Sets and Numbers

A set is a collection of distinct objects called elements of the set. Two sets are equal if they have the same elements. We write $x \in A$ to indicate that x is an element of A. The sets of all natural numbers, integers, rational numbers and real numbers are denoted as follows:

 $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$ $\mathbb{Z} = \{\dots - 3, -2, -1, 0, 1, 2, 3, \ldots\}$ $\mathbb{Q} = \{\frac{p}{q} \mid p, q \in \mathbb{Z} \text{ and } q \neq 0\}$ $\mathbb{R} = \{\text{infinite decimal expansions}\}$

For sets A, B we say that A is a subset of B if every element of A is also an element of B and write $A \subseteq B$. The union and intersection of two sets A and B are defined as

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\} \text{ and } A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

respectively.

Problem 1 Write down all elements in the following sets.

- (a) $\{x \in \mathbb{Z} \mid 3 \le x \le 9\}$ (b) $\{y \in \mathbb{N} \mid y + 2 < 8\}$ (c) $\{q \in \mathbb{Q} \mid 2q \in \mathbb{N} \text{ and } q < 3\}$ (d) $\{a \in \mathbb{N} \mid a = 2k + 1 \text{ for some } k \in \{0, 1, 2, 3\}\}$ (e) $\{x \in \mathbb{R} \mid x(x^2 - 1)(x^2 + 1) = 0\}$ (f) $\{n \in \mathbb{N} \mid n^2 \le 9\}$ (g) $\{n \in \mathbb{Z} \mid n^2 \le 9\}$ (h) $\{n \in \mathbb{Z} \mid n^2 \le 9\}$ (i) $\{0, 1, 2, 3, 4\} \cup \{k \in \mathbb{N} \mid 4 \le k \le 8\}$ (j) $\{x \in \mathbb{R} \mid x^3 \le 8\} \cap \mathbb{N}$ (k) $\{x \in \mathbb{R} \mid x(x^2 - 1) = 0\} \cup \{n \in \mathbb{Z} \mid n^2 \le 4\}$ (l) $\{x \in \mathbb{R} \mid x(x^2 - 1) = 0\} \cap \{n \in \mathbb{Z} \mid n^2 \le 4\}$
- (m) $\{A \mid A \subseteq \{1, 2, 3\}\}$

Problem 2 Determine if either of the sets A and B is a subset of the other.

(a)
$$A = \{5, 6, 7\}$$
 and $B = \{1, 2, 3, 4, 5, 6, 7\}$

- (b) $A = \{-14, -1, 3, 7\}$ and $B = \mathbb{N}$
- (c) $A = \{x \in \mathbb{N} \mid x^2 \le 1000\}$ and $B = \{1, 2, 3\}$
- (d) $A = \{x \in \mathbb{R} \mid -10 \le x \le 10\}$ and $B = \{x \in \mathbb{R} \mid x^2 \le 10\}$

- (e) $A = \{x \in \mathbb{R} \mid x(x^2 1) = 0\}$ and $B = \{n \in \mathbb{Z} \mid n^2 \le 4\}$
- (f) $A = \{x \in \mathbb{R} \mid x(x^2 1) = 0\}$ and $B = \{x \in \mathbb{R} \mid -1 \le x \le 1\} \cap \mathbb{Z}$

Problem 3 Write the following subsets of \mathbb{R} as an interval.

- (a) $\{x \in \mathbb{R} \mid x^2 \le 4\}$
- (b) $[2,5] \cup [4,14]$
- (c) $[-1,3] \cup [-10,10]$
- (d) $[2,5] \cap [4,10)$
- (e) $(-1,3) \cap [-10,10]$
- (f) $[5,10) \cap (-2,9]$

Problem 4 Prove the following statements for all sets A, B and C.

- (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (b) $A \subseteq B$ if and only if $A \cap B = A$.
- (c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$