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1. Introduction

Gordon James and Andrew Mathas [JM02] showed that certain decom-
position numbers of Iwahori-Hecke algebras of symmetric groups and of the
associated q-Schur algebras at different complex roots of unity are equal.
The purpose of this paper is to interpret these equalities as consequences of
Morita equivalences.
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Our results extend to q-Schur algebras over fields of positive characteristic,
as long as the parameter q is in the prime subfield and we restrict to blocks
‘of abelian defect’. The idea of the proof is to deal first with certain dis-
tinguished blocks, the Rouquier blocks, and then use special derived equiva-
lences, called perverse equivalences, that arise from sl2-categorifications, to
make a link to other blocks. This second part is an inductive step, which is
based on a result proven in a forthcomming paper [CRa].

For the Rouquier blocks, the case of ground fields of characteristic 0 is
more difficult, contrary to the usual expectation. For the only known method
to prove structure theorems for these blocks is via local representation the-
ory of finite groups. Over fields of positive characteristic, we require finite
general linear groups – hence the insistence that the parameter q lies in
the ground field. To obtain the result in characteristic 0 we use a lifting
argument; a more conceptual method would be desirable.

We formulate our main result in such a way as to also allow compari-
son between Schur algebras at different roots of unity of the same order.
Therefore as a bonus we deduce that the q-Schur algebra Sk,q(r) over a
field k is isomorphic to the q′-Schur algebra Sk,q′(r) as k-algebras if k has
characteristic 0 and q and q′ have the same multiplicative order.

The relevant combinatorial operations used by James and Mathas, the
addition of runners on abaci and the reverse procedure of ‘runner removal’,
have very natural interpretations in terms of alcove geometry. This is very
consistent with F. Goodman’s remark on James-Mathas’s results. We aren’t
able to exploit this point of view in our proof, because for the Rouquier
blocks the combinatorics of partitions and abaci seem better suited. Nev-
ertheless, in the final section we take a stab at a possible analogue of the
main theorem for quantized enveloping algebras at complex roots of unity.

We would like to thank Matthew Fayers and the referees for pointing out
mistakes in the first and second version of this paper. We would like to
thank Akihiko Hida for his permission to append Hida-Miyachi result on
GLn to this article.

2. Notations and Background.

2.1. Partitions and Fock space. We associate to any partition λ = (λ1 ≥
λ2 ≥ . . .) its Young diagram {(i, j) | 1 ≤ i ≤ λj} ∈ N × N. We denote by
λtr the conjugate partition; its Young diagram is obtained from that of λ by
interchanging the coordinates i and j.

Fix an integer e ≥ 2. Given a ∈ {0, . . . , e − 1}, and partitions λ and µ
we write λ →a µ if the Young diagram of µ is obtained from that of λ by
adding an extra (i, j) such that j − i ≡ a modulo e. Let F = ⊕λCλ be a
complex vector space with basis indexed by the set of all partitions of all
nonnegative integers. We define linear operators e0, . . . , ee−1, f0, . . . , fe−1 on
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F by

eaλ =
∑

µ→aλ

µ and faλ =
∑

λ→aµ

µ.

These locally nilpotent endomorphisms extend to an action of the Kac-
Moody algebra ŝle. Put sa := exp(−fa) exp(ea) exp(−fa), an automorphism
of F . Then for any partition λ we have saλ = ±σa(λ) for some partition
σa(λ). The permutations σ0, . . . , σe−1 define an action of the affine Weyl
group on the set of partitions.

Following James, consider an abacus with e half-infinite vertical runners,
labelled ρ0, . . . , ρe−1 from left to right. On runner i we may put beads
in positions labelled i, i + e, i + 2e, . . . from top to bottom. Let d ≥ 0.
Any partition λ = (λ1 ≥ . . . ≥ λd) with at most d nonzero parts may be
represented by placing d beads at positions λ1 + d − 1, λ2 + d − 2, . . . , λd.
Note that λ may be recovered easily from the resulting configuration.

Sliding a bead one place up a runner into an unoccupied position corre-
sponds to removing a rim e-hook from the Young diagram of λ. Repeating
this process until no longer possible, say w times, we obtain a partition
called the e-core of λ, and we say that λ has weight w. In going from the
partition to its core, we remember how many times each bead on runner i
is moved as a partition λ(i). The resulting e-tuple λ = {λ(0), . . . , λ(e−1)} is
called the e-quotient of λ.

The actions of ea, fa, and σa described above have an easy interpretation
on an abacus with d beads. Let i ∈ {0, . . . , e − 1} such that i ≡ a + d
modulo e. Then λ →a µ if and only if (the abacus representation) of µ can
be obtained from that of λ by moving a bead in ρi−1 one position to the
right into an unoccupied position in ρi. And σa acts by the interchanging
the configuration of beads on runners ρi−1 and ρi.

2.2. Representations of Schur algebras. Let k be a field and let q ∈ k×.
Let e = e(q) be the least integer i ≥ 2 such that 1 + q + · · · + qi−1 = 0 in
k. Hence e is the characteristic of k if q = 1, and is the multiplicative order
of q otherwise. According to Kleshchev, e is sometimes called a ’quantum
characteristic’ for Hecke algebras.

The Schur algebra Sk,q(d, r) is a quasihereditary algebra with simple mod-
ules L(λ) indexed by the partitions of r with at most d parts, with respect
to the dominance order. The Weyl module ∆(λ) has simple head isomorphic
to L(λ) and any composition factor of its radical is isomorphic to L(µ) for
some µ�λ; it is characterized up to isomorphism the largest module by these
properties.

If d ≥ d̃ there exists a Green’s idempotent f in Sk,q(d, r) and a canoni-
cal isomorphism fSk,q(d, r)f ∼= Sk,q(d̃, r) (see [Gre80]). The exact functor
Sk,q(d, r)-mod → Sk,q(d̃, r)-mod : M �→ fM sends L(λ) to the corresponding
simple module L̃(λ) if λ has at most d̃ parts, and to 0 otherwise. Similarly
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f∆(λ) ∼= ∆̃(λ) if λ has at most d̃ parts. In particular if d̃ ≥ r then the
functor is an equivalence preserving labels.

Two simple modules L(λ) and L(µ) are in the same block of Sk,q(r) :=
Sk,q(r, r) if and only if λ and µ have the same e-core. Note that they are
then necessarily of the same e-weight. So the blocks of Sk,q(r), r ≥ 0 are
classified by pairs (τ, w) where τ is an e-core partition, i.e a partition which
is its own e-core, and w ≥ 0.

We may identify the Fock space F with the sum of complexified Grothendieck
groups of module categories of q-Schur algebras:

F =
⊕
r≥0

C ⊗Z K(Sk,q(r)-mod)

λ ↔ [∆(λ)]

Let B be a block and let a ∈ {0, . . . , e − 1}. Then sa restricts to an
isomorphism K(B-mod) ∼→ K(Ḃ-mod) for some block Ḃ of the same e-
weight; we write saB = Ḃ and say that B and Ḃ form a Scopes pair .
The induced action of the affine Weyl group on the set of all blocks of
Sk,q(r), r ≥ 0 is transitive on blocks of a fixed weight.

We remark that by ‘Scopes pair’ we mean an arbitrary [w : k] pair of
blocks (in the original terminology of Scopes [Sco91]); we do not place the
restriction w ≤ k.

Definition 1. A block B with e-core τ and weight w of Sk,q(r) is called a
Rouquier block if there is some d such that in the d-bead abacus representa-
tion of τ , in any pair of adjacent runners there are at least w−1 more beads
on the righthand runner. The e-core τ is called a Rouquier core relative to
w.

Clearly for all w ≥ 0 there exist Rouquier blocks of weight w. So it
is convenient to first prove that a statement about blocks is true for the
Rouquier blocks, and then use the affine Weyl group action to show that it
holds for all blocks.

3. The main result

3.1. James-Mathas construction. To state the main theorem we need
to describe a map on partitions, due to James and Mathas. Let 2 ≤ e ≤ e′,
d ≥ 0, and α ∈ {0, . . . , e}. Given a partition λ with at most d nonzero parts,
add e′− e empty runners between ρα−1 and ρα in the abacus representation
of λ on an e-runner abacus with d beads. The new configuration on an
e′-runner abacus represents a partition which we call λ+.

To take an example, let e = 3, e′ = 5, d = 3 and α = 3. Then the
operation λ �→ λ+ adds two empty runners on the right of the abacus. So,
e.g., if λ = (5, 4, 3) then λ+ = (9, 6, 5); see Figure 1 below.

James and Mathas showed that the map λ �→ λ+ links the representation
theory of Schur algebras at complex primitive e-th and e′-th roots of unity in
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Figure 1. Adding two runners.

a precise way, obtaining equalities of decomposition numbers. Our theorem
below interprets their result in terms of Morita equivalences of blocks.

3.2. Statement of the theorem. Fix q, q′ ∈ k×, let e = e(q) and e′ =
e(q′), and assume that e ≤ e′. Let B be a block ideal of S := Sk,q(r). Let Λ
be the set of partitions λ of r such that B · L(λ) �= 0.

In what follows we shall be considering a number of blocks which are
defined in terms of B; we indicate this relationship notationally by using
decorations on ‘B’. To avoid confusion we will usually use the same deco-
rations for modules and for the poset of labels of simples.

Fix d ≤ r, and α ∈ {0, . . . , e}. Let Λ be the subset of Λ consisting of
partitions with at most d parts. We sometimes denote by l(λ) the number
of nonzero parts of λ. Assume that Λ is nonempty. Then there exists r′ and
a block B′ of S ′ := Sk,q′(r′, r′) such that for all λ ∈ Λ we have |λ+| = r′ and
λ+ ∈ Λ′ := {µ | B′ · L′(µ)} �= 0.

Defining Λ′ to be the set of partitions in Λ′ with at most d parts, we have
a bijection

Λ ∼→ Λ′ : λ �→ λ+

preserving the dominance relation.
Now there exists an idempotent f ∈ S and an isomorphism fSf ∼= S,

where S := Sk,q(d, r). We define B := fBf , a sum of blocks of S. Then we
have a quotient functor B-mod → B-mod : M �→ fM . The simple modules
L(λ) of B are indexed by Λ. The Weyl module corresponding to λ ∈ B is
denoted ∆(λ).

Let S ′ := Sk,q′(d, r′), and then define B′ analogously to B. We use L′ and
∆′ to denote the simple modules and Weyl modules of B′.

Theorem 2. Suppose that one of the following holds:
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• k has characteristic 0.
• k has characteristic � > e and q, q′ ∈ F� and the weight of B is

strictly less than �.
Then there exists an equivalence

F : B-mod ∼→ B′-mod

such that
FL(λ) ∼= L′(λ+)

and
F∆(λ) ∼= ∆′(λ+)

for all λ ∈ Λ.

Remark 3. (1) Since the map λ �→ λ+ preserves the dominance order,
the statement concerning ∆-sections is an immediate consequence of
the statement about simples.

(2) For a given block B, one can always choose d = r, so that Λ =
Λ, S = S and B = B. On the other hand if e′ > e then Λ′ is
always strictly smaller than Λ′, so that B′-mod is a proper quotient
of B′-mod.

(3) In case 1 �= q ∈ F� and the weight of B is strictly less than �, we
may always take q′ = 1, thus obtaining Morita equivalences between
blocks of q-Schur algebras and blocks of ordinary Schur algebras. In
particular, we have reduced the verification of James’s conjecture on
decomposition numbers ( [Jam90, §4], [Mat99, p.117-118, 6.37&2nd
paragraph of p.118], [Lus80] ) to the case q = 1, i.e. to the case of
ordinary Schur algebras.

(4) If q = 1 and k has positive characteristic �, then B is a block of
an ordinary Schur algebra, and its weight is strictly less than � if
and only if the corresponding block of a symmetric group has abelian
defect groups. So the restriction on the weight of B in Theorem 2
should be regarded as an ‘abelian defect’ condition [Bro90, 6.2. Ques-
tion], [Bro92, 4.9. Conjecture], [BMM93], which is a blockwise re-
finement of the assumption of [Mat99, 6.37] and is milder than any
known assumptions in any literatures on James’s conjecture.

(5) We expect that the hypotheses on q, q′ and the weight of B in pos-
itive characteristic are not necessary. They just reflect our current
state of knowledge on the structure of Rouquier blocks of q-Schur al-
gebras, which constitute the base case of our inductive proof; the in-
ductive step is valid in general. For example, a positive resolution of
Turner’s remarkable conjectures on Rouquier blocks with nonabelian
defect groups [Tur05] would remove the restriction on the weight of
B.

If e = e′ the map λ �→ λ+ is the identity. We have rigged the statement
of the theorem and its proof to include this special case, and obtain the
following corollary.
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Corollary 4. • Suppose that k has characteristic 0 and that q and q′

are primitive e-th roots of unity in k. Then for all r and d we have
an isomorphism Sk,q(d, r) ∼→ Sk,q′(d, r) of k-algebras.

• Suppose k has characteristic � > e and that q, q′ ∈ F�. Then for all
r and d, corresponding blocks of Sk,q(d, r) and Sk,q′(d, r) of weight
strictly less than � are isomorphic as k-algebras.

Proof. Take the notation and hypotheses of Theorem 2. For all λ ∈ Λ, the
formal characters of ∆(λ) and ∆′(λ) are equal; hence dim ∆(λ) = dim∆′(λ).
Since the decomposition numbers of B and B′ are ‘the same’, we deduce
that dimL(λ) = dim L′(λ). But we already know that B and B′ are Morita
equivalent so conclude that B and B′ are isomorphic as k-algebras.

If the characteristic of k is 0, we may sum over all blocks to obtain iso-
morphisms of Schur algebras. �

3.3. Decomposition numbers. We now formulate the numerical conse-
quences of Theorem 2. In characteristic 0 we recover weak versions of
the theorem of James and Mathas [JM02], and the related result of Fay-
ers [Fay07]. They prove equalities of the v-decomposition numbers defined
by Lascoux, Leclerc and Thibon (see [Lec02]), which specialize at v = 1,
via the theorem of Varagnolo-Vasserot [VV99] (and Ariki [Ari96]), to our
formulas. Our approach has the advantage of also being valid in positive
characteristic, as long as the parameter q is in the ground field and we are
in an ‘abelian defect’ situation.

In comparing out statement with those of [JM02] and [Fay07], it is im-
portant to keep in mind that our labelling of modules is conjugate to theirs.
In particular, our result is more directly related to Fayers’s.

Theorem 5. Keep the notation and assumptions of Theorem 2. We have,
for all λ, µ ∈ Λ,

[∆(λ) : L(µ)] = [∆′(λ+) : L′(µ+)]

and
[∆(λtr) : L(µtr)] = [∆′((λtr)+) : L′((µtr)+)].

Proof. The first equality is equivalent to

[∆(λ) : L(µ)] = [∆′(λ+) : L′(µ+)],

which is an immediate consequence of Theorem 2.
For λ ∈ Λ, let T (λ) be the corresponding indecomposable tilting module of

B. If λ ∈ Λ, the image fT (λ) under the Schur functor is an indecomposable
tilting module of B. By the conclusion of the Main theorem 2, we have
equalities of filtration multiplicities, for any λ ∈ Λ,

(T (µ) : ∆(λ))S(r,r) = (fT (µ) : f∆(λ))S(d,r)

= (f ′T (µ+) : f ′∆′(λ+))S′(d,r′)

= (T (µ+) : ∆′(λ+))S′(r′,r′).
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On the other hand, Donkin’s formula [Don98, Proposition 4.1.5] tells us that

[∆(λtr) : L(µtr)] = (T (µ) : ∇(λ)),

where ∇(λ) is the dual Weyl module associated to λ. Here we may safely
replace ∇(λ) by ∆(λ), since contragradient duality for the q-Schur algebra
sends T (µ) to itself and ∇(λ) to ∆(λ). Thus the second equality in the
statement of the theorem is proved. �

3.4. Truncation functors. In this subsection we give an application of
truncation functors which will be used as a reduction step in the proof of
the main theorem. The main source is [Don98, 4.2].

In this subsection, we denote by G = G(n) the quantum general lin-
ear group with simple roots Π = {α1, . . . , αn−1}. For any subset Σ of
Π, we have an associated standard Levi subgroup GΣ. We denote by
XΣ the set of dominant weights for GΣ. To specify the group for stan-
dard, costandard, simple, and tilting modules, we again attach subscripts in
the notation ∆,∇, L, T , e.g., ∆Σ(λ),∇Σ(λ), LΣ(λ), TΣ(λ), and simply write
∆m(λ),∇m(λ), Lm(λ), Tm(λ) if for modules over G(m). In the case they
are modules over the full parent group G we sometimes will not attach any
subscripts, simply writing ∆(λ),∇(λ), L(λ), T (λ), etc.

For a standard Levi subgroup GΣ of G and a dominant weight λ of GΣ, we
denote by TrλΣ the Harish-Chandra (λ,Σ)-truncation functor (see [Don98,
p.86], or [Jan03, p.181,2.11] for its slightly different description); given a
G-module V we define Trλ

ΣV =
⊕

µ∈X,λ−µ∈ZΣ Vµ, a GΣ-module. The trun-
cation functor satisfies the following properties.

(1) Trλ
Σ is exact,

(2) Trλ
Σ∇(µ) =

{
∇Σ(µ), if λ − µ ∈ ZΣ,
0, otherwise ,

(3) Trλ
ΣL(µ) =

{
LΣ(µ), if λ − µ ∈ ZΣ,
0, otherwise

The following can be found in [Don98, p.89]: Fix λ ∈ XΠ. If a module U is
filtered by ∆’s, a module V is filtered by ∇’s and every weight of U and V
is less than or equal to λ, then the map

(1) HomG(U, V ) → HomGΣ
(Trλ

ΣU,Trλ
ΣV ) is surjective.

For λ ∈ XΠ and µ ∈ XΣ we have

(2) (TΣ(λ) : ∇Σ(µ)) =
{

(T (λ) : ∇(µ)), if µ ∈ XΠ and λ − µ ∈ ZΣ;
0, otherwise.

We have the following application of the truncation functor.

Proposition 6. Suppose that T is a cosaturated subset of the set of par-
titions of r sharing a common e-core, where e is the quantum characteris-
tic of G. Further suppose that there exists a weight σ for G(k) such that
T (σ) = L(σ) and such that for any λ ∈ T there exists a partition (λtr)b
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such that λtr = σ ∪ (λtr)b. Here, the notation ∪ is taken from page 6 of
Macdonald’s text book. 1

Put trT := {λtr | λ ∈ T } and fix an integer m such that m ≥ max{l(λb)|λ ∈
trT }.

Then,

(3) EndG(k+m)

(⊕
λ∈trT

Tk+m(λ)

)
∼= EndG(m)

(⊕
λ∈trT

Tm(λb)

)
.

Here, via the isomorphism (3), the idempotent of EndG(k+m)(Tk+m(λ)) cor-
responds to the idempotent of EndG(k+m)(Tm(λb)).

Proof. Since T (σ) = L(σ), we know that

(4) EndG(m)

(⊕
λ∈trT

Tm(λb)

)
∼= EndG(k)×G(m)

(⊕
λ∈trT

Tk(σ) � Tm(λb)

)
Then, by (1) and by taking Trτ

Σ(k,m) into account where τ is the maximum
of λtr for all λ ∈ T and Σ(k,m) = {α1, . . . , αk−1, αk+1, . . . , αk+m−1} , we
know that there is a surjection of EndG(k+m)(

⊕
λ∈T Tk+m(λ)) onto the RHS

of (4). So, it suffices to count the dimensions of the endomorphism rings in
question. The dimension of LHS of (3) is equal to

∑
λ,ν∈trT

∑
µ�λ(Tk+m(λ) :

∇k+m(µ))(Tk+m(ν) : ∇k+m(µ)). And, the dimension of LHS of (4) is equal
to
∑

λ,ν∈trT
∑

µb�λb(Tm(λb) : ∇m(µb))(Tm(νb) : ∇m(µb)). Then, the cosat-
uration condition on T and the assumption on the unique decomposition
λtr = σ ∪ (λtr)b, and (2) ensure that each non-zero term in the second sum-
mations in the dimension formulas for (3) and (4) match up each other. �

3.5. Proof of the main theorem. In this subsection we reduce the main
theorem to the case of large d (relative to the block B) using the results of
the following sections, on Scope pairs and Rouquier blocks.

Because the orbit of the block B under the affine Weyl group action
contains a Rouquier block, there exists a sequence of blocks B0, . . . , Bs = B,
such that B0 is a Rouquier block, and any two successive blocks form a
Scopes pair.

Now choose c such that all partitions in all blocks Bi have at most d̃ = d+
ec parts. Now define blocks B̃′ and B̃′ analogously to B′ and B′, replacing d
by d̃. Then by induction, with base case §5, which proves the main result for
Rouquier blocks, and inductive step §4.2, we deduce that the main theorem
holds for B, as long as we replace d by d̃. In other words we have an
equivalence

F̃ : B-mod ∼→ B̃′-mod

1In our set up the first entry (λtr)b
1 is at most σl(σ). So, it’s just a concatenation of

two partition. For example, (9, 8, 7) ∪ (3, 2, 1) = (9, 8, 7, 3, 2, 1).
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such that
F̃L(λ) ∼= L′(λ̃+)

for all λ ∈ Λ. Here λ̃+ is defined similarly to λ+, except we use abaci with
d̃ beads rather than d beads. Note that λ̃+ has ce− α more parts than λ+.
(Recall that the extra empty runner in λ+ is inserted between ρα−1 and ρα.)

Let σ = ((d + ce− α)e
′−e, . . . , (d + 2e− α)e

′−e, (d + e− α)e
′−e). Then for

all λ ∈ Λ we have

(5) (λ̃+)tr = σ ∪ (λ+)tr.

Furthermore σ is minimal amongst partitions in its block having at most
c(e′ − e)-parts. Hence we have Tc(e′−e)(σ) = Lc(e′−e)(σ).
Let m := max{l((λ+)tr) | λ ∈ Λ}.

For all λ, µ ∈ Λ, we have

HomB(P (λ), P (µ)) ∼= HomB′′(P (λ̃+), P (µ̃+))
∼= HomG(c(e′−e)+m)(T ((λ̃+)tr), T ((µ̃+)tr))
∼= HomG(c(e′−e)+m)(T (σ ∪ (λ+)tr), T (σ ∪ (µ+)tr))
∼= HomG(m)(T ((λ+)tr), T ((µ+)tr))
∼= HomB′(P (λ+), P (µ+)),

where the first isomorphism is deduced from the equivalence F̃, the second
and last isomorphisms by Ringel selfduality [Don98], the third by Proposi-
tion 6 and the fourth by (5). Here, the quantum characteristic of the G′’s
is e′. Now the main theorem follows immediately.

4. Scopes pairs

In this section we carry out the inductive step of the proof of the main
theorem. Here we make an additional assumption that d is large, in the
sense that all the partitions in the blocks we are considering have at most d
parts.

After reviewing the notion of a perverse equivalence [Rou06, §2.6], we
spell out the inductive step. A key point here is that the combinatorics of
the perverse equivalences are independent of the ‘quantum characteristic’
e(q); a proof is relegated to the end of the section.

4.1. Perverse equivalences. We work in the context of finite-dimensional
algebras, sufficient for our application. Roughly speaking, a perverse equiv-
alence is a derived equivalence filtered by shifted Morita equivalences; see
[Rou06, §2.6], [CRa] for more details. Let A and Ȧ be two finite-dimensional
algebras and S (resp. Ṡ) the set of isomorphism classes of finite-dimensional
simple A-modules (resp. simple Ȧ-modules).

Definition 7. An equivalence G : Db(A-mod) ∼→ Db(Ȧ-mod) is perverse if
there is
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• a filtration ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sr = S
• a filtration ∅ = Ṡ0 ⊂ Ṡ1 ⊂ · · · ⊂ Ṡr = Ṡ
• and a function p : {1, . . . , r} → Z

such that
• G restricts to equivalences Db

Ai
(A-mod) ∼→ Db

Ȧi
(Ȧ-mod)

• G[−p(i)] induces equivalences Ai/Ai−1
∼→ Ȧi/Ȧi−1.

Here Ai (resp. Ȧi) is the Serre subcategory of A-mod (resp. Ȧ-mod) gener-
ated by Si (resp. Ṡi), and by Db

Ai
(A-mod) we mean the full subcategory of

Db(A-mod) whose objects are complexes with homology modules belonging
to Ai.

The following basic result implies that the filtration S• and the perversity
p determine Ȧ (and Ṡ•), up to Morita equivalence.

Proposition 8. Let G : Db(A-mod) ∼→ Db(Ȧ-mod) and G′ : Db(A-mod) ∼→
Db(Ȧ′-mod) be perverse. If S ′

• = S• and p′ = p, then the composition G′G−1

restricts to an equivalence Ȧ-mod ∼→ Ȧ′-mod.

Indeed, the composition is G′G−1 is also a perverse equivalence with re-
spect to p′′ where p′′ is identically zero. Then an easy inductive argument
shows that G′G−1 restricts to an equivalence Ȧi

∼→ Ȧ′
i.

Now let A = ⊕r≥0Sk,q(r)-mod. Let a ∈ {0, . . . , e − 1}. Given M , a
Sk,q(r−1)-module lying in a block B, let M̃ be the corresponding Sk,q(r, r−
1)-module, under the canonical equivalence Sk,q(r, r − 1)-mod ∼→ Sk,q(r −
1)-mod. Tensoring with the natural representation V = kr of Sk,q(r, 1) =
End(V ) we obtain a Sk,q(r)-module V ⊗ M̃ . We define FaM to be the pro-
jection of V ⊗ M̃ onto the sum of blocks C of Sk,q(r) such that K(C-mod)∩
fa(K(B-mod)) �= 0.

This recipe defines an exact endofunctor Fa on
⊕

r≥0 Sk,q(r)-mod lifting
the action of fa on F . Let Ea be a left adjoint to Fa. Then Ea is also a right
adjoint to Fa, and Ea lifts the action of ea on F .

The adjoint pair (Ea, Fa) may be used to define a sl2-categorification on A
[CR08]. We obtain as a result derived equivalences between blocks in Scopes
pairs, which are known to be perverse, by [CRa]. Here are the details: Let
B be a block of Sk,q(r), and put Ḃ = saB, a block of Sk,q(ṙ), for some ṙ.
Let Λ and Λ̇ be the sets of partitions labelling simple modules in B and Ḃ.

Proposition 9. There exists an equivalence G : Db(B-mod) ∼→ Db(Ḃ-mod)
such that

• G is perverse with respect to the filtrations

Λj = {λ ∈ Λ | F j
aL(λ) = 0} and Λ̇j = {λ ∈ Λ̇ | Ej

aL(λ) = 0}
and the perversity p(j) = j − 1.

• G induces the isomorphism sa : K(B-mod) ∼→ K(Ḃ-mod).
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• G (and G−1) are induced by complexes of functors, each of which is
a direct summand of a composition of Ea’s and Fa’s.

Remark 10. The filtrations above may also be defined by the formulas

Λj = {λ ∈ Λ | F̃ j
aL(λ) = 0} and Λ̇j = {λ ∈ Λ̇ | Ẽj

aL(λ) = 0},

where F̃a and Ẽa are the Kleshchev/Kashiwara operators:

F̃a(M) := Soc(Fa(M)), Ẽa(M) := Soc(Ea(M))

[Kle95a, Kle95b, Kle96].

In very special cases we can deduce Morita equivalences of a type first
discovered by Scopes for symmetric groups. The following corollary is a
slightly new and a slight extension of [EMS94] and [Don94, §5 ].

In [EMS94] and [Don94, §5 ] they dealt with 1-Schur algebras not for the
q-Schur algebras where q �= 1. But, the basic ideas given below are (at least
at the level of combinatorics) identical with theirs.

Corollary 11 (Scopes’s Morita Equivalences). Fix d ≥ 0. Suppose that for
all λ ∈ Λ̇, the d-bead abacus representation of λ contains no beads in ρi,
where i ≡ a + d modulo e. Then there is an equivalence B-mod ∼→ Ḃ-mod
between the blocks B and Ḃ of Sk,q(d, r) and Sk,q(d, ṙ) corresponding to B

and Ḃ, that sends L(λ) to L(σaλ) (and ∆(λ) to ∆(σaλ)).

Proof. Let G : Db(B-mod) ∼→ Db(Ḃ-mod) be the perverse equivalence pro-
vided by Proposition 9. Then G restricts to an equivalence G1 : A1

∼→ Ȧ1

between the Serre subcategories

A1 := {M ∈ B-mod | FaM = 0} and Ȧ1 := {M ∈ Ḃ-mod | EaM = 0.}
Let λ ∈ Λ. Then by the assumption that there are no beads in ρi we have
faλ = 0. Thus ∆(λ) ∈ A1, and [G1∆(λ)] = [∆(σaλ)], since saλ = ±σaλ and
the sign is determined to be + as G1 is an equivalence. It follows by induction
that for all λ ∈ Λ we have G1P (λ) ∼= P (σaλ). This implies the desired
statements, since B and Ḃ are Morita equivalent to End

(⊕
λ∈Λ P (λ)

)
and

End
(⊕

λ∈Λ̇ P (λ)
)

respectively. �

4.2. Inductive step. Consider a Scopes pair of blocks B and Ḃ = σaB.
We assume that Theorem 2 is true for B and aim to verify it for Ḃ.

We shall also assume that all partitions in Λ and Λ̇ have at most d parts.
Hence Λ = Λ, Λ̇ = Λ̇, B = B and Ḃ = Ḃ. Let i ∈ {0, . . . , e − 1} so that
i ≡ a + d mod e. We may assume that α �= i mod e and therefore that
Ḃ′ = σa′B′, where a′ ∈ {0, . . . , e′ − 1} such that i ≡ a′ + d mod e′. If
α = i < e we reduce to the case α = i + 1 by the following observation:
B′

α = σα+e′−e . . . σα+1B
′
α+1, and there exists an equivalence B′

α+1-mod ∼→
B′

α-mod sending L′(λ+,α+1) to L′(λ+,α) and ∆′(λ+,α+1) to ∆′(λ+,α) for all
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λ ∈ Λ, obtained by e′ − e applications of Corollary 11. If α = e and i = 0
we can reduce to the case α = e − 1 by a similar argument.

By Proposition 9 we have a perverse equivalence G : Db(B-mod) ∼→
Db(Ḃ-mod) specified by the filtration Λj = {λ ∈ Λ | F j

aL(λ) = 0} and
the perversity p(j) = j − 1. We have a parallel situation for B′ and Ḃ′, a
perverse equivalence G′ : Db(B′-mod) ∼→ Db(Ḃ′-mod) with respect to the
filtration Λ′

j = {λ ∈ Λ′ | F j
a′L′(λ) = 0} and perversity p(j) = j − 1. More-

over [G∆(λ)] = ±[∆(σaλ)] for all λ ∈ Λ. An analogous statement holds for
G′.

By a result of Cline, Parshall and Scott [CPS82] (see also [PS88]) the
exact functor B′-mod → B′-mod : M �→ fM induces an equivalence of
triangulated categories

Db(B′-mod)
Db

E (B′-mod)
∼→ Db(B′-mod),

where E is the Serre subcategory of B′-mod generated by L(λ), λ ∈ Λ′ \Λ′.
An analogous statement holds for the dot versions.

We claim that G′ restricts to an equivalence Db
E(B′-mod) ∼→ Db

Ė(Ḃ′-mod).
An equivalent statement is that it restricts to an equivalence between the
left perpendicular categories, i.e. the full triangulated subcategories of
Db(B′-mod) and Db(Ḃ′-mod) generated by {P ′(λ) | λ ∈ Λ′} and {P ′(λ) |
λ ∈ Λ̇

′}. To see that this latter statement is true recall (Proposition 9)
that G′ is induced by a complex of functors, each of which is a direct sum-
mand of a composition of powers of Ea′ and Fa′ . Because of our assump-
tion that all partitions in Λ and Λ̇ have at most d parts, and that α �= i
mod e, the map between Grothendieck groups induced by any such direct
summand functor sends

∑
λ∈Λ′ Z[∆′(λ)] into

∑
λ∈Λ̇

′ Z[∆′(λ)], and therefore∑
λ∈Λ′ Z[P ′(λ)] into

∑
λ∈Λ̇

′ Z[P ′(λ)]. A similar reasoning applies to G′−1,
and the claim follows.

Hence G′ induces a perverse equivalence

G′ : Db(B′-mod) ∼→ Db(Ḃ
′
-mod)

with respect to the filtration Λ′
j = {λ ∈ Λ′ | F j

aL′(λ) = 0} and the perversity
p(j) = j − 1.

By assumption we have a Morita equivalence

F : B-mod ∼→ B′-mod

such that FL(λ) ∼= L′(λ+) and F∆(λ) ∼= ∆′(λ+) for all λ ∈ Λ. Moreover by
Lemma 12, proved in the following subsection, the bijection Λ ∼→ Λ′ : λ �→
λ+ restricts to bijections Λj

∼→ Λ′
j for all j. By Proposition 8 we deduce

that the composition

G′FG−1 : Db(Ḃ-mod) ∼→ Db(Ḃ
′
-mod)
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restricts to an equivalence

Ḟ : Ḃ-mod ∼→ Ḃ
′
-mod .

Moreover [Ḟ∆(λ)] = [∆′(λ+)] for all λ ∈ Λ̇. By unitriangularity of the
decomposition matrices of B and B′, it follows that ḞL(λ) ∼= L′(λ+) for all
λ ∈ Λ̇, and therefore that Ḟ∆(λ) ∼= ∆′(λ+) for all λ ∈ Λ̇.

4.3. Comparison of crystals. The aim of this subsection is to complete
the inductive step by proving Lemma 12, which was used above to get a
good compatibility between filtrations.

Let a ∈ {0, . . . , e − 1}. For any partition λ, we define

ϕa(λ) := max{k ≥ 0 | (F̃a)k(L(λ)) �= 0}
= max{k ≥ 0 | Fa

k(L(λ)) �= 0}

and similarly

ϕ′
a(λ) := max{k ≥ 0 | (F̃a)k(L′(λ)) �= 0}

= max{k ≥ 0 | Fa
k(L′(λ)) �= 0}

(cf[HK02, p.85]), where F̃a is the Kleshchev/Kashiwara operator, defined in
Remark 10. Remember that L(λ) is a simple module over a Schur algebra
with parameter q while for L′(λ) the parameter is q′.

Lemma 12. Let i ∈ {0, . . . , e − 1} and define a and a′ as in §4.2. Then

ϕa(λ) = ϕ′
a′(λ+)

for any λ ∈ Λ.

Proof. We explain below why the statement holds if λ is e-restricted. But
first we shall assume the truth of this special case and deduce the statement
for arbitrary λ.

We can write any partition λ uniquely as λ = λe-res + eλ̃, where λe-res is
e-restricted. In terms of the abacus λe-res is obtained from λ by repeatedly
moving a bead up a runner, say from position h to h−e, where positions h−
e, . . . , h−1 are unoccupied. This description makes it clear that (λe-res)+ =
(λ+)e

′-res.
By Steinberg’s tensor product theorem [Don98, p.65] (cf. [Lus89, 7.4],[DD91],

[PW91, 11.7]) we have L(λ) ∼= L(λe-res) ⊗ L(eλ̃). More generally tensoring
with L(eλ̃) sends modules over a block of Sq,k(r − e|λ̃|) to modules over the
block of Sq,k(r) corresponding to the same e-core. Hence for any k the iso-
morphism V ⊗k⊗L(λ) ∼= V ⊗k⊗L(λe-res)⊗L(eλ̃), after a projection onto ap-
propriate blocks, gives an isomorphism Fa

k(L(λ)) ∼= Fa
k(L(λe-res))⊗L(eλ̃).

Thus we deduce that ϕa(λ) = ϕa(λe-res).
Putting together the pieces, we have, for any λ,

ϕa(λ) = ϕa(λe-res) = ϕ′
a′((λe-res)+) = ϕ′

a′((λ+)e
′-res) = ϕ′

a′(λ+).
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Now we return to the special case of e-restricted partitions. One can
define a summand FH,a : Hk,q(Sr−1)-mod → Hk,q(Sr)-mod of the induction
functor between Hecke algebras of type A, analogous to Fa. One then has
obvious analogues F̃H,a and ϕH,a of F̃a and ϕa.

After Kleshchev’s branching rule appeared, Brundan [Bru98] extended
Kleshchev’s result to Hecke algebras of type A and showed that for any
simple Hk,q(Sr−1)-module L the Hk,q(Sr)-module F̃H,a(L) is simple. Since
there is a commutative diagram of functors

Fa : Sk,q(r − 1)-mod → Sk,q(r)-mod
↓ ↓

FH,a : Hk,q(Sr−1)-mod → Hk,q(Sr)-mod
,

where the horizontal arrows are Schur functors, this implies that ϕa(λ) =
ϕH,a(λ) for any e-restricted λ.

Brundan also showed that for e-restricted partitions ϕH,a(λ) is the number
of conormal indent a-nodes for λ. We won’t define this combinatorial notion
here; we just observe that his result implies that ϕH,a(λ) depends only on the
configuration of beads on runners ρi−1 and ρi in the abacus representation
of λ, where i ∈ {0, . . . , e− 1} is such that i ≡ a+ d mod e. We deduce that
for any e-restricted partition λ,

ϕa(λ) = ϕH,a(λ) = ϕ′
H,a′(λ) = ϕ′

a′(λ),

as desired.
�

5. Rouquier blocks

We now complete the proof of Theorem 2 by handling the base case:
Rouquier blocks.

5.1. Wreath product interpretation of Rouquier blocks. In this sub-
section we assume that ch(k) = � > w > 0, and that q is a prime power not
congruent to 0 or 1 modulo �. So e = e(q) is the multiplicative order of q ·1F�

.
We denote by Lλ the standard Levi subgroup of GL|λ|(Fq) corresponding
to the Young subgroup Sλ. In [Tur02, p.250 Lemma 1 & p.249,Theorem

1] and [Miy01, p.30 Lemma 5.0.6 & p.31 Theorem 5.0.7] (cf [Tur05, Theo-
rem 71]) the GLn(Fq) analogue of the main theorem in [CK02, Theorem 2]
is proved independently:

Theorem 13. Suppose γ is a Rouquier e-core with respect to w. Put r :=
ew+ |γ| and G := GLr(Fq). Put L := L(ew,|γ|), a Levi subgroup of G. Then
L has a parabolic complement P = LUL in G. Put I := NG(L) ∼= L � Sw.
So, k[I] ∼= k[L] � Sw.

There exists a (k[G], k[I])-bimodule M such that
(1) M is a direct summand of k[G/UL] ⊗k[L] k[I] as a (k[G], k[I])-

bimodule.
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(2) M ⊗A� M∨ ∼= A and M∨ ⊗A M ∼= A�, where A is the Rouquier
unipotent block of k[G] with e-core γ and A� is the unipotent block
of k[I] with (w + 1)-tuple of e-cores (∅w, γ).

(3) M is left projective as well as right projective.

5.2. Images of some modules via the equivalence. In order make a
connection to q-Schur algebras we need to identify the images of modules
under the equivalence in Theorem 13. We retain the assumptions on q and �
of the previous section. For λ � n, we denote by S(λ) the Specht kGLn(Fq)-
module corresponding to λ (see [Jam84],[Jam86]), by D(λ) its unique simple
quotient, by P (λ) the projective cover of D(λ) and by X(λ) the Young
kGLn(Fq)-module corresponding to λ (see [DJ89] for the definition.)

The labels of simple modules over the principal block B0(k[GLe(Fq)�Sw])
are given by e-multipartitions of w, which we denote by MP(e,w). This goes
as follows: The principal block B0(GLe(Fq)) has e non-isomorphic simple
modules {D(µ) | µ is a hook partition of e}. For an e-tuple of non-negative
integers m = (m1, . . . ,me) such that

∑
i mi = w, define S(m) to be the

GLe(Fq)w-module �e

i=1(S(e − i + 1, 1i−1)�mi). So, the Young subgroup
Sm acts on S(m). For an e-multipartition (= e-tuple of partitions) λ =
(λ(1), . . . , λ(e)), put mi := |λ(i)| and then define the Specht B0(k[GLe(Fq) �
Sw])-module S(λ) by

IndGLe(Fq)�Sw

GLe(Fq)w�Sm

(
�e

i=1(S(e − i + 1, 1i−1)�mi) ⊗k Sλ(i)

)
.

If we replace S(�) by D(�) (resp. X(�)), then we obtain simple modules
(resp. Young modules) over GLe(Fq) � Sw.

So, the labels of simple modules over A� ∼= B0(k[GLe(Fq) � Sw]) � Bγ ,
where Bγ is the simple block algebra corresponding to the unipotent char-
acter indexed by e-core γ, are also given by MP(e,w).

Define a map (−)	 : MP(e,w) → MP(e,w) by

((λ)	)i :=
{

λ(i) if i + e is even,

(λ(i))tr otherwise.

Here, the 0-th runner of an e-quotient is treated as the 1st entry of an
e-multipartition.

By Hida-Miyachi [Miy01] the images of simple, Specht, Young and pro-
jective indecomposable modules over A� via M are determined explicitly.

Theorem 14 (Hida-Miyachi). For K ∈ {D,S,X,P} and any λ ∈ Λ,

K(λ) ∼= M ⊗A� K(λ	).

Remark 15. The proof of this result will given in the appendix, thanks to
Akihiko Hida’s permission. At the level of combinatorics of indices λ for
modules S(λ),D(λ),X(λ), P (λ) the result above is identical with [CT03] up
to replacing p in Chuang-Tan by e in Hida-Miyachi.



MORITA EQUIVALENCES 17

For a finite group H with |H|−1 ∈ k, put

eH :=
1
|H|

∑
h∈H

h.

Let B (resp. BL) be a standard Borel subgroup of G (resp. L).
Put B := eBAeB and B� := eBL

A�eBL
. Then, by the origin of Iwahori-

Hecke algebras we can regard B (resp. B�) as a block of Hk,q(Sr) (resp.
(Hk,q(Se)⊗w � k[Sw]) ⊗k Hk,q(S|γ|)).

By applying Schur functors, we obtain the Hecke algebra version of The-
orem 14 (cf [Tur05, Theorem 78]):

Corollary 16. Y λ ∼= N ⊗B� Y (λ)�
for any λ ∈ Λ where Y λ = eBXe(λ),

Y ν = eBL
X(ν) and N = eBMeBL

.

Remark 17. Here, we label Young modules according to Dipper-James’s
convention. Namely, Y λ is a unique indecomposable direct summand of the
q-permutation module IndHk,q(Sr)

Hk,q(Sλ)(ind) such that Y λ contains Sλ as a unique

submodule where Sλ is Dipper-James’s q-Specht module and ind is the index
representation.

5.3. Proof of main theorem : initial step. In this subsection, our as-
sumptions on k and q are as in the statement of Theorem 2: q ∈ F×

� and
� > w, or q ∈ C, i.e. we include the cases ch(k) = 0 or e = ch(k) > w. Let
γ be the Rouquier e-core with respect to w > 0. Put r = ew + |γ|. We de-
note by Aw (resp. Aw) the Rouquier block of Hk,q(Sr) (resp. Sk,q(r)).
We denote B0(Hk,q(Se))�w �k Bγ (resp. B0(Sk,q(e))�w �k Bγ) by Bw

(resp. Bw) where Bγ (resp. Bγ) is the defect zero simple block algebra
of Hk,q(S|γ|) (resp. Sk,q(|γ|)) corresponding to the e-core γ. Sw acts on
both Bw and Bw by permuting the Hk,q(Se)-components and the Sk,q(e)-
components respectively. We denote Bw � k[Sw] (resp. Bw � k[Sw]) by
Cw (resp. Cw). Similar to the case GLe(Fq) � Sw, by Clifford theory
we can construct a standard Cw-module ∆(λ) for an e-multipartition λ:

∆(λ) := IndBw�Sw
Bw�Sm

(
�e

i=1(∆(i, 1e−i)�mi) ⊗k Sλ(i)

)
where mi = |λ(i)| for

i = 1, . . . , e.
By replacing ∆ by any K ∈ {L,∇, P, I, T}, we can construct K(λ).
Now, we unify the results in [CT03] on Schur algebras, Hida-Miyachi

[Miy01] on finite general linear groups and a new result in characteristic
zero into q-Schur algebras as follows:

Theorem 18. There exists an (Aw, Cw)-bimodule Mw such that
(1) Mw is a direct summand of Aw ⊗Bw Cw,
(2) Mw ⊗Cw − is an equivalence between Aw-mod and Cw-mod.
(3) Y λ ∼= Mw ⊗Cw Y (λ)�

for any λ such that AwSλ �= 0.
So, we have an equivalence G : Aw-mod → Cw-mod such that G(K(λ)) ∼=
K((λ)	) for any K ∈ {L,∆,∇, P, I, T} and any λ so that Aw · ∆(λ) �= 0.
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Proof. The case ch(k) = e > 0 is already treated in [CT03], and the state-
ment is true. Next we look at the case ch(k) > e > 0. However, this is
nothing but Theorem 13 and Corollary 16.

The only remaining claim is to prove the statement for the case ch(k) = 0.
We leave the proof of the existence of Mw in characteristic zero to Section
6. There, by considering a modular system (k,O, F) where ch(k) = 0, O is a
complete discrete valuation ring with maximal ideal π, O/(π) ∼= F, ch(F) >
0, and q ∈ k and q = q + (π) ∈ F both have order e > 0, we shall realize
Mw as a lifting of a (HF,q(Sr),HF,q(Se) � Sw � HF,q(S|γ|))-bimodule Mw

F

which satisfies statements (1), (2) and (3). Since Aw, Bw and Cw are liftings
of the corresponding algebras over F, statement (2) is clear. By statement
(1), we can ensure that Mw sends Young modules to Young modules. So,
statement (3) follows from a simple chasing of characters, i.e. the weights
(partitions) λ. �

Define Λw to be the set of partitions whose e-weight is w and e-core is
Rouquier with respect to w. Similarly, define Λ′

w for e′.
Define ι to be the embedding MP(e,w) into MP(e′, w) by ι(ν)i+e′−e :=

(ν)i for i = 1, . . . , e and (ν)j = ∅ for j ≤ e′ − e.
Next, we define an embedding ι of Λw into Λ′

w by ι(λ) := ν where the
e′-quotient of ν is ι(λ).

From now on, we suppose that e′ is the quantum characteristic of q′ ·1F�
in

k so that e′ ≥ e, γ′ is a Rouquier e′-core with respect to w. Put r′ = e′w+|γ′|.

Lemma 19. (1) Let f be an idempotent of C ′
w such that if λ(i) = ∅ for

all i = 1, . . . , e′ − e, then fL′(λ) �= 0, otherwise fL′(λ) = 0. Then,
fC ′

wf is Morita equivalent to Cw.
(2) There exists an idempotent ξ of A′

w such that ξL′(ι(λ)) �= 0 for any
λ ∈ Λw and ξA′

wξ is Morita equivalent to Aw.

Proof. Recall the definition of C ′
w = B′

w � Sw
∼= (B0(Sk,q′(e′)) � Sw) � Bγ .

Put B′ (resp. B) to be B0(Sk,q′(e′)) (resp. B0(Sk,q(e)).) Take an idempotent
ξ of B′ such that ξL′(i, 1e′−i) = 0 for any i ≤ e′ − e and ξL′(j, 1e′−j) �= 0
for any j > e′ − e. Then, ξB′ξ is Morita equivalent to B. Indeed, we can
show this by the fact that the both B and B′ are Brauer line tree algebras
with no exceptional vertex. Let f := ξ � · · · � ξ � 1γ be the idempotent of
B�w � Bγ . So, fB′

wf is Morita equivalent to Bw. Now, by taking wreath
products, we know that (1) is clear.

By Theorem 18, we have an idempotent j of C ′
w corresponding to ξ so

that j ·G(L(ι(λ))) �= 0 for any λ. By definition of ι we know that for µ ∈ Λw,
µ(i) = 0 for all 0 ≤ i ≤ e′ − e− 1 iff µ = ι(λ) for some λ ∈ Λ. So, this means
that j satisfies the condition of (1). �

Define B,B′, B,B′,Λ,Λ′,Λ,Λ′ as in Section 2, taking α to be 0.
Let f ′′ to be an idempotent of A′

w corresponding to
⊕

Λ∈Λ P (ι(λ)).
By an argument similar to Corollary 11, one can show the following:
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Lemma 20. Suppose B = Aw. Then, there exists an equivalence

H : f ′′A′
wf ′′-mod → B′-mod

such that

H(f ′′∆′(ι(µ))) ∼= ∆′(µ+) and H(f ′′L′(ι(µ))) ∼= L′(µ+) for any µ ∈ Λ.

Proposition 21. Suppose that Aw = B. There exists an equivalence F :
B-mod → B′-mod such that F(∆(λ)) ∼= ∆′(λ+) and F(L(λ)) ∼= L′(λ+) for
any λ ∈ Λ. Namely, the main theorem is true for Rouquier blocks.

Proof. By Lemma 19, we know that there exists an idempotent ξ of A′
w such

that ξL′(λ+) �= 0 for any λ ∈ Λ and ξA′
wξ is Morita equivalent to Aw. Let

f be the idempotent of Aw such that fAwf is a subalgebra of Sk,q(d, r), i.e.
f kills L(µ) for l(µ) > d and fL(λ) �= 0 for l(λ) ≤ d. Similarly, we can find
that the property of an idempotent f ′′ of A′

w defined above is that f ′′A′
wf ′′

is a subalgebra of Sk,q(d, r′), i.e. f ′′ kills L′(µ) for l(µ) > d and f ′′L′(λ) �= 0
for l(λ) ≤ d and ξ = f ′′ + ξ′ for some idempotent ξ′. Let T be a functor
from fAwf -mod to f ′′A′

wf ′′-mod such that T(f∆(λ)) ∼= f ′′∆′(ι(λ)), i.e. T
is a restriction of the equivalence of Lemma 19.

Since max{l(λ) |λ ∈ Λ} = max{l(λ+) |λ ∈ Λ} = d by Theorem 18 and by
definition of ι, we know that fL(λ) �= 0 iff f ′L′(ι(λ)) �= 0 , and we know that
the dominance order of Λ is preserved by the ι map and the dominance order
of Λ′ is preserved by the + map. Therefore, the composition of equivalences
T and H in Lemma 20 is an equivalence between B-mod and B′-mod, which
satisfies the conditions on the images of ∆-sections. �

6. Lifting Morita equivalences

In this section we supply a missing argument for the proof of Theorem 18.
We will choose an appropriate modular system to work in with the help of
the following lemmas.

Let ζn = exp(2πi/n) ∈ C, and denote by Φn(x) ∈ Z[x] the n-th cyclotomic
polynomial.

Lemma 22. Suppose that a ∈ Z[ζe], a �= 0 and e > 1. Then, there exists a
prime number � and a homomorphism ·̄ : Z[ζe] → F� such that q := ζe is a
primitive e-th root of unity in F� and so that a �= 0.

Proof. Choose f(x) ∈ Z[x] such that f(ζe) = a. Then, a �= 0 implies
Φe(x) � f(x). Since Φe(x) is monic, there exist Q(x) and r(x) �= 0 in Z[x] so
that

(1) deg(r) < deg(Φe)
(2) f(x) = Q(x)Φe(x) + r(x).

By Dirichlet’s Theorem there exist infinitely many prime numbers � > 0
such that e | � − 1. Choose one such � so that r(x) �= 0. We complete the
proof of the lemma by showing that there exists a primitive e-th root of
unity q in F� satisfying f(q) �= 0. If not, (x − q) divides f(x) in F�[x] for
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all primitive e-th roots of unity q. Hence, Φe(x) divides f(x) in F�[x]. So,
by (2) above, we deduce that Φe(x) divides r(x) �= 0 in F�[x], contradicting
(1). �
Lemma 23. Let Γ be a Z[ζe]-algebra, free and of finite rank over Z[ζe], and
let X be a Γ-lattice of finite rank. There exists a prime � and a homomor-
phism ·̄ : Z[ζe] → F� such that q := ζe is a primitive e-root of unity in F�

and

dim EndQ(ζe)⊗Z[ζe]Γ(Q(ζe) ⊗Z[ζe] X) = dim EndF�⊗Z[ζe]Γ(F� ⊗Z[ζe] X).

Proof. Let ·̄ : Z[ζe] → F� be a homomorphism, and for R ∈ {Q(ζe), Z[ζe], F�}
put RX = R⊗Z[ζe]X and RΓ = R⊗Z[ζe]Γ. Let I be a finite set of generators
for Γ as a Z[ζn]-algebra (we could for example take I to be a basis). Then
EndR Γ(RX) is the kernel of the R-homomorphism fR of EndR(RX) into⊕

g∈I EndR(RX) defined by

fR(x)g := x ◦ g − g ◦ x ∈ EndR(RX).

Let Mf be the matrix representing fZ[ζe] with respect to some chosen Z[ζe]-
bases. Let a ∈ Z[ζe] be the product of all nonzero minors of Mf . By
Lemma 22 we may choose ·̄ : Z[ζe] → F� such that ζe is a primitive e-root of
unity in F� and a �= 0. Then the ranks of Mf as a matrix over Q(ζe) and over
F� are the same, and it follows that EndF�Γ(F�X) and EndQ(ζe)Γ(Q(ζe)X)
have the same dimension. �

We’re ready to return to Theorem 18. Let γ be a Rouquier e-core with
respect to w. Put r = ew + |γ|. For any domain R and any ζ ∈ R× let
AR,ζ = HR,ζ(Sr), BR,ζ = HR,ζ(S(ew ,γ)) and CR,ζ = BR,ζ �R[Sw]. Further,
let ΓR,ζ = AR,ζ ⊗R CR,ζ , and let XR,ζ be the ΓR,ζ-module AR,ζ ⊗BR,ζ

CR,ζ .
Now consider in particular Γ = ΓZ[ζe],ζe

and X = XZ[ζe],ζe
, and choose a

prime � and a homomorphism ·̄ : Z[ζe] → F� according to Lemma 23. Note
that X is free over Z[ζe] since A = AZ[ζe],ζe

and C = CZ[ζe],ζe
are free over

B = BZ[ζe],ζe
.

Let O be the completion of Z[ζe] at the kernel of ·̄, so that O is a
complete discrete valuation ring. By Lemma 23, the natural embedding
F� EndΓ(X) ↪→ EndΓF�,q

(XF�,q) must be an isomorphism. We saw in the
proof of Theorem 18 that there exists a summand MF�,q of XF�,q with certain
good properties. A projection onto this summand determines an idempotent
of EndΓF�,q

(XF�,q) which we may lift to an idempotent of EndΓ(X). We ob-
tain in this way a summand M of X, with the property that F�M ∼= MF�,q.
Passing now to the quotient field k of O, we obtain a Γk,ζe-module kM that
settles Theorem 18 in the characteristic 0 case.

We end this section by remarking that the lifting technique we have em-
ployed is applicable in some other situations involving ‘Rouquier-like’ blocks
in Hecke algebras of other types. The set up is as follows:
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Let W be a finite Weyl group. Let WL be a parabolic subgroup of W .
Take a subgroup N ⊂ NW (WL)/WL.

Let AR,ζ = HR,ζ(W ), BR,ζ = HR,ζ(WL) and CR,ζ = BR,ζ �R[N ]. Exactly
as above we let ΓR,z = AR,ζ ⊗R CR,ζ , and let XR,ζ be the ΓR,ζ-module
AR,ζ ⊗BR,ζ

CR,ζ . Recall that the classification of blocks of AR,ζ , where R
is a field, only depends on the multiplicative order of ζ provided that the
characteristic of R is either 0 or sufficiently large ( [FS82], [FS89], [DJ87],
[DJ92], [GR97]).

Proposition 24. We fix e. Let A be a block of AQ(ζ2e),ζe
and C be a block

of CQ(ζ2e),ζe
. Suppose that for all sufficiently large primes � there exist a

primitive e-th root of unity q in F� and an (AF�,q, CF�,q) -bimodule M� such
that

(1) M� is a direct summand of XF�,q

(2) M� induces a Morita equivalence between the blocks of AF�,q and CF�,q

that correspond to A and C.
Then, there exists a direct summand M0 of XQ(ζ2e),ζe

inducing a Morita
equivalence between A and C.

Example 25. Let W (Xr) be the finite Weyl group of type Xr. Put ζ :=√
−1, a primitive 4-th root of unity. Put AR,ζ = HR,ζ(W (E6)), BR,ζ =

HR,ζ(W (D4)), and CR,ζ = HR,ζ,1(W (F4)) = BR,ζ � R[S3] where the pa-
rameters of HR,ζ,1(W (F4)) are ζ and 1. Define ΓR,ζ and XR,ζ as above.
Suppose that q · 1F�

∈ F�, � | q2 + 1, and � is sufficiently large. 2 Then, by
Geck’s result on Schur index [Gec03] and the equivalence on blocks for finite
Chevalley groups E6(q) and D4(q)�S3 (D4(q) with a triality automorphism
group) in [Miy08] there exists an (AF�,q, CF�,q)-bimodule M� such that

(1) M� is a direct summand of XF�,q.
(2) M� induces a Morita equivalence between the prinicipal blocks of

AF�,q and CF�,q.
So, by Proposition 24, we have the corresponding result in characteristic
zero.

7. Quantized enveloping algebras

7.1. Guessing an analogue of the main theorem. The main theorem
suggests an analogous statement for quantized enveloping algebras. Before
stating it we introduce the necessary notation, following Jantzen [Jan03].

Let g be a reductive complex Lie algebra. Let k be a commutative ring
and q an invertible element of k. Let Uq,k = UA ⊗A k, where A = Z[v, v−1]
and UA is the divided powers integral form of the quantized enveloping
algebra of g.

2 Here, the assumption ’� : sufficiently large’ is used to make sure that F� is a splitting
field for the principal �-blocks of corresponding finite Chevalley groups E6(q) and D4(q).
So, we require [Gec03]. The claimed equivalence in finite Chevalley groups does always
exist in characteristic � > 3 such that � | q2 + 1 by some extension of F�.
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Assume that k is a field of characteristic 0, and q is a primitive e-th root
of unity, where e is odd and 3 doesn’t divide e if g has a component of type
G2. Let Uq,k-mod be the category of finite-dimensional Uq,k-modules of type
I (see [Jan03, p.523] for definition).

For each dominant weight λ ∈ X(T )+ there is a simple Uq,k module Lq(λ)
of type I with highest weight λ, which is unique up to isomorphism. Every
object of Uq,k-mod has a composition series with factors of the form Lq(λ).

Let We be the affine Weyl group, acting on X(T ) ⊗Z R. Let

C̄e = {λ ∈ X(T ) ⊗Z R | 0 ≤ 〈λ + ρ, α∨〉 ≤ e for all α ∈ R+}
be the closure of the standard e-alcove (see [Jan03, p.233]); it is a funda-
mental domain for this action.

Let q′ be a primitive e′-th root of unity in k, and let Uq′,k be the corre-
sponding quantum group in obvious fashion. We place the same restrictions
on e′ as we do on e above, and further we assume e′ ≥ e.

There is an isomorphism f : We → We′ sending sβ,ne to sβ,ne′ for all
β ∈ R and n ∈ Z. Here, we use the notation sβ,r of [Jan03, p.232, 6.1].
Note that the actions of w ∈ We and f(w) ∈ We′ on X(T ) are different!

The inclusion of C̄e into C̄e′ sends some walls of C̄e into the interior of
C̄e′ , so that affine Weyl group stabilizers are not preserved. To ‘correct’ this
consider a injective map ι : C̄e ↪→ C̄e′ with the property that for all λ ∈ C̄e

and α ∈ R+, we have 〈λ + ρ, α∨〉 = 〈ι(λ) + ρ, α∨〉 unless 〈λ + ρ, α∨〉 = e, in
which case 〈ι(λ) + ρ, α∨〉 = e′. Such a map always exists, and is unique if G
is semisimple. Moreover we can always choose it to be the identity map on
the interior of C̄e.

Lemma 26. Let λ ∈ X(T ) ∩ C̄e and w ∈ We. Then w · λ ∈ X(T )+ if and
only if f(w) · ι(λ) ∈ X(T )+.

Guess 27. There is a full k-linear embedding

F : Uq,k-mod → Uq′,k-mod

such that for all λ ∈ X(T ) ∩ C̄e and w ∈ We with w · λ ∈ X(T )+, we have

F (Lq(w · λ)) ∼= Lq′(f(w) · ι(λ)).

The image of F is a sum of blocks of Uq′,k-mod.

7.2. The case gld. The aim of this section is to confirm that Guess 27 is
correct for g = gld.

7.2.1. Weights, abaci and affine Weyl group actions. We begin by making
a link, in the gld case, between the map w �→ f(w) appearing above and the
James-Mathas operation λ �→ λ+. To this end we describe the dot actions
of the affine Weyl group on weights in terms of abaci. We keep the notation
in 7.1, taking the usual presentation

X(T )+ = {λ = λ1ε1 + . . . + λdεd ∈ X(T ) | λ1 ≥ . . . ≥ λd}
for the set of dominant weights for gld.
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The weights lying in the closure of the standard e-alcove are

X(T ) ∩ C̄e = {λ ∈ X(T ) | 0 ≤ (λi + d − i) − (λj + d− j) ≤ e for all i < j}.

Here ρ is usually taken to be half the sum of the positive weights. But it
does no harm to work with a normalized version that has the same inner
products with roots; so we have taken ρ = (d− 1)ε1 + (d− 2)ε2 + · · ·+ 0εd.

We fix a ρ-shifted identification of X(T ) with Zd, sending λ = λ1ε1 +
· · · + λdεd ∈ X(T ) to (λ1 + d − 1, λ2 + d − 2, . . . , λd) ∈ Zd. This leads to
an identification C̄e

∼→ {β ∈ Zd | β1 ≥ . . . ≥ βd and β1 − βd ≤ e}. In this
picture the action of the affine Weyl group We

∼= Zd−1 � Sd on X(T ) = Zd

is as follows:

σ.(β1, . . . , βd) = (βσ(1), . . . , βσ(d))

(m1, . . . ,md−1).(β1, . . . , βd) = (β1 + em1, β2 + em2 − em1, . . . , βd − emd−1)

where σ ∈ Sn, (m1, . . . ,md−1) ∈ Zd−1 and (β1, . . . , βd) ∈ Zd. This is
conveniently represented using James’s abacus, with e runners and with d
beads labelled by 1, . . . , n. The action of Sd is given by permutating the
labels, and that of Zd−1 by moving beads up and down runners. From
this description the following lemma, making the combinatorial connection
between Theorem 2 and Guess 27, is immediate. We say that a weight
λ ∈ X(T ) is polynomial if λ is dominant and λd ≥ 0, i.e. if (λ1, . . . , λd) is a
partition.

Lemma 28. Let λ ∈ X(T ) ∩ C̄e and w ∈ We, and suppose that w.λ =
µ− (me− λd)(1d) for some polynomial weight µ and some integer m. Then
f(w).ι(λ) = µ+,e − (me′ − λd)(1d).

7.2.2. Proof for gld. Here, we shall confirm Guess 27 for g = gld by appealing
to Theorem 2. We denote by Pe

0 the category of polynomial representations
over Uq,k(gld), i.e. the full subcategory of Uq,k(gld)-mod consisting of mod-
ules with composition factors of the form Lq(λ) where λ is a polynomial
weight.

Tensoring with the representation det−m = L(−m, . . . ,−m) induces a
self-equivalence of Uq,k(gld)-mod sending L(λ) to L(λ − m(1d)); denote by
Pe

m the essential image of Pe
0 under this equivalence. Then we have an

exhaustive filtration Pe
0 ⊂ Pe

1 ⊂ . . . of Uq,k(gld)-mod.
It is known that Pe

0 is equivalent to
⊕∞

r=0 Sk,q2(d, r)-mod, in a way pre-
serving labels on simple modules. Hence by the main theorem 2 there exists
a full embedding G0 : Pe

0 ↪→ Pe′
0 sending Lq(µ) to Lq′(µ+) for all polynomial

weights µ.
We get for each m ≥ 0 a corresponding embedding Gm : Pe

me → Pe′
me′ ,

such that Gm(L(µ−me(1d))) ∼= L(µ+−me′(1d)) for any polynomial weight
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µ. Since µ+ − me′(1d) = (µ − me(1d))+, we have a commutative diagram:

Gm : Pe
me ↪→ Pe′

me′
∪ ∪

Gm−1 : Pe
(m−1)e ↪→ Pe′

(m−1)e′ .

By taking the limit m → ∞, we have a full embedding

G := lim
m→∞

Gm : Uq,k(gld)-mod =
∞⋃

m=0

Pe
me → Uq′,k(gld)-mod =

∞⋃
m=0

Pe′
me′

This isn’t quite the functor we want; a slight adjustment is required. By
the linkage principle, Uq,k(gld)-mod = ⊕λ∈C̄∩X(T )MWe.λ, where MWe.λ is
the full subcategory consisting of modules with composition factors of the
form Lq(w.λ). Let Z be the self equivalence of Uq,k(gld)-mod whose restric-
tion to MWe.λ is tensoring with detλd . One can define a self equivalence Z ′

of Uq′,k(gld)-mod analogously.
Let F := Z ′GZ−1 : Uq,k(gld)-mod → Uq′,k(gld)-mod. Then for each

λ ∈ X(T ) ∩ C̄e, the functor F restricts to an equivalence MWe.λ
∼→ MWe′ .λ

sending Lq(µ−(me−λd)(1d)) to Lq′(µ+−(me′−λd)(1d)) for any polynomial
weight µ. By Lemma 28, this implies that F (Lq(w.λ)) ∼= Lq′(f(w).ι(λ)), as
desired.
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