The University of Nagoya
 School of Mathematical Sciences
 G30 Calculus 2, Spring 2012

 MIDTERM EXAM

 MIDTERM EXAM}

Answer key

Exercise 1. Find the following limits (if it exists):
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{-x}{\sqrt{x^{2}+y^{2}}}$ (Hint: consider different paths of approach)

A:
(a)
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt{y}}=\lim _{(x, y) \rightarrow(0,0)} x(\sqrt{x}+\sqrt{y})=0$.
(b) Consider the limiting value along line $y=k x$ where $k \in \mathbb{R}$.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{-x}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{-x}{|x| \sqrt{1+k^{2}}}= \pm \frac{1}{\sqrt{1+k^{2}}} .
$$

Since the limiting value vary according to k and the direction which x approaches to 0 . So the limit does not exist.

Exercise 2.

(1) Show that $\left|x y\left(x^{2}-y^{2}\right)\right| \leq\left(x^{2}+y^{2}\right)^{2}$.
(2) Define $f(0,0)$ such that the function

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$

is continuous at the origin. (Hint: use the previous inequality and the Sandwich Theorem to compute the limit at $(0,0)$.)
A:
(1) By $(|x|-|y|)^{2} \geq 0$, we can obtain

$$
|2 x y| \leq x^{2}+y^{2} .
$$

And obviously

$$
\left|x^{2}-y^{2}\right| \leq x^{2}+y^{2} \leq 2\left(x^{2}+y^{2}\right)
$$

Combining the two inequalities, we can obtain

$$
\left|2 x y\left(x^{2}-y^{2}\right)\right| \leq 2\left(x^{2}+y^{2}\right)^{2} .
$$

That is

$$
\left|x y\left(x^{2}-y^{2}\right)\right| \leq\left(x^{2}+y^{2}\right)^{2} .
$$

(2) By the previous inequality, we have

$$
-\left(x^{2}+y^{2}\right)^{2} \leq x y\left(x^{2}-y^{2}\right) \leq\left(x^{2}+y^{2}\right)^{2}
$$

Then

$$
-\left(x^{2}+y^{2}\right) \leq f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} \leq\left(x^{2}+y^{2}\right)
$$

And we have

$$
\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}=\lim _{(x, y) \rightarrow(0,0)}-\left(x^{2}-y^{2}\right)=0 .
$$

By Sandwich Theorem, we obtain

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 .
$$

So in order to let $f(x, y)$ be continuous at $(0,0)$, we just need to define

$$
f(0,0)=0
$$

Exercise 3.

(1) Compute the Jacobian matrix of the function

$$
F(x, y, z, w):=(3 x-7 y+z, 5 x+2 z-8 w, y-17 z+3 w)
$$

(2) Is the function F differentiable at any $a \in \mathbb{R}^{4}$? Justify your answer.
A:
(1) Let $f_{1}:=3 x-7 y+z, f_{2}:=5 x+2 z-8 w, f_{3}:=y-17 z+3 w$. Then $F=\left(f_{1}, f_{2}, f_{3}\right)$.
$\mathbf{D} F=\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} & \frac{\partial f_{1}}{\partial w} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} & \frac{\partial f_{2}}{\partial w} \\ \frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y} & \frac{\partial f_{3}}{\partial z} & \frac{\partial f_{3}}{\partial w}\end{array}\right)=\left(\begin{array}{cccc}3 & -7 & 1 & 0 \\ 5 & 0 & 2 & -8 \\ 0 & 1 & -17 & 3\end{array}\right)$.
(2) By (1), we can see for $i=1,2,3, \partial f_{i} / x, \partial f_{i} / y, \partial f_{i} / z$ and $\partial f_{i} / w$ exist and continuous at any $a \in \mathbb{R}^{4}$. So F is differentiable at any $a \in \mathbb{R}^{4}$.

Exercise 4. Find the equation of the plane tangent to the surface $z=$ $x^{2}-x y-y^{2}$ at $(1,1,-1)$.

A: Set $f(x, y)=x^{2}-x y-y^{2}=z$, then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x-y, \frac{\partial f}{\partial y}=-x-2 y \\
f_{x}(1,1)=1, f_{y}(1,1)=-3, f(1,1)=-1 .
\end{gathered}
$$

Thus the equation is

$$
z=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)=-1+(x-1)-3(y-1) .
$$

That is

$$
x-3 y-z+1=0
$$

Exercise 5. Let $z=4 e^{x} \ln (y), x=\ln (u \cos (v)), y=u \sin (v)$.
Express $\partial z / \partial u$ and $\partial z / \partial v$ as functions of u and v both by using the Chain Rule and by expressing z directly in terms of u and v before differentiation.

A:
(1) By Chain Rule:

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& =4 e^{x} \ln y \cdot \frac{\cos (v)}{u \cos (v)}+4 e^{x} \frac{1}{y} \cdot \sin (v) \\
& =4(u \cos (v)) \ln (u \sin (v)) \cdot \frac{1}{u}+4(u \cos (v)) \frac{\sin (v)}{u \sin (v)} \\
& =4 \cos (v)(\ln (u \sin (v))+1) . \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
& =4 e^{x} \ln y \cdot \frac{-u \sin (v)}{u \cos (v)}+4 e^{x} \frac{1}{y} \cdot u \cos (v) \\
& =4 u\left(-\sin (v) \ln (u \sin (v))+\frac{\cos ^{2}(v)}{\sin (v)}\right) .
\end{aligned}
$$

(2) By expressing z directly in terms of u and v before differentiation:

$$
z=4 e^{x} \ln (y)=4 u \cos (v) \ln (u \sin (v)) .
$$

Then

$$
\begin{gathered}
\frac{\partial z}{\partial u}=4 \cos (v)\left(1 \cdot \ln (u \sin (v))+\frac{\sin (v)}{u \sin (v)}\right) \\
=4 \cos (v)(\ln (u \sin (v))+1) \\
\frac{\partial z}{\partial v}=4 u\left(-\sin (v) \cdot \ln (u \sin (v))+\cos (v) \frac{u \cos (v)}{u \sin (v)}\right) \\
=4 u\left(-\sin (v) \ln (u \sin (v))+\frac{\cos ^{2}(v)}{\sin (v)}\right)
\end{gathered}
$$

