The University of Nagoya School of Mathematical Sciences G30 Tutorials 2, Spring 2012 ASSESSED COURSEWORK 2 Deadline: June 14th, 14:45

Exercise 1. Evaluate or explain why the limit fails to exist:

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{(x+y)^2}{x^2+y^2}$$
.

(b) $\lim_{(x,y)\to(0,0)} \frac{x^4 y^4}{(x^2+y^4)^3}$.

Exercise 2. Evaluate the partial derivatives $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, and $\frac{\partial F}{\partial z}$ for the given functions F.

(a) $F(x, y, z) = \frac{x+y+z}{(1+x^2+y^2+z^2)^{3/2}}$. (b) $F(x, y, z) = sin(x^2y^3z^5)$.

Exercise 3. Compute the gradient of the following functions

- (a) $f(x,y) = \frac{x-y}{x^2+y^2+1}$ at (2,-1)(b) $f(x,y,z) = xy + y\cos(z) x\sin(yz)$ at $(2,-1,\pi)$.
- **Exercise 4.** Let f be the function defined as follows:
 - $f(x,y) = \frac{xy^2 x^2y + 3x^3 y^3}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ f(0,0) = 0.
 - (a) Calculate $\frac{\partial f}{\partial x}$, and $\frac{\partial f}{\partial y}$ for $(x, y) \neq (0, 0)$. (b) Find $f_x(0, 0)$, $f_y(0, 0)$.

Exercise 5. Let z = g(x, y) be a class C^2 function and let $x = e^r cos\Theta$, $y = e^r \sin \Theta.$

- (a) Use the Chain rule to find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \Theta}$. Write $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \Theta}$. (b) Use Part (a) and the Chain Rule to prove that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{-2r} \left(\frac{\partial^2 z}{\partial r^2} + \frac{\partial^2 z}{\partial \Theta^2} \right)$$