them is given as follows:
The hypersurface ∆ defined by the Pfaffian

r :
2∧
A −→

6∧
A  k, w �→ w[3]



is singular along G(2, A). Hence the partial derivatives ∂r/∂w,w ∈ ∧2 A are quadratic
forms which vanish on G(2, A). The correspondence w �→ ∂r/∂w gives a PGL(A)-
equivariant isomorphism P∗(

∧2 A)  L, which maps G(2, A) onto L6.
(2) The secant variety S of G(2, 6) ⊂ P14 is the Pfaffian cubic hypersurface ∆ and

satisfies dimS = 3
2
dimX + 1. G(2, 6) ⊂ P14 is one of the Severi varieties classified by

Zak [14] (see also [8]).

We recall an elementary fact on the projective dual of a hyperquadric Q ⊂ P. The
projective dual Q̌ ⊂ P∨ of Q consists of the points [H] of the dual projective space P∨

such that rankH ∩Q ≤ rankQ− 2. The following is easily verified.

Proposition 1.6 The projective dual Q̌ ⊂ P∨ is a smooth hyperquadric in the linear span
< Q̌ > of Q̌. The linear span < Q̌ > coincides with the complementary linear subspace of
SingQ ⊂ P and consists of [H] such that rankH ∩Q ≤ rankQ− 1. In particular, dim Q̌
is equal to rankQ− 2.

A linear subspace P contained in Q is called Lagrangean if it is maximal among such
subspaces. We can choose a system of coordinates (x1 : x2 : x3 : · · ·) of P so that

{
P : x1 = x2 = · · · = xn = 0
Q : x1xn+1 + x2xn+2 + · · ·+ xnx2n = 0

when rankQ is even and so that{
P : x1 = x2 = · · · = xn = x2n+1 = 0
Q : x1xn+1 + x2xn+2 + · · ·+ xnx2n + x2

2n+1 = 0

when rankQ is odd. In both cases, hyperplanes H : a1x1 + a2x2 + · · · + anxn = 0,
containing P , belongs to the dual Q̌ of Q. Moreover, they form a Lagrangean subspace
of Q̌. Hence the complement P⊥ ⊂ P∨ of P contains a Lagrangean of Q̌. If P0 is a linear
subspace of P , then P⊥

0 ⊃ P⊥. Therefore, we have

Proposition 1.7 If a linear subspace P is contained in a hyperquadric Q ⊂ P, then its
complement P⊥ contains a Lagrangean of Q̌ ⊂ P∨ and hence dim(P⊥∩Q̌) ≥ [1

2
rankQ]−1.

The following is a key of the proof of Theorem C.

Proposition 1.8 Let A,L6 and L10 be as in Proposition 1.7.
(1) If Q ∈ L6, then the projective dual Q̌ ⊂ P∗(

∧2 A) of Q is a 4-dimensional quadric
contained in G(A, 2),

(2) If Q ∈ L10, then Q̌ is an 8-dimensional quadric and the intersection Q̌ ∩ G(A, 2)
is of dimension 5.

Proof. Let {v∗1, · · · , v∗6} be the dual basis of {v1, · · · , v6} and q1, q3 and q5 as in (1.5).
(1) We may assume that Q is Q1 : q1 = 0. Since rank q1 = 6 and q1 is a polynomial of

the 6 variables p34, p56, p35, p46, p36 and p45, < Q̌1 > is the 5-plane spanned by the 6 points
[v∗3 ∧ v∗4], [v

∗
5 ∧ v∗6], [v

∗
3 ∧ v∗5], [v

∗
4 ∧ v∗6], [v

∗
3 ∧ v∗6] and [v∗4 ∧ v∗5]. A hyperplane

a34p34 + a56p56 + a35p35 + a46p46 + a36p36 + a45p45 = 0



is tangent to Q1 if and only if a34a56 − a35a46 + a36a45 = 0. Hence Q̌ is contained in
G(A, 2).

(2) We may assume that Q is defined by (1.6), that is, q3 + q5 = 0. < Q̌ > is the
9-plane spanned by [v∗3 ∧ v∗4 − v∗5 ∧ v∗6], [v

∗
1 ∧ v∗2], · · · , [v∗2 ∧ v∗5]. A hyperplane

a(p34 + p56) + a12p12 + · · ·+ a25p25 = 0

is tangent to Q if and only if

aa12 − a13a24 + a14a23 − a15a26 + a16a25 = 0.

The bivector w = a(v∗3 ∧ v∗4 − v∗5 ∧ v∗6) + a12v
∗
1 ∧ v∗2 + · · ·+ a25v

∗
2 ∧ v∗5 is of rank ≤ 2 if and

only if a = 0 and

rank

(
a13 a14 a15 a16

a23 a24 a25 a26

)
≤ 1.

Therefore, Q̌ ∩ G(A, 2) coincides with < Q̌ > ∩G(A, 2) and is set-theoretically the cone
over the Segre variety P1 ×P3 ⊂ P7 with the vertex [v∗1 ∧ v∗2]. ✷

We compute the canonical class and degree of Grassmannians.

Proposition 1.9 The anti-canonical class of the Grassmannian G(r, n) is n times the

hyperplane section class of the Plücker embedding G(r, n) ⊂ P(n
r)−1.

Proof. Let A be an n-dimensional vector space. For every r-dimensional subspace U of A,
the tangent space of G(r, A) at the point [U ] is canonically isomorphic to Hom (U,A/U).
Let

0 −→ F∨ −→ A⊗k OG −→ E −→ 0

be the universal exact sequence on G(r, A). E and F are vector bundles of rank r and n−r,
respectively. Their determinant are the restriction of the tautological line bundle. Since
the tangent bundle of G(r, A) is isomorphic to Hom(F∨, E)  F ⊗ E , the anti-canonical
class of G(r, A) is n times the hyperplane section class. ✷

The Grassmannian G(r, n) is a homogeneous space of PGL(n). Let αi = ei − ei+1,
1 ≤ i < n, be the standard root basis of the Lie algebra g of PGL(n). The stabilizer
group P belongs to the conjugacy class of maximal parabolic subgroups corresponding to
the rth fundamental weight wr. Let p ⊂ g be the Lie algebra of P . The tangent space
of G(r, n) (at the base point) is isomorphic to g/p and spanned by r(n− r) roots ei − ej

with 1 ≤ i ≤ r < j ≤ n, which are called the positive complementary roots. Their sum,
which corresponds to the anti-canonical class of G(r, n), is equal to nwr. This is another
proof of the above proposition since the line bundle L which gives the Plücker embedding
of G(r, n) corresponds to wr. By [2], the self-intersection number of L is equal to

N !
∏
β

(β.wr)

(β.ρ)
,

where β runs over all positive complementary roots, N = dimG(r, n) = r(n − r) and
ρ = w1 + · · ·+ wn−1. Therefore, we have deduced the following classical formula:



Proposition 1.10 The degree of the Grassmannian G(r, n) ⊂ P(n
r)−1 is equal to

(r(n− r))!
∏

1≤i≤r<j≤n

(j − i)−1

Corollary 1.11 The degree of G(2, n) ⊂ Pn(n−3)/2 is equal to the Catalan number
(2n− 4)!/(n− 1)!(n− 2)!.

2 Linear sections of a Grassmannian

Let U1, U2, U3 and U4 be four distinct 2-dimensional subspaces of a vector space A. For
I ⊂ {1, 2, 3, 4}, we denote by PI the linear span of [Ui] ∈ G(2, A) with i ∈ I in P∗(

∧2 A).
We study the intersection of PI and G(2, A) and prove the ‘only if’ part of Main theorem.

Lemma 2.1 The intersection P12 ∩G(2, A) consists of [U1] and [U2] if U1 ∩U2 = 0. The
line P12 is contained in G(2, A) otherwise.

The proof is straightforward.

Lemma 2.2 The intersection P123 ∩ G(2, A) consists of [U1], [U2] and [U3] if U1 ∩ U2 =
U1 ∩U3 = U2 ∩U3 = 0 and dimU1 +U2 +U3 ≥ 5. P123 ∩G(2, A) is of positive dimension
otherwise.

Proof. Since P123 is contained in P∗(
∧2(U1 + U2 + U3)) and since P123 ∩ G(2, A) =

P123 ∩ G(2, U1 + U2 + U3), we may assume that A = U1 + U2 + U3. By Lemma 2.1, it
suffices to consider the case U1 ∩ U2 = U2 ∩ U3 = U3 ∩ U1 = 0, which implies dimA ≥ 4.

Case dimA = 4: Since G(2, A) ⊂ P∗(
∧2 A) is a hyperquadric, we have dimP123 ∩

G(2, A) > 0.
Case dimA = 5: We choose a basis {v1, v2, v3, v4, v5} of A so that U1 =< v1, v4 >,

U2 =< v2, v5 > and U3 =< v3,−v4 − v5 >. A point in P123 is represented by a bivector
w = av1 ∧ v4 + bv2 ∧ v5 + cv3 ∧ (−v4 − v5). The reduced square w[2] defined in (1.3) is
equal to

−abv1 ∧ v2 ∧ v4 ∧ v5 + acv1 ∧ v3 ∧ v4 ∧ v5 − bcv2 ∧ v3 ∧ v4 ∧ v5.

It follows that P123 ∩G(2, A) contains no other points than [U1], [U2] and [U3].
Case dimA = 6: A is the direct sum of U1, U2 and U3. We have P123 ∩ G(2, A) =

{[U1], [U2], [U3]} by the same argument as above. ✷

If dimA = 5, then G(2, A) ⊂ P∗(
∧2 A) is of degree 5 by Corollary 1.14 and of codi-

mension 3. Hence for general U1, U2, U3 and U4, the intersection P1234 ∩G(2, A) consists
of five points. Now we assume that dimA = 6.

Lemma 2.3 The intersection P1234 ∩ G(2, A) consists of [U1], [U2], [U3] and [U4] if U1,
U2, U3 and U4 satisfy,
i) Ui ∩ Uj = 0 for every 1 ≤ i < j ≤ 4,
ii) dimUi + Uj + Uk ≥ 5 for every 1 ≤ i < j < k ≤ 4, and
iii) U1 + U2 + U3 + U4 = A.



Proof. First we consider the case where Ui +Uj +Uk = A for every 1 ≤ i < j < k ≤ 4. A
is the direct sum of U1, U2 and U3. U4 is generated by two vectors v+ = v1 + v3 + v5 and
v− = v2 + v4 + v6 for v1, v2 ∈ U1, v3, v4 ∈ U2 and v5, v6 ∈ U3. Then {v1, v2, v3, v4, v5, v6} is
a basis of A. A point in P1234 is represented by a bivector

w = av1 ∧ v2 + bv3 ∧ v4 + cv5 ∧ v6 + d(v1 + v3 + v5) ∧ (v2 + v4 + v6)
= a′v1 ∧ v2 + b′v3 ∧ v4 + c′v5 ∧ v6

+d(v1 ∧ v4 + v1 ∧ v6 − v2 ∧ v3 − v2 ∧ v5 + v3 ∧ v6 − v4 ∧ v5),

for some a, b, c, d ∈ k, where we put a′ = a + d, b′ = b + d and c′ = c + d. A direct
computation shows

w[2] = (a′b′ − d2)v1 ∧ v2 ∧ v3 ∧ v4 + (a′c′ − d2)v1 ∧ v2 ∧ v5 ∧ v6

+(b′c′ − d2)v3 ∧ v4 ∧ v5 ∧ v6 + (a′c′ − d2)v1 ∧ v2 ∧ v5 ∧ v6

+(a′d− d2)v1 ∧ v2 ∧ (v3 ∧ v6 − v4 ∧ v5)
+(b′d− d2)v3 ∧ v4 ∧ (v1 ∧ v6 − v2 ∧ v5)
+(c′d− d2)v5 ∧ v6 ∧ (v1 ∧ v4 − v2 ∧ v3).

Hence [w] belongs to G(2, A) if and only if ad = bd = cd = ab = bc = ac = 0. Therefore,
the intersection P1234 ∩G(2, A) consists of [U1], [U2], [U3] and [U4].

Next we assume that three subspaces, say U1, U2 and U3, do not generate A. By
our assumption, we can take a basis {v1, v2, v3, v4, v5, v6} of A so that U1 =< v1, v4 >,
U2 =< v2, v5 >, U3 =< v3,−v4 − v5 > and v6 ∈ U4. U4 is generated by v6 and a nonzero
vector v in U4 ∩ (U1 + U2 + U3). A point in P1234 is represented by a bivector

w = av1 ∧ v4 + bv2 ∧ v5 + cv3 ∧ (−v4 − v5) + dv ∧ v6

for some a, b, c, d ∈ k and we have

w[2] = −abv1 ∧ v2 ∧ v4 ∧ v5 + acv1 ∧ v3 ∧ v4 ∧ v5 − bcv2 ∧ v3 ∧ v4 ∧ v5

+adv1 ∧ v4 ∧ v ∧ v6 + bdv2 ∧ v5 ∧ v ∧ v6 + cdv3 ∧ (−v4 − v5) ∧ v ∧ v6

Assume that [w] belongs to G(2, A). Then ab = ac = bc = 0 and two of a, b and c are
zero. If b = c = 0 for example, then w = av1 ∧ v4 + dv ∧ v6. Since v �∈ U1 =< v1, v4 >
by our assumption i), either a or d is equal to zero. Therefore, P1234 ∩G(2, A) consists of
[U1], [U2], [U3] and [U4]. ✷

Remark 2.4 As is seen from the proof, the intersection P1234∩G(2, A) is the 0-dimensional
reduced scheme consisting of [U1], [U2], [U3] and [U4] under the assumption i), ii) and iii).

By these lemmas, we have

Proposition 2.5 (1) For every line 8 in P∗(
∧2 A), the cardinality of the intersection

8 ∩G(2, A) is either less than three or infinite.
(2) For every plane P in P∗(

∧2 A), the cardinality of the intersection P ∩ G(2, A) is
either less than four or infinite.

(3) Assume that dimA = 6 and let R be a 3-plane in P∗(
∧2 A). If the cardinality of the

intersection R ∩G(2, A) is finite and greater than four, then there exists a 5-dimensional
subspace A′ of A such that R ⊂ P∗(

∧2 A′).



Let P be a linear subspace of P∗(
∧2 A) such that the intersection C = P ∩G(2, A) is

of dimension one.

Corollary 2.6 (1) C ⊂ P7 has no trisecant lines or 4-secant planes.
(2) Assume that dimA = 6. If R is a 5-secant 3-plane of C ⊂ P7, then there exists a

5-dimensional subspace A′ of A such that R ∩ C ⊂ G(2, A′).

Assume that dimA = 6 and let C ⊂ P7 be a transversal intersection of G(2, A) ⊂
P∗(

∧2 A) and seven hyperplanes H1, · · · , H7. The canonical class of C is linearly equivalent
to a hyperplane section by Proposition 1.12 and the adjunction formula. By the lemma
of Enriques-Severi-Zariski ([6], p. 244), C is connected and the linear map

(
2∧
A∨)/ < f1, · · · , f7 >−→ H0(C, ωC)

is injective, where fi is a linear form defining the hyperplane Hi for 1 ≤ i ≤ 7. Since
G(2, 6) ⊂ P14 is of degree 14 by Corollary 1.14, C is of genus 8 and the above map is
surjective. Hence we have

Proposition 2.7 A transversal linear section C ⊂ P7 of G(2, 6) ⊂ P14 is a canonical
curve of genus 8.

For an effective divisor D = p1 + · · ·+ pd on a curve C of genus g, the Riemann-Roch
theorem is written as

dim |KC | − dim |KC − p1 − · · · − pd| − 1 = d− dimH0(OX(D)). (2.7)

The left hand side is the dimension of the linear span of the d points p1, · · · , pd ∈ C ⊂
Pg−1 on the canonical model. Hence the d points are linearly dependent if and only if
dim |D| > 0.

Lemma 2.8 A transversal linear section C of G(2, 6) ⊂ P14 has no g1
4. If an effective

divisor D is a g1
5 of C, then there exists a 5-dimensional subspace A′ of A such that

D ⊂ C ∩G(2, A′).

Proof. Let ξ be a g1
d and {Dt = p1,t + · · · + pd,t|t ∈ P1} the linear system associated to

it. By (2.7), p1,t, · · · , pd,t are linearly dependent for every t ∈ P1. Hence C has no g1
4

by Corollary 2.6 and Bertini’s theorem. If d = 5 and if Dt is reduced, then there exists
a 5-dimensional subspace At of A such that Dt ⊂ C ∩ G(2, At). Since G(5, A)  P5 is
complete, this holds true for every t ∈ P1. ✷

Assume that C = G(2, 6)∩P7 has a g2
7, which we denote by α. By the genus formula

of a plane curve, |α| contains D = D1 ∪ D2 such that both D1 and D2 are g1
5’s and

degD1 ∩D2 = 3, where D1 ∪D2 is the smallest divisor dominating both D1 and D2, and
D1 ∩ D2 the largest one dominated by both. By the lemma, D1 and D2 are contained
in G(2, A1) and G(2, A2) for 5-dimensional subspaces A1 and A2 of A. Hence D1 ∩ D2

is contained in the 4-dimensional Grassmannian G(2, A1 ∩ A2), which is a contradiction.
Thus we have proved the ‘only if’ part of the Main Theorem.



3 2-bundles with canonical determinant

Let C be a curve and E a vector bundle of rank 2 on C with
∧2 E  ωC . The following

is a variant of the base-point-free pencil trick and very useful for our study of bundles on
a curve.

Proposition 3.1 If a line bundle ζ on C is generated by global sections, then

dim Hom (ζ, E) ≥ h0(E)− deg ζ.

Proof. ζ is generated by two global sections and we have the exact sequence

0 −→ ζ−1 −→ O⊕2
C −→ ζ −→ 0.

Tensoring E and taking H0, we have

h0(ζ−1E) + h0(ζE) ≥ 2h0(E).

By the Riemann-Roch theorem, we have

h0(ζ−1E)− h0(ωCζE
∨) = deg(ζ−1E) + 2(1− g) = −2 deg ζ.

Since ζE  ωCζE
∨, the arithmetic mean of these two inequalities is the desired one. ✷

Let ξ be a line bundle and η its Serre adjoint. Then ξ⊕ η is a 2-bundle with canonical
determinant. Applying the proposition to this vector bundle, we have

Corollary 3.2 If ζ is generated by global sections and if deg ζ < h0(ξ)+h0(η), then there
exists a nonzero homomorphism of ζ to ξ or to η.

We recall the general existence theorem of special divisors (Chap. 7, [1]):

Theorem 3.3 Let C be a curve of genus g, and d and r non-negative integers. If
(r + 1)(r − d + g) ≤ g holds, then C has a gr

d.

Let C be a curve of genus 8 and assume that C has no g1
4. By the theorem, C has a

g1
5, which we denote by ξ. ξ is free by our assumption.

Lemma 3.4 C has no g2
6.

Proof. We show the existence of a g1
4 assuming that of a g2

6. There exists a morphism
C −→ P2 of degree ≤ 6, whose image C̄ is not contained in a line. If C̄ is a conic, C
has a g1

3. If C̄ is a cubic, C has a g1
4 since C̄ has a g1

2. If deg C̄ ≥ 4, then C −→ C̄ is
birational and C̄ is singular by the genus formula. The projection from a singular point
gives rise to a g1

4. ✷

The Serre adjoint η of ξ is a g3
9.

Lemma 3.5 |η| is free, dim |η| = 3 and Φ|η| : C −→ P3 is birational onto its image.



Proof. By Lemma 3.4, C has no g3
8. Hence dim |η(−p)| ≤ 2 for every point p ∈ C which

shows the first two assertions. By our assumption, C is not trigonal, from which the last
assertion follows. ✷

We consider extensions 0 −→ ξ −→ E −→ η −→ 0 of ξ by η. Let e ∈ Ext (η, ξ) be the
extension class and δe : H0(η) −→ H1(ξ) the coboundary map. Since h0(ξ) + h0(η) = 6,
h0(E) = 6 is equivalent to δe = 0, that is, e lies in the kernel of the linear map

∆ : Ext (η, ξ) −→ H0(η)∨ ⊗H1(ξ), e �→ δe.

Lemma 3.6 dim Ker ∆ = 1.

Proof. The group Ext (η, ξ) is isomorphic to the first cohomology group H1(η−1ξ), which
is the dual of H0(η2) by the Serre duality. Hence the linear map ∆ is the dual of the
multiplication map

m : H0(η)⊗H0(η) −→ H0(η2).

Since C has no g1
4, no quadric surface contains the image C9 ⊂ P3 of Φ|η|, that is, the

linear map S2H0(η) −→ H0(η2) induced by m is injective. Since dimH0(η2) = 11 by the
Riemann-Roch theorem, the cokernel of multiplication map m is of dimension one. ✷

By the lemma, there exists a unique non-trivial extension of η by ξ with linearly
independent six global sections, which we denote by Eξ . Eξ is semi-stable by Lemma 3.4
and the following:

Lemma 3.7 dimH0(ζ) ≥ 3 for every quotient line bundle ζ of Eξ.

Proof. Let f be the composite of the natural inclusion ξ ↪→ Eξ and surjection Eξ −→ ζ. If
f = 0, then ζ = η and h0(ζ) = 4. So we assume that f �= 0. There exist a nonzero effective
divisor D such that ζ  ξ(D) and an exact sequence 0 −→ η(−D) −→ E −→ ξ(D) −→ 0.
Since |η| is free by Lemma 3.5, we have h0(ξ(D)) ≥ h0(E)− h0(η(−D)) ≥ 3. ✷

Proof of Theorem A: Let C be a curve of genus 8 and assume that C has no g2
7.

Lemma 3.8 C has no g1
4.

Proof. We show the existence of a g2
7 assuming that of a g1

4. Let ξ be a g1
4 of C. We

may assume that C has no g2
6, which implies that C has no g3

8 or g1
3. In particular, |ξ| is

free and the Serre adjoint η of ξ is very ample. The image of Φ|η| is a curve C10 ⊂ P4 of
degree 10. Hence a g2

7 is obtained by projecting off a trisecant line. The existence of a
trisecant line follows from the Berzolari formula

Θ(C) = (n− 2)(n− 3)(n− 4)/6− g(n− 4)

([9]), where n = degC and g is the genus. In fact, the number of trisecant lines Θ(C10)
of C10 ⊂ P4 is equal to 8 in our case. ✷



Let ξ be a g1
5 on C. Eξ is stable by Lemma 3.7 and by our assumption. Let E be a

stable bundle with canonical determinant and with h0(E) ≥ 6. Then there is a nonzero
homomorphism f : ξ −→ E by Proposition 3.1. f(ξ) is a line subbundle by the lemma
below. Therefore, we have h0(E) ≤ h0(ξ) + h0(ωCξ

−1) = 6. The uniqueness of E follows
from Lemma 3.6. Since η and ξ are generated by global sections, so is E. This completes
the proof of Theorem A.

Lemma 3.9 For every line subbundle L of E, h0(L) ≤ 2. Moreover, if h0(L) = 2, then
L is a g1

5.

Proof. Let L be a line subbundle of E with h0(L) ≥ 2. Then we have degL < 7 by the
stability of E and h0(L) = 2 since C has no g2

6. Since h0(ωCL
−1) ≥ h0(E) − h0(L) ≥ 4,

we have degL = h0(L) − h0(ωCL
−1) + 7 ≤ 5 by the Riemann-Roch theorem. Therefore,

L is a g1
5 by Lemma 3.8. ✷

Lemma 3.10 For every g1
5 ξ of C, dim Hom (ξ, E) ≤ 1.

Proof. Let f1 and f2 be two homomorphisms of ξ to E. We have two exact sequences

0 −→ f1(ξ) −→ E −→ η −→ 0

and
0 −→ f2(ξ) −→ E −→ η −→ 0,

where η is the Serre adjoint of ξ. By Lemma 3.6, there exists an isomorphism of E which
maps f1(ξ) onto f2(ξ). Since E is simple, f1 is a constant multiple of f2. ✷

Proof of Theorem B: Let U be a 2-dimensional subspace of H0(E) such that λ(
∧2 U) = 0.

Then the evaluation map U ⊗ OC −→ E is not generically surjective. Its image is a
line subbundle and a g1

5 by Lemma 3.9. Hence we obtain a map from the intersection
P∗(Kerλ) ∩ G(2, V ) to W 1

5 (C). This map is injective by Lemma 3.10 and surjective by
Proposition 3.1.

Proof of Theorem C: The map λ :
∧2 V −→ H0(ωC) is surjective since dimG(2, V ) = 8 =

dimH0(ωC). Hence P∗(λ) is an embedding. Since C ⊂ P7 is an intersection of quadrics
by the Enriques-Petri theorem, it suffices to show

Claim : The restriction map IG(V,2),2 −→ IC,2 is surjective, where IG(V,2),2 is the vector
space  ∧4 V generated by the Plücker quadratic forms and IC,2 is the vector space of
quadratic forms which vanish on C.

Since S2H0(ωC) −→ H0(ω2
C) is surjective by Noether’s theorem, IC,2 is of dimension

15. IG(V,2),2 is also of dimension 15. So we show the injectivity of the restriction map,
instead. By Proposition 1.7, q ∈ IG(V,2),2 is of rank 6, 10 or 15. If rank q = 15, Q : q = 0
is a smooth 13-dimensional quadric and contains no 7-plane. Hence q is not identically
zero on the image P  P7 of P∗(λ). If rank q = 6, then the projective dual Q̌ of Q is
contained in G(2, V ) by Proposition 1.11. Hence the intersection P∗(Kerλ) ∩ Q̌ is finite
by our assumption and Q does not contain P by Proposition 1.10. If rank q = 10, Q̌ is an



8-dimensional quadric in the 9-plane < Q̌ >⊂ P∗(
∧2 V ). By Proposition 1.11, the inter-

section M = Q̌∩G(2, V ) is of dimension 5 and hence numerically equivalent to a positive
multiple of the cubic power of a hyperplane section of Q̌. Hence every 4-dimensional sub-
variety of Q̌ intersects M in a positive dimensional set. Hence dim(P∗(Kerλ)∩ Q̌) ≤ 3 by
our assumption. Therefore, Q does not contain the image P by Proposition 1.10, which
completes the proof of Theorem C.

4 4-secant lines of C9 ⊂ P3

Let C be a curve of genus 8. If ξ is a g1
5, then its Serre adjoint η is a g3

9. In this section,
investigating the image of Φ|η|, we prove the following

Theorem 4.1 If C has no g1
4, then C has only finitely many g1

5’s.

Let C ⊂ P3 be a smooth space curve of genus 8 and degree 9.

Proposition 4.2 The following two conditions are equivalent to each other.
(1) C ⊂ P3 has a 5-secant line.
(2) C ⊂ P3 is contained in a cubic surface.

Moreover, if these equivalent conditions are satisfied, then C ⊂ P3 has only finitely many
4-secant lines.

Let 8 ⊂ P3 be a 5-secant line of C ⊂ P3 and put I%/IC  OC(−p1 − · · · − p5) ⊂ OC .
Let |3h− 8| be the linear system of cubic surfaces containing 8 and

|3h− 8| · · · −→ |3hC − p1 − · · · − p5|

the restriction (rational) map, where hC is a hyperplane section class of C. Since dim |3h−
8| = 15 and dim |3hC −p1−· · ·−p5| = 14, there exists a cubic surface containing C. This
shows (1) ⇒ (2).

Conversely assume that C is contained in a cubic surface S. Since C is not contained
in a quadric surface by the genus formula, S is irreducible.

Lemma 4.3 S has no triple points.

Proof. Assume the contrary. Then S is a cone over a plane cubic. Since degC = 9,
C does not pass the vertex of S and each generating line intersects C at three points.
Since the blow-up of S at the vertex has Picard number 2, C is cut out by another cubic
surface, which contradicts g(C) = 8. ✷

Lemma 4.4 S has only isolated singularities.

Proof. Assume the contrary. Then the singular locus is a line and the normalization S̃ of
S is the blow-up of P2 at a point p. A plane section of S ⊂ P3 is transformed to a conic
passing through the point p. Let C̄ ⊂ P2 be the transform of C. If C̄ is of degree d and
has multiplicity µ at p, then we have (d− 1)(d− 2)/2−m(m− 1)/2 = 8 and 2d−m = 9,
which has no integral solution. ✷



Lemma 4.5 Let S ⊂ P3 be a cubic surface with only isolated double points as its sin-
gularity and C a smooth curve on S. Then there exists a birational morphism π from a
minimal resolution S̃ of S onto P2 which satisfies

(1) π is the blowing up of at six points p1, · · · , p6, and
(2) the strict transform C̃ ⊂ S̃ of C is linearly equivalent to dL − a1E1 − · · · − a6E6

with d ≥ a1 + a2 + a3 and a1 ≥ a2 ≥ · · · ≥ a6 ≥ 0, where Ei is (the total transform of)
the exceptional divisor over pi for each 1 ≤ i ≤ 6 and L is the pull-back of a line.

Proof. The existence of π satisfying (1) is well known in the case S is smooth. If S is sin-
gular, the projection off a singular point induces a morphism π satisfying (1). Relabeling
p1, · · · , p6, we may assume that C̃ is linearly equivalent to either

a) dL− a1E1 − · · · − a6E6 with a1 ≥ a2 ≥ · · · ≥ a6 ≥ 0, or
b) E3.

If d < a1 + a2 + a3 in the former case or if C̃ ∼ E3, we make the quadratic transformation
with center p1, p2 and p3. Then we have new expression

a) C̃ ∼ d′L− a′1E1 − a′2E2 − a′3E3 − a4E4 − a5E5 − a6E6, or
b) C̃ ∼ 2L− E1 − E2.

Since d′ = 2d− a1 − a2 − a3 < d, repeating this process, we have (2). ✷

Applying the proposition to the space curve C ⊂ S ⊂ P3 of degree 9, we have that C̃
is linearly equivalent to dL− a1E1 − · · · − a6E6 for integers d, a1, · · · , a6 satisfying


d ≥ a1 + a2 + a3, a1 ≥ a2 ≥ · · · ≥ a6 ≥ 0
3d− a1 − a2 − a3 − a4 − a5 − a6 = 9, and
d(d− 1)− a1(a1 − 1)− · · · − a6(a6 − 1) = 16.

This has the unique integral solution

C̃ ∼ 7L− 3E1 − 2E2 − 2E3 − 2E4 − 2E5 − E6.

Let m be the strict transform by π of a conic passing through p2, · · · , p6. Then m is a
5-secant line of C ⊂ P3 since (m.C̃) = 5 and (−KS.m) = 1, which completes the proof of
(2) ⇒ (1). Every 4-secant line of C is contained in the cubic surface S, which contains
only finitely many lines. Therefore, we have the second half of Theorem 4.2.

Proposition 4.6 There exists a surface of degree ≤ 7 which is singular along C ⊂ P3.

Proof. Since C is smooth, we have the exact sequence

0 −→ TC −→ TP|C −→ NC/P −→ 0.

Since NC/P is of rank 2, we have

N∨
C/P  NC/P ⊗ detN−1

C/P  NC/P ⊗OP(−4)⊗ ω−1
C .

Since TP is a quotient of OP(1)⊕4, N∨
C/P⊗OP(7) is a quotient of (OP(4)⊗ω−1

C )⊕4. Since

H1(OP(4)⊗ ω−1
C ) vanishes, H1(C,N∨

C/P ⊗OP(7)) also vanishes and we have

dimH0(C,N∨
C/P ⊗OP(7)) = deg(N∨

C/P ⊗OP(7)) + 2(1− g(C)) = 62



by the Riemann-Roch theorem. Since N∨
C/P  IC/I

2
C , we have

dimH0(P3,OP(7)⊗ I2
C)

≥ dimH0(P3,OP(7))− dimH0(C,OP(7)⊗OC)− dimH0(C,OP(7)⊗N∨
C/P)

= 120− 56− 62 = 2.

✷

The surface in the proposition contains all 4-secant lines of C ⊂ P3.

Lemma 4.7 Assume that C ⊂ P3 is not contained in a cubic surface and that two 4-
secant lines 8 and m intersect at a point p. Then we have

(1) p lies on C, and
(2) the two lines 8, m and the tangent line of C at p are not contained in a plane.

Proof. The idea of proof has already appeared in the proof of Proposition 4.2. Assume
that p �∈ C and put I%/IC  OC(−p1− p2− p3− p4) and Im/IC  OC(−q1− q2− q3− q4).
Let |3h− 8−m| be the linear system of cubic surfaces containing 8 and m, and

|3h− 8−m| · · · −→ |3hC − p1 − · · · − q5|

the restriction map. Since dim |3h− 8−m| = 12 and dim |3hC − p1− · · ·− q5| = 11, there
exists a member of |3h − 8 −m| which contains C. But this contradicts our assumption
and shows (1). Next assume that the plane spanned by 8 and m is tangent to C at p.
Put I%/IC  OC(−p − p1 − p2 − p3) and Im/IC  OC(−p − q1 − q2 − q3). Every surface
containing 8 and m tangents C at p. Hence we have the restriction map

|3h− 8−m| · · · −→ |3hC − 2p− p1 − · · · − q3|.

The rest of the proof of (2) is same as (1). ✷

Proposition 4.8 A smooth space curve C ⊂ P3 of genus 8 and degree 9 has only finitely
many 4-secant lines.

Proof. By Proposition 4.2, we may assume that C ⊂ P3 is not contained in a cubic surface
and that C ⊂ P3 has no 5-secant lines. Assume that C ⊂ P3 has a 1-dimensional family
of 4-secant lines and Let S̄ be the surface swept out by them. The degree d of S̄ is ≤ 7
by Proposition 4.6 and ≥ 4 by our assumption. Let X be the blow-up of P3 along C and
S the strict transform of S̄. By the Lemma 4.7, S has a P1-bundle structure π : S −→ N
over a curve N whose fibres are the strict transforms of 4-secant lines. Let D be the
exceptional divisor of the blowing up X −→ P3 and H the pull-back of a plane. Then the
canonical class KX of X is linearly equivalent to −4H + D. Since S is a P1-bundle, we
have −2 = (KS.f) = (KX + S.f) = (S.f). Let µ be the multiplicity of S̄ along C. Then
S belongs to the linear system |dH − µD| and we have −2 = (dH − µD.f) = d − 4µ.
Since 4 ≤ d ≤ 7, we have d = 6 and µ = 2. Since (H3) = 1, (H2.D) = 0, (H.D2) = −9
and (D3) = −50, we have

−8(pa(N)− 1) = (K2
S) = ((KX + S)2.S) = ((2H −D)2.(6H − 2D)) = −2,



which is a contradiction. ✷

Proof of Theorem 4.1: Let C be a curve of genus 8 and assume that C has no g1
4. Let ξ

be a g1
5 of C, which is generated by global sections by our assumption. By Corollary 3.2,

we have

(*) Hom (ζ, η) �= 0 for every g1
5 ζ different from ξ,

where η is the Serre adjoint of ξ. The image C̄ of Φ|η| is a space curve of degree 9 by
Lemma 3.5. If C̄ is smooth, every g1

5 different from ξ is induced from the projection off
a 4-secant line of C̄ by (*). Hence the number of g1

5 is finite by Proposition 4.8. If C̄
is singular, the projection off a singular point gives rise to a g2

7, which we denote by α.
|α| is free and h0(α) = 3 by Lemma 3.4. Hence the image of Φ|α| is a plane curve of
degree 7. The same holds for the Serre adjoint β of α. Since h0(α) + h0(β) = 6, either
Hom (ζ, α) �= 0 or Hom (ζ, β) �= 0 holds for every g1

5 ζ of C, by Corollary 3.2. Hence every
g1
5 of C is induced from the projection off a double point of the plane curves Φ|α|(C) or

Φ|β|(C). Therefore, C has only finitely many g1
5’s.

5 Curves of genus 6

A 2-dimensional complete linear section S5 ⊂ P5 of the 6-dimensional Grassmannian
G(2, 5) ⊂ P9 is a quintic del Pezzo surface. A hyperquadric section C10 ⊂ P9 of S5 ⊂ P5

is a canonical curve of genus 6 by the adjunction formula and Proposition 1.12. Since
C10 ⊂ P9 is an intersection of quadrics, C is neither trigonal nor a plane quintic.

Theorem 5.1 Let C be a curve of genus 6 which are neither trigonal nor a plane quintic.
(1) When E runs over all stable 2-bundles with canonical determinant on C, the

maximum of dimH0(F ) is equal to 5. Moreover, such vector bundles Fmax on C with
dimH0(Fmax) = 5 are unique up to isomorphism and generated by global sections.

(2) There exists a bijection between the intersection P∗(Kerλ) ∩ G(2, H0(Fmax)) and
the set W 1

4 (C) of g1
4’s of C, where λ is the map (0.1) for Fmax.

Let ξ be a g1
4 of C and η its Serre adjoint. Then every stable 2-bundle E with canonical

determinant and with h0(E) ≥ 5 is an extension of η by ξ. The rest of the proof is quite
similar to that of Theorem A and B. We omit it here.

Let E be a 2-bundle with canonical determinant on C and assume that h0(E) = 5, E is
generated by global sections and that the intersection P∗(KerλE)∩G(2, H0(E)) is finite.
Since dimG(2, H0(E)) = 6 = dimH0(ωC), λE :

∧2 H0(E) −→ H0(ωC) is surjective.
Hence Φ|E| : C −→ G(H0(E), 2) is an embedding by the commutative diagram (0.7).

Claim : The restriction map IG,2 −→ IC,2 is injective, where IG,2 is the vector space
of Plücker quadratic forms of G(2, H0(E)) and IC,2 is the vector space of quadratic forms
which vanish on C.

For every q ∈ IG,2, the projective dual Q̌ of Q : q = 0 is a 4-dimensional quadric con-
tained in G(2, H0(E)). Hence the intersection P∗(KerλE)∩ Q̌ is finite by our assumption
and Q does not contain the image P  P5 of P∗(λE) by Proposition 1.10.



IG,2 is of dimension 5 and IC,2 is of dimension 6 by Noether’s theorem. Hence there
exists a hyperquadric Q such that C = P ∩G(H0(E), 2)∩Q by Enriques-Petri’s theorem.
Hence, by Theorem 5.1, we have

Theorem 5.2 If W 1
4 (C) is finite, then Φ|E| : C −→ G(H0(E), 2) is an embedding and

its image is a complete intersection of G(H0(E), 2) and a 4-dimensional quadric in P9 =
P∗(

∧2 H0(E)), where E is Fmax in (1) of Theorem 5.1.

Assume that C has no g1
3 or g2

5 and let ξ be a g1
4 of C. Its Serre adjoint η is a g2

6 by
the Riemann-Roch and h0(η) = 3 by Clifford’s theorem. By our assumption, |η| is free
and the image C̄ of Φ|η| : C −→ P2 is either a sextic or a smooth cubic. By Corollary
3.2, every g1

4 different from ξ is obtained from the projection off a double point of Φ|η|,
that is, a double points of the sextic C̄ in the former case and any point of the cubic C̄
in the latter case. Hence we have

Proposition 5.3 For a curve C of genus 6, W 1
4 (C) is finite if and only if C is not

bi-elliptic and has no g1
3 or g2

5.

This is a special case of Mumford’s refinement of Martens’ theorem ([1], p. 193).
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