ASSESSED COURSEWORK 4

Mathematics Tutorial II Nagoya University G30 Program, Spring 2012 Deadline: July 21, 14:45

Solutions should contain detailed arguments for all statements made. The points for each problem (making a total of 25 points) is indicated in square brackets. Hand in at the start of the tutorial class on July 21.

Exercise 1. Let V be the span of the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\-3\\-3 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 3\\2\\4\\-5\\\end{bmatrix}.$$

in \mathbb{R}^4 . [6p]

- (a) Find an orthonormal basis of V.
- (b) Find the matrix of the orthogonal projection

$$\operatorname{proj}_V : \mathbb{R}^4 \to \mathbb{R}^4$$

onto \boldsymbol{V} in the standard basis.

Exercise 2. Determine which of the following matrices are orthogonal. [4p]

Exercise 3. Find all eigenvalues of the following matrices. [6p].

(a)
$$\begin{bmatrix} 1 & -4 & 10 \\ 0 & 7 & -5 \\ 0 & 10 & -8 \end{bmatrix}$$

	$\overline{-4}$	-6	16
(b)	3	7	-12
	0	1	0

Exercise 4. For each matrix A below, find an invertible matrix S and a diagonal matrix D such that $S^{-1}AS = D$. [9p]

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$