The University of Nagoya
 School of Mathematical Sciences
 G30 Tutorials 2, Spring 2012

 ASSESSED COURSEWORK 2

 ASSESSED COURSEWORK 2}

Deadline: June 14th, 14:45

Exercise 1. Evaluate or explain why the limit fails to exist:
(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\frac{(x+y)^{2}}{x^{2}+y^{2}}$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}$.

Exercise 2. Evaluate the partial derivatives $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$, and $\frac{\partial F}{\partial z}$ for the given functions F.
(a) $F(x, y, z)=\frac{x+y+z}{\left(1+x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$.
(b) $F(x, y, z)=\sin \left(x^{2} y^{3} z^{5}\right)$.

Exercise 3. Compute the gradient of the following functions
(a) $f(x, y)=\frac{x-y}{x^{2}+y^{2}+1}$ at $(2,-1)$
(b) $f(x, y, z)=x y+y \cos (z)-x \sin (y z)$ at $(2,-1, \pi)$.

Exercise 4. Let f be the function defined as follows:

- $f(x, y)=\frac{x y^{2}-x^{2} y+3 x^{3}-y^{3}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$
- $f(0,0)=0$.
(a) Calculate $\frac{\partial f}{\partial x}$, and $\frac{\partial f}{\partial y}$ for $(x, y) \neq(0,0)$.
(b) Find $f_{x}(0,0), f_{y}(0,0)$.

Exercise 5. Let $z=g(x, y)$ be a class C^{2} function and let $x=e^{r} \cos \Theta$, $y=e^{r} \sin \Theta$.
(a) Use the Chain rule to find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \Theta}$. Write $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \Theta}$.
(b) Use Part (a) and the Chain Rule to prove that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=e^{-2 r}\left(\frac{\partial^{2} z}{\partial r^{2}}+\frac{\partial^{2} z}{\partial \Theta^{2}}\right)
$$

