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1. I

Let k be a field and let q,Q1, . . . ,Ql ∈ k. The Ariki-Koike algebra Hm(q; Q1, . . . ,Ql) is defined to be the
k-algebra generated by T0, . . . , Tm−1 subject to the relations

(Ti − q)(Ti + 1) = 0 (i = 1, . . . ,m − 1);

(T0 − Q1) . . . (T0 − Ql) = 0;

TiT j = T jTi, (i, j = 1, . . . ,m − 1 with |i − j| > 1);

TiTi+1Ti = Ti+1TiTi+1 (i = 1, . . . ,m − 2);

T0T1T0T1 = T1T0T1T0.

If k contains a primitive l-th root of unity ζ, then specializing q = 1 and Qi = ζ
i−1, we recover the group algebra

of the complex reflection group of type G(l, 1,m):

Hm(1; 1, ζ, . . . , ζ l−1) � k[Z/lZ �Sm].

Now suppose that all the parameters q,Q1, . . . ,Ql are nonzero. By a theorem of Dipper and Mathas [DM02],
under this restriction any Ariki-Koike algebra is Morita equivalent to a direct sum of tensor products of algebras
of the form

Hm[s] := Hm(q; qs1, . . . , qsl),

where s = (s1, . . . , sl) ∈ Zl. Let e be the multiplicative order of q if l > 1, or the quantum characteristic
inf{i ∈ N | 1 + q + q2 + · · · + qi−1 = 0 ∈ k} if l = 1. We say thatHm[s] has degree m, level l and rank e. When
e = 1 (equivalently q = 1 and l > 1), then

Hm[s] = Hm(1; 1, . . . , 1) = k[x]/(xl) �Sm,

is an indecomposable algebra, independent of s; we denote it by Am(l).
Foda, Leclerc, Okado, Thibon and Welsh [FLO+99] established a remarkable relationship between branching

coefficients for Ariki-Koike algebras of rank e and level l and those of rank l and level e. The purpose of this
paper is to propose a further connection in terms of Koszul dualities between blocks of certain associated
Ginzburg-Guay-Opdam-Rouquier module categories O[s] over the rational Cherednik algebras [GGOR03],
and to explore the consequences of the conjectured dualities. Our approach is inspired by Uglov’s construction
[Ugl00] of higher level Fock spaces F [s] inside a quantization of Frenkel’s level-rank duality spaces [Fre82],
and by Rouquier’s conjectured categorification [Rou08b] (see also [Yvo06]) of F [s] by the GGOR category
O[s].

While our point of view applies to all levels and ranks, for the rest of this introduction we focus on the
case l = 1, describing our results and conjectures in this case. The algebra Hm[s] is isomorphic to the Hecke
algebra Hm(q) of the symmetric group Sm (and in particular does not depend on s = (s1)). Let Sm(q) be the
q-Schur algebra of degree m. The Schur functor Sm(q)-mod → Hm(q)-mod is an exact functor, fully faithful
on projective modules; it is an example of a quasihereditary cover.

Theorem 1. Suppose k = C is the complex field and q is a primitive e-th root of unity.

(1) The Schur algebra Sm(q) is a Koszul algebra and its Koszul dual algebra Sm(q)! is quasihereditary.
(2) Let B be a block of Sm(q) of e-weight w (see §4 for a definition of e-weight). Then there is a projective-

injective B!-module PB such that EndB!(PB) � Aw(e).
(3) The functor FB = HomB!(PB,−) : B!-mod → Aw(e)-mod is a quasihereditary cover for at least one

block of each e-weight w ≥ 0.
(4) Let B and B′ be blocks of Sm(q) and Sm′(q) of the same e-weight. Then there exists a left exact (or right

exact) functor F : B-mod→ B′-mod such that the derived functor RF : Db(B-mod)
∼→ Db(B′-mod) (or

LF) is an equivalence.

Conjecture 2. Let B be a block of Sm(q) of e-weight w. Then B!-mod is equivalent to GGOR category O of
the rational Cherednik algebra of Z/eZ � Sw for a certain choice of parameters, and under this equivalence
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the functor FB identifies with the Knizhnik-Zamolodchikov functor KZ : O → Aw(e)-mod. In particular FB is a
quasihereditary cover.

If FB were fully faithful on projectives, as the conjecture predicts, then B could be recovered from the Aw(e)-
module MB := FB(B!) as follows:

B � EndAw(e)(MB)!.

The derived equivalences of part (4) of Theorem 1 are described explicitly as compositions of perverse equiv-
alences (see [Rou06]). As a consequence the indecomposable summands of MB′ may be derived from those of
MB by a prescribed sequence of relative syzygies. On the other hand it is tempting to seek a direct description
of MB (or at least a module with the same isomorphism classes of indecomposable summands) as a ‘generalised
permutation module’ over Aw(e).

The paper is organized as follows. In § 2, we shall recall higher level Fock spaces F [s] following Uglov
[Ugl00]. The space F [s] is expected to be categorified by a direct sum O[s] of category O’s of rational Chered-
nik algebras with a fixed “multicharge” s (see [Rou08b, Sha09]). So in § 3 we describe the relevant choice
of parameters for Ariki-Koike algebras, cyclotomic q-Schur algebras and rational Cherednik algebras. Then
we explain Rouquier’s point of view: categories O of rational Cherednik algebras of complex reflection group
of type G(l, 1,m) are ‘charged q-Schur algebras’ generalizing cyclotomic q-Schur algebras. We compare the
weight spaces of F [s] with the blocks of O[s]. Then, we formulate the Main Conjecture 6. According to
Rouquier’s approach in § 3, the Koszul dual B! of B should have a “Hecke algebra” if we assume the truth of
Conjecture 12. So in § 4 we give a concrete realization of this Hecke algebra. To do so, we require the so-called
“Rouquier blocks” of q-Schur algebras. In § 5, we make a proposition mirroring Beilinson-Ginzburg-Soergel’s
numerical Koszul duality criterion [BGS96]. We then check that Ariki’s graded Schur algebra has an involutory
contravariant autofunctor with a good shift of grading which fixes all simple modules. In § 6, assuming the
Lusztig conjecture for quantum groups and a Koszulity criterion (Proposition 21), we shall show that q-Schur
algebras in characteristic zero are (standard) Koszul. We also show that the finite dimesional module category
of type I over Lusztig’s divided power big quantum general linear group is standard Koszul. Finally in § 8, we
provide more evidence for the Main Conjecture 6.

Before closing the introduction, we write some notational conventions here : λ |= r means λ is a composition
of r. λ � r means λ is a partition of r. |λ| := ∑i λi. 〈·, · 〉 is used for an appropriate inner product for a suitable
space.

2. H  F 

Fix e, l ≥ 1. Fix also a charge s ∈ Z, and let Z l(s) := {(s1, . . . , sl) | ∑ si = s} be the set of multicharges. Let
v be an indeterminate and put u = −v−1. Uglov [Ugl00] constructed commuting actions of the quantum affine
algebras Uv(ŝl

′
e) and Uu(ŝl

′
l), of level l and e respectively, on the C(v)-vector space

Λs+∞2 =
⊕

C(v)|λ, r〉
with basis indexed by charged (e, l)-multipartitions |λ, r〉. Here λ = (λi j) is an e × l matrix of partitions and
r = (ri j) a e×l matrix of integers summing to s. The charged (e, l)-multipartitions may be represented on an e×l
array of ‘runners’, with runner (i, j) being of charge ri j. So the ‘abacus’ of |λ, r〉 is a subset of [e]× [l]×Z, with
‘beads’ situated at positions (i, j, λi j

k + ri j − k + 1). By regarding the rows (columns) of the array of runners as
e-runner (l-runner) abaci for partitions, we obtain two alternative indexations for the basis of Λ s+∞2 (see [Ugl00]
for details):

• charged e-multipartitions |λ, s〉, consisting of an l-multipartition λ = (λ1, . . . , λl) and s∈ Zl(s)
• charged l-multipartitions |µ, t〉 consisting of an e-multipartition µ = (µ1, . . . , µe) and t ∈ Ze(s).

The charges in the three different representations are connected by the equations si =
∑

j ri j and t j =
∑

i ri j.
Uglov gives an explicit description of commuting actions of Uv(ŝl

′
e) and Uu(ŝl

′
l) on Λs+∞2 in terms of the

indexation of the basis by charged l-multipartitions and by charged e-multipartitions, respectively, and of a
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further commuting action of a Heisenberg algebra H. He also introduces a degree operator d which provides
an extension to (noncommuting) actions of Uv(ŝle) and Uu(ŝll).

Each basis element of Λs+∞2 is a weight vector for the action of both Uv(ŝl
′
e) and Uu(ŝl

′
l):

wt |µ, t〉 = (te − t1 − l)Λ0 + (t1 − t2)Λ1 + (t2 − t3)Λ2 + . . . (te−1 − te)Λe−1

and

ẇt|λ, s〉 = (sl − s1 − e)Λ̇0 + (s1 − s2)Λ̇1 + (s2 − s3)Λ̇2 + . . . (se−1 − se)Λ̇l−1.

Here, we are using Kac’s notation for the fundamental weights ([Kac90]), and to distinguish the fundamental
weights for Uv(ŝl

′
e) and Uu(ŝl

′
l) we put ‘dots’ on the level side. It follows that

Λs+∞2 =
⊕
s∈Zl(s)

F [s], F [s] :=
⊕
λ

C(v)|λ, s〉

and

Λs+∞2 =
⊕
t∈Ze(s)

F [t], F [t] :=
⊕
µ

C(v)|µ, t〉

are weight space decompositions for the actions of Uv(ŝl
′
e) and Uu(ŝl

′
l), respectively. By definition F [s] carries

an action Uv(ŝl
′
e); it is the level l Fock space associated to the multicharge s. Similary the Uu(ŝl

′
l)-modules F [t]

are level e Fock spaces. Define the C(v)-vector space

F [s, t] := F [s] ∩ F [t]

as a simultaneous weight space. In each space F [s, t], the operator d acts with eigenvalues vz, vz+1, . . . for some
z ∈ Z, and we define F [s, t]w to be the vz+w-eigenspace for w ≥ 0.

Uglov defines canonical bases {G+v (λ, r)} and {G−v (λ, r)} in Λs+∞2 . Interchanging the role of e and l, we can
also define canonical bases {G+u (λ, r)} and {G−u (λ, r)}. Then it is clear from the definition of these bases that

(1) G+v (λ, r) = G−u (λ, r), G−v (λ, r) = G+u (λ, r).

3. Q 

The main references for this section are [GGOR03], [Rou08b] and [Ari08].
Let B be a finite-dimensional associative k-algebra. A cover of B consists of a k-linear abelian category

A with enough projectives, together with a projective object P of A such that B � EndA(P) and the functor
F = HomA(P,−) : A → B-mod is fully faithful on projectives. If in addition A is a highest weight category in
the sense of Cline, Parshall and Scott, we call A a highest weight cover of B, and call A a quasihereditary cover
of B.

As a typical example, the Schur algebra EndkSm(V⊗m) of the symmetric group algebra k[Sm] is a quasihered-
itary cover of k[Sm], where V is a k-vector space of dimension at least m and Sm acts on V⊗m by permutation
of tensor factors.

3.1. Cyclotomic Schur algebras. Let q,Q1, . . . ,Ql ∈ k. Let Sm(q; Q1, . . . ,Ql) be the (full) cyclotomic q-
Schur algebra over k associated with the set of all l-multicompositions of m, as defined in [DJM98]. (Note that
the order of the Qi’s matters, in contrast to Ariki-Koike algebras.) Then Sm(q; Q1, . . . ,Ql) is a quasihereditary
cover ofHm(q; Q1, . . . ,Ql) via the Schur functor

S : Sm(q; Q1, . . . ,Ql)-mod→Hm(q; Q1, . . . ,Ql)-mod.
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3.2. Rational Cherednik algebras. Let W be a complex reflection group of type G(l, 1,m) on an m-dimensional
vector space h over C. Let E be the set of reflection hyperplanes of W. For H ∈ E, we denote by WH the point-
wise stabilizer of H in W. We denote by εH, j the idempotent of CWH corresponding to (ResWH (det))− j:

εH, j :=
1
|WH |

∑
w∈WH

det(w) jw ∈ CWH.

We fix some parameters:

κ◦ = (κi)i∈Z/lZ, κi ∈ C, h = (hi)i∈Z/2Z with h0 = 0, hi ∈ C, and κ := (h1; κ◦).

For H ∈ E and 0 ≤ k < |WH |, put

CH,k :=

{
κk if H = Hi,
hk otherwise.

Here, Hi is the reflection hyperplane for ti which acts on the standard bases of h trivially except the i-th coordi-
nate base of h, in which case ti acts as multiplication by exp(2π

√−1/l). For H ∈ E, put

γH := |WH |
|WH |−1∑

k=0

(CH,k+1 −CH,k)εH,k ∈ CWH.

Then, those γH,H ∈ E and CW, S (h), S (h∗) define the rational Cherednik algebra (also known as rational double
affine Hecke algebra) associated with W, h and κ. See [GGOR03, p.628,3.1] or [Ari08, § 4]. We denote this
algebra by Hκ = Hκ(W, h).

Here, we are only concerned with the case that Hκ has very small centre (namely, in the notation of [Rou05],
the case t = 1).

By a theorem of Etingof-Ginzburg [Ari08, Lemma 4.8], we have a triangular decomposition H κ = S (h∗) ⊗C

CW ⊗C S (h) as a vector space. Treating S (h∗) and S (h) as “nilpotent subalgebras of universal enveloping
algebra”, we may define an analogue of BGG category O for Hκ. Let Oκ(W, h) be the full subcategory of
Hκ(W, h)-Mod consisting of the objects finitely generated as an H κ-module and local nilpotent as S (h)-modules.

In [GGOR03] it is shown that Oκ(W, h) is a highest weight category with simple objects indexed by the set
Irr W of irreducible complex representations of W. The appropriate poset structure on Irr W for the highest
weight structure is given in terms of κ◦ (see [GGOR03]). This poset structure first appeared in [JMMO91] and
[FLO+99]. Via Clifford theory the set Irr W may be identified with the set of l-multipartitions of size m.

3.3. Rouquier’s point of view. In this subsection, we fix e ≥ 1 and assume that � = 0. Following Rouquier
we consider certain choices of the system of parameters κ, indexed by multicharges s∈ Z l.

Given s= (s1, s2, . . . , sl) ∈ Zl, we consider the category

Om[s] := Oκ(W, h) with h1 =
1
e
, κ j =

s j

e
− j

l
for j = 1, . . . , l −−−−(�).

and the Ariki-Koike algebra

Hm[s] := Hm(q; Q1, . . . ,Ql) with q = ζ := exp

2π
√−1
e

 , Qi = ζ
si for i = 1, . . . , l.

Note thatHm[s] depends only on the set {s1, . . . , sl} of residues modulo e. By [GGOR03], we have an Knizhnik-
Zamolodchikov functor

KZ : Om[s]→Hm[s]-mod,

with KZ = HomOm[s](P,−) for some projective object P of Om[s], and Om[s] is a highest weight cover ofHm[s].
Rouquier explained that this cover coincides with the cyclotomic q-Schur algebra, as long as the multicharge

s is ‘dominant’ and the parameters Q1, . . .Ql are distinct. He [Rou08b, Theorem 6.8] (cf. [Ari08, § 4]) proved
the following result, using certain faithfulness properties of the functors KZ and S in the context of a general
theory of highest weight covers.
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Theorem 3 (Rouquier). Suppose that −1 � q ∈ C and that Q1, . . . ,Ql are distinct. Suppose further that
si+1 >> si for 0 ≤ i ≤ l − 2. Then, Sm(q; Q1, . . . ,Ql)-mod and Om[s] are equivalent highest weight categories.

Remark 4. Using Bezrukavnikov-Etingof induction and restriction functors [BE09], the commutativity between
KZ functors and induction/restriction functors [Sha09] and Ringel duality [Don98],[Mat03], [GGOR03, § 4],
we can handle some cases which are not treated in this theorem. For example, for type A, i.e. , l = 1, there is
no restriction on q in this approach. This will be discussed elsewhere.

Rouquier [Rou08b, Conjecture 5.6 & Remark 6.10] also expects the following:

Conjecture 5 (Rouquier). Suppose sand s′ determine the same set of residues modulo e. Then the correspond-
ing category O’s are derived equivalent:

Db(Oκ[s]) � Db(Oκ[s′]).
So, according to Rouquier’s Theorem 3 and Conjecture 5, the cyclotomic q-Schur algebras are special cases

of categories O’s of rational Cherednik algebras, and up to derived equivalence should account for all category
O’s.

3.4. Categorification and conjecture on level-rank duality. We now put

H[s] =
⊕
m≥0

Hm[s] and O[s] =
⊕
m≥0

Om[s].

Rouquier has suggested that under the identification

F [s]v=1
∼→ C ⊗Z K(O[s]))

|λ, s〉 �→ [∆(λ)],

Uglov’s canonical basis vectors G+v (λ, s) and G−v (λ, s) in F [s], specialised at v = 1, should be mapped to the
classes [T (λ)] and [L(λ)] of characteristic tilting modules and simple modules [Rou08b][§6.5]. His conjecture
is a natural extension of Ariki’s theorem [Ari96], analogous to the Leclerc-Thibon conjecture [LT96],[VV99].
LetL[∅, s] := Uv(ŝle)|∅, s〉 if e > 1 andL[∅, s] := H|∅, s〉 if e = 1. Then the projection of F [s]v=1 ontoL[∅, s]v=1

is categorified by the KZ-functor:

KZ
O[s] � H[s]-mod

‘decategorify’ ⇓ ⇓ Ariki
F [s]v=1 � L[∅, s]v=1

The decomposition of L[∅, s] into Uv(ŝle)-weight spaces corresponds to the decomposition

H[s]-mod =
⊕

t∈Zl(s),w≥0

H[s, t]w-mod.

into blocks [LM07]. Since the functor KZ induces an isomorphism of centres (see [GGOR03]), we have a
corresponding block decomposition

O[s] =
⊕
m≥0

Om[s] =
⊕

t∈Zl(s),w≥0

O[s, t]w.

Following Uglov, given s= (s1, . . . , sl) ∈ Zl(s), we define s′ = (−sl, . . . ,−s1) ∈ Zl(−s). Now we can state our
main conjecture.

Conjecture 6 (Level-Rank Duality). O[s, t]w and O[t′, s′]w are Koszul dual abelian categories : O[s, t]!
w �

O[t′, s′]w.
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Remark 7. The conjectured Koszul duality provides graded versions Ogr[s] of the GGOR categories, and one
would expect the identification

F [s]
∼→ C(v) ⊗Z K(Ogr[s]))

|λ, s〉 �→ [∆(λ)],

to send G+u (λ, s) and G−u (λ, s) to the classes to graded characteristic tilting and simple modules respectively.
Perhaps the most natural way to present the conjecture is the prediction of an equivalence

F : Db(Ogr[s, t]w)
∼→ Db(Ogr[t, s]w)

such that F(X〈1〉) � F(X)[−1]〈−1〉, preserving standard and costandard modules, and interchanging simple
and tilting modules, in keeping with Rouquier’s conjecture above and the equalities (1). The existence of
F would imply that Ogr[s, t]w is equivalent to the module category over a balanced algebra, in the sense of
Mazorchuk [Maz09], [Maz10a], [Maz10b], and then F would be the composition of Koszul and Ringel dualities.

4. H H 

We now provide some evidence for Conjecture 6 in the case l = 1. We allow the possibility that k has
positive characteristic. The level 1 cyclotomic q-Schur algebra Sm(q; Q1) does not depend, up to isomorphism,
on Q1; it is simply the q-Schur algebra Sm(q).

Fix an integer e ≥ 2 and recall the Fock space representation of the Kac-Moody algebra ŝle. Let F = ⊕λCλ
be a complex vector space with basis indexed by the set of all partitions of all nonnegative integers. We define
linear operators E0, . . . , Ee−1, F0, . . . , Fe−1 on F by

Eaµ =
∑
λ→aµ

λ and Faλ =
∑
λ→aµ

µ,

where λ →a µ means the Young diagram of µ is obtained from that of λ by adding an node (i, j) such
that j − i ≡ a modulo e. These locally nilpotent endomorphisms extend to an action of ŝle. Put sa :=
exp(−Fa) exp(Ea) exp(−Fa), an automorphism of F . Then for any partition λ we have saλ = ±σaλ for some
partition σaλ. The permutations σ0, . . . , σe−1 define an action of the affine Weyl group Ŵe on the set of parti-
tions.

Let k be a field (We always assume that k is a splitting field for the algebras we consider), let q ∈ k× and
suppose that e is the quantum characteristic of k with respect to q:

e = inf{i ∈ N | 1 + q + q2 + · · · + qi−1 = 0 ∈ k}.
The (full) q-Schur algebra Sm(q) is a quasihereditary k-algebra with standard and simple modules ∆(λ) and
L(λ) indexed by partitions of m. Following [LLT96] and [LT96] we identify F with the sum of complexified
Grothendieck groups of module categories of q-Schur algebras:

F =
⊕
m≥0

C ⊗Z K(Sm(q)-mod)

λ ↔ [∆(λ)]

The decomposition of F of into ŝle-weight spaces coincides with the block decomposition of the q-Schur
algebras. This is a restatement of ‘Nakayama’s conjecture’: the blocks of Sm(q), m ≥ 0 are classified by an
e-core partition τ and a nonnegative integer w, where ∆(λ) and L(λ) are in the block Bτ,w if λ has e-core τ
and e-weight w. In Fock space terms, the space [B] intersects with the simple U(ŝle)-module L(Λ0 − wδ) with
highest weight Λ0 − wδ in Misra-Miwa decomposition of F where δ is the null root.

Let B = Bτ,w and a ∈ {0, . . . , e− 1}. Then sa restricts to an isomorphism K(B-mod)
∼→ K(σa(B)-mod), where

σaB = Bσa(τ),w, and the induced action of Ŵe on blocks is transitive on blocks of e-weight w.
7



Theorem 8([CR08]). The isomorphism

sa : K(B-mod)
∼→ K(σaB-mod)

lifts to an equivalence
ṡa : Db(B-mod) � Db(σaB-mod)

of bounded derived categories.

For a precise concrete description of the derived categories of module categories over q-Schur algebras, we
need some assumptions:

Definition 9. Let B be a block algebra of Sm(q) of e-weight w. Write � for the characteristic of k. We say that
B is weakly abelian if either � = 0 or 0 ≤ w < �. We say that B is abelian if in additon q lies in the prime
subfield of k when � � 0.

Remark 10. If q = 1 then Sm(q) is the Schur algebra associated to the symmetric group Sm, and a block
B of Sm(q) is abelian, in our sense, if and only if the corresponding block of Sm has abelian defect groups.
If q · 1k � 0 for some power q of prime, then Sm(q) is the q-Schur algebra associated to the finite general
linear group GLm(Fq) over a finite field Fq with q elements and a block B of Sm(q) is abelian if and only if
the corresponding block of GLm(Fq) has abelian defect groups. All of the theorems we state for abelian blocks
should probably be true for weakly abelian blocks as well.

Using the transitivity mentioned above and combining Theorem 8 with [CM10, Theorem 18] 1, we obtain
the following result.

Theorem 11. Suppose that B is abelian with e-weight w. Then we have an equivalence

Db(B-mod) � Db(B∅,1 �Sw-mod).

Theorem 11 means we have a reasonable handle on the derived categories of blocks of q-Schur algebras,
at least in the abelian case, and suggests that even the module categories B-mod might be explained by B∅,1 �
Sw-mod.

On the other hand, many researchers expect that

Conjecture 12. Any weakly abelian block B of Sm(q) is Koszul.

If Conjecture 6 is true, then the Ariki-Koike algebras (of various levels) should appear in even in the represen-
tation theory of Sm(q). We now explain how that is indeed the case, and we realise the conjectural Ariki-Koike
algebras concretely as extension algebras which we call “hidden Hecke algebras”.

Given any block B = Bτ,w of a Schur algebra Sm(q) of any degree, consider the semisimple B-module

LB
0 :=
⊕
λ�w

L(τ + eλ)
⊕

dim S λ,

where S λ is the Specht module over C[Sw] corresponding to the partition λ. The following result shows that
the LB

0 , viewed as complexes concentrated in degree 0, are permuted by the derived equivalences of Theorem 8.

Theorem 13. Suppose that B is weakly abelian. Then for any a we have

ṡa(LB
0 ) � Lσa(B)

0 .

More precisely, for any partition λ � w,

ṡaL(τ + eλ) � L(σa(τ) + eλ).

In particular, the (partial) Yoneda algebra Ext•B(LB
0 , L

B
0 ) depends only on the e-weight of B.

1in which we use the truth of Broué abelian defect conjecture on Rouquier blocks for F �Sm [CK02] and F�GLm(Fq)
[Tur02],[Miy01] where q is a power of prime and � � q
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Corollary 14. Let B be an abelian block of weight w. Then we have an isomorphism

AB
w := Ext•B(LB

0 , L
B
0 ) � k[x]/(xe) �Sw

of graded algebras, with deg(x) = 2 and deg(Sw) = 0.

Remark 15. We call AB
w a level e hidden Hecke algebra arising from level l = 1. A sketch of the proof

will be explained in the next subsection with an aid of “stubborn” property on simple modules L(τ + eλ) in
Theorem 13 and a knowledge of “Rouquier blocks”. Moreover, AB

w is nothing but a very special Ariki-Koike
algebra Aw(e) = Hw(1; 1, 1, . . . , 1). So, if we treat the case of characteristic 0, there should be a category O of
RatDAHA which is a highest weight cover of Aw(e).

Based on Conjecture 6, in characteristic 0 we would expect a ‘hidden Hecke algebra’ in any block B of
O[s] is realized as an extension algebra Ext•B(LB, LB). Here LB would be a direct sum (with multiplicities) of
all simple modules S in B with the property that Ext•B(B0, S ) is an injective (and obviously projective) module
over the homological dual Ext•B(B0, B0), where B0 is a semisimple module in B containing all non-isomorphic
simple modules in B.

We reformulate Conjecture 6 for ordinary q-Schur algebras so that it includes some positive characteristic
cases as follows:

Conjecture 16. If w < � or � = 0, then B is Koszul, and the Koszul dual B! is a quasihereditary cover of Aw(e)
with respect to the projective B!-module PB = Ext•(B0, LB

0 ).

Remark 17. The image of B! under the functor F = Hom(PB,−) is the AB
w-module

MB = Ext•(LB
0 , B0).

If the conjecture were true, then B may be recovered from MB as follows:

B = EndAw(e)(MB)!.

Remark 18. C is derived equivalent to B, then the hidden Hecke algebra AC
w for C is isomorphic to Aw(e) = AB

w

as we stated. So, our picture is very consistent with Rouquier’s picture in § 3.3 if we assume that B ! and C! are
derived equivalent and Conjecture 16.

B!-mod

Aw(e)-mod

C!-mod

KZC!KZB!

4.1. Rouquier blocks. As explained in Theorem 3, the category O[s] is more tractible when s is a ‘dominant
multicharge’, in that it can then be identified with the module category of a cyclotomic q-Schur algebra.

Via the Koszul duality of Conjecture 6, dominant multicharges correspond to certain e-cores, called Rouquier
cores. The corresponding blocks are called Rouquier blocks (see, for example, [JLM06]).

4.1.1. e-weight 1. Suppose that B is a block of Sm(q) with e-weight w = 1. It is known that all e-weight 1
blocks are Rouquier and B is Morita equivalent to the principal block B1,∅ of Se(q). The Loewy structures of
the standard modules ∆(λ) and projective indecomposable modules P(λ) over B1,∅ are :

∆(1e) = L(1e),∆(2, 1e−2) =
L(2, 1e−2)

L(1e) , . . . ,∆(i, 1e−i) =
L(i, 1e−i)

L(i + 1e − i − 1) , . . . ,∆(e) =
L(e)

L(e − 1, 1) .

P(1e) =
L(1e)

L(2, 1e−2)
L(1e)

, P(2, 1e−2) =
L(2, 1e−2)

L(1e)L(3, 1e−3)
L(2, 1e−2)

, . . . ,
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P(i, 1e−i) =
L(i, 1e−i)

L(i − 1, 1i−1)L(i + 1, 1e−i−1)
L(i, 1e−i)

, . . . , P(e) =
L(e)

L(e − 1, 1)
.

Then, LB
0 = L(e) and A(1) � Ext•B(L(e)) � k[x]/(xe).

Put

M1 :=
e−1⊕
i=1

radi (k[x]/(xe)) 〈i 〉.

Here, 〈i 〉 indicates the i-shift of the grading, (M 〈i 〉) j := Mj−i. The Koszul dual B! is graded Morita equivalent
to Aus(e) := Endk[x]/(xe)(M1), which is the Auslander algebra of k[x]/(xe). The truth of Conjecture 16 for this
Auslander algebra is well known. Moreover, in [Rou08b], the other defect 1 blocks for any finite Weyl groups
are listed, they are Brauer line algebras and the covers are treated. So, for defect 1 blocks, any Brauer line
symmetric algebras, there is nothing left to prove.

4.1.2. e-weight w ≥ 1. The next result implies that Conjecture 16 is true for at least one block for each e-weight
w > 0.

Theorem 19.Conjecture 16 is true for abelian Rouquier blocks. The Koszul dual of an abelian Rouquier block
with e-weight w is Morita equivalent to Aus(e) �Sw (which is a special case of a cyclotomic Schur algebra).

Remark 20. Suppose that B is a Rouquier block with e-weight w. The ideas of the proof are:

(1) to use an Aw-module
M := (M1 ⊗ V)⊗w

where V is an appropriate vector representation of ordinary or quantum general linear group whose
semisimple rank is at least w.

(2) to use the structural description of B, namely, B is Morita equivalent to B1,∅�Sw. [CM10, p.72 Theorem 18].
Conjecture 16 says also that Conjecture 5(2) for level e > and rank 1(= the order of q) is Koszul dual

to Broué’s conjecture up to replacement of � by the quantum characteristic e. Broué’s conjecture here
is proven by [CR08]. In Broué’s conjecture algebras such as B1,∅ � Sw are called local blocks, which

are Rouquier in our cases. So, Oκ(W, h) with el-dominant charge κ and Sm(q;
−→
Q)C are regarded as local

blocks in this sense and have nicer property than general blocks.

By assuming characteristic zero, � = 0, we would like to see the wreath product structure Aus(e) � Sw

inside the rational Cherednik algebras of level e whose finite Hecke algebra part (i.e. , the image of KZ)
is k[x]/(xe) � Sw. Note that we switched the roles of “level” and “rank” here. To avoid the confusion, we
reput l′ := e and e′ := 1. We consider the rational Cherednik algebra of W = G(l′, 1,w) with parameters
h1 = 1/e′ = 1 and s′ = (s′1, . . . , s

′
l′). A rough sketch for seeing the wreath product structure goes as follows:

First, on the multicharge s′, we assume that

s′i+1 >> s′i for all i −−−−−−−−−−−−− (�).

We can take Hκ such that κ satisfies (�) at § 3.4 by replacing e (resp. l) by e′ = 1 (resp. l′ = e). Next we
consider another ratDAHA Hκ−1 whose h1 = 0 and the other parts are given by κi − 1. 2

Then, we can find an equivalence between Oκ(W, h) and Oκ−1(W, h) as long as we have a huge difference on
s′i ’s at (�). This can be checked by considering shift functors and spherical Hecke algebras. Indeed, note that
by [DG10, Corollary 3.5]3 and [Val06, Lemma 4.18], we know when we have the equivalence in question.

Finally, by definition of Hκ−1
4, we can see that

Hκ−1 = Hκ−1(G(l′, 1, 1)) �Sw.

2Note that this doesn’t satisfy (�) at § 3.4.
3The authors would like to thank S. Griffeth for explaining the results in [DG10, Corollary 3.5] to us.
4The authors would like to thank E. Vasserot for letting us notice a history that this Clifford theory, wreath product realization was

already used by P. Etingof sometimes.
10



So, we can find κ such that Oκ(W, h) � Aus(e) �Sw-mod and the parameter choice of (�) at § 3.4 is satisfied
for Hκ(W, h). Therefore, the Koszul dual of Rouquier blocks are certainly in the category O’s of higher level.
Hence, in those Rouquier blocks cases, Conjecture 6 is true.

5. N  K  

Let A = ⊕i≥0Ai be a graded algebra over an enough large splitting field k, with A0 semisimple. Assume that
A is quasihereditary. Then there are unique (up to isomorphism) gradings on all ‘special modules’, so that we
have homogeneous surjections A → P(x) → ∆(x) → L(x) and injections L(x) → ∇(x) → I(x) . Here, we took
a standard notation: ∆(x) (resp. ∇(x), L(x), P(x) and I(x) ) is the standard (resp. costandard, simple, projective
indecomposable and injective indecomposable) module over A associated with x ∈ ΛA, which is the index set
for simple A-modules with a poset structure.

Recall from Agoston-Dlab-Lukacs[ÁDL03] that A is standard Koszul if all standard modules have linear
projective resolutions, and all costandard modules have linear injective resolutions. Of course if there is a con-
travariant auto-equivalence of the module category fixing simples (or more generally inducing a automorphism
of the poset of simples), then the condition on standards and costandards are equivalent.

There ought to be a statement of numerical standard Koszulity somewhere in the literature, mirroring
Beilinson-Ginzburg-Soergel Numerical Koszul duality criterion [BGS96, Theorem 2.11.1]. The approach we
take here is a sort of “square root” of their criterion.

Define matrices of power series in an indeterminate t as follows. We have graded decomposition matrices

D(t) =


∑
i≥0

dim Homgr(P(x)〈i〉,∇(y))ti


x,y

and

D′(t) =


∑
i≥0

dim Homgr(∆(y), I(x)〈i〉)ti


x,y

as well as Vogan matrices

K(t) =


∑
i≥0

dim Exti(∆(x), L(y))ti


x,y

and

K′(t) =


∑
i≥0

dim Exti(L(y),∇(x))ti


x,y

.

For the last two, extensions are taken in the ungraded category.
Then what we claim is that

Proposition 21(Square Root Numerical Standard Koszul Duality Criterion). A is standard Koszul if and only
if

D(t)K(−t) = I and D′(t)K′(−t) = I.

Proof. If there is a good contravariant duality as mentioned above, then D(t) = D′(t) and K(t) = K′(t), and the
two numerical conditions are equivalent. (In fact for our main purpose, this is the case.)

To prove the claim consider a minimal graded projective resolution of ∆(x):

. . .→ P1 → P0 → ∆(x).

We write
Pi =

∑
y

P(y) ⊗k M(y)i,

11



where M(y)i = ⊕ jM(y)i
j is a graded k-vector space.

By construction M(y)i � Exti(∆(x), L(y))∗, and so the coefficient of tn in the (x, z)-entry of the matrix identity
K(−t)D(t) = I translates into the equation∑

y

n∑
i=0

(−1)iHomgr(P(y),∇(z)〈i〉) ⊗ M(y)n−i = 0

in the Grothendieck group of the category of graded k-vector spaces, for all n > 0.
By minimality of the resolution, M(y)i

j � 0 only if j ≥ i. We prove that D(t)K(−t) = I implies that the
resolution is linear, i.e. that M(y)i = M(y)i

i for all y and i, by induction on i. It is obvious for i = 0, so let n > 0.
The resolution is an exact sequence with terms in the subcategory of graded modules with good filtrations, so
we obtain via the functor Homgr(−,∇(z)〈n〉) an exact sequence of graded vector spaces⊕

y

Homgr(P(y),∇(z)) ⊗ M(y)n
n →

⊕
y

Homgr(P(y),∇(z)〈1〉) ⊗ M(y)n−1 → . . .→
⊕

y

Homgr(P(y),∇(z)〈n〉) ⊗ M(y)0,

where we have used the induction hypothesis that M(y)i = M(y)i
i for i < n. Passing to the Gronthendieck group

and comparing with the equation above, we obtain M(y)n = M(y)n
n for all y, as desired.

The dual statement that D′(t)K′(−t) = I implies the existence of linear injective resolutions of costandard
modules is proved similarly. �

We denote by 〈k 〉 the shift functor of A-grmod, that is (M 〈k 〉) j := Mj−k. Our convention here is identical
with Beilinson-Ginzburg-Soergel [BGS96] and is opposite to Ariki [Ari09] in which notation [−k] is ours. By
the work of Brundan-Kleshchev [BK09] from the advantages of the Khovanov-Lauda-Rouquier quiver Hecke
algebra [KL09],[Rou08a] the Iwahori-Hecke algebra Hr := Hr(q; Q) of type Ar−1 with parameter q whose
quantum characteristic is e is known to be graded. (Here, Hr is independent of Q.) The grading structure on
Hr is well-explained in [Ari09].

Since our note heavily depends on Ariki’s result in [Ari09] and we selfishly assume that the readers are
familiar with Ariki’s paper, here, before any explanation we shall make a list of major differences between his
notation and ours:

• OurHr is the opposite ring of Ariki’sHr since we work mainly in the left module category.
• Ariki’s coefficient field F is our k.
• Ariki’s graded right Young module Y(λ) is our graded left Young module Y λ, up to the above opposite

ring issue.
• Ariki’s shift functor (−)[k] for graded modules is our (−) 〈−k 〉.
• Ariki’s Sd,m is our S(d,m).
• Ariki’s e+λµ(v) is our dλtµt(v) where t indicates the transpose.
• Ariki’s H0(λ) (resp. W(λ)) is our ∇n(λ) (resp. ∆n(λ)) for S(n, r) for r = |λ|.

5.1. Anti-automorphism and contravariant duality. Let (−)◦ : Hn-grmod → grmod-Hn be the contravari-
ant duality functor as in [Ari09, Definition 2.4]. Then,

(2) M 〈i 〉◦ = M◦ 〈i 〉 for any i.

Let � be the involutory anti-automorphism of Hn at [Ari09, Definition 2.6]. As in [Ari09, Definition 2.7], for
M ∈ Hn-grmod, define M−� ∈ grmod-Hn by

M−� =
⊕
k∈Z

M−�k ,M
−�
k := (M�)−k.

Then,

(3) M 〈i 〉−� = M−� 〈−i 〉 for any i.
12



Let (−)∗ be the composition ((−)◦)−� : Hn-grmod → Hn-grmod, which is contravariant. By (2) and (3), we
have

(4) M 〈i 〉∗ = M∗ 〈−i 〉 for any i.

We call a graded module U selfdual if U � U∗ as graded modules.
Let Yλ be the graded Young module in [Ari09], which is the opposite object of Y(λ) in Ariki’s notation.
The argument in [Ari09, p.18,l.11-18] says that

Lemma 22. Ariki’s graded Young module Yλ is selfdual as a graded module.

If V � V∗ as graded modules, by (4) we have

(5) Hom(V,V 〈k 〉) � Hom(V∗,V∗ 〈k 〉) = Hom(V∗ 〈−k 〉,V∗) = Hom((V 〈k 〉)∗,V∗).
Let M be Ariki’s graded q-tensor space module, which is thought of a graded version of the r-fold q-tensor

space V⊗r
n =

⊕
λ=(λ1 ,··· ,λn)|=r Mλ of n-dimensional vector representation Vn where Mλ is the q-permutation mod-

ule on the Hecke subalgebra corresponding to a parabolic subgroup Sλ. Ariki gives a grading structure on M
by using his graded Young modules, and he define his graded q-Schur algebra S(n, r) by

S(n, r) :=
⊕
k∈Z

HomHr (M,M 〈k 〉).

Note that we shall make a special section 7 and there Lemma 26 and Corollary 28 ensure that Ariki’s assump-
tions n ≥ r and e ≥ 4 for his grading can be removable in a suitable sense. Moreover, when we forget the
grading, we have that S(r, r) = Sr(q; Q1) = Sr(q) under the notation § 3.1 and § 4.

Since we have a canonical anti-isomorphism J =
∑

k Jk of
⊕

k Hom(M,M 〈k 〉) onto
⊕

k Hom((M 〈k 〉)∗,M∗)
induced by ∗, by (5) and taking V := M, we have an anti-automorphism of S(n, r). (we still denote it by J).

For X ∈ S(n, r)-grmod, we give a left graded module structure on X◦ :=
⊕

k∈Z(X◦)k where (X◦)k =

Homk(Xk, k) as follows: f ∈ X◦, s ∈ S(n, r) and x ∈ X, (s · f )(x) := f (J(s) · x). In this way, by twisting
X◦ by J we obtain the contravariant functor (−)∗ : S(n, r)-grmod→ S(n, r)-grmod.

By the property (4), we have that

(6) X 〈i 〉∗ = X∗ 〈−i 〉 for any i and any X ∈ S(n, r)-grmod.

One can observe that the duality ∗ fixes any graded S(n, r)-module Ln(λ), up to isomorphism.

6. K-L , Q GLn  K

Let G = G(n) be the quantum general linear group with semisimple rank n over a field k [Don98]. We write
X+(n) = N01⊕ · · ·⊕N0n−1⊕Zn for the dominant weights for GLn wherei is the i-th fundamental weight
ε1 + · · · + εi. Let Λ(n, r) := {λ = (λ1, λ2, . . . , λn) ∈ Nn

0 |
∑

i λi = r, λ j ≥ λ j+1 for j = 1, . . . n − 1} ⊂ X+(n) with
λ =
∑

i λiεi. This is the set of dominant weights for EndHr (V
⊗r
n ), called, polynomial weights, where V⊗n is the

vector representation of the quantum general linear group G(n) with parameter q and rank n. [Don98]. Let
Λ(r) := Λ(r, r).

The main aim of this section is to obtain the assumption of our “square root” (Proposition 21) of the
Beilinson-Ginzburg-Soergel numerical Koszul duality criterion [BGS96], which is beautifully equipped in the
orthogonality relation of parabolic Kazhdan-Lusztig polynomials and their inverse.

In this section, we certainly need to take the Lusztig conjecture on quantum groups at roots of unity, solved
by Kazhdan-Lusztig [KL93, KL94a, KL94b] and Kashiwara-Tanisaki[KT95], and the equations (7) into ac-
count for our aim. So, we need to assume that � = 0 or Lusztig conjecture for algebraic groups in positive
characteristic (or � is huge [AJS94]).

For simplicity, we only work in characteristic zero � = 0 in this note.
By [Don96, § 4], we have that

(7) for any M,N ∈ S(n, r)-mod and any k ≥ 0,Exti
G(n)(M,N) � ExtS(n,r)(M,N).
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For λ, µ ∈ Λ(n, r), we consider Vogan polynomials pµλ(v) ∈ N0[v]:

(8) pµλ(v) :=
∑
i≥0

dim Exti
S(n,r)(Ln(λ),∇n(µ))vi.

And, as in [Don98],
Exti

S (n,r)(Ln(λ),∇n(µ)) � ExtiS (n,r)(∆n(µ), Ln(λ)).

Here, the extension groups for above three equations are taken in the ungraded module category.
In this note we use Soergel’s convention [Soe97] for parabolic Kazhdan-Lusztig polynomials (for example,

the quadratic relation for the affine Hecke algebra of type GLr is taken as (Ti + v)(Ti − v−1) = 0). Thanks
to the works of Vogan, Gabbar, Joseph, Andersen[And86, And83], Cline-Parshall-Scott[CPS92, CPS93] and
Kaneda[Kan87], [Jan03, C.2 Proposition] says that the Vogan polynomial above is a parabolic Kazhdan-Lusztig
polynomial. The statement on [Jan03, C.2 Proposition] is not about quantum groups, but the statement on the
quantum groups in characteristic zero is easier than in positive characteristic and the proof is completely parallel
to the algebraic group case.

Let (dλµ(v))λµ∈Λ(r,r) be the Leclerc-Thibon v-deformed decomposition matrix of S(r, r) in the level 1 v-
deformed Fock space over the affine quantum group Uv(ŝle) in [LT96].Here, our dλµ(v) is Ariki’s e+

λtµt(v) (which
is not Ariki’s dλµ(v)). Let (cµλ(v))λµ∈Λ(r,r) be the inverse matrix of (dλµ(v))λµ∈Λ(r,r). By the work of Varagnolo
and Vasserot [VV99] the Leclerc-Thibon conjecture [LT96] is affirmatively settled and dλµ(v) is known to be a
parabolic Kazhdan-Lusztig polynomial in Soergel’s convention.

We have

(9) cµtλt(−t) = pµλ(t).

Here, for ν ∈ Λ(n, r) νt means the conjugate or the transposed partition of ν.
In [Ari09], Ariki considers the graded multiplicity [∆n(λ) : Ln(µ) 〈k 〉] for λ, µ ∈ Λ(n, r) that is equal to

[W(λ) : L(µ)[−k]] in Ariki’s notation . And, Ariki obtained under the conditions e ≥ 4 and n ≥ r that

(10) dλtµt(v) =
∑
k∈Z

(∆n(λ) : Ln(µ) 〈k 〉)vk.

Before going further, we need to mention again that we may remove Ariki’s assumptions e ≥ 4 and n ≥ r in a
suitable sense. This will be done at § 7. So, we assume that we have a grading structure on all q-Schur algebras
which are consistent with parabolic Kazhdan-Lusztig polynomials. Namely, we will have the equation (10)
even for the cases e = 2, 3.

Now, we also know that dim Homgr(∆n(λ), In(µ) 〈k 〉) = [∆n(λ) : Ln(µ) 〈k 〉]. Since Λ(n, r) is a cosaturated
subset of Λ(r, r) (see [Don98, Appendix] for the definition of cosaturation) on the highest weight structure for
S(n, r), by putting A := S(n, r) under the notation at Proposition 21, we have that

D(t)K(−t) = I and D′(t)K′(−t) = I.

So, by Proposition 21, we have

Theorem 23.The graded q-Schur algebraS(n, r) is standard Koszul. And, its Koszul dual is a quasihereditary.
5

Remark 24. In Corollary 28, small n < r will be treated. So, the theorem above is also valid for small n ≤ r
and e = 2, 3.

5At the end of [CPS93, § 3], Cline, Parshall and Scott wrote that the Koszulity above can be shown if we can assume the existence
of a graded Kazhdan-Lusztig theory. And, they also left some comments like that if we start from a graded quasihereditary algebra
A with a graded Kazhdan-Lusztig theory, then they wrote that A ! is a quasihereditary with a graded Kazhdan-Lusztig theory and its
details will appear elsewhere. In an Oberwolfach meeting 2006, when the authors asked L. Scott on the Koszulity, he told the authors
that he believes that q-Schur algebras are Koszul in characteristic zero or in the case that Lusztig’s conjecture holds (perhaps, before
the authors started studying any representation theory).
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7. T    e = 2, 3

We supply some missing proofs. In [Ari09], Ariki succeed in giving a grading structure on q-Schur algebra
except the cases e = 2, 3, like q is −1 or a primitive 3-rd root of unity. The reason that Ariki needs to assume
e � 2, 3 is that he uses an adjoint functor of the Schur functor and it behaves bad in the case e = 2, 3. In this
section, we extend Ariki’s result to those excluded cases by using Ariki’s result for big e > 3 and the runner
removal Morita equivalence in [CM10].

To do this, we need the following well known basic lemma.

Lemma 25. Let A and B are Morita equivalent finite dimensional algebras. Suppose that A is a graded algebra.
Then, we can give a grading on B such that B is graded Morita equivalent to A.

Note that for any n ≥ r, S(n, r) is Morita equivalent to S(r, r). So, we may always assume that n ≤ r even
for the treatment of grading thanks to Lemma 25.

Suppose that S(r, r) is graded for a grading fixed M.
We take a cosaturated subset Λ of Λ(r, r) and take an idempotent 1Λ of S(r, r) corresponding to the sum of

projective modules Pr(λ), λ ∈ Λ. Here, Pr(λ), namely, the idempotent corresponding to Y λ must be carefully
chosen since we are giving the grading on M via homogeneous Y λ’s in Ariki’s construction of graded q-tensor
space module. (This is an invisible choice: we don’t know any simultaneous canonical definition of grading
structure on M at the moment since finding a closed formula for the multiplicity of Y λ in M itself is a very
difficult problem, which surely depends on the characteristic of k. See [Don98, Appendix] for the definition
of cosaturation.) We can deduce that 1ΛS(r, r)1Λ is a graded quasihereditary algebra. In particular, since
Λ(n, r), n ≤ r is a cosaturated subset of Λ(r, r) for any n ≤ r, we know that

Lemma 26. for any n, S(n, r) is graded quasihereditary

and we have an equality on graded decomposition numbers [∆N(λ) : LN(µ) 〈k 〉] = [∆n(λ) : Ln(µ) 〈k 〉] for any
λ, µ ∈ Λ(n, r). (The extension group comparison for S(N, r) and S(n, r) is well known [Don98, Appendix] by
an aid of the Grothendieck spectral sequence. )

For an algebra A, we denote by ΛA for the set of indices of a complete set of simple A-modules.
We take another quantum parameter q′ ∈ k. We denote the quantum characteristic of q′ by e′. We write ∆′n(λ)

(resp. ∆′n(λ), P′n(λ)) for the simple (resp. Weyl, projective indecomposable) module over a q′-Schur algebra of
semisimple rank n corresponding to a highest weight λ.

In [CM10, Theorem 2] the following was shown (slightly weaker statement):

Theorem 27. Suppose that e′ > e.
For any abelian block algebra A of q-Schur algebra of semisimple rank n with e-weight w > 0, we have that

there exists a block algebra B of q′-Schur algebra of semisimple rank n with e′-weight w such that

• there exists an equivalence F : A-mod � B-mod,
• there exists an bijection (−)+ : ΛA � ΛB,
• FLn(λ) � L′n(λ+), F∆n(λ) � ∆′n(λ+) and FPn(λ) � P′n(λ+).

In particular,

(11) EndH(A)

⊕
λ∈ΛA

Yλ
 � EndH(B)

⊕
λ+∈ΛB

Yλ
+


where H(C) is the Hecke algebra of S|ν| for some ν ∈ ΛC with the identical parameter with C’s and Y ν is the
Young module overH(C) corresponding to ν.

By applying Ariki’s results in [Ari09] to RHS of (11) and by Lemma 25, we have

Corollary 28. All abelian q-Schur algebra blocks are graded. In particular, if in addition � = 0 , then all
q-Schur algebras are graded, quasihereditary, standard Koszul and their graded decomposition numbers are
coincident with Lascoux-Leclerc-Thibon v-decomposition numbers in the level 1 v-deformed Fock space over
Uv(ŝle).
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8. S  

In this section, we pick up more evidences related to Conjecture 6. The first numerical evidence is a con-
sistency between orthogonality relations of “square root” Proposition 21 of numerical Koszul duality criterion
[BGS96] and of canonical basis ((doubly) parabolic Kazhdan-Lusztig polynomials) [Ugl00]. In this subsection,
we shall find something different from this.

8.1. Theorem 27 [CM10, Theorem 2] says that one can change the rank or the quantum characteristic e for
q-Schur algebras, more precisely, any q-Schur algebra module category with e is a quotient category as well
as a subcategory of a q-Schur algebra module category with bigger e′ > e. Taking this point of view and
Conjecture 6 into account, we can guess that we may change the level l as follows:

Conjecture 29. Fix m > 0. Let Wk be the complex reflection group (Z/kZ) �Sm of type G(k, 1,m). We have two
embeddings

r : Irr Wl � χλ �→ χ(λ,0) ∈ Irr Wl+1 and s : Irr Wl � χλ �→ χ(0,λ) ∈ Irr Wl+1.

In the same way, we have associated embeddings for κ◦ in (l + 1)-tuples, and the same for κ by preserving the
extra entry h1. Take f ∈ {r, s}.

(1) If ( f (Irr Wl), κ) is a saturated subset of (Irr Wl+1, f (κ)), then Oκ(Wl) is a subcategory of O f (κ)(Wl+1).
(2) If ( f (Irr Wl), κ) is a cosaturated subset of (Irr Wl+1, f (κ)), thenOκ(Wl) is a quotient category ofO f (κ)(Wl+1).

Remark 30. (1) See [Don98, Appendix] for the definition of saturation and cosaturation.
(2) For cyclotomic q-Schur algebras in characteristic 0 (which should be special cases of categories O’s of

RatDAHA in Rouquier’s view point), we can prove this conjecture.
(3) From the points of views § 3.3,3.4, there should be two embeddings of canonical bases/global bases of

level l into the ones of level l + 1. K. Iijima [Iij11, Theorem A & B] proved this evidence by purely
combinatorics.
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