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1. Preliminaries

1.1. Multivariable functions. First of all note that if f : X ⊂ Rn →
Rm is a multivariable function, it corresponds to the data of m functions

fi : Rn → R

called coordinate functions of f and such that:

f(x) = f(x1, . . . , xn) = (f1(x), . . . , fm(x)).

When m = 1, the function f is called a scalar-valued function. (In
particular, the coordinate functions of f are scalar-valued functions).

1.2. Topology in Rn
.

1.1. Definition.

(1) Let a ∈ Rn, and r ∈ R≥0. Define B(a, r) = {x ∈ Rn|||x − a|| <
r} ⊂ Rn, called the open ball (centered at a with radius r).
An open set of Rn is a union of open balls. A neighbourhood

of a is a set containing an open set which in turn contains the
point a.

(2) A subset X ⊂ Rn is called closed if it is the complement in Rn of
an open set and it is said compact if it is closed and bounded,
that is, there exist a non-negative real number M such that for
any x ∈ X, ||x|| < M . We denote the ∂X the set of elements
x ∈ X which do not belong to any neighborhood of X and call
it the boundary of X. The point of X which are not in ∂X are
called interior points.

2. Limits and Continuity.

2.1. Definition. Let f : X ⊂ Rn → Rm be a function with coordinate
functions fi and a = (a1, . . . , an) ∈ X. We write limx→a f(x) = L =
(L1, . . . , Lm) and say ”the limit of f(x), as x approaches a, equals

L” if we can make the values of f arbitrarily close to L by taking x to
be sufficiently close to a but not equal to a. An equivalent definition is
to say that:
”For any � > 0, there exists a δ > 0 such that

If ||x− a|| < δ, then ||f(x)− L|| < �”.

(Note that ||x−a|| =
�

(x1 − a1)2 + · · ·+ (xn − an)2 is the norm of the
vector x-a in Rn while ||f(x)−L|| =

�
(f1(x)− L1)2 + · · ·+ (fm(x)− Lm)2

is the norm of the vector f(x)− L in Rm.
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Note that if the limit exists it is unique. In particular, to prove that a
function f has NO limit at some point a, it is common to compute the
limit of f by approaching a with different paths and to show that you
get different limits.

2.2. Theorem. Let f : X ⊂ Rn → Rm be a function with coordinate
functions fi and a = (a1, . . . , an) ∈ X. The function f(x) has for limit
L = (L1, . . . , Lm) as x approaches a if and only if the coordinate function
fi(x) has for limit Li as x approaches a for any i = 1, . . . ,m.

2.3. Theorem. Laws for Limits

(1) Sum Law for multivariable functions. The limit of a sum is the
sum of the limits.

(2) Difference Law for multivariable functions. The limit of a differ-
ence is the difference of the limits.

(3) Constant Multiple Law for multivariable functions. The limit of
a constant times a function is the constant times the limit of the
function.

(4) Product Law for scalar-valued functions. The limit of a product
is the product of the limits.

(5) Quotient Law for scalar-valued functions. The limit of a quo-
tient is the quotient of the limits (provided that the limit of the
denominator is not 0).

2.4. Theorem. The Squeeze Theorem

If g(x) ≤ f(x) ≤ h(x) and limx→a g(x) = L = limx→a h(x) then
limx→a f(x) = L.

2.5. Definition. A multivariable function f is continuous at a if

lim
x→a

f(x) = f(a).

For example,

(1) Polynomials in several variables, linear transformations are con-
tinuous everywhere.

(2) The sum F + G of two functions F,G : X ⊂ Rn → Rm that are
continuous at a ∈ X is continuous at a.

(3) For all k ∈ R, the scalar multiple kF of a function F : X ⊂ Rn →
Rm that is continuous at a ∈ X is continuous at a.

(4) The product fg and the quotient f/g (g �= 0) of two scalar-valued
functions f, g : X ⊂ Rn → R that are continuous at a ∈ X are
continuous at a.

(5) F : X ⊂ Rn → Rm is continuous at a ∈ X if and only if its
coordinate functions Fi : X ⊂ Rn → R, i = 1, . . . ,m are all
continuous at a.

(6) If g is continuous at a and f continuous at g(a) then f ◦ g(x) =
f(g(x)) is continuous at a.
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3. Derivatives of multivariable functions

3.1. Definition. Let f : X ⊂ Rn → R be a scalar-valued function.
The partial derivative of f(x1, . . . , xn) with respect to xi is the
(ordinary) derivative of the function

x �→ f(x1, . . . , xi−1, x, xi+1, . . . , xn)

at xi. That is,

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h

It is denoted ∂f
∂xi

(x) or fxi(x) or Dfxi(x).

3.1. Differentiability of multivariable functions.

3.2. Definition.

(1) Let f : X ⊂ Rn → Rm be a function defined on an open X of Rn,
with coordinate functions fi, j = 1, . . . ,m and let a ∈ X.

We denote ∇(f) or Df the m× n matrix with coefficients

(
∂fi

∂xj
)i=1,...,m;j=1,...,n.

This matrix is called the Jacobian matrix of f . When m = 1,
we get a row vector and we call it gradient. We can also evaluate
the matrix at the point a, denoted

∇(f)(a) = (
∂fi

∂xj
(a))i=1,...,m;j=1,...,n.

(2) We say that f is differentiable at a if all the partial derivatives
fj,xi(a) exist and

lim
x→a

||f(x)− h(x)||
||x− a|| = 0,

with h : X ⊂ Rn → Rm the function defined by

h(x) = f(a) +∇(f)(a).(x− a),

where we consider (x− a) as a vector column and ”.” means the
product of matrices.

In the case m = 1, we can rewrite

h(x1, . . . , xn) = f(a) + fx1(a)(x1 − a1) + · · ·+ fxn(a)(xn − an).

If f is differentiable at all points of its domain, then we simply say
that f is differentiable.

In the case where n = 2 and m = 1, then z = f(x, y) is the equation
of a surface in R3. Moreover, if f is differentiable at (a, b), then the
equation z = h(x, y) defines the tangent plane to the graph of f at

the point (a, b, f(a, b)).

As with single variable functions, we have the following result:
3



3.3. Theorem. If a multivariable function is differentiable at some point,
then it is continuous at this same point.

In general, it can be quite difficult to check differentiability using the
previous definition but we have the following criterion:

3.4. Theorem. If all partial derivatives of a multivariable function exist
and are continuous on a neighborhood of a point, then the function is
differentiable at this point.

3.2. Properties of derivatives.

(1) D(λ.f +µ.g) = λ.Df +µ.Dg (f ,g, multivariable functions, λ, µ ∈
R).

(2) Dfg(a) = g(a)Df(a) + f(a)Dg(a) (f, g scalar-valued functions,
a ∈ R).

(3) D
f
g (a) = g(a)Df(a)−f(a)Dg(a)

g(a)2 (f, g scalar-valued functions, a ∈ R
such that g(a) �= 0).

(Note that the two last equalities are equalities of n-uples.)

3.3. Partial derivatives of higher orders.

3.5. Definition.

(1) If f : X ⊂ Rn → R is a (scalar-valued) function of n variables, the
kth-order partial derivative with respect to the variables

xi1 , xi2 , . . . , xik (in that order),where i1, i2, . . . , ik are integers in
the set {1, 2, . . . , n} (possibly repeated), is the iterated derivative

∂
k
f

xi1 . . . xik

:=
∂

xik

. . .
∂

xi1

f(x1, . . . , xn)

Equivalent (and frequently more manageable) notation for this
kth-order partial is

fxi1xi2 ...xik
(x1, x2, . . . , xn).

(2) Assume X is an open subspace of Rn. We say that f is of class
C

k if the partial derivatives of f up to (and including) order at
least k exist and are continuous on X. If f is of class Ck for any
k, we say that f is smooth or of class C

∞.

3.6. Theorem. Let f : X ⊂ Rn → R be a scalar-valued function of
class C

k . Then the order in which we calculate any kth-order partial
derivative does not matter.

3.4. Chain Rule.

3.7. Theorem. Suppose X ⊂ Rm and T ⊂ Rn are open and f : X → Rp

and g : T → Rm are multivariable functions such that the range of g
is contained in X. If g is differentiable at a and f is differentiable at
g(a) = b, then the function f ◦ g is differentiable at a and we have

Df ◦ g(a) = Df(b).Dg(a)
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3.5. Taylor Theorem. Let f : X ⊂ Rn → R be a scalar-valued function
of class C

k+1 at a ∈ Rn. Let x ∈ Rn. Set h = (h1, . . . , hn) = (x1 −
a1, . . . , xn − an). There exists an element ξ on the line segment joining a

and x such that

f(x) = f(a)+
n�

i=1

fxi(a)hi+
1

2!

n�

i,j=1

fxixj(a)hihj+· · ·+ 1

k!

n�

i1,...,ik=1

fxi1 ...xik
(a)hi1 . . . hik

+
1

(k + 1)!

n�

i1,...,ik+1=1

fxi1 ...xik+1
(a)hi1 . . . hik+1

.

The n × n matrix H(f) whose (i, j)-th entry is fxixj(x) is called the
Hessian matrix associated to f . We will denote Hf(a) the real n× n

matrix whose (i, j)-th entry is fxixj(a). We consider h = (h1, . . . , hn) as a
row vector and write hT for the transposed of h (this is a column vector).
We can write the second Taylor polynomial in n variables as follows:

P2(h) = f(a) +D(f)(a).hT +
1

2
Q(h)

withQ(h) = h.H(f)(a).hT (all dots in this formula are matrices products;
Q(h) is called a quadratic form)

3.6. Extrema of scalar-valued functions.

3.8. Definition. (1) A scalar valued function has an absolute min-

imum (resp. maximum) at c if f(c) ≥ f(x) (resp. f(c) ≤ f(x))
for any x in the domain of f .

(2) the function f has a local minimum (resp. maximum) at c if
f(c) ≥ f(x) (resp. f(c) ≤ f(x)) when x belongs to a neighbor-
hood of c. We say that a is a local extremum if it is either a
local max or min.

3.9. Theorem. Let f : X ⊂ Rn → R be a scalar-valued function differ-
entiable on some neighborhood of a ∈ X. If a is a local extremum for f,
then Df(a) is the zero row vector.

3.10. Definition. We call a ∈ X a critical point of f if Df(a) = 0. As
in the case of single variable functions, a critical point is not necessarily
a local extremum. When this happens we say that a is a saddle point.
That is, a saddle point is a point a such that Df(a) = 0 but a is not a
local extremum.

3.11. Theorem. Let f : X ⊂ Rn → R be a scalar-valued function, let a
be a critical point and assume f is C2 on a neighborhood U of a. We set
as before Q(h) = h.H(f)(a).hT .

(1) If Q(h) > 0 for any h ∈ U (we say that Q(h) is definite posi-

tive), then a is a local minimum.
(2) If Q(h) < 0 for any h ∈ U (we say that Q(h) is definite nega-

tive), then a is a local maximum.
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(3) If det(Hf(a)) �= 0 and Q(h) is neither definite positive nor defi-
nite negative, then a is a saddle point.

Note that in practise it is not so easy to determine if Q(h) is definite
positive /negative. Therefore the importance of the next result:

3.7. Second derivative test for local extrema. Let f : X ⊂ Rn → R
be a scalar-valued function, let a be a critical point. Assume that f is
C

2 on a neighborhood U of a and det(H(f)(a)) �= 0. Let also denote aij

the (i, j)-th entry of the Hessian matrix.
We set dk the determinant of the submatrix (aij)i,j=1,...k of Hf(a) (such

that for example d1 = fx1(a) and dn = det(Hf(a))).

(1) If dk > 0 for any k, then f has a local minimum at a.
(2) If dk > 0 for even k and dk < 0 for odd k, then f has a local

maximum at a.
(3) Otherwise, a is a saddle point.

3.8. The Extreme Value Theorem for scalar-valued functions.

3.12. Theorem. EVT for scalar-valued functions Let f : X ⊂ Rn →
R be a scalar-valued function such that X is compact and f is continuous
on X.

Then f has both a global minimum and global maximum on X, that is
there exist amin, amax ∈ X such that

amin ≤ f(x) ≤ amax.

The points amin and amax can be found among the following points

(1) The set of critical points of f on X.
(2) The global extrema of the restriction of f to the boundary of X

f |∂X : ∂X → R,

x �→ f(x).

(the global extrema of such function (in most cases considered,
f |∂X will be a single variable function) are to be found among
the critical points and the endpoints of ∂X: see the summary of
Calculus 1:”Algorithm to find Global extrema”).

4. Integration of multivariable functions

4.1. Double integrals.

4.1. Definition. Let R = [a, b] × [c, d] be a rectangle in the plane. A
partition of order n {Ri,j} of R is the collection of the following datas:

(1) {xi} : a = x0 < x1 < · · · < xn = b.
(2) {yi} : c = y0 < y1 < · · · < yn = d.

Set ∆xi = xi − xi−1 and ∆yi = yi − yi−1 for any i = 1, . . . , n and
Ri,j = [xi−1, xi]× [yj−1, yj] the rectangle with width ∆xi and height ∆yj.
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4.2. Definition. Let f : R ⊂ R2 → R. For any integer n, let {Ri,j}
be a partition of R of order n. For any i, j, let Pi,j be a point in the
subrectangle Ri,j. The double integral of f on R is defined as

lim
n→∞

n�

i=1

f(Pi,j)∆xi∆yj

provided the limit exists in which case we say that f is integrable

and we write
� b

a

� d

c f(x, y)dxdy or
� �

R f(x, y)dxdy this limit. The sum�n
i=1 f(Pi,j)∆xi∆yj is called Riemann sum (of order n).

Note that if f(x, y) ≥ 0 then the double integral of f on R is the
volume of the area of R3 delimited by the surface z = f(x, y) above R.

4.3. Theorem. If f is continuous on R then it is integrable on R. More
generally, if f is bounded on R and the set of points where the function
is discontinuous has zero area (for example a finite set of points) then f

is integrable.

4.2. Properties of the double integral. let f, g : R ⊂ R2 → Rintegrable
on R and let λ, µ ∈ R.

(1)
� �

R λ.f(x, y)+µg(x, y)dxdy = λ
� �

R f(x, y)dxdy+µ
� �

R g(x, y)dxdy
(Linearity).

(2) If for any (x, y) ∈ R, f(x, y) ≤ g(x, y), then
� �

R f(x, y)dxdy ≤� �
R g(x, y)dxdy.

(3) The function |f | is integrable and we have |
� �

R f(x, y)dxdy| ≤� �
R |f(x, y)|dxdy.

4.3. Iterated integral. Let f : R ⊂ R2 → R, with R a rectangle
[a, b] × [c, d]. We fix y and consider f(x, y) as a single variable function

that we assume to be continuous on [a, b]. then F (y) =
� b

a f(x, y)dx is a
function of y. Assuming that this function F is continuous on [c, d], then

� d

c

F (y)dy =

� d

c

(

� b

a

f(x, y)dx)dy

is well-defined and called an iterated integral. with similar assumptions
of continuity as above and replacing x by y, we can also integrate first in
y, then in x: � b

a

(

� d

c

f(x, y)dx)dy.

This is also called an iterated integral of f .

4.4. Theorem. (Fubini Theorem) Let f : R ⊂ R2 → R and let A ⊂ R

be a set zero area and such that A meets everyline parallel to both axis at
only finitely many points. Assume that f is continuous on R \ A. Then
f is integrable on R, the double integral can both be computed by the
Riemann sum or the iterated integrals and we have

� �

R

f(x, y)dxdy =

� b

a

(

� d

c

f(x, y)dx)dy =

� d

c

(

� b

a

f(x, y)dx)dy.
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4.4. Double integral on elementary domains.

4.5. Definition. We say that D is an elementary domain of the plane
if it can be described as a subset of R2 of one of the following types:

(1) D = {(x, y) ∈ R2|x ∈ [a, b], y ∈ [γ(x), δ(x)]}, where γ, δ are
continuous functions on [a, b].

(2) D = {(x, y) ∈ R2|x ∈ [α(y), β(y)], y ∈ [c, d]}, where α, β are
continuous functions on [c, d].

(Remark that an elementary domain is a finite portion of the plane
and can be simultaneously of both types.)

4.6. Theorem. Let f : D ⊂ R2 → R be a continuous function on an
elementary domain D. We define the function f

ext : R2 → R as follows:

(1) f
ext(x, y) = f(x, y) for any (x, y) ∈ D.

(2) f
ext(x, y) = 0, otherwise.

Then, if the function f
ext is discontinuous at some point, then this point

is in ∂D, the boundary of D. The function f
ext is integrable on any

rectangle R containing D and we set
� �

D

f(x, y)dxdy :=

� �

R

f
ext(x, y)dxdy.

This double integral is independent of the choice of the rectangle R con-
taining D.

4.7. Theorem. Let f : D ⊂ R2 → R be a continuous function on an
elementary domain D.

(1) Assume D is of type (1), then
� �

D

f(x, y)dxdy =

� b

a

(

� δ(x)

γ(x)

f(x, y)dy)dx.

(2) Assume D is of type (2), then
� �

D

f(x, y)dxdy =

� d

c

(

� β(y)

α(y)

f(x, y)dx)dy.

4.5. Triple integrals.

4.8. Definition. Let B = [a, b] × [c, d] × [p, q] be a closed box in R3.
A partition of order n {Bi,j,k} of B is the collection of the following
datas:

(1) {xi} : a = x0 < x1 < · · · < xn = b.
(2) {yi} : c = y0 < y1 < · · · < yn = d.
(3) {zi} : p = z0 < z1 < · · · < zn = q.

Set ∆xi = xi − xi−1, ∆yi = yi − yi−1 and ∆zi = zi − zi−1 for any
i = 1, . . . , n and Bi,j,k = [xi−1, xi]× [yj−1, yj]× [zk−1, zk] the subboxes of
B with volume ∆Vi,j,k := ∆xi.∆yj.∆zk.
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4.9. Definition. Let f : R ⊂ R3 → R. For any integer n, let {Bi,j,k}
be a partition of B of order n. For any i, j, k, let Pi,j,k be a point in the
subbox Bi,j,k. The triple integral of f on B is defined as

� � �

B

:= lim
n→∞

n�

i=1

f(Pi,j,k)∆Vi,j,k

provided the limit exists in which case we say that f is integrable and
we write

� b

a

� d

c

� q

p f(x, y, z)dxdydz or
� � �

B f(x, y, z)dxdydz this limit.

The sum
�n

i=1 f(Pi,j,k)∆Vi,j,k is called Riemann sum (of order n).

4.10. Example. If f is bounded and discontinuous on a set X with zero
volume, then f is integrable. If we assume moreover that X meets every
lines parallel to the 3 axes at only finitely many points, then

� � �

B

f(x, y, z)dxdydz =

� b

a

(

� d

c

(

� q

p

f(x, y, z)dz)dy)dx,

or in any other order, where on the right hand side we consider iterated
integrals as in semester 1.

4.6. Triple integral on elementary domains.

4.11. Definition. We say that D is an elementary domain of R3 if it
can be described as a subset of R3 of one of the following types:

(1) D = {(x, y, z) ∈ R3|x ∈ [a, b], y ∈ [γ(x), δ(x)], z ∈ [ϕ(x, y),Ψ(x, y)]}
or where D = {(x, y, z) ∈ R3|y ∈ [c, d], x ∈ [α(y), β(y)], z ∈
[ϕ(x, y),Ψ(x, y)]} γ, δ,α, β,ϕ,Ψ are continuous functions.

(2) D = {(x, y, z) ∈ R3|x ∈ [α(y, z), β(y, z)], y ∈ [γ(z), δ(z)], z ∈
[p, q]} or D = {(x, y, z) ∈ R3|x ∈ [α(y, z), β(y, z)], y ∈ [c, d], z ∈
[ϕ(y),Ψ(y)]}, where α, β, γ, δ,ϕ,Ψ are continuous functions.

(3) D = {(x, y, z) ∈ R3|x ∈ [α(z), β(z)], y ∈ [γ(x, z), δ(x, z)], z ∈
[p, q]} or D = {(x, y, z) ∈ R3|x ∈ [a, b], y ∈ [γ(x, z), δ(x, z)], z ∈
[ϕ(x),Ψ(x)]}, where α, β, γ, δ,ϕ,Ψ are continuous functions.

(Remark that an elementary domain is a finite portion of R3 and can
be simultaneously of type 1,2 or 3.)

4.12. Theorem. Let f : D ⊂ R3 → R be a continuous function on an
elementary domain D. We define the function f

ext : R3 → R as follows:

(1) f
ext(x, y, z) = f(x, y, z) for any (x, y, z) ∈ D.

(2) f
ext(x, y, z) = 0, otherwise.

Then, if the function f
ext is discontinuous at some point, then this point

is in ∂D, the boundary of D. The function f
ext is integrable on any box

B containing D and we set
� � �

D

f(x, y)dxdy :=

� � �

B

f
ext(x, y)dxdy.

This triple integral is independent of the choice of the box B containing
D.
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4.13. Theorem. Let f : D ⊂ R3 → R be a continuous function on an
elementary domain D.

(1) Assume D is of type (1a), then
� � �

D

f(x, y, z)dxdydz =

� b

a

� δ(x)

γ(x)

� Ψ(x,y)

ϕ(x,y

f(x, y, z)dzdydx.

(2) Assume D is of type (1b), then
� � �

D

f(x, y, z)dxdy =

� d

c

� β(y)

α(y)

� Ψ(x,y)

ϕ(x,y)

dzdydz.

(3) Assume D is of type (2a), then
� � �

D

f(x, y, z)dxdydz =

� q

p

� δ(z)

γ(z)

� Ψ(y,z)

ϕ(y,z

f(x, y, z)dxdydz.

(4) Assume D is of type (2b), then
� � �

D

f(x, y, z)dxdy =

� d

c

� β(y)

α(y)

� Ψ(y,z)

ϕ(y,z)

f(x, y, z)dxdzdy.

(5) Assume D is of type (3a), then
� � �

D

f(x, y, z)dxdydz =

� q

p

� δ(z)

γ(z)

� Ψ(x,z)

ϕ(x,z

f(x, y, z)dydxdz

(6) Assume D is of type (3b), then
� � �

D

f(x, y, z)dxdy =

� b

a

� β(x)

α(x)

� Ψ(x,z)

ϕ(x,z)

f(x, y, z)dydzdx.

(Do not learn all these formulas by heart!)

4.7. Change of variables.

4.14. Theorem. Let D be an elementary region of the plane (resp. of
R3) and f : D → R be an integrable on D. Let

T : R2 → R2; (u, v) �→ (x(u, v), y(u, v))

(resp.

T : R3 → R3; (u, v, w) �→ (x(u, v, w), y(u, v, w), z(u, v, w)))

be a C
1 differentiable function on R2 (resp. R3) mapping an elementary

region D
∗ of the plane (resp. R3) onto D in a one to one fashion (which

means that for any x ∈ D, there exists a x
∗ ∈ D

∗ such that T (x∗) = x

and this x
∗ is unique) and denote JT its Jacobian matrix. Then

� �

D

f(x, y)dxdy =

� �

D∗
f(x(u, v), y(u, v)).|det(JT )|dudv

(resp.
� � �

D

f(x, y, z)dxdydz =

� � �

D∗
f(x(u, v, w), y(u, v, w), z(u, v, w)).|det(JT )|dudvdw)
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4.8. Line integrals.

4.15. Definition. (1) A path in Rn is a continuous function p : I ⊂
R → Rn, where I is an interval of R. The points p(a) and p(b)
are called endpoints of the path. A vector field is a function
F from a subset X of Rn to Rn.

(2) Let p : [a, b] → Rn be a C
1 path and F : X ⊂ Rn → Rn such that

p([a, b]) ⊂ X and F is continuous on p([a, b]). The vector line

integral of F along p , denoted
�
p F.ds is by defined as

� b

a

F (p(t)).p�(t)dt,

where the dot represents the dot product of the two n-uples
F (p(t)) and p

�(t).
(3) Letp : [a, b] → Rn be a C

1 path and f : X ⊂ Rn → R be a scalar-
valued function such that p([a, b]) ⊂ X and f is continuous on
p([a, b]). The scalar line integral of f along p denoted

�
p f.ds

is defined as � b

a

f(p(t)).||p�(t)||dt.

If F is the force field in space, the
�
p F.ds represents the work

done by F on a particle as the particle moves along the path p.

4.16. Definition. p : [a, b] → Rn be a C
1 path. We say that p� : [c, d] →

Rn is a reparametrization of p if there is a one to one and onto function
u : [c, d] → [a, b] of class C

1 with inverse u
−1 such that p�(t) = p(u(t)).

If u(c) = a and u(d) = b, we say that p� is orientation-preserving, if
u(c) = b and u(d) = a, we say that p� is orientation-reversing.

4.17. Theorem. (1) Let p : [a, b] → Rn be a C
1 path and f : X ⊂

Rn → R such that p([a, b]) ⊂ X and let p� be a reparametrization
of p. Then �

p

f.ds =

�

p�
f.ds.

(2) Let p : [a, b] → Rn be a C
1 path and f : X ⊂ Rn → R such that

p([a, b]) ⊂ X and let p� be a reparametrization of p. Then
�

p

F.ds =

�

p�
F.ds,

if p� is orientation-preserving and
�

p

F.ds = −
�

p�
F.ds,

if p� is orientation-reversing.
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