Sets and Numbers

A set is a collection of distinct objects called elements of the set. Two sets are equal if they have the same elements. We write $x \in A$ to indicate that x is an element of A. The sets of all natural numbers, integers, rational numbers and real numbers are denoted as follows:

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2,3,4, \ldots\} \\
& \mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\} \\
& \mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z} \text { and } q \neq 0\right\} \\
& \mathbb{R}=\{\text { infinite decimal expansions }\}
\end{aligned}
$$

For sets A, B we say that A is a subset of B if every element of A is also an element of B and write $A \subseteq B$. The union and intersection of two sets A and B are defined as

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} \quad \text { and } \quad A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

respectively.
Problem 1 Write down all elements in the following sets.
(a) $\{x \in \mathbb{Z} \mid 3 \leq x \leq 9\}$
(b) $\{y \in \mathbb{N} \mid y+2<8\}$
(c) $\{q \in \mathbb{Q} \mid 2 q \in \mathbb{N}$ and $q<3\}$
(d) $\{a \in \mathbb{N} \mid a=2 k+1$ for some $k \in\{0,1,2,3\}\}$
(e) $\left\{x \in \mathbb{R} \mid x\left(x^{2}-1\right)\left(x^{2}+1\right)=0\right\}$
(f) $\left\{n \in \mathbb{N} \mid n^{2} \leq 9\right\}$
(g) $\left\{n \in \mathbb{Z} \mid n^{2} \leq 9\right\}$
(h) $\left\{n \in \mathbb{Z} \mid 4 \leq n^{2} \leq 25\right\}$
(i) $\{0,1,2,3,4\} \cup\{k \in \mathbb{N} \mid 4 \leq k \leq 8\}$
(j) $\left\{x \in \mathbb{R} \mid x^{3} \leq 8\right\} \cap \mathbb{N}$
(k) $\left\{x \in \mathbb{R} \mid x\left(x^{2}-1\right)=0\right\} \cup\left\{n \in \mathbb{Z} \mid n^{2} \leq 4\right\}$
(l) $\left\{x \in \mathbb{R} \mid x\left(x^{2}-1\right)=0\right\} \cap\left\{n \in \mathbb{Z} \mid n^{2} \leq 4\right\}$
(m) $\{A \mid A \subseteq\{1,2,3\}\}$

Problem 2 Determine if either of the sets A and B is a subset of the other.
(a) $A=\{5,6,7\}$ and $B=\{1,2,3,4,5,6,7\}$
(b) $A=\{-14,-1,3,7\}$ and $B=\mathbb{N}$
(c) $A=\left\{x \in \mathbb{N} \mid x^{2} \leq 1000\right\}$ and $B=\{1,2,3\}$
(d) $A=\{x \in \mathbb{R} \mid-10 \leq x \leq 10\}$ and $B=\left\{x \in \mathbb{R} \mid x^{2} \leq 10\right\}$
(e) $A=\left\{x \in \mathbb{R} \mid x\left(x^{2}-1\right)=0\right\}$ and $B=\left\{n \in \mathbb{Z} \mid n^{2} \leq 4\right\}$
(f) $A=\left\{x \in \mathbb{R} \mid x\left(x^{2}-1\right)=0\right\}$ and $B=\{x \in \mathbb{R} \mid-1 \leq x \leq 1\} \cap \mathbb{Z}$

Problem 3 Write the following subsets of \mathbb{R} as an interval.
(a) $\left\{x \in \mathbb{R} \mid x^{2} \leq 4\right\}$
(b) $[2,5] \cup[4,14]$
(c) $[-1,3] \cup[-10,10]$
(d) $[2,5] \cap[4,10)$
(e) $(-1,3) \cap[-10,10]$
(f) $[5,10) \cap(-2,9]$

Problem 4 Prove the following statements for all sets A, B and C.
(a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
(b) $A \subseteq B$ if and only if $A \cap B=A$.
(c) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(d) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

